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Abstract

In this thesis we have evaluated methods for doing full-text searches in patent
documents. The aim of patent searches is to find evidence and relevant documents
when an invalidity search is done on a patent.

With three different language models, BOW, SPECTER and SBERT, we have
evaluated the results of two different text segmentation methods, greedy sentence
split and paragraph split, and two different clustering methods, euclidean and
spherical. We have found that the spherical clustering outperforms the euclidean
one and that both segmentation methods works well for finding relevant parts of
documents, both methods with its own advantages and drawbacks.

The configurations were evaluated in four stages, where the first three were
automatic and the last one was a manual evaluation by employees at AWA and
Lund University. We conclude that our methods have great potential but more
testing on a better engineered test set as well as more data from the manual
evaluation is needed to draw further conclusions.

Keywords: natural language processing, full-text patent search, legal tech,
document similarity, sentence embeddings, clustering
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Popular Science Summary

Every day the amount of publicly available information increases and
with this, a need to quickly and efficiently navigate this jungle of infor-
mation arises. Wouldn’t it be nice if there was a method that under-
stood what you would like to find and then picks out the most relevant
texts for you? Well, that’s exactly what we’ve been trying to find and
we can tell you that the results are promising.

How many times have you had to go back and change your search query due
to not finding what you searched for? How many times have you found tons of
document but none that seemed to contain precisely what you were looking for?
We believe there is a solution to these problems. The language models of today
are actually quite capable of capturing the meaning of shorter texts. Combine
them with a method for cutting up long documents into smaller parts and we are
almost good to go.

This scenario described is especially troublesome for patent attorneys in their
search for prior arts when for instance doing an invalidity search. The most com-
mon method today is searching in a patent database using keywords, which makes
it easy to miss relevant documents due to synonyms and language variability from
different authors. The patent documents are also very long and sometimes all it
takes is a short relevant sentence in a long, otherwise irrelevant, document to prove
that something is already known.

We believe that the work in our thesis is a good step towards a tool that
could help the patent attorneys in their work. By doing searches based on claims
we’ve managed to find shorter passages of patent documents that were deemed
relevant by professionals. Even though this might not do all the job for the patent
attorneys, we see a big potential for an application that gives a list of potentially
relevant documents that otherwise might have been missed.

In our thesis we have tried different methods to segment the long patents
into smaller texts which then can be represented by embeddings created by our
language models. Of course this leads to a very large number of texts, but by
using clustering we can efficiently limit the number of texts we have to search to
find the right hits.
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Chapter 1
Introduction

1.1 Background

One of the tasks of a patent engineer is to perform an invalidity search for a
patent. It means that you search for reasons for the patent to be invalid and
that it should not have been approved in the first place when going through the
application process. The most common reasons are that the invention is not novel,
i.e. previously known, or not inventive, i.e. obvious for a skilled person in view of
what was known at the time of filing the patent. For something to be known it
has to have been published or in any other way made publicly available before the
filing date of the patent application. To do this search, the patent engineer usually
searches in a database of patent documents to find similar patent documents. If
the invention is found in a patent document published before the application it is
not novel and then there is a reason for the patent to be invalidated. Due to the
vast amount of information published and in other ways made available, and that
an invention can be described with different words, there is a big risk of missing
important information that could affect the patentability of an invention.

1.2 Problem

A patent document comprises of a few standardized sections such as abstract,
description and claims. The search in the patent database is usually done using
keywords which is good for finding the documents that matches the exact search
words, but this might lead to missing documents that are related but uses other
words. The description part can be very lengthy and describe many different things
related to the invention even if it is something that is not protected by the claims.
Those small bits of information can be difficult to find when they are written using
other words than used in the search query. They are also easily overlooked during
analysis due to the length of the text, even if the right document is found.

A method to limit the matches of a keyword query is to add classification as a
parameter, i.e. if the search is for documents containing cameras the corresponding
class would be entered as a parameter. However, this has the disadvantage that
documents that mention cameras, even though they don’t belong to the main
content, might be overlooked since the classification would be based on the main
subject of the patent document.

1



2 Introduction

1.3 Our task

In this thesis we will examine different methods and evaluate them and find which
ones that can be used to find descriptions containing information that matches a
search query, even though the matching part of the description is small and not
very related to the general topic of the description. The search query should have
a length and structure similar to the first claim of a patent. In order to facilitate
for the patent engineer, we would like our methods to find the descriptions that
possibly contain similar information even if not written in the exact same words.
Due to the length of the description we would also like to point out where in the
text the match was found. With this we will assess how today’s Natural Language
Processing algorithm’s perform on the task of finding relevant passages in patent
documents.

1.4 Limitations

Due to the size of the patent database available to us, consisting of 2 019 795
publicly available european patent documents in english, we have chosen to limit
our tests to only one class of patents. This is the international patent classification
(IPC) level E, which contains patent documents regarding ’fixed constructions’.
This is a well defined class and it reduced the number of patents in the database
to 57 453 and the effect of this will be that we reduce computations and memory
storage by a large factor while we still keep enough documents to be able to draw
some conclusion about the effectiveness of our methods in the end.

1.5 Related work

1.5.1 Automating the search for a patent’s prior art with a full text
similarity search

In the report Automating the search for a patent’s prior art with a full text simi-
larity search, Helmers et al. use similarity comparisons of full texts and existing
patents to find prior arts and information that could be relevant to a new invention.
They achieved good results with both a Bag-of-words model and Neural Network
Language Models such as word2vec and doc2vec.[1] For the full texts Bag-of-words
performed best and for more limited parts of the documents, such as abstract or
claims, doc2vec performed best. They reason that combining embeddings for too
long texts will make the result too noisy and that the models are better adapted
for smaller more coherent text passages. They used a relatively limited dataset
comprising of patents belonging to the Cooperative Patent Classification scheme
(CPC) category A61, ’Medical or veterinary science and hygiene’.
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1.5.2 Using natural language processing to identify similar patent docu-
ments

A previously written work related to ours is the master’s thesis Using natural
language processing to identify similar patent documents by Hannes Jansson and
Jakob Navrozidis. In their work they use the patents title and abstract and com-
pare this with others to find patents that with a high probability contain related
information. What they found is that the transformer based model SBERT per-
formed best when finding semantically similar abstract.

1.5.3 PatSeg: A Sequential Patent Segmentation Approach

In the article PatSeg: A Sequential Patent Segmentation Approach the authors,
M. Habibi et al., use language processing to segment a patent description into
different categories such as summary, experimental data and lists among others.
This is done in a two step process where they first segmented the description in an
unsupervised manner and then they classified the parts into the right category. In
both steps they used semantic word embeddings. The segmentation method that
they found best was TextTiling.
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Chapter 2
Theory

2.1 Patent theory

2.1.1 Structure of a patent

Every patent that has been granted follows a certain standardized structure. The
first part is a page with bibliographic data. Among other things this page contains
information about the inventor, the application number and filing date. Two other
important items on the first page is the title and the abstract. The abstract is a
short text describing the main idea and technology of the invention in a maximum
of 150 words.

Following the bibliographic data comes the description. The description makes
up the main bulk of text in a patent and can range between a few hundreds
of words to several tens of thousands of words. The description itself has no
standardized structure, but an arrangement of subsections such as background,
summary, detailed description and if applicable, experimental data, is commonly
used. In other words it is in the descriptions that most information about the
invention can be found. The description also sets up the context for how to
interpret the claims in terms of definitions of expressions and the like.

After the description comes the claims. There is no requirement of a specific
number of claims but it is only what is in the claims that is protected by the
patent, so usually there is a list of claims referring to the different aspects of the
invention. The list is always written with the first claim being in the most broad
terms, capturing the overall idea of the invention, and as the list goes on the claims
become more narrow and specific about the details of the invention.

2.1.2 Searching for patents

There are many reasons for wanting to search for patents. Every patent or patent
application that has been made public is a source of knowledge. This means that
when you are investigating whether an idea is patentable or if you want to find
proof that another patent should not have been granted, it’s a good idea to consult
with this vast source of information. There are different tools for a patent engineer
to search for these documents and some of the most common are Espacenet [4],
provided by European Patent Office and Total Patent provided by LexisNexis [5].
The basis of these tools is a keyword search, with the option to add different filters.

5



6 Theory

Even though the searches are aimed at previous patents it is not a requirement
that the invention is published in a patent document for it to be known. Any type
of publication, e.g. a scientific article, would be sufficient.

2.2 Embeddings

When human beings compare two texts we simply read them and we know what
they are about. For a computer it is not as easy. A computer can read and handle
text but it doesn’t necessarily understand what it is about. Typically, computers
work better with numbers, and therefore one method of automatic text comparison
is to convert text into numbers. Then it is easy to use mathematical algorithms
to check if the numbers are close together or far away.

There are different ways to associate certain numbers to a certain text. One
way is to use a language model. A language model has to be trained on large
amounts of text and can then be used for various tasks such as prediction of the
next word in a sentence. From a language model like that it is also possible to
extract the numerical representation of words or sentences. The way that an AI
language model represents a word or text is heavily influenced by the training
process. Many available models have often been pretrained on a large corpus
(Wikipedia is pretty common) and then it is up to the end-user to fine-tune the
model for a specific task.

The numerical representations can be made up of different features, each with
its own value, and all together these numerical vectors are called embeddings. In
this section we will cover the different methods we are going to use for embeddings
in our thesis.

2.2.1 Bag-of-words

Bag-of-words (BOW) is a method to vectorize a text without capturing the se-
mantics of it. A BOW model consists of a vocabulary that keeps track of all the
individual words it has come in contact with during its training. When a vocabu-
lary is in place, an embedding of a text can be generated by counting the words in
the text and put the numbers in a vector. Each position in the vector corresponds
to a specific word in the vocabulary. As a consequence the vector of the text can
be very large and contain a lot of zeros. A short example of this for a corpus
with two sentences can be seen in table 2.1. In table 2.1 the vector representation
of the first sentence is [1, 1, 1, 1, 1, 0, 0, 0] since it contains each of the words ’the’,
’device’, ’has’, ’a’, ’door’ once and the other words in the corpus zero times.

Sentence\vocabulary the device has a door opens outward from
The device has a door 1 1 1 1 1 0 0 0
The door opens outward from the device 2 1 0 0 1 1 1 1

Table 2.1: Short example of Bag-of-words model

The method we will use in this thesis to generate the BOW embedding is
based on the TF-IDF score for each word in the text. TF-IDF stands for term
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frequency-inverse document frequency and is a measure of the importance of a
word to a text in a set of several texts. The term frequency is computed as the
number of occurrences of a word in a text divided by the total number of words
in the text. The inverse document frequency is computed as the logarithm of the
number of texts in the corups divided with the number of documents the current
word is present in. The final score for a word wi in document j, is the product of
TF and IDF as seen in equation 2.1.

TF-IDFi,j =
frequency(wi)

(word count in document j)
· log(total number of texts)
(number of texts with wi)

(2.1)

A problem with BOW is that the dimensionality grows with every new word
and as mentioned before the vectors may contain a lot of zeros. There are several
ways to restrict the number of words in the vocabulary and in our model we do
the following restrictions. First we remove stop words (e.g. ’is’, ’on’ and ’in’),
these are frequently used words that do not add understanding to the model. We
use the stop words that are predefined in the python library Natural Language
Toolkit (NLTK) [6]. Secondly we stem the words, meaning that we extract the
root of the word. An example is ’thinking’ and ’thinks’ which both will be reduced
to ’think’. Thirdly we will limit the number of words by setting a limit on the
model’s vocabulary since the memory usage it takes to store a large number of
large non sparse vectors is too high for the hard drives we have available and the
computation times would be too long to fit within the time scope of this project.

2.2.2 BERT based methods

A common way of creating language models is to build different kinds of neural
networks. BERT stands for Bidirectional Encoder Representations from Trans-
formers and it is a language representation model.[7] As the name suggests it uses
a bidirectional encoder to condition on both left and right context. It has a vo-
cabulary of 30 000 words and it learns an embedding for each input token (e.g. a
word or a number) given its context. During pre-training BERT takes a sequence
of text as input and masks 15% of the tokens and then tries to predict them. To
get the embeddings out of the model we look at the last hidden state of the neural
network, before the layer making the prediction. The values of the nodes in this
state can be seen as the features of the word in a vector space.

BERT is also trained in next sentence prediction where it gets two sentences
as input where the second sentence is tagged as either ’isNext’ or ’notNext’. When
the two sentences are passed into the network a score is calculated which could
be seen as a semantic similarity score. While BERT could be used for similarity
comparison between sentences it would be very slow. To give a similarity score,
every pair of sentences would have to be passed through the network. For n
sentences that means n ∗ (n− 1)/2, which is O(n2), computations which scales up
very fast when we have a large amount of sentences.
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SentenceBERT

SentenceBERT (SBERT) is a modification to the regular BERT that uses a siamese
network to create semantically meaningful sentence embeddings.[8] This would give
each sentence a unique representation in a vector space which would then facili-
tate operations such as clustering and information retrieval using semantic search,
which is what we will be focusing on in this thesis. SBERT takes a sequence of text
with a max length of 512 tokens, and by adding a pooling layer to the output of a
BERT network, SBERT derives a fixed length vector for each sequence. Although
the name suggests an input of sentences, the input to SBERT can actually be any
sequence of text (e.g. many consecutive sentences) as long as the maximum length
is not exceeded. Jansson and Navrozidis (2020), found SBERT to be a good option
for matching a search query with abstracts and titles from patent documents, and
therefore SBERT will be one of our main subjects for this thesis. This model has
been trained with the datasets SNLI [9] and Multi-genre NLI [10].

SPECTER

Scientific Paper Embeddings using Citation-informed TransformERs (SPECTER)
is another model based on BERT.[11] What makes it special is that it is trained on
scientific papers where it takes the title and abstract as input text, and then it uses
the citations of the papers as labels for how the papers are related. Unlike most
other models, SPECTER is ready to be applied in a downstream task, e.g. embed-
dings or word prediction, without fine tuning. It collects the global information of
the input into a special [CLS] token. It is the last hidden state corresponding to
this token which is used as an embedding when comparing documents. Hopefully
it is an advantage that the SPECTER network has been trained on scientific ar-
ticles, since it is probably more closely related to the type of language in patents
than other large corpora (e.g. Wikipedia).

2.3 Pre-processing the text

Before it is possible to generate an embedding, the text needs to be extracted from
the files and segmented into parts suitable for the language models.

In the original data everything is stored in a format called Extensible Markup
Language (XML) [15] and therefore the first step is to extract the patent text from
the database and restore it as pure text. Since two of our models have a limit on
how long the input text can be for it to produce an embedding, it means that
we will have to split up the texts in smaller pieces. For one of our segmentation
methods we will use the XML tags for the paragraphs to perform the splitting. In
the rest of the methods we will use the text without XML formatting as input.

2.3.1 Segmentation

The BERT-based methods used in this thesis have a limitation of 512 tokens
because the memory usage scale quadratically with the sentence length.[7] Due
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to this limitation it is necessary to segment the texts into smaller parts. In this
section the methods used in the thesis will be explained.

Greedy sentence split

The greedy sentence segmentation is a method that divide the text into chunks
that are as close to the maximum number of tokens as possible but never greater.
The chunk are generated by sequentially adding a sentence to a box, if this results
in too many tokens for the box it is closed and the sentence is put into a new box
instead. This is to guarantee that no box is overfull as well as no sentence is split
into several parts. One exception is when a sentence has more tokens than the
limit of the box. Then the sentence is put in its own box and when the embeddings
for SBERT and SPECTER are computed only the first 512 tokens are used.

Paragraph split

A patent description is naturally divided into paragraphs defined by the author.
These are often a good indication of where the text shifts focus and could therefore
be used as individual segments when searching for relevant passages in a patent.
A downside with this compared to the greedy sentence split is that the number of
segments is much higher and therefore it could be too demanding to compute all
embeddings, cluster them and then finding the right segments in a search. This
segmentation is done in the same step as the extraction of the text from the XML
code.

TextTiling

TextTiling is a more complex text segmentation method that is implemented in
the NLTK library.[16] The complexity lies in that each sentence or paragraph is
semantically evaluated to find the best places to split the text.

The algorithm traverses the text with a sliding window containing a number
of sentences or paragraphs. It calculates and keeps a similarity score of the text
contained in the window at each position. In the end it splits the document in
positions where it maximizes the semantic similarity within each segment.

After a few initial tests with TextTiling on a few documents we discarded the
segmentation method from further use. This was due to an unreasonable long
computation time. The method also resulted in an immense number of segments
for each document which meant that our memory capacity wouldn’t be enough
when later generating embeddings. Considering all this we decided it was not
worth it and that for our evaluations, paragraph split would yield sufficiently
similar splitting and semantic homogeneity of the segments.
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2.4 Clustering

When dealing with a lot of data it can be ineffective to search through every data
point. A way to get around this is to group data points together that share a
similar structure on a desired feature. All clusters will have a cluster centre which
is the mean feature vector of all the data points that is contained within a group.

An initial search is done on the cluster centers to find which clusters are
most likely to contain relevant information. These clusters are then chosen for an
extensive search over all data points they contain.

2.4.1 Initialization

There are mainly two different methods to initialize cluster centers, either ran-
domly or using k-means++ [12]. Here random is straight forward, one simply
takes as many random data points as one want to have as number of clusters.
This could possibly lead to slow convergence due to lack of spreading of the cen-
ters. A more commonly used method is k-means++ which chooses the initial
cluster centers in a way that generate diverse centers which leads to a faster con-
vergence. However neither method guarantees convergence to the global minimum
and they often fall into local minima when converged.

2.4.2 Mini-batch k-means

To speed up convergence when dealing with a lot of data it is possible to use the
mini-batch k-means method.[13] With this the data is divided into several batches
and the cluster centers are adjusted depending on one of these batches at a time.
An example of this batching can be seen in figure 2.1. To the left in figure 2.1 a
set of 100 samples can be seen and in the middle a subset of 30 points have been
selected for the first epoch. To the right in figure 2.1 another subset of 30 samples
has been selected for the next epoch. This means that in each epoch the number
of computations will be (batch size · nbr of clusters) instead of (total nbr of data
points · nbr of clusters). The speed up for each epoch will be bigger the more
data points you have. In return the algorithm will need a larger amount of epochs
to converge. An effect of not looking at the whole set of data points is that the
cluster centers will adjust slightly in each epoch and therefore a tolerance will also
have to be set for when to stop.

2.4.3 Different distance measures

A method to measure distance between data points and the cluster center is the
euclidean distance as seen in equation 2.2 where Xc is the vector for a cluster
center, X is the vector for the data point. xc

i and xi are the i:th coordinates of the
cluster center and the data point respectively. This is the standard way to measure
distances within clusters and is implemented by most libraries such as Scikit-learn
[14]. However, when measuring similarities between texts a more common method
to use is the cosine similarity where the vectorization of texts are projected onto
the unit sphere. It could therefore be beneficial to cluster the data with respect



Theory 11

Figure 2.1: In a set of 100 samples a random mini-batch of 30
samples is selected in the first epoch. In the next epoch a new
mini-batch is randomly selected.

to this instead. The cosine similarity is seen in equation 2.3 where Xc and X is
the same as in equation 2.2

f(Xc,X) =

N∑
i=0

√
(xc

i )
2 − (xi)2 (2.2)

f(Xc,X) =
XT

c X

|Xc| · |X|
(2.3)

The cosine similarity, that ranges between -1 and 1, can easily be converted to
a distance measure that ranges from 0 to 2 by taking 1-(cosine similarity). Using
the cosine distance yields the same results as first projecting the points to the unit
n-sphere and then using the euclidean distance measure. A simple 2D visualization
of how the two distance measures will affect the clustering can be seen in figure
2.2.

Figure 2.2: To the left, four data points and part of the unit circle
can be seen. In the middle, the data points are clustered in two
groups using the euclidean distance measure. To the right, the
data points are clustered using the cosine distance instead and
the clusters are not the same.
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The different versions of the spherical clustering methods that we found did
not implement mini-batching and was therefore not well suited to used together
with paragraph split. This would have led to unfeasible computation times.



Chapter 3
Method

3.1 Architecture

In order for us to evaluate the different methods of retrieving text passages from
descriptions that match an input claim we have created a simple program. The
program takes a search query as input and returns the most relevant passages
from different descriptions. For this program to run in a reasonable time we have
to store a lot of the information in a database. By doing a lot of computations
offline beforehand and storing as much information as possible in the database we
can limit the number of computations that has to be done every time the program
runs. This shortens the runtime for one search from approximately a day or two to
a few minutes given that we only search in IPC level E. To evaluate our different
methods we will have four kinds of evaluations performed at different stages in the
search, which will be further explained in section 3.4. The workflow/architecture
of our program can be seen in figure 3.1.

Figure 3.1: Pipeline of the project

13
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In figure 3.1 we first access the raw data from the patent documents which is
then pre-processed by cleaning the XML code and splitting the texts. From the
pre-processed embeddings are generated and stored in the database together with
the clean text segments. The embeddings are then retrieved from the database and
clustered, and the information about the clusters is also stored in the database.
With the database prepared a search query can be fed to the program and the
closest clusters are located. The embeddings in these clusters are retrieved and a
similarity comparison between the search query and the embeddings is performed.
Lastly the results are presented in descending order.

3.2 Database

The database we use for our program contains all the needed information about
the patents and their descriptions. The database was stored in a file system on
disk, on a computer made available from Mindified. Categories of the patents that
we store in the database are patent number, the full description and the first claim.
We also went through every full description and segmented it into smaller parts
and stored them as separate files using our different segmentation methods. The
segments were stored in a manner so that the document they originated from could
be found. In addition to this we also computed the embeddings, using the methods
described in the theory section, for every text segment and full description and
stored them as well for easy access during the search. The database also contains
information about the clustering, e.g. cluster centers and which texts belong to
which clusters in order to make the search more efficient.

3.3 Search

The search, visualized in the bottom part of figure 3.1, is done by taking an input
query, supposedly a short text disposed as the first claim in a patent document, to
be processed and used for computing an embedding. Then the program will search
through our database for embeddings produced by the same model and find the
best matches and fetch the corresponding texts. These will be shown in a ranked
order together with their similarity score.

3.4 Evaluation

The evaluation is a very important step since it is used to decide if the search results
provided by our methods are reasonable or not. It is also a way of estimating if
the quality is high enough for it to be a tool that can be used professionally. We
have chosen to create a chain of evaluations that can be seen in figure 3.2 where
the first evaluation is performed directly after the embeddings are generated. The
second evaluation is performed after the clustering to see how the clusters affect
the results. The third and fourth evaluations are performed independent of each
other where the third evaluation is focused on the positioning of the results and
the fourth evaluations is a manual verification of the results by professionals.
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Figure 3.2: Pipeline of the evaluation process

Since evaluations performed by humans are time consuming and possibly sub-
jective, we have aimed to do as much of the evaluations as possible automatic.
Therefore only the fourth evaluation step will be performed manually. One of
the difficulties with evaluating search methods is that there is no ground truth to
compare with in order to know if the search was successful or not. It is possible to
compare with search reports that has been made but these have some limitations.
Firstly, they are often based on keyword searches and secondly, the person that
performs the search often stops after a few examples even if more examples exists.
Another difficulty with the evaluation is to separate true negatives, i.e. if we have
no relevant results because the invention is new and no similar documents exists,
from false negatives, i.e if we just miss the relevant documents.

3.4.1 Evaluation 1: Basic semantics capturing

The first stage of the evaluation will be a test of our models capability of giving
similar embeddings to similar texts. For every document the embeddings of the
claim and the description will be compared and the average cosine similarity will
be calculated. Every claim will also be compared to a random description and
the average cosine similarity of that is calculated as well. In the cases where we
have segmented the descriptions into several parts, we will compare the claim
with each part and then choose the maximum similarity as the similarity score for
that document. Some of the random couples of claim and description will result
in a good match, but on average it should be worse. If the models catch the
semantics of the texts in the generated embeddings it is expected to get a higher
similarity score on average when comparing claims and descriptions from the same
document. As a result the two average similarity scores will hopefully diverge if
tested on enough pairs. The evaluation will be performed on class E as previously
stated. The test will therefore consist of 57 453 pairs with true match between the
claims and the descriptions as well as an equal amount of random pairs.

In this stage of the evaluation we will two different BOW models with vocab-
ularies of 2000 words and 10 000 words and they will be referred to as ’bow2’ and
’bow10’ respectively. These two models will be tested on the full-text similarity
to get an indication on how the vocabulary size affects the results. If not specified
and in later stages of the evaluations BOW will always refer to ’bow2’, which is
the model we will continue with.
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3.4.2 Evaluation 2: Clustering

In order to improve the efficiency and keep down the computation times during
runtime the texts will be clustered. To make sure that not too much relevant
information is lost due to the clustering some tests will be performed.

First a cluster study will be performed for a set of different number of clusters
and the inertia, which is a kind of measure of how the data within the clusters are
spread, will be measured and plotted. This is to get an overview of the impact of
the number of clusters. After the cluster study, a small set of number of clusters
is chosen to evaluate the impact of the number of clusters the search is performed
in as well as if the clusters are based on euclidean or cosine distance. For these
combinations the average of the maximum self-matching score for claims towards
their own descriptions is computed. These results will be presented together with
a reference to both 100% and 90% of the result from evaluation 1 to easier visualize
the information loss.

With the results from this evaluation a decision will be made for each configu-
ration (language model + segmentation method) on a combination of the number
of clusters in the clustering and the number of clusters to search in for the follow-
ing evaluations. For each configuration we will also decide if euclidean or spherical
clustering will be used.

3.4.3 Evaluation 3: Ranking

In this part of the evaluation a search will be performed on the first claim from
each document. The average position in the ranking of the search results, from
highest to lowest similarity, will be computed for the best found match from the
corresponding description. From this we will get a sense of how the best self-match
compares to other matches.

3.4.4 Evaluation 4: Manual control

The fourth and last stage of evaluation will consist of making a number of searches
with our different methods ranking the results. This will be done manually with
the help of employees at AWA since there is no list of correct answers to compare
our results to.

For each configuration we will make a number of searches based on the first
claim from a patent document belonging to our subset of IPC level E. We will
pick out the results in places 1, 2, 3, 5, 10, 25, 50, 75 and 100. To these results
we will add one result from a search report on the same patent. The order of the
results will be mixed and presented to the employees at AWA and Lund University
to be ranked against each other in relevance for a invalidity search. The search
results will also be individually classified as ’X’ (all features of the claim (input)
is disclosed in the text), ’Y’ (all features are not presented, but when combined
with another document (also an Y document) all features are presented by the
combination of documents) or ’A’ (other). An example of the form used can be
seen in Appendix A.1. The results from this evaluation will give us a measure both
on how relevant the search results from our methods are and how they compare
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to those results found by a person doing a search report. We will also see if our
conclusions from previous evaluations seems to be in the right direction.
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Chapter 4
Results

Here we will review the results of each method in the different evaluation steps
described in the previous section. All the computations have been performed on
a computer provided by Mindified with a 24 core AMD 2970WX Threadripper
CPU, a Gigabyte GeForce RTX 3090 24GB TURBO GPU and 128 GB RAM.
The operative system was Linux and all code was implemented in Python.

The two segmentation methods we used resulted in different lengths of the
segmented texts which lead to a different number of total texts as well. In table
4.1 some statistics of the text splitting methods and their results can be seen. The
paragraph split results have a lot more text segments than the greedy sentence
split.

Statistic\Splitting method Greedy splits Paragraph splits
Total number of documents 57 453 57 453

Total number of parts in all documents 735 142 3 235 450
Max number of parts in one document 411 2 457
Mean number of parts per document 12.8 56.3

Table 4.1: Results from the two text segmentation methods.

4.1 Evaluation 1: Basic semantics capturing

The first evaluation method gives a measure of each model’s basic ability of giving
similar embeddings to texts that have a similar meaning. The results of this first
evaluation for different combinations of model and segmentation method can be
seen in table 4.2. The models ’bow10’ and ’bow2’ are BOW models restricted to a
vocabulary of 10 000 and 2000 words respectively. ’True mean’ is in here defined
as the mean similarity score of a claim and description belonging to the same
document and ’random mean’ is defined as the mean score for a claim compared
to a random description.

19
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Model Segmentation method True mean Random mean Diff (true-rnd)
bow10 no segmentation 0.4779 0.0545 0.4234
bow2 no segmentation 0.5726 0.0893 0.4833
bow2 greedy 0.7337 0.0752 0.6585
bow2 para 0.8529 0.0954 0.7575
sbert greedy 0.8583 0.6671 0.1912
sbert para 0.9066 0.6851 0.2215
specter greedy 0.9258 0.7448 0.1810
specter para 0.9496 0.7575 0.1921

Table 4.2: Results from first evaluation for different models and
segmentation methods.

In figure 4.1 and 4.2 the distributions of the results can be seen for both
the true and the random matches when methods for splitting up the descriptions
where used. In figure 4.3 we can see the same results when comparing ’bow2’ with
’bow10’ on the full length descriptions.

Figure 4.1: Distributions of results from the first evaluation using
greedy sentence split. Here ’true’ is short for true matches and
’rnd’ is short for random matches.
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Figure 4.2: Distributions of results from the first evaluation using
paragraph split. Here ’true’ is short for true matches and ’rnd’
is short for random matches.

Figure 4.3: Distributions of results from the first evaluation using
bow2 and bow10 on full length texts. Here ’true’ is short for
true matches and ’rnd’ is short for random matches.
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4.2 Evaluation 2: Clustering

The figures 4.4, 4.5 and 4.6 shows the result from the cluster study performed on
the SBERT embeddings. Figure 4.4 shows how the inertia of the clusters change
with number of clusters for spherical clusters when performed on the greedy split
sentences and it can clearly be seen that the inertia goes down as the number of
clusters increases. Figure 4.5 shows the corresponding curve for euclidean clusters
with the same trend of decreasing inertia for more clusters. In figure 4.6 we see the
inertia for euclidean clusters performed on the paragraph split sentences and the
inertia decreases with more clusters in this graph as well, even though the inertia
seems to follow two possible curves.

Figure 4.4: Cluster study on
spherical clusters with greedy
sentence split

Figure 4.5: Cluster study on eu-
clidean clusters with greedy
sentence split

Figure 4.6: Cluster study on euclidean clusters with paragraph split

Figures 4.7, 4.8 and 4.9 show the results from the second evaluation on the
configuration with model BOW and greedy sentence split. In figure 4.7 the results
from evaluating with euclidean clusters are shown for 300, 600 and 1000 clusters.
After approximately 5% of the clusters have been searched through the lines co-
incide, and at approximately 15%, the score has nearly reached to the score from
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evaluation 1. In figure 4.8 the results for 600 and 1000 cluster coincide at approxi-
mately 15% at the score of evaluation 1. Already at 5% the results for 1000 clusters
has reached the score of evaluation 1. The results for 300 clusters constantly lies
at a lower level than the others and never reach up to the score of evaluation 1.

Figure 4.7: The results from the second evaluation for the BOW
model with the greedy sentence split and euclidean clustering.

Figure 4.8: The results from the second evaluation for the BOW
model with the greedy sentence split and spherical clustering.
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The results in figure 4.9, where we compare 1000 clusters for each method,
shows that for results searched in fewer than 20% of the clusters the spherical
clusters perform better and for evaluation 3 and 4 the cluster configuration will
be 1000 spherical clusters with a search ratio of 5%.

Figure 4.9: A comparison from the second evaluation for the BOW
model with the greedy sentence split and spherical clustering vs
euclidean clustering for 1000 clusters.

Next configuration is model SPECTER with greedy sentence split and in fig-
ures 4.10, 4.11 and 4.12 the results for this configuration are shown. In figure 4.10
the results for the euclidean clusters are shown where one can see that the curves
for all three cluster sizes are separated, though 600 and 1000 are close to each
other. All curves reach over 90% of the evaluation 1 score but never reach to the
full score because some of the best self-matches is not found in the clusters we
have searched through.

In figure 4.11 all cluster sizes are close together and coincide at approximately
10% and they reach up to the score from evaluation 1 at approximately 20% of
searched clusters. For a lower search percentage we see that 1000 clusters are
slightly better and we will compare this with the 1000 clusters from the euclidean
case in figure 4.12.
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Figure 4.10: The results from the second evaluation for the
SPECTER model with the greedy sentence split and euclidean
clustering.

Figure 4.11: The results from the second evaluation for the
SPECTER model with the greedy sentence split and spherical
clustering.
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The comparison of the euclidean and spherical clusters in figure 4.12 clearly
shows that the spherical clusters perform better than the euclidean for 1000 clus-
ters. The configuration going forward with evaluation 3 and 4 will be 1000 spherical
clusters at 10%.

Figure 4.12: A comparison from the second evaluation for the
SPECTER model with the greedy sentence split and spherical
clustering vs euclidean clustering for 1000 clusters.

In figures 4.13, 4.14 and 4.15 the results for the configuration of model SBERT
and greedy sentence split are shown. In figure 4.13 the results for the euclidean
clusters are shown, they are separated from one another and have 300 clusters as
worst and 1000 clusters as best. All three cluster sizes reach over 90% of the score
from evaluation 1 but neither come very close to the full score.
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Figure 4.13: The results from the second evaluation for the SBERT
model with the greedy sentence split and euclidean clustering.

Figure 4.14: The results from the second evaluation for the SBERT
model with the greedy sentence split and spherical clustering.
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Looking at the results for the spherical clusters in figure 4.14 all sizes are closer
together and eventually coincide. However, 1000 clusters perform slightly better
than the others at early percentages and comparing this with the the euclidean
results for 1000 clusters in figure 4.15 one can see that the spherical clusters per-
form better. In evaluation 3 and 4 we will therefore use 1000 spherical clusters
with a 10% search ratio.

Figure 4.15: A comparison from the second evaluation for the
SBERT model with the greedy sentence split and spherical clus-
tering vs euclidean clustering for 1000 clusters.

For the combination with paragraph split and the three models the only cluster
configuration is euclidean. Therefore the interesting result in figures 4.16, 4.17 and
4.18 is how many clusters to have and how large percentage of these it is necessary
to search in, and not which clustering method that performs best. In figure 4.16
the results for BOW is shown and already at 5% the different cluster sizes are
coinciding and almost at the score from evaluation 1. For evaluation 3 and 4 we
use 9000 clusters and have a search ratio of 3%.
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Figure 4.16: The top image in the figure is the results for the second
evaluation for BOW with paragraph split. The bottom image
in the figure is a zoomed in version of the top figure.
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In figure 4.17 the results for SPECTER is shown and here all cluster sizes
seems to coincide from the start and lies at the score of evaluation 1. But when
zoomed in, we can see that 9000 clusters are actually slightly better and therefore
we will use 9000 clusters with a search ratio of 5% in evaluation 3 and 4. We
chose this setting because we think it is a good trade off between the score and
the computational time.

Figure 4.17: The top image in the figure is the results for the second
evaluation for SPECTER with paragraph split. The bottom
image in the figure is a zoomed in version of the top figure.
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In figure 4.18 the results for SBERT is shown and after 5% the curves start
to flatten out and after 10% the different cluster sizes have coincided and lies
very close to the score of evaluation 1. In the first 5% the three cluster sizes
differ somewhat with 3000 clusters as the best and 6000 clusters as the worst. In
evaluation 3 and 4 we will use 3000 clusters with a search ratio of 5%.

Figure 4.18: The top image in the figure is the results for the second
evaluation for SBERT with paragraph split. The bottom image
in the figure is a zoomed in version of the top figure.
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Due to a mix up of results, two additional configurations made it to evaluation
4. These are SPECTER and SBERT with greedy sentence split and euclidean
clustering. For SPECTER we used 600 clusters and searched in 5% of them and
for SBERT we had 1000 clusters and searched in 20% of them. The decision for
these search settings were taken before we had the correct results for the spherical
clustering.

4.3 Evaluation 3: Ranking

In the third evaluation we made a search on a claim from our database and noted
how the best match from the same document as the claim was ranked compared
to the other matches. The search was performed with the cluster settings that
was found in evaluation 2, and it was done on 2000 claims. Some statistics from
these searches can be seen in table 4.3 where ’g.’ and ’p.’ shows if the search
was done on the texts that was split with the Greedy sentence split or Paragraph
split respectively. ’Best’, ’Worst’, ’Mean’ and ’Median’ are qualitative measures
of how the best self-matches were ranked and the other statistics are quantitative
measures of how the best self-matches were distributed in the rankings of search
results.

Statistic\Model SBERT g. SBERT p. SPECTER g. SPECTER p. BOW g. BOW p.
Best 1 1 1 1 1 1
Worst 58124 76121 22279 3217 952 57450
Mean 774.45 264.95 46.08 16.63 3.03 33.31
Median 6 1 1 1 1 1

Position 1 694 1234 1402 1614 1823 1846
Top 10 1053 1512 1741 1828 1974 1954
Top 100 1434 1761 1917 1949 1994 1989
Over 100 506 238 79 51 5 11
Not found 60 1 4 0 1 0

Table 4.3: The values of some statistical measures from the third
evaluation.

The median result for the six different configurations is 1 except for ’SBERT
greedy’ where it is 6. Half of the search results were at the median results or above,
which means that in most cases there is higher similarity between a claim and a
text from the same document than from other documents. Looking at the mean
position of the best self match, ’BOW g.’ performed best with a value of 3.03 and
the two SBERTs performed much worse than the others with 264.95 for ’para’ and
774.45 for ’greedy’. The number of self matches in position 1 are superior for the
BOW configurations and they only rank 5 and 11 matches worse than top 100.
After BOW, SPECTER performs better than SBERT and for both the BERT-
based models we can see that they perform better when using the paragraph split
instead of greedy split.
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4.4 Evaluation 4: Manual control

In the fourth evaluation we let employees from AWA and Lund University look
at the results from seven different searches for each configuration of model and
splitting method. The results were distributed so that each person evaluated the
search results from three different claims, one for each model. In total seven claims
were used for the searches and the mean and median ranking (between 1 and 10)
of the results for the different configurations can be seen in table 4.4 where ’g.’ and
’p.’ stands for greedy sentence split and paragraph split and ’e.’ and ’s.’ stands
for euclidean and spherical clustering. In the following results SR stands for the
result from the search report.

Result\Config. BOW g. BOW p. SPECTER g.e. SPECTER g.s. SPECTER p. SBERT g.e. SBERT g.s. SBERT p.
SR 4.33 / 3.5 7.4 / 7 4.2 / 3 7.2 / 8 6 / 6.5 3.5 / 1.5 5.67 / 6.5 4 / 3
1 5 / 5 4 / 4 5.8 / 6 4.4 / 5 2 / 2 2.25 / 2.5 3.17 / 3 4.83 / 3.5
2 3 / 2 5 / 3 5.2 / 5.5 4.8 / 4 4.67 / 5 5.25 / 5 4.5 / 5 4.5 / 4
3 5.83 / 5.5 4.2 / 4 4 / 3 4.8 / 4 4.33 / 4.5 5.75 / 5.5 4.17 / 3.5 5.67 / 5.5
5 5.5 / 4.5 5.6 / 6 5.6 / 6 5.2 / 5 7.5 / 8.5 6.5 / 6 2.83 / 1.5 5.67 / 5
10 6.67 / 7.5 8.6 / 10 6.6 / 7 4.4 / 5 6.17 / 6 7.5 / 8 6.67 / 6.5 5.67 / 6.5
25 7.33 / 7 4.6 / 6 6.4 / 8 6.4 / 6 5.17 / 5.5 7 / 7 6.5 / 5.5 6.17 / 7
50 6 / 5.5 4.4 / 3 3.8 / 4 7 / 8 6.33 / 6.5 4 / 3 5.5 / 5.5 6 / 6.5
75 4.67 / 5 6.2 / 6 5.8 / 5 5.6 / 6 7 / 7.5 5 / 4.5 9 / 9.5 5 / 5.5
100 6.67 / 6.5 5 / 4 7.6 / 9 5.2 / 4 5.83 / 6 8.25 / 8.5 7 / 7 7.5 / 8.5

Table 4.4: A table showing the (mean / median) results from the
fourth evaluation stage for each configuration.

Each of the search results were also classified as either ’X’, ’Y’ or ’A’, and
the distribution of these for each search can be seen in figures 4.19-4.26. In these
figures the blue column to the left for each search result is the number of answers
that were classified as ’X’ or ’Y’ and therefore considered relevant to the claim.
The orange column to the right for each search result is the number of answers
classified as ’A’ and therefore considered irrelevant to the claim. A more detailed
presentation of the individual rankings of search results can be seen in appendix
A.

To further analyze the results one can see the results for BOW with the greedy
sentence split in figure 4.19. Here, a mixture of relevant and irrelevant classifica-
tions throughout the search results can be seen. However, there is a bit higher
frequency of relevant documents for the top five search results which was expected
due to the higher similarity score towards the search input. The relevant docu-
ments at places 50, 75 and 100 gives a notion that within the IPC level E lots of
similar documents can be found.

Looking at the results for BOW with paragraph split in figure 4.20 one can
see a similar distribution as for the greedy split but here an even more leveled
variation of relevant and irrelevant documents over the search results. This is not
what we expected but it’s still an interesting result.
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Figure 4.19: A column chart for the BOW greedy classification with
two classes, X+Y which are relevant documents and A which
are irrelevant documents.

Figure 4.20: A column chart for the BOW para classification with
two classes, X+Y which are relevant documents and A which
are irrelevant documents.
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The results for SPECTER with greedy sentence split and euclidean clusters
can be seen in figure 4.21. Here one can see that all search results have at least
one case of a relevant passage. What is interesting here is that for each of the
top three search results there is only one relevant passage which is lower than the
corresponding search results for both BOW configurations where there are up to
four relevant passages.

Figure 4.21: A column chart for the SPECTER greedy euclidean
classification with two classes, X+Y which are relevant docu-
ments and A which are irrelevant documents.

In figure 4.22 the results for SPECTER with greedy sentence split and spherical
clusters can be seen. The results show that this configuration is very good at
finding relevant passages, especially in the top five result where four out of five
were classified as relevant. To see that the people doing these evaluations did not
classify texts as more relevant than the people doing the other evaluations we can
look at the classification of the search report. Since this column have a similar
look as the corresponding for the other configurations, with some relevant and
some irrelevant classifications, the good result for the top five scores seems okay
and are probably not too influenced by personal preferences.

The last SPECTER results can be seen in figure 4.23, which is for the para-
graph split. The results here look a bit more like what we expected from this
evaluation with a larger number of relevant passages in the earlier search results
and more irrelevant results further back. We did not however, expect the results
to stay relevant for so long but it is interesting to see that the possibility of good
results is not limited to top 10.
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Figure 4.22: A column chart for the SPECTER greedy spherical clas-
sification with two classes, X+Y which are relevant documents
and A which are irrelevant documents.

Figure 4.23: A column chart for the SPECTER para classification
with two classes, X+Y which are relevant documents and A
which are irrelevant documents.
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The results for SBERT with greedy sentence split and euclidean clusters can
be seen i figure 4.24. These results look a bit different than the others with fewer
relevant passages, especially from search result 10-100, where all passages where
classified as irrelevant with an exception of search result 50. That the results were
poor is not unexpected since we could see in evaluation 2 that this configuration
had the worst performance of all greedy sentence split configurations.

Figure 4.24: A column chart for the SBERT greedy euclidean clas-
sification with two classes, X+Y which are relevant documents
and A which are irrelevant documents.

The results for SBERT with greedy sentence split and spherical clusters can
be seen in figure 4.25. It shows, like the previously analysed results, that we have
a variety of relevant passages over the search results.

The final result to analyse for evaluation 4 is the one for SBERT with para-
graph split and can be seen in figure 4.26. Here one can see a fairly even level of
relevant passages up to the last search result where it has dipped down to one.
These results are in line with most of the other configurations where we found at
least some relevant documents for every search result.
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Figure 4.25: A column chart for the SBERT greedy spherical clas-
sification with two classes, X+Y which are relevant documents
and A which are irrelevant documents.

Figure 4.26: A column chart for the SBERT para classification with
two classes, X+Y which are relevant documents and A which
are irrelevant documents.
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Discussion

5.1 Evaluation 1: Basic semantics capturing

Looking at the results from the first evaluation step in table 4.2, there are a
number of things to note. If we start with comparing the first two rows of ’bow10’
and ’bow2’ when tested on full length descriptions, we can see that there is a
higher similarity between a claim and description from the same document for the
embeddings based on a vocabulary restricted to 2000 words. The score for the
random matches are also a bit higher, but the result is still a larger difference
between true and random matches. According to our hypothesis this is a good
thing since it suggests that the model can differentiate between a relevant and a
random document. This is another advantage of ’bow2’ compared to ’bow10’, in
addition to memory and computation times.

If we examine the data for ’bow2’ further, we can see an increase in the ’True
mean’ score when the text is split into smaller chunks while the ’Random mean’
stays at about the same level. For the greedy sentence split this yields the highest
difference between true and random across all configurations.

The results for the two BERT-based models are a bit different than BOW.
They give the highest similarity scores for the ’True mean’, but they also give a
lot higher similarity for the random matches which results in the difference between
true and random being much lower than for BOW.

A possible explanation for the big differences between true and randommatches
for BOW is that the embeddings are based on the exact words that are used in the
text. Since the description from the same document as the claim is written by the
same author, it is likely to be written using the same vocabulary and definitions
as the claim. A random text could instead be written by someone else using other
words and expressions, and therefore not be detected as ’similar’ by BOW.

The BERT-based models on the other hand does not focus on the specific
words when creating embeddings of the texts. Since the semantics of the text is in
focus, a high score for the true matches are to be expected. A reason that ’Random
mean’ also get a very high score (higher than ’True mean’ for BOW) could be that
even though the descriptions are randomly selected, they are still picked from a
pool where all documents belong to the same IPC level, and therefore a similarity
to some degree is very likely.

According to the values in the last column of figure 4.2, one could believe that
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SBERT is to be preferred due to a bigger separation between relevant and random
results. But if we study figures 4.1 and 4.2 we can see that the distribution of
results are more centered around the mean values for SPECTER compared with
SBERT which suggests that there is less overlap between the two categories for
SPECTER.

It is important to remember that we don’t actually have the ground truth of
what the different scores from the first evaluation should be. We can only reason
and make assumptions according to our hypothesis that a better model has a
greater divergence between a true match and a random match.

5.2 Evaluation 2: Clustering

From the cluster studies made on the SBERT models shown in the figures 4.4,
4.5 and 4.6 we chose that the range we wanted to explore further was between
300 and 1000 clusters for the greedy sentence splits and between 3000 and 9000
for the paragraph splits. We based this decision on the slope of the decreasing
inertia. As long as the slope is steep we believe there can be benefits of adding
more clusters. The results in figure 4.6 does not look like the other two figures.
Since the algorithm is not guaranteed to converge to a global minimum and each
new number of clusters will generate different starting points we believe this could
lead to two different levels of local minimum. Nevertheless, both levels decrease
in the same general manner when more clusters are added.

Another thing that was noticed during this part of the work is that for the
amount of data when using the paragraph splits it was not possible to use the
spherical cluster method. This was due to the memory usage being too large when
converting the data to the necessary sparse structure. An attempt to get around
the need for sparse data structure was performed by using an adapted version
of scikit-learn’s k-means algorithm. However, this was still not feasible due to
the long computation time and we aborted the attempt after approximately 12
hours without the first epoch being completed. To be able to perform this type of
clustering with the models used in this thesis it would be necessary to implement
a mini-batch k-means as used for the euclidean clusters.

Going forward to the results from the second evaluation, the figures 4.7, 4.8
and 4.9 shows the bag-of-words model with the greedy sentence split, which is used
as a baseline for the other models. In these figures one can see that even though
we had results from both euclidean and spherical clusters that reached up to the
score from evaluation 1, the spherical cluster size of 1000 reach up fastest. This is
what was expected, we compare the embeddings for the claims and the description
parts with the cosine similarity which is the same measure that spherical clusters
use.

The results for SPECTER yields a similar result when looking in figures 4.10,
4.11 and 4.12. As described in the results section we have the spherical clusters
outperforming the euclidean clusters. In figure 4.11 one can see that at 10%
we have gotten very close to the score from evaluation 1 and searching in a larger
amount of clusters would only marginally increase the score. The trade off between
computation time and score gain has in our opinion reached a good level and that
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is why we chose the 10% ratio going forward.
The last results on the second evaluation for the documents divided with the

greedy split method are the ones for SBERT. These can be seen in figures 4.13,
4.14 and 4.15. Here the separation between the euclidean and spherical clusters is
even larger than for the SPECTER model. However, the spherical clusters seems
to not perform as well because none of the cluster sizes completely reach up to
the score from evaluation 1 but they all come very close at 30%. Even though the
score does not reach all the way we still feel that 10% of the clusters is enough to
search through for the size 1000 clusters. This is because 1000 clusters is well past
the 90% of evaluation 1 score and we want to easily compare with the SPECTER
method, which at this stage seems to have the upper hand, since both will search
in 10%.

Continuing to the results for the paragraph split descriptions we have seen
that they all perform outstandingly well in finding the most similar piece from
a claim’s own description. This is probably because of two reasons. Firstly, the
segments of texts are smaller and therefore they contain less noise and are more
topically homogeneous. Secondly, the number of clusters they are divided into
are many, and therefore smaller, which leads to the cluster centers being more
representative of the embeddings contained in the clusters. This makes it easier
to find the relevant clusters for a claim. It is interesting that for SBERT, 3000
clusters perform slightly better than the others in the first 10%. A separation
can also be seen in SPECTER where all curves start at a higher level but in the
zoomed in version there is a clear distinction between all sizes. BOW on the other
hand has for the first 5% a clear separation between the different cluster numbers
with 1000 clusters clearly better from the start, even though 3000 clusters are
slightly better after 5%

Over all the results behaved as believed, especially the spherical clusters where
more clusters generated a better result. The euclidean clusters however surprised
in some cases for the greedy split where more clusters did not always behave better
like for SPECTER in figure 4.10 where there is a large gap between 300 clusters and
the others, and where 600 and 1000 clusters go close together with 600 as the best
number of clusters. The reason for this is unknown, and further investigations
needs to be done to understand the cause of this. Another interesting finding
was how well the paragraph split descriptions performed for all methods which
indicates that these might be better suited at finding special similarities between
texts. A probable cause for this is that the text segments in the paragraph split is
more homogeneous topic wise, and the semantics of the over all shorter segments
is better captured by the models.

5.3 Evaluation 3: Ranking

Some things to note in the results from evaluation 3 is that the BOW results
are superior to the BERT-based models in the number of matches that position
themselves on first place in the search and in the number of documents that were
not found. As discussed earlier we believe the BOW model has a strong bias
towards texts written by the same author on the same topic as the input claim
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due to choice of words and phrases being similar.
For SBERT and BOW we see that the worst result (of those that were found)

are much worse for paragraph split than for greedy sentence split. This could
be due to there being many more texts in the search, so that even though the
distributions are similar there will be a higher value for paragraph split. But
looking at SPECTER we see that the worst result is much better for para than
for greedy, which is the opposite. This could be a sign that SPECTER is in fact
much better at giving ’meaningful’ embeddings to shorter texts, possibly due to
there being less noise. This seems to be the case for both BERT-based models
when the mean value and distributions of top 1, 10 and 100 are studied.

5.4 Evaluation 4: Manual control

The first thing to note about the fourth evaluation is that the data we gathered
is very limited. We set out to get evaluations on 7 searches, based on different
claims, for every configuration, which would mean a total of 42 evaluations. But
due to our mix-up of results we ended up asking for 56. There were a limited
number of employees that had both the time and interest to do the evaluations
and we got 45 results back a bit unevenly distributed between the configurations.

With the limited data it is difficult to draw any certain conclusions. Looking
at the distribution of the internal rankings of search results, a slight trend can be
seen that the first search hits (1, 2, 3) are often a bit better than the last ones (75,
100). A comment from persons doing the evaluations were that often 6 or even
more results were all unrelated or bad and thus difficult to rank among themselves.
This could lead to a random internal ranking of those hits.

Some of the claims that we chose for the evaluation were very short. This led to
the people evaluating sometimes finding it difficult to gather enough information
from the claim to be able to evaluate the search results. We believe this could be
a reason that sometimes not even the text from the search report was classified as
’X’ or ’Y’. Other reasons for this could be that the claim (input) has been machine
translated which affects the language, or that the ’X’ in the search report can be
based on multiple paragraphs in the document but we only had one of these in the
evaluation.

We think that the classifications of the search results as ’X’, ’Y’ and ’A’ are
more interesting than the internal rankings of the results. Here we can see that we
found relevant texts across most of our search results. The numbers of ’X’ and ’Y’
classifications varied a lot between the different searches, and in some cases this
could be due to our models’ limited capability. But another likely reason is that
our search is done in a very limited subset of patents (57 453 documents) belonging
to a single IPC class. This means that there is a big risk of not finding relevant
documents since they are not included in our subset. The reason for presenting
the ’X’ and ’Y’ documents as a joint category in the classification charts is that
they both indicate some relevance in the text as opposed to ’A’. But since the
texts are relatively small, an ’X’ might turn into a ’Y’ when the whole document
is studied, and vice versa.

The results are not conclusive enough to point out one configuration as bet-
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ter than the rest, but they indicate that these methods could be of interest and
contribute with a new non-human perspective in invalidity searches for patents.

5.5 Time complexity and memory usage

Here we will make a few comments about the complexity of the computations and
how much memory that is needed for the database.

5.5.1 Creating embeddings

For the BOW models the computation complexity for creating the embeddings
with a predefined vocabulary is O(n*v*l), where n is the number of texts, v is the
size of the vocabulary and l is the length of the texts. For the BERT-based models
the computation complexity is unknown.

5.5.2 Clustering

The basic k-means clustering method has a time complexity of O(t*k*n*d) where
t is the number of iterations, k is the number of centroids, n is the number of data
points and d is the dimension of the data points.

While the mini-batch k-means theoretically has O(infinity) since it never con-
verges, it is still able to speed up the algorithm significantly since we can set a
threshold value for when to stop. When we clustered the embeddings for the para-
graph splits, we had to use the euclidean clustering method since the spherical
clustering methods we found did not implement mini-batching and thus took too
long to finish.

5.5.3 Search

The search consists of first creating an embedding for the input and then comparing
it with the embeddings in the closest clusters. This means there will be k+p*n
comparisons. The list of similarities to the different embeddings will also be sorted
which is of O(p*n*log(p*n)).

The complexity for a search with our program is approximately O(d*p*n*log(p*n))
where d is the dimension of the embeddings, p is the percentage of the clusters
that are searched and n is the number of data points.

5.5.4 Storage

In the database there are two big bulks of data being stored, the text parts and
their corresponding embeddings. The text parts are saved as text files and are not
very big and memory will scale up as O(n) where n is the number of documents.
The space complexity for the embeddings is O(n*d), where n is the number of
embeddings and d is the embedding dimension, and they are saved as pickle files.
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5.5.5 Scaling up

The two parameters that affects the complexity that differs between our methods
are n and d. For n, paragraph split yields about 4.4 times as many data points
as the greedy sentence split. For d, the dimension of the BOW embeddings is
2000 while it is only 768 for SBERT and SPECTER. This means that when more
documents are added to the database the memory scales up almost three times
as fast for BOW compared to the BERT-based models and 4.4 times as fast for
paragraph split compared to greedy sentence split. All the computations will also
take a longer time when BOW is used due to the larger dimension.

With even better and dedicated hardware together with optimized code, it
is possible that it could be feasible to scale up to a more extensive database of
patents than we could due to the limited time frame of our thesis. Then the results
could perhaps be even better as more documents are included in the search.

5.6 Future work

This thesis shows the potential of segmented whole text search in patents and
future works on this topic could be to develop and test spherical clustering for the
paragraph split documents. This would also be beneficial if the database where to
be expanded into more IPC classes and there generally would be more documents.
Another future work could be to train or fine tune a model specifically for patent
documents and see if it would have an impact on the result. In the evaluation
part a future work could be to develop better test and measurement to evaluate
the models. In our thesis the only control evaluation where the results for a claim
was evaluated was in the manual part. This part is hard to quantify and it would
therefore be of use to have a similar evaluation made automatic or semi-automatic.
It would also be interesting to include the images of the patents in the comparison
to better understand the text as well as exploring the possibility of trans language
search if a patent has versions in other languages.
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Conclusion

The goal with this thesis was to explore the possibilities of doing full-text search
in patent documents and how the search is affected by different clustering and
segmentation methods.

From the first evaluation we found that segmented texts are better suited
for creating the embeddings as they are more semantically homogeneous and less
noisy. Drawbacks of the full-text embeddings are that they include more noise and
aren’t able to pinpoint where in a long text the similarities are found. Due to the
limit of 512 tokens the BERT-based models we examined it was not possible do
the full-text embeddings.

The segmentation methods leads to a lot more texts/embeddings but we found
that clustering worked very well and by searching through only a fraction of 5-
10% we could speed up the search with a very low loss of accuracy. The spherical
clustering method outperformed the euclidean clustering in every instance.

Both the greedy sentence split and the paragraph split gave good results in
our evaluations. There seem to be a slight advantage to the paragraph split,
possibly due to the semantics of shorter text passages being better captured by
our models and also being more homogeneous due to following a segmentation
done by the author. In that regard the paragraph split is also more efficient
computation wise, whereas the greedy sentence split has the advantage of creating
fewer texts/embeddings which is more efficient memory wise.

The automatic testing is done in evaluations 1 and 2, where a claim is tested
against the description of the same document, and in evaluation 3 where the
self-matches are compared with other search results. This gives us a limited un-
derstanding about the performance in a ’real’ search and also there is no ground
truth to how the models should perform. In the fourth evaluation a better indi-
cation of how the models performed in a real search was given. The data there
was limited and we can’t conclude which configuration works the best, but we can
say that the results indicate that the methods have potential to find interesting
documents and could be used for finding a list of documents to further examine
when doing an invalidity search.

Overall we have used a limited set of data and it would be interesting to see
more experiments done for more documents and with improved testing methods.
For scaling up to a really large database we think that fewer and shorter embed-
dings would be preferred, i.e. greedy sentence split and one of the BERT-based
models.
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Appendix A
Extra material on evaluation 4

A.1 Forms for results of evaluation 4

For every search the results were randomly assigned a letter from A to J and the
following two tables were filled:

1 2 3 4 5 6 7 8 9 10
A
B
C
D
E
F
G
H
I
J

Table A.1: The form for ranking the search results against them-
selves.
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X Y A
A
B
C
D
E
F
G
H
I
J

Table A.2: The form for classifying each search result as ’X’, ’Y’ or
’A’.

A.2 List of claims used in evaluation 4

A search on each of the following claims was done for each configuration in the
fourth evaluation

Claim 1: A vehicle control device (4) including a communication means (11,
11a, 12, 12a, 13) for performing wireless communication with a portable device
(2) and a control means (14) for controlling the communication performed by the
communication means (11, 11a, 12, 12a, 13), communicating with the portable
device (2) to authenticate the portable device (2), and entering an enable mode
for enabling starting of an engine (23) of the vehicle (3) when the portable device
(2) is authenticated, the vehicle control device (4) being characterized in that : the
communication means (11, 11a, 12, 12a, 13) is one of a plurality of communication
means respectively comprising a first transmission antenna (11a) in a center con-
sole (3a) and a second transmission antenna (12a) in a rear seat (3b) and forming a
plurality of different communicable regions (A1, A2) in a passenger compartment;
the control means (14) is configured to detect whether or not a back door (5e)
of the vehicle (3) is open and refrain from entering the enable mode when that
the back door (5e) is open; and the control means (14), when detecting that the
back door (5e) is open stops communication between the portable device (2) and
the second transmission antenna (12a) as the communication means (11, 11a,) of
which the communicable region (A2) corresponds to the open back door (5e), while
the control means (14) enables the starting of the engine even if the back door
(5e) is open when receiving an ID code from the portable device (2) in response
to a request signal transmitted from the first transmission antenna (11a).
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Claim 2: A borehole apparatus (1) capable of autonomously estimating its posi-
tion in a borehole and autonomously controlling the actions of a downhole tool (5)
located in the borehole, the apparatus comprising: a body; at least one measure-
ment device (4) capable of measuring a parameter of the borehole or the distance
travelled by the device; a computer system located in the body, the computer
system comprising; a processor (2) arranged to receive data from the measure-
ment device and to calculate the position of the apparatus in the borehole; and
a data storage device capable of storing data that have been processed by the
processor; and a power system (3); wherein the computer system is configured to
process the data gathered from the measurement device to estimate the position
of the borehole apparatus using a Bayesian approach and characterized in that the
data storage device is capable of storing instructions to control the actions of the
downhole tool and that the borehole apparatus (1) is configured to provide output
signals to control an action of the downhole tool (5), the action being dependant
on the position of the apparatus (1) in the borehole and the instructions stored
by the data storage device.

Claim 3: Construction and installation of a rainbow highway on existing roads
or new roads by applying paint in rainbow colors (red, orange, yellow, green, blue,
indigo and violet) to such roads.

Claim 4: A sound attenuating laminated panel having a laminate structure,
comprising a decorative layer, a core layer, a backing layer and a wear layer and
wherein one or more layers comprised in said laminate structure, has been treated
with an elastomeric material, so as to form a treated layer, in order to reduce the
noise generated by said panel, wherein the core layer is an MDF or HDF wood
core, wherein said treated layer has been formed by pre- impregnating a selected
layer with said elastomeric material prior to production of said laminated panel,
and wherein said selected layer is said decorative layer, backing layer and/or wear
layer, characterized in that said selected layer is a paper layer that has been pre-
impregnated with an elastomeric polymer that penetrates into the paper and in
that said elastomeric material is selected from polyurethane, polyolefin (TPO),
modified melamine-based thermoset resin, ESI - ethylene styrene interpolymer or
any of the styrene acrylic copolymers, rubber based material; NBR (nitrile buta-
diene), SBR (styrene butadiene), or CR (chloroprene); or a carboxylated, natural
or synthetic latexes, and in that said wear layer comprises a paper layer which has
been preimpregnated with said elastomeric material.

Claim 5: Wall covering having a relief and formed from a plurality of strips
applied to a wall next to one another, wherein each of said strips comprises a
base (2), a layer of heat-expandable material (5) applied to said base (2), wherein
this layer has a pattern of expanded and less expanded or unexpanded locations,
characterized in that said pattern is different for each strip, wherein said different
patterns create a relief pattern in said wall covering exceeding the width of one
single strip and extending across various strips.

Claim 6: A method for designing a cement system for placement in a well having
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a borehole penetrating subterranean formations, at least one casing string and
at least one cement sheath, comprising: (i) selecting a candidate cement system
such that the cement sheath has a known Young’s modulus, Poisson’s ratio, tensile
strength and a variable linear thermal expansion coefficient; (ii) determining the
well geometry and casing geometry; (iii) using a computer simulator to determine
cement-sheath integrity and tangential stress upon application of heat, pressure or
both in the well; (iv) if the simulation indicates cement-sheath failure, modifying
the candidate cement system to adjust the variable thermal expansion coefficient,
and repeating step iii.; and (v) if no failure is indicated, selecting the candidate
cement system as a final design.

Claim 7: A sound insulator comprising a sound-absorbent core (1) within a
flexible membrane (2) characterised in that part of the external surface of the
resultant composite structure is curved around a longitudinal axis.

A.3 Extra images from evaluation 4 results

In this section some extra figures from the results of evaluation 4 is presented. In
the figures the answers made by our participants are marked as a grey dot. Grey
dots can lie on top of each other and give the impression of fewer answers. The
median of the answers are shown with a black dot and the mean of the answers is
shown with a black ’X’.

Figure A.1: The result for BOW greedy where the answers are
marked as grey dots, the median as a black dot and the mean
as a black ’X’.
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Figure A.2: The result for BOW para where the answers are marked
as grey dots, the median as a black dot and the mean as a black
’X’.

Figure A.3: The result for SPECTER greedy euclidean where the
answers are marked as grey dots, the median as a black dot and
the mean as a black ’X’.
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Figure A.4: The result for SPECTER greedy sphere where the an-
swers are marked as grey dots, the median as a black dot and
the mean as a black ’X’.

Figure A.5: The result for SPECTER para where the answers are
marked as grey dots, the median as a black dot and the mean
as a black ’X’.
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Figure A.6: The result for SBERT greedy euclidean where the an-
swers are marked as grey dots, the median as a black dot and
the mean as a black ’X’.

Figure A.7: The result for SBERT greedy sphere where the answers
are marked as grey dots, the median as a black dot and the
mean as a black ’X’.
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Figure A.8: The result for SBERT para where the answers are
marked as grey dots, the median as a black dot and the mean
as a black ’X’.


