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Abstract

The choice of which potential evapotranspiration (PET) model to use when
estimating streamflow using a rainfall-runoff model have been the topic of
many studies. The aim with this thesis was to assess the robustness of six
different PET models using HBV-light as rainfall-runoff model over three

catchments in Sweden. The robustness was evaluated by using a differential
split sample test (DSST) based on four climatic conditions with regard of

temperature and precipitation. Data from a period of 24 years (1997-2020)
was used in order to get a wide range of climatic conditions. The

calibration was based on the objective function Kling-Gupta Efficiency
(KGE), while the validation of the model was evaluated based on the

Nash-Sutcliffe efficiency (NSE) and the volume error (VE). These objective
functions are commonly used when evaluating streamflow and are know to
provide good estimations of the model performance. The result showed a
large difference in efficiency between each PET model and between each
catchment (ranging from a KGE of 0.85-0.54 and a NSE of 0.68-0.07),

proving that the optimal choice of PET model may be site specific. The
Hargreaves-Samani and the Jensen-Haise model were the two PET models

which showed an acceptable performance for both calibration and validation
over all catchments. It could be noted that calibration and validation on

similar climatic conditions would provide models with higher efficiency and
that the model parameters are climate dependant.
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16 PET Lännässjön . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

17 PET Yngeredsforsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

18 Kling-Grupta efficiency Borgasjön . . . . . . . . . . . . . . . . . . . . . . . . 41

19 Volume error Borgasjön . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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21 Volume error Lännässjön . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

22 Kling-Grupta efficiency Yngeredsforsen . . . . . . . . . . . . . . . . . . . . . 45

23 Volume error Yngeredsforsen . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4



24 Average efficiency for all calibrations . . . . . . . . . . . . . . . . . . . . . . 46

25 Average volume error for all calibrations . . . . . . . . . . . . . . . . . . . . 47

26 Model efficiency (NSE) Borgasjön . . . . . . . . . . . . . . . . . . . . . . . . 50

27 Volume error Borgasjön . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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2 Measurement stations Lännässjön . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Measurement stations Yngeredsforsen . . . . . . . . . . . . . . . . . . . . . . 22

4 Parameters HBV-light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Sub-periods Borgasjön . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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2 Introduction

2.1 Background

The hydrological cycle describes the circulation of water through complex sets of processes
that transfer water in different phases through the atmosphere, the land and the ocean.
It consists of a set of storage’s (groundwater, lakes, soil moisture and rivers) and fluxes
(precipitation, evapotranspiration, infiltration and runoff) that link these storage’s together
[1]. The evapotranspiration is the flux which describes the combined process of evaporation
from soil and water surfaces and the transpiration from plants. Approximately two-thirds of
all the precipitation is returned to the atmosphere as evaporation, making it an important
part of the hydrological cycle [2].

The rate of evaporation is controlled by a number of meteorological variables such as radia-
tion, wind speed, temperature and vapor pressure deficit. Globally, most of the evaporated
water comes from the oceans and other open water bodies but looking at a catchment scale
most of the evaporate water comes from vegetation and land surfaces [1]. The rate of evapo-
ration for a vegetation-covered surface doesn’t only depend on meteorological variables, but
also soil and plant properties and water intercepted by the vegetation surfaces (transpira-
tion). Which of these components that is the most important depends upon local conditions
[2].

Because of these complex interactions between meteorological factors and soil properties, it is
very difficult to measure or estimate the actual evapotranspiration. The most important sim-
plification has been the development of the concept of Potential Evapotranspiration (PET).
It assumes that water is not limiting and is at all times sufficient to supply the requirements
of the transpiring vegetation cover [2]. Empirical and semi-empirical models have been made
based on the concept of PET. These models are either energy-based, temperature-based or
mass transfer-based depending on their mechanisms, and vary in terms of their assumptions,
data requirements, complexity and reliability [3].

When using rainfall-runoff models precipitation, temperature and the evaporative demand is
needed as input, where the evaporative demand usually is introduced as the PET. Rainfall-
runoff modelling is an important tool for evaluating catchment yields and responses, estimate
water availability, streamflow and forecasting. It is important to have a solid model, where
the parameters are carefully chosen, to achieve accurate simulations and predictions. Choos-
ing a rainfall-runoff model is based on the purpose of answering specific questions about the
hydrological process. The structure of the model can be divided into three different cate-
gories: empirical, conceptual and physical. These categories are based on how the physical
processes are described in the model, varying from non-linear relationships between input
and output to physical laws based on real hydrologic responses. The spatial representation of
the catchment can be classified as lumped, semi-distributed or distributed depending on the
needed accuracy on resolution [4]. Identifying the purpose of modeling and the availability
of data is essential in order to find the model that is best suited for the intended purpose.
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In this thesis a rainfall-runoff model will be used to estimate streamflow using different
PET values obtained from a selection of different PET models. The rainfall-runoff model
is used for operational inflow forecasting. We need a PET model that is rather simple thus
does not demand too much data (given data scarcity in the Swedish mountains), and of
course that gives reliable results. The question of how to represent PET in the rainfall-
runoff model, to achieve the most accurate streamflow prediction, has been raised in many
studies. Should a formula with large data requirements be used, with the possibility of
bad spatial representation, or will a simpler formula be sufficient to achieve an acceptable
accuracy? Which criteria should be used for the evaluation and how should the calibration
period be chosen? These and other questions have been raised in a number of articles, in
order to achieve the most accurate streamflow predictions. As previous studies have been
made in climates different from Sweden this thesis will investigate these questions for the
climate of northern and southern Sweden, in order to find a solid rainfall-runoff model with
high accuracy on streamflow prediction. Relevant articles were reviewed to get a deeper
knowledge about the subject.

2.2 Relevant literature

In a study done by (Oudin et al.[5]) they found out that simpler PET models based on
extraterrestrial radiation and mean daily temperature were just as efficient as more complex
formulas such as the Penman-Monteith model. The result of the study also showed that
daily PET values do not generally obtain better results than mean monthly PET values in
estimating streamflow using the Nash-Sutcliffe criteria. The authors compared 27 different
PET models using four different lumped rainfall-runoff models over 308 catchments located
in Australia, France, and the United States. By adjusting the two models which showed
the best performances, the Jensen-Haise and McGuinness models, they were able to propose
a simple model which only depends on radiation and temperature. This model was then
evaluated and compared with the Penman-Monteith model, where the result indicated that
the rainfall-runoff model efficiencies were slightly improved with this new PET model [5].
The general conclusion of the study was that there was no significant differences in the
performance between the 27 PET models, indicating a lack of sensitivity of rainfall-runoff
models to PET input.

Resembling results were obtained in a study done by (Bai et al.[6]).The authors found that
similar streamflow results were observed when four different PET models were tested on two
different rainfall-runoff models for 37 catchments with humid and non-humid climates. They
found out that the reason for this was due to model parameter calibration, which eliminates
the discrepancies in model inputs and generates similar runoff results. However, they found
that in humid regions simulated Actual Evapotranspiration (AET) and Water Storage Ca-
pacity (WSC) were significantly different when using different PET models, although the
sum of AET and WSC were similar. The main results from the study concludes that for
runoff estimations, the temperature-based models can yield high model performance in both
humid and non-humid regions [6].
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In a study done by (Dakhlaoui et al.[7]) it could be concluded that in semi-arid regions,
discharge simulations are not sensitive to PET estimates since AET is mainly controlled by
the availability of soil moisture. By using a temperature-based PET model, they investigate
the sensitivity of discharge projections for different Representative Concentration Pathway
(RCP) scenarios based on the Nash-Sutcliffe Efficiency (NSE) and relative volume error.
A RCP describe different climate futures, depending on the volume of greenhouse gases
emitted. The projected discharge for the different RCP scenarios was slightly lower when
using mean values compared to daily. But the difference in volume change did not exceed
9 % for both periods and the considered RCP scenarios [7]. A similar study was done by
(Ali et al.[8]). They concluded that temperature and precipitation were the most sensitive
parameters to streamflow.

In another study done by (Weiß and Menzel[9]) the obtained result showed that radiation-
based PET models provided the highest accuracy on streamflow predictions when used on a
global scale. This was mostly due to the simplicity of the model as the more complex PET
models showed a higher sensitivity in data measurement errors. Similar results were obtained
in a study done by (Seong et al.[10]). The effect on projected streamflow under changing
climatic conditions was evaluated for five PET models for a basin in the northeastern United
States. They concluded that the selection of PET model were important in order to achieve
accurate streamflow predictions. Hamon and Thornthwaite were the two PET models which
showed acceptable results compared to the more complex PET models such as Penman-
Monteith, where poor streamflow predictions could be observed.

Several different studies have searched for the data length and hydrological conditions which
results in the most reliable calibration and predictions for a lumped conceptual model. One
problem is that the model usually is needed for estimation under conditions different from
those applied under model development and calibration. A study done by (Motavita et
al.[11]) showed that hydrological conditions had a stronger impact than time-series length
for calibration on their specific catchment. By using a Differential Split-Sample Test (DSST),
that is, by dividing the time-period into wet, mixed or dry periods, and using different length
on calibration and validation periods, they were able to test the agility and robustness of
the model. A higher efficiency was obtained when calibrating on dry conditions, and using
a time-series of 8 years or longer led to overconfident predictions. However, parameter
uncertainty caused considerably different predictions although the best-suited parameters
were used. Similar results were obtained in study done by Dakhlaoui et al.[12]. By using
a DSST dividing the time-period into sub-periods based on temperature and precipitation,
they found that the models showed a higher efficiency when validated on colder and wetter
periods. Some set of parameters achieved very good estimations while others produced poor
estimations for future conditions, proving that there is a climate dependence of the model
parameters. This problem has been observed in many other studies where the DSST have
been used (Seibert[13], Dakhlaoui et al.[14])).
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2.3 Aims and objectives

The aim of this study was to explore the impact of different PET models on predictions
of stream flow using a lumped rainfall-runoff model in three catchments in Sweden. This
was done by 1) comparing the accuracy of streamflow prediction, based on selected objec-
tive functions, for six different PET models, 2) assessing the performance of the different
PET models for catchments with varying meteorological and hydrological conditions, ex-
ploring their robustness efficiency for different calibration periods, 3) evaluate the climate
dependence of the model parameters by using a DSST.

2.4 Methodology

Six different PET models were considered in this study: three temperature-based, two
radiation-based and one that uses a combination of both temperature and radiation. The
Swedish Meteorological and Hydrological Institutes (SMHI) weather stations in and around
the catchments were used to obtain the required meteorological data for each PET model.
Both daily values and mean annual values were calculated for each PET model. Their per-
formance were evaluated over three catchments, each with an active hydro-power station, lo-
cated in the south and north of Sweden. For two of the catchments, both located in the north,
current values used for estimating PET were given by the Hydro-power company (Uniper).
These values were also used to see how well they estimate streamflow. Discharge values were
obtained by Uniper for two of the catchment and by SMHI for the third catchment. The
conceptual rainfall-runoff model HBV-light (Seibert[13]) was used in its lumped set-up for
this study. The model is based on the HBV Model software developed by S.Bergström at
SMHI. A conceptual model was chosen as it is defined by a simple model structure which
makes it easy to calibrate [4].

The DSST were used for calibration and validation for each PET model. It is a way to
divide the reference period into distinct hydrological years with varying climatic conditions.
By doing so it is possible to study the effects of chosen calibration and validation period
on parameter performance of the model. This is commonly used to provide operational
forecasts for the hydro power industry in Sweden. The calibrated rainfall-runoff model will
be evaluated on how well it performs over a more diverse climate and it will be easier to
identify robust model parameters (Motavita et al.[11]). This have been proved to work well
in previous studies, e.g. in Dakhlaoui et al., where different climatic conditions have been
used.

The reference period were divided into four sub-periods. Each PET model was calibrated
on each sub-period and then validated over the rest. For calibration an built-in calibration
function called Monte-Carlo was used. By using an objective function when calibrating the
model, the Monte-Carlo function creates random sets of parameters in order to increase
the accuracy of the model predictions, taking into account the parameter uncertainty. 50
000 parameter sets were randomly sampled were the Kling-Grupta Efficiency (KGE) was
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chosen as objective function for calibration. The 100 parameter sets with the highest KGE
value were then saved and used for validation. During validation the model performance
was evaluated with regard of the NSE and the Volume Error (VE). A comparison was then
made between the accuracy of each PET model, sub-period and catchment.

3 PET models

Three temperature-based, two radiation-based and one combined PET model were compared
and evaluated. These models were chosen based on required input data and their efficiency
from similar studies.

3.1 Temperature-based models

3.1.1 Thornthwaite model

The Thornthwaite equation is a simple model used for estimating monthly potential evapo-
transpiration. It uses the mean monthly temperature as only input parameter. The obtained
values is then adjusted according to length of the month and the theoretical sunshine hours
for the latitude of interest [15]. The equation is given by:

PETTH =
N

12
· d

30
· 16(

10 · T
I

)α (mm/month) (1)

N = mean daily daylight hours for each month (h)
d = days of the month (d)
T = mean monthly temperature (◦C)
I = annual heat index (◦C)

The Annual Heat Index I is calculated as the sum of the Monthly Heat Indices:

I =
12∑
t=1

i (2)

Where:

i = (
T

5
)1.514 (3)
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i = monthly thornthwaite heat index (◦C)

The constant α is calculated according to the equation:

α = 675 · 10−9 · I3 − 771 · 10−7 · I2 + 1792 · 10−5 · I + 0.49239 (4)

The Thornthwaite equation is developed from water balance studies carried out in the east-
ern/central USA. To get daily PET values the obtained monthly values were divided with
the length of each month.

3.1.2 Hargreaves-Samani model

The Hargreaves-Samani equation is the most commonly used temperature-based model for
estimating PET. It uses the daily maximum, minimum and mean temperature as input
parameters [16]. The Hargreaves model was originally calibrated for semi-arid regions of
California but have been used in several other studies with different climate [5], [6], [7].

PETHS = 0.023
√
Tmax − Tmin · (Tmean + 17.8) ·Rα (mm/day) (5)

Rα = extraterrestrial radiation (MJm−2day−1)

This equation is known to overestimate the PET in conditions of high relative humidity and
underestimate under wind conditions where u > 3 m/s [17].

3.1.3 Linacre model

The Linacre equation requires latitude and height for the measurement point, daily mean
temperature and daily dew-point temperature. The equation is not suitable for hourly
prediction but works well for longer intervals [18].

PETLIN =

500·(Tmean+0.006·h)
100−Lat + 15(Tmean − Tdew)

80− Tmean
(mm/day) (6)

h = height of measurement station (m)
Lat = latitude of measurement station
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3.2 Radiation-based models

3.2.1 Jensen-Haise model

The Jensen-Haise equation requires daily mean temperature and solar radiation as input for
calculating the PET [5].

PETJH =
Ra

λ
· Tmean

40
(mm/day) (7)

λ = latent heat of vaporization (2.45 MJkg−1)
Rα = extraterrestrial radiation (MJm−2day−1)

3.2.2 McGuinness model

The McGuinness equation is a variation of the Jensen-Haise equation. It also requires daily
mean temperature and solar radiation as input for calculating the PET [5].

PETMG =
Ra

λ
· Tmean + 5

68
(mm/day) (8)

λ = latent heat of vaporization (2.45 MJkg−1)
Rα = extraterrestrial radiation (MJm−2day−1)

3.3 The FAO Penman-Monteith model

The FAO Penman-Monteith equation is recommended by the Food and Agriculture Organi-
zation of the United Nations (FAO) and World Meteorological Organization as a standard
model to calculate PETo [18]. It requires radiation, daily mean temperature, humidity data
and wind speed data as input. The equation determines the evapotranspiration from the
hypothetical grass reference surface as [17]:

PETPM =
0.4084(Rn −G) + γ 900

Tmean+273
u2(es − ea)

4+ γ(1 + 0.34u2)
(mm/day) (9)

Rn = net radiation at the crop surface (MJm−2day−1)
G = soil heat flux density (MJm−2day−1)
Tmean = mean air temperature at 2 m height (◦C)
U2 = wind speed at 2 m height (ms−1)
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es = saturation vapour pressure (kPa)
ea = actual vapour pressure (kPa)
4 = slope vapour pressure curve (kPa◦C−1)
γ = psychometric constant (kPa◦C−1)

The main problem with this formula lies in the difficulty of obtaining adequate measure-
ment of the vegetation factors, and especially of Rs (surface resistance). In cases where the
vegetation canopies are not homogeneous this one-dimensional approximation may lead to
significant errors [2]. As the model require a lot of data it is also sensitive to measurement
errors.

4 Study area

Three catchments in Sweden were used for the evaluation of the different PET models. The
catchments were chosen so that they would represent areas with different latitude, topog-
raphy and climate. The following section describes each catchment and the meteorological
stations used for data input. For each map all the weather stations used to collect meteo-
rological data are represented as black triangles. The red dot represents the location where
the data for observed streamflow is obtained. Figure 1 shows an overview of the location of
the catchments. All catchment areas are obtained from SMHI.
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Figure 1: Overview of the catchments
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4.1 Borgasjön

4.1.1 Geography

Borgasjön is a lake situated in the north of Sweden. It has an area of 30.5 km2 and is
located at a mean of 469 m above sea level. The catchment for Borgasjön extends from Lat.
65◦05′ to 64◦80′ and Lon. 14◦25′ to 15◦04′, covering an area of 514 km2 [Figure 2]. It mostly
consists of forested area (about 50%) and tundra (about 27%). The elevation within the
catchment ranges from 467 m to 1 130 m above sea level.

4.1.2 Meteorology

The warmest months are June, July and August with an average maximum temperature of 18
◦C in July. Winter extends from November to March with an average maximum temperature
of -11 ◦C in January. Average annual temperature is maximum 3 ◦C and minimum -5 ◦C.
On average July is the wettest month and March the driest. Average annual precipitation
is 409 mm [19]

4.1.3 Data collection

Weather stations used for the collection of meteorological data is presented in Table 1. Due
to data limitation some stations could only be used for precipitation data. Data for observed
runoff were obtained by Uniper and is filtered with a Gaussian filter. The areal precipitation
for the catchment was calculated using the Thiessen polygon method. Daily data between
1997/01/01− 2019/12/31 were used for Borgasjön.

Name Location Elevation Data Areal Weight
Ankarvattnet D 64.8779, 14.2293 460 P 0.45
Avasjö-B.fjäll D 64.8340, 15.0748 535 P 0.45
Gielas A 65.3269, 15.0645 578 P, T, u, Tdew 0.10
Stekenjokk 65.0929, 14.5055 1037 T, u, Tdew
Östersund 63.1970, 14.4798 372 Sunshine hours

Table 1: Measurement stations Borgasjön
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Figure 2: Catchment Borgasjön
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4.2 Lännässjön

4.2.1 Geography

Lännässjön is a lake situated in the middle of Sweden. It has an area of 19.3 km2 and is
located at a mean of 437 m above sea level. The catchment for Lännässjön extends from
Lat. 62◦55′ to 63◦04′ and Lon. 12◦46′ to 14◦11′, covering an area of 1 194 km2 [Figure 3].
It mostly consists of forested area (about 69%). The elevation within the catchment ranges
from 440 m to 1386 m above sea level. The catchment is a part of the Ljungan basin which
ends in Bottenhavet in the Baltic sea.

4.2.2 Meteorology

The warmest months are June, July and August with an average maximum temperature of 19
◦C in July. Winter extends from December to March with an average maximum temperature
of -6 ◦C in January. Average annual temperature is maximum 6 ◦C and minimum -3 ◦C. On
average July is the wettest month and February the driest. Average annual precipitation is
557 mm [19].

4.2.3 Data collection

Weather stations used for the collection of meteorological data is presented in Table 2. Due
to data limitation some stations could only be used for precipitation data. The stations is
controlled by SMHI and the data is fetched from their website. Data for observed runoff
were obtained by Uniper. The runoff data is filtered with a Gaussian filter to reduce the
noise in the observed values, which is caused by the regulation of the flow.

The areal precipitation for the catchment was calculated using the Thiessen polygon method.
Each station was given a weight based on its relative area in the catchment and the areal
precipitation could be calculated by summarizing the corrected precipitation for each station.
Daily data between 2001/01/01− 2020/12/31 were used for Lännässjön.

Name Location Elevation Data Areal Weight
Börtnan A 62.7548, 13.8427 467 P, T, u, Tdew 0.5
Höglekardalen 63.0785, 13.7488 595 P 0.09
Klövsjöhöjden A 62.4952, 14.1542 803 P, T, u, Tdew 0.01
Ljusnedal 62.5493, 12.6043 585 P 0.17
Vallbo 63.1557, 13.0697 581 P 0.22

Östersund 63.1970, 14.4798 372 Sunshine hours

Table 2: Measurement stations Lännässjön
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Figure 3: Catchment Lännässjön
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4.3 Yngeredsforsen

4.3.1 Geography

Yngeredsforsen is located in the river Ätran, which is a river situated in the south of Sweden.
It is about 240 km long, reaching from Gullered in Västragötaland to Falkenberg in Halland.
Yngeredsforsen is located at (Lat. 57◦03′, Lon. 12◦76′) with an catchment upstream covering
2 574 km2 [Figure 4]. The catchment mostly consists of forested area and the elevation ranges
from 65 m to 327 m above sea level.

4.3.2 Meteorology

The warmest months are June, July and August with an average maximum temperature of 22
◦C in July. Winter extends from December to March with an average maximum temperature
of 3 ◦C in January. Average annual temperature is maximum 12.1 ◦C and minimum 6.3 ◦C.
On average July is the wettest month and April the driest. Average annual precipitation is
603 mm [19].

4.3.3 Data collection

Weather stations used for the collection of meteorological data is presented in Table 3. Due
to data limitation some stations could only be used for precipitation data. Data for observed
runoff were obtained by SMHI. The areal precipitation for the catchment was calculated
using the Thiessen polygon method. Daily data between 1997/01/01−2019/12/31 were used
for Yngeredsforsen.

Name Location Elevation Data Areal Weight
Hid D 57.3658, 13.0486 140 P 0.38
Sjötofta D 57.3848, 13.2974 170 P 0.27
Skeppshult D 57.1210, 13.4028 160 P 0.05
Torup A 56.9494, 13.0601 132 P, T, u, Tdew 0.03
Ullared 57.1134, 12.7732 122 P, T, u, Tdew 0.27
Växjö 56.9269, 14.7305 182 Sunshine hours

Table 3: Measurement stations Yngeredsforsen
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Figure 4: Catchment Yngeredsforsen
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5 Rainfall-runoff model

5.1 HBV-light

HBV-light is a hydrological runoff model based on the HBV model developed by SMHI 1972
(Bergström[20]). It is a lumped/semi-distributed model, which means that hydrological
processes are lumped together in defined zones over the catchment. These zones are based
on vegetation characteristics and elevation. The model continuously simulates fluxes of
water within the catchment. The model can be used to calculate river discharge by using
precipitation, temperature and evapotranspiration as input. Observed river flows are needed
to calibrate the model and the accuracy of the model increases with increasing length of the
data series. The model consists of different routines which describes the hydrological process
in order to estimate streamflow within the catchment.

5.1.1 Snow routine

The model defines precipitation as snow if the temperature is below the threshold tempera-
ture, Tt. If the temperature then goes above the threshold temperature, the snow starts to
melt. The melt rate is defined by the degree-day method:

M = Cfmax(T − Tt) (10)

Where Cfmax is typically around 4 mm d−1C−1.

The snow retains melt water until it exceeds a certain portion of the water equivalent of the
snow pack. This portion is usually 10 percent of the water equivalent and must be exceeded
before the snow melt can be calculated as runoff. If the temperature decreases below the
threshold temperature again the water can refreeze according to:

R = CfrCfmax(Tt − T ) (11)

Where Cfr is usually around 0.05. This means that the refreezing is twenty times less efficient
than the melting. All precipitation which is simulated as snow is multiplied by a correction
factor Sfcf .

5.1.2 Soil routine

Water from precipitation and snow melt will fill the soil box and contribute to the ground-
water recharge depending on the relation between water content of the soil box SM and its
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largest value FC. This relation is defined as:

Recharge

P
= (

SM

FC
)β (12)

Where β range between zero and one.

Actual evaporation from the soil box equals the potential evaporation if SM/FC is above
LP , while a linear reduction is used when SM/FC is below LP . This is defined by the
equation:

Eact = Epotmin(
SM

FC ∗ LP
, 1) (13)

5.1.3 Groundwater routine

In the HBV-light model the groundwater is represented by two boxes. The lower box SLZ
represents the slowly reacting flow which feeds into the base flow. The upper box SUZ rep-
resents the upper groundwater which reacts quicker to precipitation and snow melt. PERC
defines the maximum rate of flow from the upper box to the lower. The runoff is represented
as a combination of three groundwater flows: Q0, Q1, Q2. All these flows are linear and
dependant on the water level in the box, but the combined runoff will be non-linear.

QGW (t) = K2SLZ +K1SUZ +K0max(SUZ − UZL, 0) (14)

5.1.4 Routing routine

The runoff is finally transformed by a triangular weighting function defined by the parameter
MAXBAS to give the simulated runoff. This is defined as:

Qsim(t) =
MAXBAS∑

i=1

c(i)QGW (t− i+ 1) (15)

where

c(i) =

∫ i−1

i

2

MAXBAS
− |u− MAXBAS

2
| 4

MAXBAS2
du (16)
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Figure 5: Groundwater routine

5.1.5 Parameters

There is a number of parameters which describes the different processes during the different
routines. The parameters have to be calibrated in order to achieve a model with streamflow
predictions of high efficiency. The parameters used in HBV-light is presented in Table 2

5.2 Objective functions

For calibration of the model parameters the KGE were chosen as objective function. It has
been used as objective function in similar studies where the DSST was applied, and has
been proved to generate robust parameters [12], [11]. For validation the model performance
were evaluated based on the NSE and the VE. These objective functions are commonly used
when evaluating simulated streamflow using rainfall-runoff models. The objective functions
are described more thoroughly in the following section.

5.2.1 Kling-Gupta efficiency

The Kling-Gupta efficiency (KGE) is an improvement of the Nash-Sutcliffe efficiency. It con-
siders the error in the mean, the variability and the dynamics. By using multiple objectives
for model calibration it reduce the risk for overfitting of model parameters. It is based on

26



Parameter Subroutine Description Unit Range
TT Snow Threshold temperature ◦C [-inf, inf]
CFMAX ... Degree-day factor mm◦C−1d−1 [0, inf]
SP ... Seasonal variability - [0, 1]
SFCF ... Snowfall correction factor - [0, inf]
CFR ... Refreezing coefficient - [0, inf]
CWH ... Water holding capacity - [0, inf]
FC Soil moisture

routine
Maximum soil moisture storage mm [0, inf]

LP ... SM above which AET reaches
PET

- [0, 1]

BETA ... Relative cont. to runoff from rain
or snowmelt

- [0, inf]

PERC Response rou-
tine

Threshold parameter mm/dt [0, inf]

UZL ... Threshold parameter mm [0, inf]
K0 ... Storage coefficient 0 1/dt [0, 1]
K1 ... Storage coefficient 1 1/dt [0, 1]
K2 ... Storage coefficient 2 1/dt [0, 1]
MAXBAS ... Triangular weighting function dt [1, 100]

Table 4: Parameters HBV-light

the assumptions of data linearity and data normality [21]. The equation is given as:

KGE = 1−
√

(r − 1)2 + (
σsim
σobs

− 1)2 + (
µsim
µobs

− 1)2 (17)

where r is the linear correlation between observations and simulation, σsim
σobs

is a measure of
the flow variability error and µsim

µobs
is a bias term.

KGE = 1 indicates a perfect fit between observed and simulated values while KGE < 0
indicates that the mean of observations provides better estimates than simulations [21].

5.2.2 Nash–Sutcliffe model efficiency

The Nash–Sutcliffe model efficiency (NSE) is used to assess the predictive skill of hydrological
models. It is based on the ration between simulated and observed values where NSE = 1
equals a perfect fit. Values below zero is equal to a poor efficiency where observed mean is
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a better predictor than the model. The equations is give by:

NSE = 1−
∑T

t=1((Qm)t − (Qo)
t)2∑T

t=1((Qo)t − (Qmo)t)2
(18)

where Qm is the simulated discharge, Qo is the observed discharge and Qmo is the mean of
observed discharge.

5.2.3 Volume error

The Volume Error (VE) represents the agreement of cumulative runoff volume during the
simulation period and is expressed through the proportional difference to observed values
[14]. The optimal value is one.

V E = 1− (
T∑
t=1

Qobs −
T∑
t=1

Qsim)/
T∑
t=1

Qobs (19)

6 Simulation

6.1 Calibration and validation

For each catchment the reference period, the period for which the data is obtained, was
divided into four climatic conditions: Hot/Dry (HD), Hot/Wet (HW), Cold/Dry (CD) and
Cold/Wet (CW). The annual temperature for each year is calculated as the average daily
temperature for that year. The annual precipitation for each year is calculated as the sum
of the precipitation for that year. Years with an annual temperature above the average
were classified as hot years, and below the average as cold years. Likewise, years with an
annual precipitation above the average were classified as wet, and below as dry. Previous
studies [11], [12], [14] showed that 3-8 years were considered sufficient for each sub-period for
calibration using a DSST. The years within each sub-period do not have to be continuous.

Each PET model will be calibrated for each catchment and sub-period. This will result in
72 models that will be simulated in the HBV-light software. For each PET model, 50 000
parameter sets were randomly sampled from a uniform probability distribution with ranges
shown in Table 8. This is a function called Monte-Carlo simulation and it will generate
optimized parameter sets based on selected objective function. 50 000 parameter sets were
used due to the time limit of the thesis. The rainfall-runoff model was then validated using
the 100 sampled parameter sets with the highest KGE value for each PET model, sub-period
and catchment. During validation the model performance was evaluated with regard of the
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NSE and VE. Each PET model were validated over all sub-periods and the whole reference
period. Figure 6 shows an overview of the workflow for model calibration and validation.

Figure 6: Chart over the work flow for calibration and validation of each model
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6.1.1 Sub-periods

For Borgasjön 6 HD-, 6 HW-, 7 CD- and 4 CW-years were obtained. Figure 7 shows the
annual precipitation and average annual temperature for each year. The average annual pre-
cipitation and temperature for the whole reference period were 882 mm respectively −0.7◦C
and is represented as the black lines in the figure. The difference in average precipitation and
temperature range from −14% to +14% and from −0.7◦C to +0.6◦C between the different
sub-periods. The corresponding sub-period for each year is presented in Table 5.

Sub-period Year
Hot/Dry 2002, 2006, 2007, 2008, 2014, 2016
Hot/Wet 2000, 2003, 2005, 2011, 2013, 2015
Cold/Dry 1997, 1999, 2009, 2010, 2012, 2018, 2019
Cold/Wet 1998, 2001, 2004, 2017

Table 5: Sub-periods Borgasjön

For Lännässjön 6 HD-, 6 HW-, 4 CD- and 4 CW-years were obtained. Figure 8 shows the
annual precipitation and average annual temperature for each year. The average precipita-
tion and temperature for the whole reference period were 568 mm respectively 1.8◦C and
is represented as the black lines in the figure. The difference in average precipitation and
temperature range from −9% to +12% and from −1.3◦C to +0.6◦C between the different
sub-periods. The corresponding sub-period for each year is presented in Table 6.

Sub-period Year
Hot/Dry 2003, 2007, 2008, 2016, 2018, 2020
Hot/Wet 2005, 2006, 2011, 2014, 2015, 2019
Cold/Dry 2002, 2004, 2013, 2017
Cold/Wet 2001, 2009, 2010, 2012

Table 6: Sub-periods Lännässjön

For Yngeredsforsen 3 HD-, 9 HW-, 7 CD- and 4 CW-years were obtained. Figure 9 shows the
annual precipitation and the average annual temperature for each year. The average precipi-
tation and temperature for the whole reference period were 1122 mm respectively 7.2◦C and
is respresented as the black lines in the figure. The difference in average precipitation and
temperature range from −19% to +15% and from −0.7◦C to +0.6◦C between the different
sub-periods. The corresponding sub-period for each year is presented in Table 7.

This proves that there is a substantial climatic difference between each sub-period, which
will provide an important contrast between calibration and validation.
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Sub-period Year
Hot/Dry 2002, 2016, 2018
Hot/Wet 2000, 2006, 2007, 2008, 2011, 2014, 2015, 2017, 2019
Cold/Dry 1997, 2001, 2003, 2005, 2009, 2010, 2013
Cold/Wet 1998, 1999, 2004, 2012

Table 7: Sub-periods Yngeredsforsen

Figure 7: Differential split sample test-plot Borgasjön
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Figure 8: Differential split sample test-plot Lännässjön
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Figure 9: Differential split sample test-plot Yngeredsforsen
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6.2 Parameters

The optimal range for each parameter were obtained by trial-and-error. At the beginning
the parameters were set at a wide range to avoid missing a good parameter set. By running
the model the efficiency could be improve by adjusting the lower and upper limits, narrowing
the range for each parameter. The obtained parameters are presented in Table 8 and were
used for calibration of all catchments. The parameter range were compared with previous
studies to make sure that the chosen interval were within similar limits [22], [23].

Parameter Unit Lower limit Upper limit
TT ◦C -2.5 0.8
CFMAX mm◦C−1d−1 0.3 5
SP - 0 0
SFCF - 0.4 1
CFR - 0.05 0.05
CWH - 0.1 0.1]
FC mm 80 600
LP - 0.2 1
BETA - 1 6
PERC mm/dt 0 4
UZL mm 0 70
K0 1/dt 0.1 0.5
K1 1/dt 0.01 0.2
K2 1/dt 5E-5 0.1
MAXBAS dt 1 2.5

Table 8: Interval for parameter setup used during Monte-Carlo simulation for all PET models
and catchments

7 Results

7.1 Precipitation and temperature

By using the meteorological data from SMHIs weather stations in and around each catch-
ment, and using the Thiessens-polygon method to give each station a specific weight, the
annual precipitation and mean annual temperature could be calculated for each catchment.
The results are presented in Figure 10 and Figure 12. The mean monthly variation of pre-
cipitation and temperature for each catchment are presented in Figure 11 and Figure 13

From the figures it can be concluded that there is a distinct difference in both precipita-
tion and temperature between each catchment. Yngeredsforsen has the highest total annual

34



precipitation, except for 2001, with an average annual precipitation of 1122 mm/year. Bor-
gasjön and Lännässjön have a mean annual precipitation of 882 respectively 568 mm/year.
Borgarsjön and Yngeredsforsen is the coldest respectively warmest catchments with an av-
erage temperature of −0.7◦C and 7.2◦C per year. Lännässjön has an average temperature
of 1.8◦C per year.

Figure 10: Annual precipitation

Figure 11: Mean monthly precipitation
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Figure 12: Annual temperature

Figure 13: Mean monthly temperature
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7.2 Discharge

Figure 14 represents the mean monthly discharge in mm/day for each catchment. It can be
noted that both Borgasjön and Lännässjön have their peak in discharge during May to July.
Yngeredsforsen have a drier period during summer and sees the biggest flows from December
to February.

Figure 14: Mean monthly discharge (mm/day)

7.3 Potential evapotranspiration

The total annual PET (mm/year) were calculated for the different PET models and for each
catchment, and the results are presented in Figure 15, 16 and 17. Average annual PET
(mm/year) for the whole measurement period and for each PET method and catchment
are presented in Table 9. These average values are the sum of the daily PET (mm/day)
calculated for each PET model and catchment.

PET model TW HS LIN JH PM MG Current Mean
Borgarsjön 437 388 268 391 393 399 217 379
Lännässjön 493 519 413 545 526 509 313 474
Yngeredsforsen 588 650 496 861 520 733 - 641

Table 9: Average annual PET (mm/year) for each PET model and catchment

Data from SMHI shows that the average annual PET for the area around Borgarsjön,
Lännässjön and Yngeredsforsen ranges from 200-300, 400-500 respectively 500-700 mm per
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year. These values are the yearly mean, obtained by using the Penman-Montheit model with
meteorological data from 1961 to 1990 [24].

Borgarsjön shows the lowest annual PET values for all PET models compared with the other
two catchments. From Figure 15 it can be concluded that the Linacre model and the current
values are the only two with an annual PET below the average. The other models result
in similar annual PET values, all above the average. Similarly the Linacre model and the
current values gives the lowest annual PET for Lännässjön as well. Yngeredsforsen shows
the highest annual PET values for all methods, except for the Penman-Montheit, compared
with the other catchments. The range of annual PET between each PET model is the largest
for this catchment (Figure 17), where the Jensen-Haise model results in an annual PET of
861 mm/year compared to Linacre with an annual PET of 496 mm/year.

Figure 15: PET Borgasjön
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Figure 16: PET Lännässjön

Figure 17: PET Yngeredsforsen
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7.4 Calibration

The result from the calibration, using KGE as objective function, is presented for each
catchment. The result is represented as the average of the 100 parameter set with the
highest KGE value for each sub-period and PET model. The volume error for each PET
model and the average efficiency for each sub-period is also presented for each catchment.

7.4.1 Borgasjön

Figure 18 shows the KGE for the PET models calibrated on Borgasjön. Using the current
values as PET input gives the highest efficiency for all sub-periods, with an average KGE
of 0.74. The lowest efficiency for all sub-periods is obtained when the Jensen-Haise model
is used, with an average KGE of 0.66. This proves that there is a big difference in efficiency
depending on which PET model that’s been used.

The volume error for each PET model is presented in Figure 19. Similarly to the efficiency,
the current values gives the smallest volume error with an average VE of 0.89 and the Jensen-
Haise model gives the biggest volume error with an average VE of 0.77. The average, max
and min efficiency and average volume error for all PET models is presented in Table 10.

PET-model KGEave KGEMax KGEMin V Eave
HS 0.69 0.76 0.59 0.81
JH 0.66 0.77 0.53 0.77
LIN 0.72 0.78 0.63 0.85
MG 0.68 0.76 0.55 0.79
PM 0.70 0.78 0.61 0.82
TW 0.68 0.75 0.56 0.79
Current 0.74 0.80 0.67 0.89

Table 10: Mean, max and min efficiency for each PET model Borgasjön

The average efficiency and volume error for each sub-period is presented in Table 11. When
calibrated on HW the highest efficiency is obtained with an average of KGE 0.71. The
smallest volume error is obtained when calibrated on HD with an average of VE 0.84.

Sub-period KGE VE
HW 0.71 0.83
HD 0.68 0.84
CW 0.69 0.78
CD 0.70 0.82

Table 11: Mean efficiency for each sub-period Borgasjön
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Figure 18: Kling-Grupta efficiency Borgasjön

Figure 19: Volume error Borgasjön
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7.4.2 Lännässjön

Figure 20 shows the KGE for the PET models calibrated on Lännässjön. The Penman-
Monteith model gives the highest average efficiency with an average KGE of 0.86. When
calibrated on HW and HD, the Hargreaves-Samani and the Thornthwaite model gives the
highest efficiencies, with an average KGE of 0.85 respectively 0.85. The lowest efficiency
for all sub-periods is obtained when the current values are used, with an average KGE of
0.70. The average efficiency between each PET model is within a range of 0.80− 0.86, if the
current values are not considered.

The volume error for each PET model is presented in Figure 21. Similarly to the efficiency,
the Penman-Monteith model gives the smallest volume error with an average VE of 0.97 and
the current values gives the biggest volume error with an average VE of 0.83. The average,
max and min efficiency and average volume error for all PET methods is presented in Table
12.

PET-model KGEave KGEMax KGEMin V Eave
HS 0.85 0.91 0.83 0.96
JH 0.80 0.89 0.56 0.94
LIN 0.80 0.87 0.75 0.93
MG 0.85 0.90 0.83 0.95
PM 0.86 0.90 0.83 0.97
TW 0.83 0.88 0.67 0.95
Current 0.75 0.80 0.68 0.83

Table 12: Mean, max and min efficiency for each PET model Lännässjön

The average efficiency and volume error for each sub-period is presented in Table 13. When
calibrated on CW the highest efficiency is obtained with an average of KGE 0.82. The
smallest volume error is obtained when calibrated on HD with an average of VE 0.94.

Sub-period KGE VE
HW 0.81 0.93
HD 0.81 0.94
CW 0.82 0.93
CD 0.81 0.93

Table 13: Mean efficiency for each sub-period Lännässjön
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Figure 20: Kling-Grupta efficiency Lännässjön

Figure 21: Volume error Lännässjön
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7.4.3 Yngeredsforsen

Figure 22 shows the KGE for the PET models calibrated on Yngeredsforsen. The Jensen-
Haise model gives the highest average efficiency for all sub-periods, with an average KGE of
0.79. The lowest efficiency for all sub-periods is obtained when the Linacre model is used,
with an average KGE of 0.53. The Penman-Monteith model and the McGuinness model also
shows poor efficiency with an average KGE of 0.55 respectively 0.55.

The volume error for each PET model is presented in Figure 23. Similarly to the efficiency,
the Jensen-Haise model gives the smallest volume error with an average VE of 0.94 and the
Linacre model gives the biggest volume error with an average VE of 0.60. The average, max
and min efficiency and average volume error for all PET models is presented in Table 14.

PET-model KGEave KGEMax KGEMin V Eave
HS 0.73 0.82 0.62 0.84
JH 0.79 0.87 0.58 0.94
LIN 0.53 0.61 0.0006 0.60
MG 0.55 0.66 -0.0096 0.63
PM 0.55 0.65 -0.0365 0.63
TW 0.68 0.76 0.55 0.76

Table 14: Mean, max and min efficiency for each PET model Yngeredsforsen

The mean efficiency and volume error for each sub-period is presented in Table 15. When
calibrated on HW the highest efficiency is obtained with an average of KGE 0.67. The
smallest volume error is obtained when calibrated on HW with an average of VE 0.74.

Sub-period KGE VE
HW 0.67 0.74
HD 0.61 0.73
CW 0.64 0.73
CD 0.63 0.72

Table 15: Mean efficiency for each sub-period Yngeredsforsen
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Figure 22: Kling-Grupta efficiency Yngeredsforsen

Figure 23: Volume error Yngeredsforsen
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7.4.4 General

Figure 24 shows the average KGE for each PET model calibrated over the different sub-
periods and catchments. Three PET models shows an acceptable efficiency for all catch-
ments: The Hargreaves-Samani model with an average KGE between 0.69−0.85, the Jensen-
Haise model with an average KGE between 0.66 − 0.80 and the Thornthwaite model with
an average KGE between 0.68− 0.83. Lännässjön is the catchment with the highest average
KGE for all PET models (0.81). Yngeredsforsen shows the lowest average KGE of 0.64.

Figure 24: Average efficiency for all calibrations

Figure 25 shows the average VE for the different PET models and for the different catch-
ments. The Hargreaves-Samani model and the Jensen-Haise model shows an acceptable vol-
ume error for all catchments ranging between 0.81−0.96 respectively 0.78−0.94. Lännässjön
shows the lowest average volume error of all the catchments (0.93) and Yngeredsforsen shows
the highest (0.73).

Interesting is the low performance of efficiency for the Linacre, McGuinness and Penman-
Montheit model for Yngeredsforsen. They show an average KGE of 0.53, 0.55 respectively
0.55. The Annual PET for the McGuinness model is 733 mm/year (Table 9) which is well
above the Annual PET for the Hargreaves-Samani and Thornthwaite method (650 mm/year
respectively 588 mm/year). They both show a higher efficiency, which suggests that the
McGuinness method is poor when it comes to estimating PET for Yngeredsforsen.

Table 16 shows the mean efficiency for calibration on each sub-period. Calibration on HW
shows the highest mean efficiency for both Borgarsjön and Yngeredsforsen. The difference in
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Figure 25: Average volume error for all calibrations

efficiency between each sub-period is not that big for any catchments, the biggest difference
is obtained for Yngeredsforsen between calibration on HW and HD (0.06).

Catchment HW HD CW CD
Borgasjön 0.71 0.68 0.69 0.70
Lännässjön 0.81 0.81 0.82 0.81
Yngeredsforsen 0.67 0.61 0.64 0.63

Table 16: Mean efficiency for calibration on each sub-period

Table 17 shows which sub-period that provides the parameter set with highest efficiency
during calibration for each PET model and catchment. Calibration on HD and HW for
Borgasjön shows the highest efficiencies for all PET models. This is interesting as Borgasjön
is the catchment with the lowest average temperature (Figure 12). For Lännässjön calibration
on CD and CW provides the highest efficiencies.
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PET model Borgasjönmax Lännässjönmax Yngeredsforsenmax
HS HD CD CW
JH HW CD HW
LIN HD CW CW
MG HW CW CD
PM HD CW CW
TW HD CD HW
Current HD HW -

Table 17: Sub-periods providing the max KGE for each PET model and catchment
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7.5 Validation

The result from the validation is presented for each catchment. The 100 parameter sets
obtained from the calibration of each PET model and sub-period were validated over the
other sub-periods and the whole reference period. The result is represented as the average
NSE of all the validations for one sub-period and PET model. The volume error for each
PET model and the mean efficiency for each sub-period is also presented for each catchment.

7.5.1 Borgasjön

Figure 26 shows the NSE for the PET models validated on Borgasjön. The current values
as PET input results in the highest mean NSE of 0.51. The highest overall NSE (0.57)
is obtained for the Penman-Montheit model calibrated on CW. The lowest mean NSE is
obtained when using the Jensen-Haise model, with a value of 0.45. The lowest overall NSE
(0.31) is obtained for the Jensen-Haise model calibrated on HD.

Figure 27 shows the volume error obtained for each PET model. The current PET values
shows the smallest VE for all sub-periods. The mean efficiency and volume error for all PET
models is presented in Table 18.

PET-model NSEave V Eave
HS 0.47 0.81
JH 0.45 0.78
LIN 0.50 0.85
MG 0.45 0.79
PM 0.50 0.82
TW 0.45 0.79
Current 0.51 0.89

Table 18: Mean efficiency and volume error for each PET model Borgasjön

The mean efficiency and volume error for each sub-period is presented in Table 19. For all
PET models the highest NSE is obtained when calibrated on CW, ranging from a NSE of
0.56− 0.57. Calibration on HD shows the lowest NSE for all PET models. When calibrated
on CW all PET models shows the largest VE.

Sub-period KGE VE
HW 0.48 0.83
HD 0.37 0.86
CW 0.56 0.76
CD 0.49 0.82

Table 19: Mean efficiency for each sub-period Borgasjön
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Figure 26: Model efficiency (NSE) Borgasjön

Figure 27: Volume error Borgasjön
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7.5.2 Lännässjön

Figure 28 shows the NSE for the PET models validated on Lännässjön. The Thorntwaite
model results in the highest mean NSE of 0.69 and the highest overall NSE (0.70) when
calibrated on CD. The lowest mean NSE is obtained when using the Linacre model, with a
value of 0.55. The lowest overall NSE (0.53) is obtained for the Linacre model calibrated on
CW.

Figure 29 shows the volume error obtained for each PET model. The Thorntwaite model
results in the smallest mean volume error of 0.95. The mean efficiency and volume error for
all PET models is presented in Table 20.

PET-model NSEave V Eave
HS 0.67 0.94
JH 0.67 0.93
LIN 0.55 0.90
MG 0.63 0.94
PM 0.66 0.93
TW 0.69 0.95
Current 0.55 0.83

Table 20: Mean efficiency and volume error for each PET model Lännässjön

The mean efficiency and volume error for each sub-period is presented in Table 21.

Sub-period KGE VE
HW 0.65 0.92
HD 0.63 0.92
CW 0.61 0.91
CD 0.64 0.91

Table 21: Mean efficiency for each sub-period Lännässjön
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Figure 28: Model efficiency (NSE) Lännässjön

Figure 29: Volume error Lännässjön
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7.5.3 Yngeredsforsen

Figure 30 shows the NSE for the PET models validated on Yngeredsforsen. The Jensen-
Haise model results in the highest mean NSE of 0.62 and the highest overall NSE (0.67)
when calibrated on CD. The lowest mean NSE is obtained when using the Linacre model,
with a value of 0.08. The lowest overall NSE (−0.11) is obtained for the Linacre model
calibrated on HD.

Figure 31 shows the volume error obtained for each PET model. The Jensen-Haise model
results in the smallest mean volume error of 0.94. The mean efficiency and volume error for
all PET models is presented in Table 22.

PET-model NSEave V Eave
HS 0.57 0.84
JH 0.62 0.94
LIN 0.08 0.56
MG 0.22 0.61
PM 0.22 0.61
TW 0.49 0.76

Table 22: Mean efficiency and volume error for each PET model Yngeredsforsen

The mean efficiency and volume error for each sub-period is presented in Table 23. Calibra-
tion on CW and CD shows the highest NSE for all PET models.

Sub-period KGE VE
HW 0.36 0.70
HD 0.26 0.74
CW 0.41 0.71
CD 0.43 0.73

Table 23: Mean efficiency for each sub-period Yngeredsforsen
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Figure 30: Model efficiency (NSE) Yngeredsforsen

Figure 31: Volume error Yngredsforsen

54



7.5.4 General

Figure 32 shows the average NSE for the different PET models validated over all sub-periods
and the whole reference period. Two PET models shows an acceptable efficiency for all
catchments: The Hargreaves-Samani model with an average NSE between 0.49−0.67 and the
Jensen-Haise model with an average NSE between 0.47− 0.67. Lännässjön is the catchment
with the highest average NSE for all PET models (0.63) where as Yngeredsforsen shows the
lowest average NSE of 0.37.

Figure 32: Average efficiency for all validations

Figure 33 shows the average VE for the different PET models and for the different catch-
ments. The Hargreaves-Samani model and the Jensen-Haise model shows an acceptable vol-
ume error for all catchments ranging between 0.82−0.94 respectively 0.78−0.94. Lännässjön
shows the lowest average volume error of all the catchments (0.92) and Yngeredsforsen shows
the highest (0.72).

The previous figures show the validation of each PET model as the average efficiency for all
sub-periods. Figure 34 shows the average efficiency when validated on the whole reference
period only. This is relevant as the reference period represents the whole historic conditions.
A small increase in efficiency can be observed for all PET models.

Table 24 shows the mean efficiency for validation of each sub-period. Validation of parame-
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Figure 33: Average volume error for all validations

ters calibrated on CW shows the highest mean efficiency for both Borgarsjön and Yngereds-
forsen. The difference in efficiency between each sub-period is not that big for Lännässjön.
But for Borgarsjön and Yngeredsforsen the biggest difference is obtained between CW and
HD (0.19) respectively between CD and HD (0.17).

Catchment HW HD CW CD
Borgasjön 0.48 0.37 0.56 0.49
Lännässjön 0.65 0.63 0.61 0.64
Yngeredsforsen 0.36 0.26 0.41 0.43

Table 24: Mean efficiency for validation of each sub-period

From Figure 26 it can be observed that for Borgasjön all PET models shows the highest
NSE when calibrated on CW, and the lowest when calibrated on HD. For Yngeredsforsen
there is a slightly higher NSE for all PET models when calibrated on CW or CD (Figure
30), and a lower efficiency when calibrated on HD. For Lännässjön there is no remarkable
difference in NSE for calibration on the different sub-periods.
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Figure 34: Average efficiency for validation on whole reference period only

7.6 Parameter uncertainty

The parameters describe the physical properties which vary for each catchment and con-
ditions, were some parameters are more sensitive than others. If the chosen interval is to
narrow there is a risk that potential parameter sets with high efficiency will be lost. But if
the interval is to wide there is also a risk to miss efficient parameter sets due to the increased
number of sets that can be generated.

For this thesis the same parameter interval (Table 8) were used for all catchments and PET
models. Figure 35 and Figure 36 shows the distribution of each parameter for the 100
parameter sets with the highest KGE, generated with the Hargreaves-Samani model as PET
input over the Lännässjön catchment.

Here it can be noted that the parameters describing the snow routine (TT, CFMAX, SFCF)
are not that sensitive as they are varying within a smaller interval for all sub-periods. The
parameters describing the soil moisture routine (FC, LP, BETA) and the response routine
(PERC, UZL, K0, K1, K2, MAXBAS) are on the other hand more sensitive as the vary within
a wider range for each sub-period. It can also be noted that for TT, K0 and MAXBAS the
lower limit may be to high, and for LP, UZL and MAXBAS the upper limit may be to low.
This will probably affect the efficiency negatively as some efficient parameters will be lost.
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(a) TT (b) CFMAX

(c) SFCF (d) FC

(e) LP (f) BETA

Figure 35: Plot of the 100 parameter sets with the highest KGE
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(a) PERC (b) UZL

(c) K0 (d) K1

(e) K2 (f) MAXBAS

Figure 36: Plot of the 100 parameter sets with the highest KGE
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8 Discussion

The performance in efficiency differs for each catchment where Lännässjön shows the highest
efficiency for both calibration and validation for all PET models, followed by Borgasjön and
lastly Yngeredsforsen. The decrease in efficiency between calibration and validation for all
PET models is largest for Yngeredsforsen and especially for the Linacre, McGuinness or
Penman-Montheith model. They show an average KGE of 0.53, 0.55 respectively 0.55 and
an average NSE of 0.08, 0.22 respectively 0.22. These models seems more robust for the other
two catchments as the decrease in efficiency is much smaller there. One possible conclusion
could be that these three models are poor in estimating streamflow when the streamflow is
very low. 14 shows that the average monthly streamflow is much lower for Yngeredsforsen
compared with the other catchments. The Jensen-Haise and the Hargreaves-Samani model
performs better when calibrated and validated over Yngeredsforsen compared to Borgasjön.
Looking at 9 it can noted that the estimation of annual PET for the Jensen-Haise and
Hargreaves-Samani model are higher compared to the Linacre and Penman-Montheith model
for Yngeredsforsen. In search for a connection between high efficiency and estimated annual
PET it can be noted that there is no relation between high or low estimations of annual PET
and high or low efficiencies. Instead the efficiency must rely more on how the estimated PET
is divided over the hydrological year. The PET models were only tested on three catchments
with varying results so it can not be concluded if the result applies on a larger variety of
catchments. Although the result is pointing at that the selection of PET model seems to be
site specific, further analysis is needed in other catchments/regions to confirm this.

The result of this thesis is not in line with the result from previous studies. Oudin et al. found
no significant difference in performance between 27 PET models tested on 308 catchments
located in Australia, France and the United States, indicating a lack of sensitivity of rainfall
runoff models to PET input. Similar to this thesis they found that the best average efficiency
was obtained with the Jensen-Haise model and that more complex PET models such as the
Penman-Montheit did not improve the efficiency. In the study done by Dakhlaoui et al. it
was concluded that discharge simulations are not sensitive to PET estimates when tested
over catchments in semi-arid regions.

Why the result from this thesis is different from similar studies may be due to many factors.
There are a few uncertainties which needs to be considered for this thesis. One is the
credibility of the meteorological data used. Some measurement stations were far away for
the catchment (especially for Borgasjön Figure 3) and may therefore not represent the actual
meteorological condition. The meteorological data is of key importance as the result from
each PET model depend upon its quality. Two measurement stations for each catchment
were used for data of temperature and wind speed. By using the mean values from a larger
amount of stations it would reduce the risk of using incorrect data. But at the same time it
is important to make sure that the distance to each station is within reasonable limits. The
radiation-based models and The Penman-Montheith model need data for solar radiation.
This could only be obtained at a few meteorological stations in Sweden, for this thesis
Östersund and Växjö. These stations are far away from the catchments and would most
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likely provide a poor representation of the actual radiation. By using a temperature-based
model this uncertainty would be eliminated. The peak of discharge occurs between April
to June for Borgasjön and Lännässjön while it occurs between November to February for
Yngeredsforsen. In HBV-light the hydrological year is set between the first on January to
the end of December. This could be one factor to the low efficiency for Yngeredsforsen, as
the chosen hydrological year do not coincide with the discharge peak.

The DSST were used in order to see how well each PET method performed when calibrated
and validated over periods with different climatic conditions. Calibration on CW resulted
in higher efficiencies for all PET methods for both Borgasjön and Yngeredsforsen. These
two catchments varies in both annual temperature, precipitation and discharge, indicating
that parameters calibrated on CW periods may result in a higher robustness. Due to the
limited number of catchments though, it can not be concluded if some climatic conditions
results in higher average efficiencies. In the study done by Dakhlaoui et al. the found that
the difference in climate between calibration and validation affects the performance of the
model. They used a similar DSST and concluded that the highest efficiency is obtained
when the model is calibrated on climatic scenarios similar to the climatic scenarios during
validation.

9 Conclusion

The main conclusion of this thesis is that there is a big difference in efficiency between each
PET model but also between the catchments. Some PET models could provide acceptable
efficiencies in one catchment but perform poorly in another. This points at that the choice
of PET model is site specific and that no general PET model could be found. In order to
achieve robust models with high efficiencies regarding streamflow a way could be to divide
all catchments into different climatic categories, and instead try to find the PET model
which works best for each category. The Hargreaves-Samani and the Jensen-Haise model
were the two PET models which showed an acceptable performance for both calibration and
validation for Lännässjön and Yngeredsforsen. For these catchment the meteorological and
hydrological conditions are very unlike, proving that the Hargreaves-Samani and the Jensen-
Haise model works well for different conditions. The PET models have only been tested on
three catchments with varying results and it can therefore not be concluded if the obtained
results actually reflects how well each PET model perform, or if the results is caused by
chance. The differential split sample test showed that parameters calibrated on CW resulted
in a slightly higher efficiency during validation for both Borgasjön and Yngeredsforsen. This
proves that the chosen calibration period is important in providing a robust model and
that the parameters are climate dependant. Like previous studies it could be noted that
calibration and validation on similar climatic conditions would provide models with higher
efficiency.
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