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Abstract 

Introduction: Functional magnetic resonance imaging (MRI) is a non-invasive method which 

uses a combination of a strong magnetic field and radio frequency pulses to image magnetic 

difference between oxygenated and deoxygenated blood in the human brain. This contrast 

differences can be used to identify areas in the brain when subjects performing an active task 

in the MRI scanner. It is also possible to measure spontaneous BOLD oscillation in absence of 

an external stimuli, a method called resting-state fMRI (rsfMRI). However, it is necessary to 

estimated and remove physiological noise, like head movements or heartbeat, as well as MRI 

scanner noise. Those estimated signals are called confounds. Therefore, an accurate 

preprocessing of the time signals is necessary. However, available preprocessing pipelines are 

not well established yet for rsfMRI data from ultra-high field MRI scanners. The goal of this 

study was to compare two slightly different rsfMRI preprocessing pipelines on the same dataset. 

Further, to investigate the influence of these differences on the robustness and functional 

connectivity of specific resting-state networks (RSN).  

Methods: A rsfMRI dataset from ten healthy subjects was acquired on an ultra-high field seven 

Tesla MRI scanner and preprocessed with both pipelines, CPAC and fMRIprep. A group-wise 

independent component analysis (ICA) was performed to measure the functional and spatial 

connectivity between and within RSN. Additionally, we performed a detailed comparison of  

the confounds between the pipelines. 

Results: We identified six different RSN. Subjects preprocessed with fMRIprep showed a 

strong temporal correlation within the visual, sensory motor as well as between the left and 

right memory function network. However, there were no significant spatial differences between 

the pipelines. Although head motion confounds were similar, confounds using brain masks to 

extract the signal differ. 
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Discussion: The stronger positive and negative correlation is in line with the literature although 

the study lack in statistical power. The major impact of the pipeline differences could be 

addressed to varying brain masks from the estimated confounds. This detailed comparison may 

help to further investigate the influence of different preprocessing steps to functional 

connectivity. 
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Introduction 

Magnetic resonance imaging (MRI) is a non-invasive method of studying neuroanatomical 

changes in the human brain. The combination of a strong magnetic field and radio frequency 

pulses make it possible to emphasize different contrasts between various brain tissues or fluids. 

One example is the difference between oxygenated and deoxygenated blood, which have 

diamagnetic and paramagnetic character, respectively. The paramagnetic deoxygenated blood 

causes local magnetic field distortions, which leads to a signal drop resulting in MRI images. 

Oxygenated blood will reduce these field distortions, yielding slightly higher signal. The 

differing signal strength between these two conditions is called blood-oxygen-level-dependent 

(BOLD) contrast (1). Differences in the blood flow and blood volume are mostly related to 

higher energy consumption in neuronal active brain regions by the neurovascular coupling (2). 

Although neuronal activity occurs on the scale of milliseconds, the BOLD response is slower 

and spanning seconds. The detected signal caused by the local field distortions is a complex 

interaction of cerebral blood flow and volume and can be detected by the MRI scanner using 

functional magnetic resonance imaging (fMRI). 

 

A traditional fMRI experiment compares the BOLD response from a specific task to a baseline. 

Areas in the brain which are active during the task can be detected via the difference between 

the BOLD signals from the task and the baseline. One special case of fMRI is resting-state 

fMRI (rsfMRI) which measures spontaneous BOLD oscillations in absence of an external 

stimulus (3,4). Subjects are lying in the MRI scanner at rest with closed eyes, whereby the term 

“rest” means that the subjects are awake, without performing any task or thinking on something 

specific.  
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During rsfMRI (and also fMRI experiments) the whole brain is scanned repeatedly within 1-3 

seconds with a voxel resolution of 1-4 mm3 over several minutes resulting in one image volume 

at the given time point. Repeated over time allows to extract a time-series from each voxel in 

the brain. Two voxels in the brain which have similar time-series, i.e. they are correlated, are 

presumed to be functionally connected, and likely to process similar information (5). Large 

groups of voxels which exhibit a high functional connectivity at rest can often be characterized 

as forming a resting-state network (RSN). Several RSNs have been identified by their distinct 

spatial distributions in the brain, and their functionality deduced by comparing with activation 

patterns in task-driven fMRI experiments (5). The most common network is the default mode 

network (DMN) which can be identified only at rest. If a subject performs a task, the activation 

pattern of the DMN decreases. The state-of-the art method to identify such RSNs is the 

independent component analysis (ICA). ICA is an unsupervised and exploratory method which 

can be used to decompose the time-series in rsfMRI to identify spatial independent components 

(5). 

 

The BOLD contrast measured in rsfMRI time-series is very small and it is a mixture of both 

neuronal and non-neuronal origin (6). The neuronal part of the signal is related to the local field 

distortions caused by deoxygenated blood (1). Non-neuronal signals are physiological 

fluctuations like heartbeat, respiration or noise from the MRI scanner (6). The key in 

preprocessing of rsfMRI data it to extract and remove the non-neuronal signal from the time-

series. Extracted signals which contains noise are called confounds or nuisance signals. To 

minimize the effect of those confounds, a general linear model (GLM) is used to regress out 

those fluctuations from the time-series of each voxel in the brain, so-called nuisance regression. 

A multitude of different methods exists to extract those confounds from the time-series. Apart 

from these confounds, it is also necessary to correct for field inhomogeneities in the images 
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mostly caused at the boundaries between tissues or close to the sinuses in the brain. With 

susceptibility distortion correction (SDC) it is possible to correct for these inhomogeneities by 

generating a fieldmap. The fieldmap describes the displacement of a voxel in a certain direction. 

 

To investigate the functional connectivity of the human brain rsfMRI is a well-established 

method. With the advent of faster image acquisition techniques and MRIs with higher field 

strength, from high field with 3 Tesla (3T) to ultra-high field with 7T, it is possible to increase 

the temporal and spatial resolution of rsfMRI images. Publicly available pipelines which are 

developed for the preprocessing of rsfMRI, are not well established yet for data from ultra-high 

field MRI. A recent work showed that the choice of the pipelines strongly varies between 

different sites although the same input data was used (7,8). Even the operating system (OS) on 

which neuroimaging pipelines are compiled and executed can have an impact on the output. 

Such differences also occur between versions of the same OS (9).  

 

To investigate the impact of the preprocessing on the functional connectivity of 7T rsfMRI we 

applied the same dataset in two different pipelines. The goal of this retrospective study was to 

evaluate the impact of differences between the preprocessing pipelines and further to assess 

robustness of RSN. An additional goal of this work was to provide a reproducible study, due to 

the fact that many neuroimaging studies are lacking sufficient methodological detail (10,11). 

Therefore, in the following paragraphs we will give a detailed description of the preprocessing 

steps, aiming to understand the components underpinning rsfMRI reproducibility. This includes 

also a research resource identifier (RRID) for each applied software tool.  
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Material and Methods 

 

Participants 

Ten healthy individuals, all women with a median age of 45 (range= 30-55), were included in 

this study. The data was acquired within the frame of a study in Systemic Lupus Erythematosus 

at Lund University between June 2017 and February 2018. Inclusion criteria were: female sex, 

age between 18 and 55 years, right handedness, absence of autoimmune disease or any previous 

neurological or neuropsychiatric disorders. This study was approved by the Regional Ethical 

Review Board in Lund Sweden (#2012/4, #2014/748) and written informed consent was 

obtained for all subjects prior to inclusion. 

 

Data acquisition  

All subjects underwent a whole-brain scan on an actively shielded 7T MRI scanner (Achieva, 

Philips, Best, The Netherlands) using a 32-channel receive head coil (Nova Medical). Dielectric 

pads were used to reduce field inhomogeneities (12). The following sequences were included 

in this study: anatomical 3D T1-weighted (T1w) turbo-field echo sequence with a repetition 

time (TR)= 5 ms, Echo Time (TE) = 2 ms, Flip Angle (FA)= 6°, voxel size= 0.98 x 0.98 x 1 

mm, slice spacing= 0.5 mm, field of view (FOV)= 256 x 256 x 380 and a parallel acquisition 

factor of 2 using sensitivity encoding (SENSE); rsfMRI was acquired with a 2D gradient-echo 

echo-planar imaging (EPI) sequence with a TR= 2300 ms, TE= 25 ms, FA= 73°, planar 

resolution= 0.9 x 0.9 mm, slice thickness= 2 mm, slice spacing= 0.2 mm, SENSE factor= 3, 

FOV= 256 x 256 x 45 and each functional run contained 202 volumes which resulted in an 

overall acquisition time of 8 minutes; to correct for B0 field inhomogeneities (susceptibility 

distortions) for the rsfMRI sequence phase difference and corresponding magnitude images 
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were additionally acquired (echo time difference= 1 ms). During rsfMRI the subjects were 

instructed to rest with their eyes closed. 

 

Confounds 

The most established confounds are the six head-motion parameters representing translation 

and rotation of the head during the rsfMRI scan in all three directions (13,14). From those six 

head-motion parameters, a summary statistic called framewise displacement (FD) was 

calculated for each imaged brain volume and captures the BOLD signal displacement (15). 

High-motion volumes which were above a certain FD threshold indicating a high movement 

and were removed from further analysis. Even small movements can have a strong impact on 

the connectivity analysis (16). Additional confounds were also extracted by averaging the time-

series from the cerebrospinal fluid (CSF) as well as from the white matter (WM) in the brain. 

The latter contains the axons of the neurons and therefore less BOLD activation. Recently 

established methods like a temporal component-based noise pattern recognition method 

(tCompCor) derives a noise signal from voxels with a high standard variation, which were 

extracted using Principial component analysis (PCA) (17).  

For nuisance regression the following confounds were removed from the time-series: six 

motion parameters as well as the first derivates and quadratic terms; average signal of the WM 

and CSF; tCompCor components which explains 50% of the variance. Additionally, tCompCor 

required a pre-calculation of low-frequency signal drifts (cosine filters) a prior, to filter 

physiological and MRI scanner related noise sources. Therefore, these cosine filters were also 

added to the nuisance regression. 
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Pipelines 

In our comparison, two fMRI preprocessing pipelines, fMRIprep 20.2.0 (RRID:SCR_016216) 

(18) and CPAC 1.6.2 (RRID:SCR:000862) (19), were included in this study. The pipelines were 

used and executed inside a docker container using Docker 20.10.1 (RRID:SCR_016445). Both 

are based on Nipype 1.5.1 (RRID:SCR_002502) (20), an open-source Python interface which 

facilitates interactions between well-established neuroimaging software tools. Therefore, the 

underlying software tools and parameters were quite similar in both pipelines, however some 

steps were different. First, in CPAC the BOLD reference image to examine the motion 

parameters as well as the FD was defined as the mean image of all volumes instead of the first 

volume in fMRIprep. Second, different software tools were used to estimate the fieldmaps. 

Third, nuisance regression and bandpass filtering was performed in functional space for CPAC, 

compared to the standard space in fMRIprep. 

It is necessary to mention that fMRIprep, provides an automatically generated boilertext of the 

different preprocessing steps. Parts of the following detailed description were taken from this 

provided text. However, this procedure is in line with the committee on publication ethics 

(COPE)1, because it can be a helpful tool to increase the reproducibility of neuroimaging 

studies. 

 

Preprocessing 

An overview of the preprocessing steps in CPAC and fMRIprep as well as for their anatomical 

and functional branches can be seen in Figure 1. 

 

 
1 https://publicationethics.org/files/Web_A29298_COPE_Text_Recycling 



10 
 

 

Figure 1. Workflow of the preprocessing steps. Steps which are equal in both pipelines are colored in green, for 

CPAC only in orange and for fMRIprep only in yellow. Both pipelines provide a quality report which is colored 

in blue. T1w= anatomical T1-weighted MRI sequence; DICOM= Digital Imaging and Communication in 

Medicine; Nifti= Neuroimaging Informatics Technology Initiative; BIDS= Brain Imaging Data Structure; BP= 

Bandpass; CPAC= Configurable Pipeline for the Analysis of Connectomes; fMRIprep= functional magnetic 

resonance imaging data preprocessing pipeline 
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The DICOM images were transferred to NIFTI-format using dcm2niix (21) and then 

transformed to Brain Imaging Data Structure (BIDS) (22) using an in-house developed Python 

script. All subjects were pre-processed with both pipelines.  

 

For the anatomical preprocessing the T1w image was corrected for magnetic field 

inhomogeneities with N4BiasFieldCorrection (23), distributed with ANTS 2.3.3 (24) 

(RRID:SCR_004757) and used as T1w-references throughout the workflow. The T1w-

references was then skull-stripped with Nipype implementation of the antsBrainExtraction.sh 

workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of 

CSF, WM and grey matter (GM) was performed on the brain-extracted T1w using fast (25) 

(FSL 5.0.9, RRID:SCR_002823). Volume-based spatial normalization to the ICBM 152 

Nonlinear Asymmetrical template version 2009c (MNI152NLin2009cAsym) (26) 

(RRID:SCR_008796) was performed through nonlinear registration with antsRegistration 

(ANTs 2.3.3), using brain-extracted version of both T1w-reference and the T1w template. 

 

For preprocessing the rsfMRI images, in fMRIprep the first volume was taken as a reference 

and its skull-stripped version was generated using a custom methodology of fMRIprep. The 

fieldmap was estimated based on the phase-difference map calculated with a dual-echo 

gradient-recall echo (GRE) sequences, processed with a custom workflow of SDCflows 

inspired by the epidewarp.fsl script and further improvements in Human Connectome Projects 

(HCP) pipelines (27). In CPAC the mean volume was used as a reference and 3dQWarp from 

AFNI 20160207 (RRID_SCR_005927) (28) was used to estimate the fieldmap. The fieldmap 

was then co-registered to the reference volume and converted to a displacement field map 

(amenable to registration tools such as ANTs) with FSL’s fugue and other SDCflows tools. 
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Based on the estimated susceptibility distortion, a corrected EPI reference was calculated for a 

more accurate co-registration with the anatomical references. The BOLD reference was then 

co-registered to the T1w references using flirt (FSL 5.0.9) (29) with the boundary based 

registration (30) cost function. Co-registration was configured with nine degrees of freedom to 

account for distortions remaining in the BOLD reference. 

 

Head-motion parameters with respect to the BOLD references (transformation matrices, and 

six corresponding rotation and translation parameters) are estimated before any spatiotemporal 

filtering using mcflirt (FSL 5.0.9) (31). Those six parameters were expanded with the inclusion 

of temporal derivatives and quadratic terms which resulted in 24 head motion parameters (14). 

BOLD runs were slice-time corrected using 3dTshift from AFNI. The BOLD time-series 

(including slice-timing correction when applied) were resampled onto their original, native 

space by applying a single, composite transform to correct for head-motion and susceptibility 

distortions. Several confounding time-series were calculated based on the BOLD: FD (31) and 

global signals extracted within the CSF and WM. Additionally, tCompCor (17) were estimated 

after low-frequency signal drifts from the top 2% variable voxels within the specific mask. Only 

tCompCor components which explains 50% of variance retained. All confounds calculated in 

those steps were placed within the corresponding confounds file. 

 

In CPAC the BOLD time-series were bandpass filtered (0.01-0.1 Hz) and all above mentioned 

confounds were regressed out using a GLM. For both pipelines, the resulting filtered CPAC 

images as well as the unfiltered fMRIprep images, were resampled in MNI152NLin2009cAsym 

using the BOLD reference. Gridded (volumetric) resamplings were performed using 

antsApplyTransforms (ANTs), configured with Lanczos windowed sinc interpolation to 

minimize the smoothing effects of other kernels (32). For each pre-processed rsfMRI image a 
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whole-brain mask was also warped to the MNI152NLin2009cAsym space. In fMRIprep, the 

BOLD time-series in standard space were detrended, standardized, bandpass filtered (0.01-0.1 

Hz) and all above mentioned confounds were regressed out in a nuisance regression using 

clean_image (NiLearn, RRID:SCR_001362) (33,34). However, the CPAC time-series were 

also detrended and standardized using clean_image from NiLearn in the standard space. 

 

As a last step the BOLD time-series were smoothed using 3dmerge from AFNI with a 3 mm 

full width at half maximum (FWHM) blur kernel. The impact of the head motion was assessed 

for each subject using the FD. 

 

Quality assessment 

After the preprocessing a quality assessment was applied using an in-house developed Python 

script. To identify high motion subjects, one of the following exclusion criteria (35) needed to 

be fulfilled: i) mean FD > 0.25 mm, ii) maximum FD > 3 mm and iii) more than 25% of the 

functional volumes have FD > 0.4 mm. Subjects fulfilling one of these criteria needs to be 

completely excluded. This is also done in clinical studies otherwise they can have a strong 

impact on further analysis (35). For subjects which do not fulfil those exclusion criteria volumes 

which exceeded a FD value of 0.4 mm were removed from further analysis (scrubbing). This 

step is necessary to ensure that those high-motion subj do not influencing our ICA (35,36). 

Confounds used in the nuisance regression in both pipelines are per definition the same. 

However, differences can occur due to slightly different preprocessing steps. To investigate 

differences between those confounds, a Pearson correlation analysis was applied on the main 

confounds (6 motion parameters, tCompCor, CSF and WM mask) for each subject with an in-

house developed Python script using statsmodel 0.10.1 (RRID:SCR_016074) (37). 
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Independent Component analysis 

From all subjects, processed with CPAC and fMRIprep, the smoothed rsfMRI images were 

decomposed with a group-wise ICA into 20 statistically independent spatial components as 

implemented in the GIFT toolbox2. The data from different pipelines were set as different 

sessions for the analysis. Default parameters were applied in this analysis except for the brain 

mask which was generated by averaging the functional brain masks from all subjects using the 

generate mask utility in GIFT. To determine stability and reliability of the ICA algorithm, and 

therefore for the resulting components, ICA was performed 20 times using different initial 

values. The number of minimum and maximum cluster size was set to 16 and 20, respectively. 

This was done using ICASSO which is implemented in GIFT. The spatial patterns of the 

obtained independent components were visually inspected and associated to well-known resting 

state networks (38,39). 

The functional or temporal connectivity was derived by a Pearson correlation analysis between 

each corresponding time-series from each component, derived over all subjects from a pipeline 

using the Python package statsmodel. All analyses used a z-score with a threshold of 1.96 as 

standard deviation, which correspond to a 95% confidence level. Furthermore, a voxel-wise 

paired t-test was applied to compare the spatial pattern of the RSN between CPAC and 

fMRIprep which is implemented in the GIFT utility SPM Stats. To correct for multiple 

comparison a Familywise Error Rate (FWE) with 0.05 was applied on the resulted T-map using 

statistical parametric mapping (SPM12) software (40) (RRID:SCR_007037).  

 

  

 
2 https://trendscenter.org/software/gift/ 

https://trendscenter.org/software/gift/
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Results 

The same set of subjects were pre-processed with two different preprocessing pipelines and 

analyzed together in a group-wise ICA. An example of a visual report from preprocessing from 

fMRIprep can be found in the GitHub repository3. 

 

Comparison of confounds 

One subject was defined as a high-motion subject in both pipelines (mean FD > 0.36 mm and 

more than 38 % of the volumes have a FD > 0.4 mm). The subject showed a high frequent head 

motion in the translation as well as rotation in all three directions and was excluded from further 

analysis. As further necessary censorship apart from the complete subject exclusion, motion 

affected volumes also needs to be removed for each subject with a FD > 0.4 mm. The number 

of volumes which were removed for each subject and for each preprocessing pipeline can be 

seen in Figure 2. Volumes were removed only in four subjects. For two subjects, more volumes 

were removed in fMRIprep compared to CPAC and in one subject vice versa. The number of 

volumes removed in subject 4 were equal in both pipelines. 

 

 
3 https://github.com/TheoRum/master_project_bioinf 
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Figure 2. Number of volumes remained after scrubbing. In four of nine subjects, volumes were marked as 

outliers and removed from the time-series due to high FD values. FD= Framewise displacement; CPAC= 

Configurable Pipeline for the Analysis of Connectomes; fMRIprep= functional magnetic resonance imaging data 

preprocessing pipeline 

 

Differences in the correlation coefficient of the confounds used in the nuisance regression 

between the different pipelines can be seen in Table 1. It is worth mention that the head-motion 

confounds from the translation and rotation in the y- and z-direction are interchanged in CPAC 

compared to fMRIprep. Additionally, the y-direction showed a negative correlation. However, 

all six head-motion parameters showed a very high correlation. In contrast, the averaged signal 

from the WM and CSF show a very low correlation value. This is the same for the tCompCor 

confounds, which are represented as one mean value over all components. CSF, WM and 

tCompCor using specific masks which can differ between the different pipelines. A comparison 

of the different masks used for those three confounds can be seen in Figure 3. Although all 

masks cover the same region of interest, i.e. WM, CSF and the voxels with the highest 

variability, the size and the areas differ between the pipelines. 
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SUBJECTS 01 02 03 04 05 06 07 08 09 
Translation X 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 
Translation Y -1.00 -1.00 -1.00 -1.00 -1.00 -0.98 -1.00 -0.99 -0.95 
Translation Z 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00 

Rotation X 0.99 0.99 1.00 0.98 1.00 0.99 1.00 0.99 0.99 
Rotation Y -0.98 -0.97 -1.00 -1.00 -1.00 -0.99 -0.99 -0.99 -1.00 
Rotation Z 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 

CSF 0.46 0.48 0.35 -0.27 0.58 0.28 0.18 0.36 0.78 
WM 0.70 0.74 0.36 0.86 0.74 0.47 0.51 0.31 -0.12 

tCompCor -0.24 0.08 0.01 0.15 0.03 -0.04 -0.07 -0.01 -0.14 
 

Table 1. Correlation of main confounds between the different pipeline for each subject. Head-motion for 

translation and rotation in y- and z-direction are interchanged in CPAC when compared to fMRIprep. The 

tCompCor components are averaged for each subject. CSF= Cerebrospinal fluid; WM= White matter; tCompCor= 

temporal PCA based noise reduction method; CPAC= Configurable Pipeline for the Analysis of Connectomes; 

fMRIprep= functional magnetic resonance imaging data preprocessing pipeline 

 



18 
 

 

Figure 3. Comparison of confounds mask. Example of the masks used for the calculation of the confounds for 

CSF, WM and tCompCor from one subject. Masks used for CPAC are colored in blue whereas those from 

fMRIprep in red. A) Eroded CSF mask for CPAC covered beside the ventricles also areas between the temporal 

and frontal lobe of the brain. B) Eroded WM mask from CPAC covers the WM only in the posterior part of the 

brain, compared to fMRIprep which uses a mask over the whole WM in the brain. C) Voxel with the highest 

variability are chosen for the tCompCor mask which includes normally ventricles and areas close to large vessels. 

CPAC= Configurable Pipeline for the Analysis of Connectomes; fMRIprep= functional magnetic resonance 

imaging data preprocessing pipeline; CSF= Cerebrospinal fluid; WM= White matter; tCompCor= temporal PCA 

based noise reduction method 
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Susceptibility Distortion correction 

Differences in the fieldmaps, which were generated by different tools within each pipeline 

could not be investigated. Due to internal processes the fieldmaps in CPAC were not saved in 

the output or working directory. Therefore, it was not possible to make a direct comparison 

between the two pipelines. However, an example of the fieldmap estimated with fMRIprep can 

be seen in Figure 4. Areas which are near to sinuses, in particular close to the nose and ears are 

merely displaced. The signal loss in these areas cannot be recovered, however some voxels can 

be returned to their original locations using those fieldmaps. 

 

 

Figure 4. Fieldmap from one subject estimated with fMRIprep. Only voxels with an absolute displacement 

greater or equal than 1 mm are shown in color. Voxels which should be moved in the phase-encoding direction, 

i.e. to the frontal part of the brain, are shown in red-yellow whereas in the opposite direction are shown in blue. 

fMRIprep= functional magnetic resonance imaging data preprocessing pipeline 

 

Group-wise ICA 

The summary report from the group-wise ICA with 20 spatially independent components can 

be found in the GitHub repository4. After visual inspection 11 from 20 component calculated 

were associated to six well-known RSN (39,41): default mode network (DMN; component 13), 

 
4 https://github.com/TheoRum/master_project_bioinf 
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visual network (VIN; components 2,6 and 7), left memory function network (lMFN; 20), right 

memory function network (rMFN; component number 11), auditory network (AN; component 

19) and a sensory motor network (SMN; components 3,4,5 and 12). An overview of those 

networks can be seen in Figure 5.  

 

 

Figure 5. Overview of the selected RSN. Eleven ICA components were associated to six well-known RSN. The 

VIN and SMN consist of a combination of 3 and 4 independent components, respectively. All images are shown 

in standard-space. DMN= Default mode network; rMFN= right Memory function network; lMFN= left Memory 

function network; VIN= Visual network; AN= Auditory network; SMN= Sensory motor network; RSN= resting 

state networks; ICA= independent component analysis 
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The temporal connectivity of the selected components of the networks pre-processed with 

CPAC and fMRIprep is shown in Figure 6. The corresponding time-series from each 

component and subject were averaged and correlated. The components from subjects pre-

processed with fMRIprep showed a higher correlation value within specific networks, e.g. VIN, 

SMN and between lMFN and rMFN, compared to CPAC. Furthermore, the DMN is stronger 

negatively correlated to SMN (12). However, there is also a stronger positive correlation from 

the AN to component 12 from the SMN. This can be also seen in the corresponding 

connectograms in Figure 7. 

 

 

Figure 6. Correlation matrix of the ICA components. The matrix shows the chosen RSN with the corresponding 

component number. The components associated to the RSN are correlated for CPAC (left) and fMRIprep (right). 

The time-series are averaged over the subjects and correlated using Pearson correlation. DMN= Default mode 

network; rMFN= right Memory function network; lMFN= left Memory function network; VIN= Visual network; 

AN= Auditory network; SMN= Sensory motor network; RSN= resting state networks; CPAC= Configurable 

Pipeline for the Analysis of Connectomes; fMRIprep= functional magnetic resonance imaging data preprocessing 

pipeline 

 



22 
 

 

Figure 7. Connectograms of the different components. The ICA components are colored in the associated RSN 

the differences in the temporal connectivity between the components and RSN within the brain for CPAC (top) 

and fMRIprep (bottom) using Pearson correlation. Only correlation values with an absolute value > 0.15 are 

shown. DMN= Default mode network; rMFN= right Memory function network; lMFN= left Memory function 

network; VIN= Visual network; AN= Auditory network; SMN= Sensory motor network; RSN= resting state 

networks; CPAC= Configurable Pipeline for the Analysis of Connectomes; fMRIprep= functional magnetic 

resonance imaging data preprocessing pipeline 
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Differences in the spatial patterns of the eleven components between the pipeline were 

investigated using a paired t-test. Although contrasts of the ICA components in our RSN 

showed alterations, there was no significant differences between the two pipelines after multiple 

comparison. An example of the spatial activation pattern for the DMN for each pipeline as well 

as the contrast differences can be seen in Figure 8. A stronger activation contrast seems to occur 

in fMRIprep compared to CPAC, although those differences are not significant after FWR. 

 

 

Figure 8. Activation map of the DMN. Activation map for the DMN for CPAC (top), fMRIprep (middle) and 

the subtraction (bottom), are shown. DMN= Default mode network; CPAC= Configurable Pipeline for the 

Analysis of Connectomes; fMRIprep= functional magnetic resonance imaging data preprocessing pipeline 
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Discussion 

In this work, two rsfMRI preprocessing pipelines were evaluated on ten healthy subjects to 

identify differences in RSNs calculated with ICA. Six distinct RSN, which comprise eleven 

ICA components were extracted. Although there were no significant spatial differences in the 

components between the pipelines, the temporal connectivity between and within RSNs, were 

higher in subjects preprocessed with fMRIprep. Furthermore, we showed that less high-motion 

volumes were removed from subjects pre-processed in CPAC in two subjects. We also 

identified differences in the masks used to extract the confounds for CSF, WM and tCompCor. 

 

Our main finding, an increase of temporal connectivity (Figure 6 and 7) needs to be set in 

context to the pipeline differences. First, the reference volume is a crucial part for calculating 

the six motion parameters and the FD (15). We found differences in the number of high-motion 

affected volumes between the pipelines using FD. Such volumes can have a strong impact on 

the statistical output of the analysis (15,42,43). In one third of our subjects, volumes needed to 

be removed and in two of the subjects more volumes were removed in fMRIprep and which 

would reduce the sensitivity to head motion (Figure 2). However, the number of volumes 

removed was small compared to the total number (max. 7%) although not all removed volumes 

were the same. Therefore, we suggest that the choice of the reference volume had only a minor 

effect on the higher temporal connectivity in the subjects pre-processed with fMRIprep. The 

change in volume-to-volume signal is calculated by the measure DVARS, which also is a well-

established marker to detect high-motion volumes (15). The big advantage is that DVARS is 

calculated from volume to volume without including the six head motion parameters, which 

makes it independent from the choice of the references volume. 
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Second, the choice of the confounds for the nuisance regression model is an actively discussed 

issue in the literature and the relative merit of the choice varies a lot with the study design and 

the research question (35,36). Nevertheless, the confounds and also the preprocessing steps 

used in this study be considered by general consensus in the research field. The six head-motion 

parameters showed a clear correlation between the pipelines but differ in their orientation 

(Table 1). This permutation could not be fully tracked due to internal processes and co-

registration from the reference volume. However, this permutation is consistent between the 

pipelines. One possible explanation could be the choice of the starting point from which the 

translation or rotation is calculation. It would make a difference in the starting point is the center 

of the reference volume or the edges. It is worth to mention that the FD value, which is 

calculated from the six head motion parameters, is highly correlated (r> 0.91) and significant 

(p> 0.001) with between the pipelines although the two parameters are interchanged. 

 

Thirdly, the signal from the CSF, WM and large vessels in the brain were regressed out. Due 

to the fact that those areas do not contain any neuronal signal the extracted confounds used in 

the nuisance regression contains mostly physiological noise. The choice of the mask or ROI is 

a critical point (17). The more conservative a mask, the lower the probability to include 

neuronal signal which will be later removed from the time-series in the regression. Although 

both pipelines used eroded masks, the overlap seems to be small (Figure 3). As an example, the 

WM mask for fMRIprep is stretched over the whole WM in the brain whereas CPAC used 

mostly areas in the back. Further, from Figure 3 it stands out that the masks in CPAC have a 

lower resolution compared to fMRIprep, in particular 2 mm in all three directions compared to 

fMRIprep which uses masks in the original space of 0.9 x 0.9 x 2 mm. This increases the risk 

of a partial volume effect when a lower resolution is used. The choice of the ROI can have a 

strong impact on the extracted signals. These differences could have an impact on the lower 



26 
 

correlation between the confounds from the different pipelines and further on the functional 

connectivity. 

 

Lastly, the impact of the estimated fieldmaps was not possible to compare. As mentioned above, 

the fieldmap from CPAC was not saved in the output or working directory. Nevertheless, a 

comparison of the fieldmaps from the subjects pre-processed with fMRIprep, showed a 

consistent pattern in terms of similar affected areas. The areas with the strongest correction by 

the SDC are mostly in the lower and frontal part of the brain (Figure 4). Therefore, if the 

influence of the different SDC methods will be applied, RSN which are close to those areas 

would be predominantly affected. However, the areas we identified with a higher temporal 

connectivity are mostly VIN, SMN, lMFN and rMFN and those are in the posterior and superior 

part of the brain. Additionally, both input for the tools estimating the fieldmaps (phase 

difference map and magnitude image) are the same for both pipelines. Nevertheless, it is worth 

to mention that the CPAC models does not give a full control of the data by not exporting the 

fieldmap. Due to the fact that, although the underlying software tools were different in the 

pipelines, both are based on the same input data and the impact on our results is expected to be 

small. 

 

In general, the robustness of ICA on rsfMRI is a double-edged sword. It comes with a high 

level of robust RSN on a single-subject as well as on a group level. However, this robustness 

could be also a drawback, due to the fact that the influence of the pipeline differences does not 

have such a strong impact than we expected. Additionally, the lack of significant differences in 

the spatial pattern after multiple comparison is contrary to our increased temporal connectivity. 

However, voxels which show a higher contrast in the spatial maps might contribute higher to 

the time-course, although a significancy is not given after FWE correction.  
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One advantage of this study is that we used two pipelines which are based on Nipype. Also the 

underlying software packages and parameters were similar. This allowed a more controlled 

environment and reduces the impact of opaque internal processes in different packages. Further, 

both pipelines were executed on docker containers which reduces the influence specific 

libraries and increases the reproducibility of our results. It is worth to mention that although 

both packages are open-source software distributions it can be difficult to look deeper into 

internal processes due to the vast number of intermediate steps and calculations. As mentioned 

above, CPAC comes with a high degree of flexibility and it allows a variety of configurations 

by providing a pre- and postprocessing environment. This comes with some drawbacks, e.g. 

only confounds which are defined in the nuisance regression are exported. However, this 

inflexibility does not allow afterwards changes of confounds in the nuisance regression without 

starting the whole pipeline again. This can be a time issue if the working directories are not 

saved, which can be a problem due to the tremendous usage in hard drive space (around 80 GB 

per subject). fMRIprep, on the other hand, is less flexible and does only perform minimal 

preprocessing steps. However, it is using state-of-the-art software tools and exports all 

calculated confounds. This allows much more freedom in the composition of nuisance 

regression model and it gives more control of the following processing steps. As mentioned 

above, CPAC does not give this control due to the fact that the fieldmaps were not exported 

from the docker container. 

 

A few limitations need to be addressed in this work. First, this analysis suffers in statistical 

power. Only ten subjects were included in this study and different types of analyses would be 

needed for a broader investigation of the influence of the pipeline differences. However, ICA 

was chosen due to the high reproducibility and robustness of the RSN (38,39). Second, only six 
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RSN which include eleven components were evaluate and a more selective numbers of 

components could unveil different RSN. Additionally, component 9 and 18, which were not 

included in our chosen RSN, could be assigned to the attention and executive control RSN 

(39,44). However, compared to the literature, their extracted contrasts do not cover all known 

parts of the brain. This example shows the dilemma of ICA which is that although it is an 

unsupervised method, it is necessary to define the number of components without knowing a 

ground truth. A too high number of components would split up RSN and a too low gives 

overlapping RSN. Additionally, at ultra-high field MRI there is a strong signal dropout due to 

field inhomogeneities in the lower and frontal parts of the brain. This loss of signal in our data 

limited our RSN to a certain extent. Third, this comparison was based on a specific choice of 

confounds which are regressed out from the time signal. A different nuisance regression with 

different confounds would be necessary to test the reproducibility of our results. However, this 

additional step would be beyond the scope of this work. 

 

To conclude, we investigated the effect of specific preprocessing steps in two different rsfMRI 

pipelines using the same dataset. We showed that, although the pattern of the RSN derived by 

ICA were robust in both pipelines, the temporal connectivity differed. Overall, RSN from 

subjects pre-processed with fMRIprep showed a strong positive and negative correlation in 

general compared to CPAC. This detailed comparison may help to better understand the 

influence and interaction between different steps in the preprocessing of rsfMRI data at ultra-

high field MRI.  
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