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Abstract

The Second Law of Thermodynamics is considered to be one of the most fundamental
and important laws of Physics. Both Clausius and Kelvin reformulated the Second Law
as statements concerning the behaviour of two communicating systems, set to interact at
different temperatures. The average positive entropy production of any process, described
by the Second Law, is often understood as a ”thermodynamic arrow of time” capable of
discerning the direction in which physical events should arrange [1, 2, 3].

By studying a microscopic system described by two initially correlated qubits, in
this thesis we explore the phenomenon of reverse energy flow. Differently from an often
standard uncorrelated case, the correlated one shows properties that seem to suggest that
a further generalization of both Clausius and Kelvin’s statements is needed [4, 5, 6].

Upon obtaining a formulation for the energy exchanged between two qubits, we opti-
mize it to derive a set of conditions for a time evolution driving a reversal of the energy
exchanged between the two. We then use the obtained results to derive the conditions
to give rise to an optimized reverse energy exchange, between a pair of isolated spin 1/2
systems as presented in Ref [7].
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1 Introduction

In its early days, Thermodynamics was developed as a tool to describe how different heat
engines could be constructed, and how these would compare in their efficacy in extracting
work from some given heat source [4, 8, 9, 10]. Alongside with the development of its
three fundamental laws, the evolution of Thermodynamics into the field we know today
is partially due to the formation of new disciplines to which Thermodynamics offers a
great deal of insights, being these astrophysics, bio-chemistry and quantum physics to
name a few [9, 10, 11]. Moreover, with the rise in popularity of the field of quantum
information, Thermodynamics has become a powerful tool to explore, and exploit, the
role of correlations between constituents of a quantum mechanical joint system.

The development in Thermodynamics saw the emergence of three principles known
as the four fundamental laws of Thermodynamics. The first of these laws deals with
the conservation of energy aspect concerning any physical system, while the third law
establishes a relation between the temperature and the entropy of any physical system.
On the other hand, the Second Law of Thermodynamics provides the concept of a ther-
modynamic arrow of time. This concept infers on the direction that heat should flow in
when two objects at different temperatures are placed into contact. Lastly, the fourth
law (known as the Zeroth Law) establishes that if two systems are at equilibrium with a
third system, then they must also be in thermal equilibrium with eachother

Since the early ages of Thermodynamics, ideas such as Maxwell’s demon and Lan-
dauer’s principle have been used in order to explore how, and to what extent, the concept
of information plays a role in the fundamental laws of Thermodynamics [5, 9, 10, 12]. The
sole idea of information playing a role in the energy available in a system [8, 13, 14] leads
to question how more general can the statements, about the laws of Thermodynamics ,
can be made [4, 5]. For some time it has been known how the three laws of Thermo-
dynamics require basic reformulations when trying to describe environments with some
degree of initial correlation [4, 8]. Additionally, recent experiments performed on spin
1/2 systems have also demonstrated the incapability of the standardized iteration of the
Second Law in describing correlated microscopic systems [7].

When considering two interacting systems at different temperatures, the average pos-
itive entropy production, associated with the Second Law of Thermodynamics, dictates
a preferred direction for the flow of heat between the two systems. Ludwig Boltzman
provided a great deal of details regarding the nature of the Second Law, attributing the
non-negative average entropy evolution, to the initial conditions of the microscopic states
comprising the system [3, 7]. In this view, in a closed system, initial conditions not only
are capable of setting in motion a flow of heat, but can also determine a preferred direction
for the ”heat current”.

In this thesis we focus on elaborating, and describing, how the Second Law of Thermo-
dynamics , and more specifically Clausius and Kelvin’s interpretations, require additional
generalization in the context of an initially correlated environment, and how the initial
presence of correlations result in a spontaneous reversal of energy flow between two qubits
comprising the considered system.
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2 Theory

2.1 Classical Thermodynamics

Thermodynamics is a branch of physics that describes phenomena, such as heat and
temperature, and how these can be used in the extraction of energy in the form of work. By
describing physical phenomena through the manipulation of macroscopic variables such as
temperature and entropy, this branch of physics is capable of describing with high precision
various properties of matter. Through history, the study of Thermodynamics gave rise to
three fundamental principles, that are known today as the three laws of Thermodynamics.
These principles are sometimes key in understanding previously unexplained phenomena
from the field of astrophysics, to the field of nano-technology and quantum mechanics. [9,
10, 11]

2.1.1 The first and Second Law of Thermodynamics

As mentioned, the first law states that the change in internal energy of a system, is equal to
the difference in heat transfer into the system and the work done by the system. In classical
Thermodynamics, heat is defined as the energy transfer to, or from, a thermodynamical
system through processes different from thermodynamical work or exchange of particles.
Heat Q is thus defined as the change in energy E between two equlibrium states of a
system, within an interval of time tf , plus the work w done by the system in the same
interval of time Q = E(tf )−E(0)+w. In this thesis work we only consider closed systems,
unable to perform any work on one-another or on the environment: in this regime heat
is consequently defined as the change in energy of either subsystem

Qi = ∆Ei = Ei(tf )− Ei(0). (2.1)

If the process of energy change only involves two subsystems A and B, then, if the whole
system is isolated, it is possible to invoke the first law of Thermodynamics to derive that
the internal energy of the system remains unchanged through time, in which case one can
write ∆EA = −∆EB. In this regime things are simplified by the possibility of describing
the dynamics of both subsystems, through a description of only one of the two.

In Thermodynamics, the concept of entropy allows for a quantitative description of
the information one has about a given system [15, 16]. More specifically, entropy is used
to describe the number of possible microstates of an ensemble of particles, corresponding
to the macrostate of the system. More generally, given a random variable X, with set of
possible outcomes {xi}, one can define the probability distribution P (X) ≡ p(xi). It is
then possible to introduce the concept of Shannon Entropy of variable X as such [17, 18,
19]

S(X) ≡ S(p(x)) = −
∑
i

p(xi) ln p(xi). (2.2)

Shannon’s entropy is an equivalent formulation to Boltzmann’s entropy formulation, in
which p(xi) = pi indicates the probability of the microstate i to be found in a macrostate
at equilibrium (in this thesis work we set kb ≡ 1).
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The Second Law of Thermodynamics establishes a non-negative property for the
change in entropy of an isolated system. This can be seen as the result of the tendency
of isolated systems to reach for thermal equilibrium, where entropy is highest. According
to the Second Law, when considering a system on which no external work is applied, an
infinitesimal element of heat ∂Q is then defined by the product of the temperature of the
system, with the infinitesimal increase dS of its entropy [4, 20, 21, 19]

∂Q = TdS ⇒ dS =
∂Q

T
. (2.3)

Many equivalent interpretations and iterations of the Second Law have been made
through time, although the most relevant ones to illustrate in this thesis are Clausius and
Kelvin statements [4, 19]:

Clausius:”No process is possible whose sole result is the transfer of heat from a cooler to
a hotter body.”

Kelvin:”It is impossible for a self-acting machine, unaided by any external agency, to
convey heat from one body to another at a higher temperature.”

Although the above statements hold as a good approximation for the time evolution of
any two macroscopic uncorrelated subsystems, this will be shown to not to hold in the
instance of an initially correlated microscopic system.

2.1.2 Energy exchange between uncoupled classical systems

TL

VL

TR

VR

Closed
system

L

Closed
system

R

Fixed 
Barrier

Isolated System

Figure 1: Schematic diagram representing the two
isolated uncoupled systems L and R

In this section we discuss the direction
of heat flow, as predicted by the Second
Law of Thermodynamics, for two inter-
acting, uncorrelated and isolated sys-
tems: the right(R) and left(L) system.
The interaction between the two will
be defined as a pure exchange of heat,
and therefore neither systems will be
allowed to apply work on one-another.

Let us define an isolated system RL
for which ∆ERL = 0. The system is
then comprised by two closed subsys-
tems R and L, with respective temper-
atures TR, TL and respective volumes
VR and VL (see Fig. 1). A fixed barrier
can be placed in between the subsystems so to maintain the volumes of either as fixed.
Keeping both volumes fixed is a necessary requirement to ensure that the work W done
by, or acting on, either system is zero.

Once the two systems are put into thermal contact, heat Q is exchanged between the
two systems, and a series of mathematical statements can be formulated describing the
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changes in each system

dVR = dVL = 0 ⇒ ∂WR = ∂WL = 0, (2.4)

dER = ∂QR = ∂Q ⇒ dEL = ∂QL = −∂Q, (2.5)

dSR =
∂QR

TR
=
∂Q

TR
⇒ dSL =

∂QL

TL
= −∂Q

TL
, (2.6)

dS = dSR + dSL = ∂Q

(
1

TR
− 1

TL

)
. (2.7)

Where Eq. (2.7) represents the total change in entropy dS of the system , and it was
derived through the use of Eq. (2.3) . It is also important to point out how, in Eq. (2.5) ,
heat has been defined to be positive when flowing into system R and negative other-
wise. The Second Law of Thermodynamics dictates that for any isolated system dS ≥ 0,
therefore

∂Q

(
1

TR
− 1

TL

)
≥ 0. (2.8)

For the scenario TR > TL, Eq. (2.8) returns ∂Q < 0 and therefore heat is passed from
the right to the left system. Otherwise, if TR < TL, then ∂Q > 0 and heat is passed from
the left to the right system.

This derivation provides a good intuition on how the Second Law of Thermodynamics
dictates the direction of heat flow, essentially returning Clausius and Kelvin’s statements.

2.2 Quantum Thermodynamics

Using Classical Thermodynamics to model physical results, obtained through experiments
performed onto a collection of quantum mechanical objects, can reveal itself to be a
difficult, and at times impossible, task. The reason for this is the increasing presence of
quantum mechanical events when descending into smaller length scales.

Quantum Thermodynamics is a branch of physics, which aims to take established
thermodynamic’s concepts and translate them using formalisms from quantum mechan-
ics [22]. Aside from the pure academic interest, the need of understanding the statistical
behaviour of quantum objects is becoming of great interest for companies trying to achieve
miniaturization of new technologies to nano-scales [20, 22].

The success of this branch of physics lies in its ability of using Classical Thermody-
namics concepts, whilst keeping in account quantum mechanical effects. In the past years
quantum Thermodynamics has received a great deal of improvement thanks to the latest
developments of quantum information theory [20].

The three laws of Thermodynamics are also revisited [9]. Expressions such as Boltz-
mann’s entropy have been revised into new formulations using notions such as density
matrices and Schrodinger’s equation.

2.2.1 State Representation

In quantum mechanics, particles and quantum systems are represented as d-dimensional
vectors |ψ〉 in their respective Hilbert spaces H. Density operators are defined as Hermi-
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tian positive matrices [8, 18, 23], which are often preferred over state vector representa-
tion, due to the ability of the former to describe situations involving both pure and mixed
states [18, 23].

By definition, a pure ensemble is defined as a collection of systems, for which every
member can be described by the same ket |ψ〉 [23]. By contrast, a mixed ensemble is
defined as a collection of systems, that cannot be characterized a single ket. Instead the
all ensemble can be described as a collection of different states |ψi〉 associated with a
corresponding population percentage pi. Where the population values are statistically
normalized to the condition

∑N
i pi = 1.

Any density matrix %, representing either a mixed or pure state, can be represented
as the weighted sum of the outer products corresponding to each ket characterizing the
system. This definition can be then used to express a normalization condition in terms
of the trace of the density operator [18, 23]

% ≡
N∑
i

pi|ψi〉〈ψi|, (2.9)

tr(%) = 1. (2.10)

As for state vectors, using the formalism of density matrices it is possible to define
the expectation value of an observable. Such relation between an observable and its
expectation value, is especially useful due to its invariance under changes of basis of the
system % [23]. Let us define the observable Â, and an ensemble representable through the
density matrix %: we then define the ensemble average 〈A〉 of Â as

〈A〉 = tr(%Â). (2.11)

The focus of this thesis work is the study of an isolated composite system comprised
of two interacting qubits. When considering a system comprised of mutliple subsystems,
its Hilbert space is defined as the tensor product of the Hilbert spaces of each respective
system [8, 18, 23]

HAB = HA ⊗HB. (2.12)

2.2.2 Hamiltonian

In the formulation of quantum mechanics, the Hamiltonian is defined as the Hermitian
operator whose spectrum of eigenvalues corresponds to the set of all possible outcomes,
when measuring the energy of a system. Being the Hamiltonian defined by a Hermitian
operator, there always exists a linear combination of Pauli matrices (σ0, σ1, σ2, σ3) that
can be implemented in describing any given Hamiltonian Ĥ. When considering a joint
system comprised of two qubits (A and B), the global Hamiltonian is represented by a
4× 4 operator

ĤAB =
∑
i,j

ci,jσ̂i ⊗ σ̂j, (2.13)

ci,j = tr
(
σ̂i ⊗ σ̂jĤAB

)
. (2.14)
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The definition of Eq. (2.12) relates composite Hilbert spaces to their constituent spaces.
This allows for the definition of a general Hamiltonian, which can be adopted for the
description of the Hamiltonian of a joint system. For an isolated composite system, made
out of two interacting qubits, one can use Eq. (2.12) to define the general form for an
interaction Hamiltonian

ĤAB = Ĥ0 + V̂ (t) = ĤA ⊗ 1B + 1A ⊗ ĤB + V̂ (t), (2.15)

where ĤA(ĤB) is the local Hamiltonian corresponding to subsystem A(B), while the term
V̂ (t) represents all cyclic subsystem interactions satisfying the condition V̂ (tf ) = V̂ (0) =
0, where tf represents the final time of the process. Because of the condition imposed

on the interaction term V (t), the global Hamiltonian satisfies ĤAB = Ĥ0 when t = 0
and t = tf . This allows us to measure the energy of either qubit through the use of its
respective local Hamiltonian when t = 0 and t = tf [6, 7]. It has to be noted how the time
dependence of the interaction term V (t) can be modelled as a Heaviside step-function
with an activation interval tf . Experimentally, this can be thought of as an interval in

which the qubits are left to evolve under a time independent Hamiltonian ĤAB = Ĥ0 + Ĉ,
where Ĉ = V̂ (t) for 0 < t < tf .

Schrodinger’s equation relates the time evolution of any physical quantum system
to the Hamiltonian of the latter [7, 18, 23]. For time-independent Hamiltonians, the
way this is accomplished in Schrodinger’s picture, is through the generation of a time
evolution unitary operator Û . Said unitary can be obtained through the time dependent
Schrodinger’s equation as such [7, 18, 23]

Û(t) = e−itĤ . (2.16)

In this thesis work we set ~ ≡ 1. Because of the cyclic properties imposed on the global
Hamiltonian (namely ĤAB = Ĥ0 at t = 0 and t = tf ), we can consider evolutions within
intervals ∆t = tf to be describable by Eq. (2.16). In general, it is possible to identify
a two-dimensional unitary time evolution as a rigid rotation of the space defined by the
chosen basis: we therefore represent a general two-dimensional unitary as an operator
defined by the three rotational angles θ, γ and µ (see appendix section 5.2)

Û =

[
eiµ cos(θ) eiγ sin(θ)
−e−iγ sin(θ) e−iµ cos(θ)

]
(2.17)

Eq. (2.16) describes how a system Hamiltonian generates the time evolution which the
system undergoes. It is then clear how the Hamiltonian of a system dictates how said
system evolves through time. Aside from showing how a time evolution can be generated
from a system Hamiltonian, Eq. (2.16) can be used to obtain information about the
internal energy of a system, by studying how this evolves through time.

Later in this thesis, we will derive a specific formulation for the unitary evolving
the joint system. We will then use the obtained time evolution to derive the generating
Hamiltonian for said evolution. Through the eigenbasis of a given unitary Û , it is possible
to construct an operator P̂ , with which to perform a diagonalization of the operator Û ,
Û = P̂ D̂P̂ †, where D̂ is the diagonalized representation of Û . It is then possible to safely
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define the natural logarithm of Û , as the diagonal matrix whose entries are the logarithm
of the corresponding diagonal entry in the diagonalized representation of Û , so that

ĤAB =
i

t
ln
(
Û
)

=
i

t
P̂ ln

(
D̂
)
P̂ †. (2.18)

Where we used the property f(Â) = η̂f(B̂)η̂† (where η̂ is a unitary transformation, and
Â = η̂B̂η̂†).

In quantum mechanics, it is possible to describe the time evolution of a state vector
|ψ(0)〉, using the time evolution unitary Û(t), shown in Eq. (2.16). The time evolution of
a ket is then described as |ψ(t)〉 = Û(t)|ψ(0)〉 [18, 23], therefore, using the definition of
Eq. (2.9), the time evolution for a density operator % becomes

%(t) =
N∑
i

pi|ψi(t)〉〈ψi(t)| =
N∑
i

piÛ(t)|ψi(0)〉〈ψi(0)|Û †(t) = Û(t)%(0)Û †(t). (2.19)

Lastly, let us introduce the Liouiville’s equation for the change in time of an operator
%(t) as (see appendix 5.1) [18, 23]

∂%(t)

∂t
=

1

i

[
%(t), Ĥ

]
. (2.20)

2.2.3 The von-Neumann Entropy

Let us define a density operator % via Eq. (2.9), we define the entropy SN(%) of the latter
as

SN(%) = −tr(% ln %). (2.21)

Eq. (2.21) is called von-Neumann entropy, and it is defined as the quantum mechanical
equivalent to Boltzmann’s entropy [8, 20, 23, 24]. The above equation can be used to
derive an important relation between unitary time evolutions and the entropy changes of
a system % undergoing said evolution. Let us define the final state %(t) = Û(t)%(0)Û †(t),
where Û(t) is a time evolution unitary obtained through Eq. (2.16). The change in entropy
∆S%N is defined as

∆S%N = SN(%(t))− SN(%(0)) (2.22)

= −tr

[
Û(t)%(0)���

���:
1

Û †(t)Û(t) ln (%(0)) Û †(t)

]
− SN(%(0)) (2.23)

= −tr
[
Û(t)%(0) ln (%(0)) Û †(t)

]
− SN(%(0)) (2.24)

= −tr

[
���

���:
1

Û(t)Û †(t) %(0) ln (%(0))

]
− SN(%(0)) (2.25)

= SN(%(0))− SN(%(0)) = 0. (2.26)

Where in Eq. (2.23) we used again the property f(Â) = η̂f(B̂)η̂†. Eq (2.26) establishes
that unitary evolutions are uncapable of increasing the total entropy of any joint system.
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The relevance of this property for unitary evolutions will become more apparent in the
later derivation for the anomalous heat flow equation. Later in this thesis we discuss in
what environments does the Second Law of Thermodynamics fails to predict the presence
of heat flow between two qubits.

As per Shannon’s and Boltzmann’s entropy formulations, it is useful to derive a quan-
tum mechanical counterpart of the relative entropy. Let us define the density operators
% and ζ via Eq. (2.9), we define the relative entropy [8, 20, 18] of % to ζ as

S(%||ζ) = −SN(%)− tr[% ln(ζ)] = tr[%(ln(%)− ln(ζ))]. (2.27)

Relative entropy is a measure quantifying how much does a probability distribution, for
a given random variable, varies from another. Effectively, Eq. (2.27) can be though of as
returning the ”distance” between systems % and ζ [18].

The formalism of relative entropy it is often accompanied by the theorem of Klein’s
Inequality, which establishes a non-negativity property of relative entropy [6, 8, 18]

S(%||ζ) ≥ 0, (2.28)

where S(%||ζ) = 0 if and only if % = ζ [8, 18]. The non-negativity established by Klein’s
inequality is a necessary condition in establishing under what conditions is a reversal of
the energy exchange possible (see section 2.2.6).

2.2.4 Gibb’s Thermal State

In this section we derive a formulation for density operators describing systems in thermal
state. For systems in thermal state Eq. (2.20) becomes

∂%

∂t
= 0. (2.29)

The above relation ensures the possibility of simultaneously diagonalize both Ĥ and %.
This allows us rewrite % in the energy eigenbasis. In such basis the diagonal entries of %
become the percentile population for the corresponding eigenstate.

By definition thermal states represent a systems of given energy for which entropy
is maximized [23]. Using the formalism of Lagrange multipliers, we now maximize the
entropy function (2.21). This optimization, must be carried out by limiting our resulting
states to be normalized (Eq. (2.10)). Moreover we require to optimize the entropy function
for a state of energy 〈E〉 = tr(%Ĥ).

Let us define the function L (%, λ, β), where the terms λ and µ are the lagrangian
multipliers associated to each constraint. Taking the gradient of L (%, λ, β) allows to
optimize it with respect to every variable

L (%, λ, β) = −tr(% ln %)− λ(tr(%)− 1)− β
[
tr
(
%Ĥ
)
− 〈E〉

]
, (2.30)

∇L (%, λ, β) =


∂L(%,λ,β)

∂%
∂L(%,λ,β)

∂λ
∂L(%,λ,β)

∂µ

 =


∑N

i − [ln(%ii) + 1]− βEi + λ = 0

tr
(
%Ĥ
)

= 〈E〉
tr(%) = 1

 . (2.31)
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The above system of equations can be solved by the state % with entries %ii = e−βEi+λ−1.
To satisfy the normalization requirement presented in Eq. (2.10), the state entries become

%ii =
e−βEi+λ−1

tr(%)
=

e−βEi+�
�λ−1∑N

k

(
e−βEk+��λ−1

) =
e−βEi∑N
k (e−βEk)

. (2.32)

Let us define the normalization constant Z = tr
(
e−βĤ

)
. We define the thermal state

τ(β) as

τ(β) =
e−βĤ

tr
(
e−βĤ

) =
e−βĤ

Z
. (2.33)

From statistical mechanic notions we realize that the elements of Eq. (2.33) are a suitable
representation for what is known as a canonical ensemble [23]. Although we have not
defined the qubit to be connected to any thermal bath, it is still possible to regard the
Lagrange multiplier β as a fictitious inverse temperature term β = 1/T . Such definition
thus relates the notion of temperature of the system to the relative population of each
energy level [7, 8, 13, 20, 23]. Where a higher temperature would correspond to a higher
population in the excited states. Moreover, it follows that the normalization constant Z,
can be regarded as a partition function of the system.

2.2.5 Correlation Operators, and Correlation Measure

In a qualitative way, it is possible to identify the concept of correlation as the feauture
that more information is available about a joint system, than the information available
about its comprising subsystems [24].

To start discussing the idea of joint systems we use Eq. (2.12) to define a separable
uncorrelated state %AB, as the tensor product between the states %A and %B. From this
we use the notion of partial trace to establish a relation between the separate sytems and
the joint state which they form

%AB ≡ %A ⊗ %B (2.34)

%A = trB(%AB), and %B = trA(%AB). (2.35)

Where tri(.)(i ∈ {A,B}) represents the operation of tracing an operator %αβ over all the
degrees of freedom of subsystem α [18].

Let us define the composite state %AB defined as the joint system constructed by the
subsystems %A and %B, defined via Eq. (2.35). We define the correlation operator χ as

χ ≡ %AB − %A ⊗ %B. (2.36)

In the instance where there were no correlation between the susbsystems %A and %B, then
χ = 0 and Eq. (2.36) returns definition (2.34).

The correlation operator, defined in the above equation, contains information regard-
ing all possible quantum and classical correlations within the subsystems of the joint
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system %AB [25]. We therefore use the formulation of correlation operator to represent
the correlation terms defining the correlations present in the systems that will be studied.

The operator defined in Eq. (2.36) is, by construction, Hermitian. Moreover, in order
to satisfy the normalization constraint of Eq. (2.10), χ must represent a traceless operator
tr(χ) = 0 and trA(χ) = trB(χ) = 0.

Correlations can be divided into two subgroups: quantum correlations, and classical
correlations. Briefly, the difference in the two lies in the separability of the correlated
system. Any separable bipartite pure state, can be written in the form ρi,j = ρi ⊗
ρj. Classical correlations are defined to leave the system separable, while, if a system
quantum correlated, it is not possible to find a separable representation for it. Quantifying
the amount of correlation, established between two separate systems, is a process that
can be accomplished through the use of the entropic measure of correlation: mutual
information. In standard statistical mechanics, Shannon’s mutual information description
returns the shared information between two random variables A and B. Shannon’s mutual
information is defined as I(A : B) = S(A) + S(B) − S(A,B), where the function S(x)
is Shannon’s entropy defined in Eq. (2.2), and S(A,B) represents Shannon’s entropy for
the joint system of variables A and B. The quantum mechanical equivalent to Shannon’s
mutual information is defined as follows [6, 7, 8, 17, 24]

I(%A : %B) = SN(%A) + SN(%B)− SN(%AB). (2.37)

In essence, mutual information is a positive (I(A : B) ≥ 0) symmetric (I(A : B) = I(B :
A)) function [26, 27], which returns the amount of information one can gain about system
%A(%B), given a measurement on system %B(%A). Eq. (2.37) is an entropic measure of
correlation capable of quantifying the coupling between two states, it is although unable
of distinguishing whether the correlation is of classical or quantum nature.

2.2.6 Anomalous heat flow equation

In this section we derive a formulation capable of quantitatively describe the energy flow
between two subsystems in a completely isolated composite system %AB. The interacting
subsystems are defined to be initially at thermal equilibrium, and are therefore described
through Eq. (2.33).

Differently from how the problem was approached in section 2.1.2, what follows is
a derivation for a formulation for the change in energy of either subsystems, as function
of entropic measures such as mutual information and relative entropy. The introduc-
tion of these entropic measures will allow a discussion under what conditions does the
phenomenon of anomalous energy flow arise.

Given an initial thermal state %A(0) and a final state %A(tf ), (where %A(tf ) = trB(U%AB(0)U †)),
we use Eq. (2.27) to define the relative entropy between two states of system A at two
different points in time

S(%A(tf )||%A(0)) = −SN(%A(tf ))− tr

[
%A(tf ) ln

(
e−βAĤA

ZA

)]
(2.38)

= −SN(%A(tf )) + βAtr
[
%A(tf )ĤA

]
+ ln(ZA). (2.39)
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From the definition of relative entropy it follows that S(%A(0)||%A(0)) = 0, and thus we
write

S(%A(tf )||%A(0)) = S(%A(tf )||%A(0))− S(%A(0)||%A(0))

= −SN(%A(tf )) + βAtr
[
%A(tf )ĤA

]
+ ln(ZA)

+SN(%A(0))− βAtr
[
%A(0)ĤA

]
− ln(ZA)

= βA∆EA −∆SAN , (2.40)

where ∆SAN is the change in the von Neumann entropy of qubit A ∆SAN = SN(%A(tf ))−
SN(%A(0)). Because the system was constructed to be isolated, then ∆EA = −∆EB.

Finally, by putting together the above relations and the relation for mutual information
(2.37), one obtains a formulation for the energy exchange between the two systems (keep
in mind that for unitary time evolutions ∆SABN = 0 ⇒ ∆I(%A : %B) = ∆SAN + ∆SBN)

∆EB(βB − βA) = ∆EB∆β = ∆I(%A : %B) +
∑
i

S(%i(tf )||%i(0)), i ∈ {A,B}. (2.41)

The above equation shows for what conditions do Clausius and Kelvin’s statements re-
quire an additional generalization. In section 2.1.2 we derived how the behaviour of heat,
for a classically uncoupled system, matches the predictions made by Clausius and Kelvin’s
statements. The agreement was found through the derivation of the non-negativity prop-
erty of Eq. (2.8). By contrast, via Eq. (2.41) we derived a formulation that needs not to
fulfill non-negativity properties.

In the instance where TA < TB, then βA > βB. We define the instance for which the
direction of energy flow has been reversed when ∆EB > 0, implying an increase in energy
of the hot qubit %B. Klein’s inequality, presented in Eq. (2.28), ensures that the only
situation where ∆EB > 0, is for ∆I(%A : %B) < 0 and |∆I(%A : %B)| >

∑
i S(%i(tf )||%i(0)).

In their respective statements, Clausius and Kelvin considered two uncoupled systems,
such as the one described in section 2.1.2: in such scenarios, the mutual information
between the two bodies is by definition taken to be null. Given the positivity of mutual
information, any interaction between the two bodies is uncapable of producing a final state
for which ∆I(i : j) < 0: in this regime then Clausius and Kelvin statements are a good
model to describe the interaction between the two bodies, as energy would flow from the
hot to the cold system. Although, Eq. (2.41) proves that, for an initially coupled system,
the above statements need not to hold true, as long as the positive entropy production of
the two states is balanced by a significant reduction in their mutual information.

2.3 Overview

In this section we qualitatively describe the complete time line of events, that the con-
sidered system has to go through to reach a state in which energy has been reversely
exchanged.
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t = 0 t = tf

{Unitary Evolution

t
ϱAB(t<<0) =ϱA(t<<0) ϱB(t<<0) ϱAB(t>tf) 

H0+VAB

State 
Preparation
Black Box ϱAB(0)=τ(βA ) τ(βB) +χ

Figure 2: Schematic diagram portraying the system’s time line of events, starting from a non interacting
uncorrelated scenario %AB(t << tf ) and ending in a state in which the two qubits have reversely exchanged
energy %AB(t > tf ).

The above Fig. 2 shows a timeline of the explored two qubits system. Consider to universe
to be comprised at all times by two qubits. The two are set to be initially non-interacting,
uncorrelated and forming a joint isolated state %AB(t < 0) = %A(t < 0) ⊗ %B(t < 0) (see
”separable state” in section 2.2.5). The two are then set to interact is some precise
way(Black Box in Fig. 2), resulting in states like the one presented in Eq. (2.33). The
state representation derived in Eq. (2.33) relates the temperature of each qubit to the
population probability of their energy levels. Henceforth, we discuss the temperature of
the qubits, even in the absence of connections to any real thermal bath. The ”State
Preparation Black Box” (see Fig. 2) needs not to preserve the total energy of the system,
and it serves the purpose of establishing a correlation between the qubits. This correlation
is mathematically described by the introduction of a correlation term as the one described
in Eq. (2.36).

In this thesis we assume to be initially provided with a joint state of the form %AB(0) =
τ(βA) ⊗ τ(βB) + χ. The focus of this thesis lies in the exploration of the next step.
Once the qubits are correctly prepared and correlated, the interaction term V̂ (t) (see
Eq. (2.15)) is activated within the interval 0 < t < tf . This interaction serves the purpose
of driving a reverse exchange of energy ∆Ei = Wi + Qi (i ∈ {A,B}): where Wi and
Qi correspond to the work and heat exchanged by qubit i (see section 3.1). A possible
physical realization of this process is presented in Ref. [7]. In the latter, two nuclear
spin-1/2 systems were prepared in thermal states τ(βi) and studied through the use of
Nuclear Magnetic Resonance techniques involving radio-frequency pulses. Although in
the presence of an external field, the interaction term V (t) establishes a unitary evolution
that is constrained in keeping the total energy of the joint system fixed. Later in this
thesis we better describe how the generated time evolution is constrained in keeping the
total energy of the system constant(section 3.1).
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3 Method

3.1 Optimizing the energy exchange between correlated qubits

In this section I present the derivation to analytical results for the problem of reverse
energy exchange, for the case of a 2 qubit system. For a two dimensional system, the
corresponding local Hamiltonian Ĥ can be represented in the energy basis as Ĥ =∑1

i=0Ei|i〉〈i| = E0|0〉〈0| + E1|1〉〈1|, where the terms Ei correspond to the eigenvalues
of the Hamiltonian. Rather than focusing on the absolute energy of each level, what
is often more relevant is the difference between the energy of each level. It is therefore
convenient to apply a relative shift to the eigenvalues of the Hamiltonian, corresponding
to the energy of the lowest energy level of the system E0. Through said shift we define
the Hamiltonian of any two-level system k, as

Ĥk = εk|1〉〈1| =
[
0 0
0 εk

]
k ∈ {A,B}, (3.1)

where εk corresponds to the difference in the eigenvalues of the local Hamiltonian, i.e.
ε = E1 − E0. Here we assume that the two local Hamiltonians respect the condition
εA = εB = ε, allowing for degenerate energy states of the joint system. In such scenario,
Eq. (2.15) becomes

ĤAB(0) = ĤA ⊗ 1B + 1A ⊗ ĤB (3.2)

= εB|01〉〈01|+ εA|10〉〈10|+ (εB + εA) |11〉〈11| (3.3)

= ε|01〉〈01|+ ε|10〉〈10|+ 2ε|11〉〈11| =


0 0 0 0
0 ε 0 0
0 0 ε 0
0 0 0 2ε

 . (3.4)

Let us consider two qubit systems defined at thermal equilibrium. Eq. (2.29) ensures
us that it is possible to simultaneously diagonalize both initial density matrices and the
Hamiltonian: meaning that it is possible to represent both operators in the energy basis.
Through the use of Eq. (2.33) and the local Hamiltonians from Eq. (3.1), we define two
qubit systems in thermal state

τ(βA) = %A(0) =
1

1 + e−βAε
(
|0〉〈0|+ e−βAε|1〉〈1|

)
=

1

ZA

[
1 0
0 e−βAε

]
, (3.5)

τ(βB) = %B(0) =
1

1 + e−βBε
(
|0〉〈0|+ e−βBε|1〉〈1|

)
=

1

ZB

[
1 0
0 e−βBε

]
. (3.6)

Where βk represents the inverse temperature 1/Tk of qubit system k (k ∈ {A,B}).
In order to explore the results of any interaction between the two systems τ(βA) and

τ(βB), we define an uncorrelated separable state given by the tensor product of the two
thermal states, Eq. (2.12). Lastly, in theory section 2.2.6, it is explored how a non-zero
degree of correlation is required in order to obtain the phenomenon of reversed energy
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flow, we thus introduce a correlation operator χ. For sake of simplicity, the correlation
term, whose effects will be studied in this thesis, is defined to take the form

χ = αeiφ|01〉〈10|+ αe−iφ|10〉〈01| =


0 0 0 0
0 0 αeiφ 0
0 αe−iφ 0 0
0 0 0 0

 . (3.7)

Through a reordering of Eq. (2.36), we arrive at the initial state for the two qubit
joint system

%AB(0) =


1

ZAZB
0 0 0

0 e−βBε

ZAZB
αeiφ 0

0 αe−iφ e−βAε

ZAZB
0

0 0 0 e−ε(βB+βA)

ZAZB

 =


p00 0 0 0
0 p01 αeiφ 0
0 αe−iφ p10 0
0 0 0 p11

 . (3.8)

This choice of correlation term χ results in the introduction of a phase relation within the
{|01〉, |10〉} degenerate subspace (see Eq. (3.8)). Although any value for the correlation
strength α would satisfy the necessary conditions tr(χ) = 0 and trA(χ) = trB(χ) = 0
and χ† = χ, not every value for α would satisfy the positiveness of %AB. By solving the
characteristic polynomial for expression (3.8), one obtains the following four equations for
the eigenvalues λi of %AB(0)

λ0 = p00 (3.9)

λ1 =
p01 + p10 −

√
(p01 − p10)2 + 4α2

2
(3.10)

λ2 =
p01 + p10 +

√
(p01 − p10)2 + 4α2

2
(3.11)

λ3 = p11 (3.12)

By setting the values of λ1 or λ2 to zero, we study for what values of α do the eigenvalues
of %AB(0) are strictly positive

−√p01p10 ≤ α ≤ √p01p10. (3.13)

We now introduce the evolved joint system %AB(tf ) = Û%AB(0)Û †, where Û is some
unitary time evolution. Because the {|01〉, |10〉} subspace is a degenerate subspace, any
unitary operation within this subspace will keep the energy of the whole system fixed.
Therefore, we use Eq. (2.17) to derive the general form of a unitary with the purpose of
applying some rigid rotation on the {|01〉, |10〉} subspace of the joint system, while leaving
the remaining states invariant

Û =


1 0 0 0
0 eiµ cos(θ) eiγ sin(θ) 0
0 −e−iγ sin(θ) e−iµ cos(θ) 0
0 0 0 1

 . (3.14)
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Without loss of generality, we define the temperature relation TA > TB ⇒ βA < βB.
We now want to determine the time evolution unitary Û , capable of returning an evolved
state %AB(tf ) for which the energy change ∆EA of the ”hot”(A) state is greater than the
energy difference for the ”cold”(B) state, and therefore ∆EA > 0. In general, it is possible
to determine the change in the expectation value of an observable through the difference
of Eq. (2.11) for a system at two different points in time, thus

∆EA = tr
(
%A(tf )ĤA

)
− tr

(
%A (0) ĤA

)
(3.15)

= tr
(

trB

(
Û%AB(0)Û †

)
ĤA

)
− tr

(
%A (0) ĤA

)
. (3.16)

The formalism of Lagrange multipliers becomes now useful to optimize Eq. (3.16), under
the constraint of a energy-conserving unitary evolution, as the one described in Eq. (3.14).

Let us define the function QA(θ, γ, µ) as the function obtained through Eq. (3.16) con-
strained by the unitary evolution of Eq. (3.14). Optimizing QA(θ, γ, µ) requires setting
to zero each component of the gradient vector ∇QA(θ, γ, µ)

QA(θ, γ, µ) = ε
2

[
− α (sin (−γ + µ+ φ+ 2θ) + sin (γ − µ− φ+ 2θ))

+ (p10 − p01) cos (2θ) + p01 − p10
] (3.17)

∂(QA(θ,γ,µ))
∂θ

= QA
θ = −α (cos (−γ + µ+ φ+ 2θ) + cos (γ − µ− φ+ 2θ))

+ (p01 − p10) sin (2θ) = 0
(3.18)

∂ (QA(θ, γ, µ))

∂γ
= QA

γ = α (cos (−γ + µ+ φ+ 2θ)− cos (γ − µ− φ+ 2θ)) = 0 (3.19)

The above system of equations is underdetermined for the variables (θ, γ, µ). This is

because, although we could construct a third equation representing ∂(QA(θ,γ,µ))
∂µ

, this would

yield a relation of the form ∂(QA(θ,γ,µ))
∂µ

= −∂(QA(θ,γ,µ))
∂γ

. Under these considerations we
therefore constrain the angle µ to µ ∈ R. With such constraint, solving the above system
of equations for the angles (θ, γ, µ) yields(

0, µ+ φ+
π

2
(2n + 1), µ

)
, (3.20)atan

−p01 + p10 +
√

4α2 + (p01 − p10)2

2α

, µ+ φ, µ

 , (3.21)

(π
2
, µ+ φ+

π

2
(2n + 1), µ

)
, (3.22)− atan

p01 − p10 +
√

4α2 + (p01 − p10)2

2α

, µ+ φ, µ

 , (3.23)

where n ∈ Z.
The above results (3.20-3.23) represent both local and global extrema for the change in
energy QA(θ, γ, µ), under the constraint of a energy-conserving unitary evolution. Let
us define the Hessian matrix Q̂ describing the second order partial derivatives of the

17



function QA(θ, γ, µ). We distinguish which of the results (3.20-3.23) corresponds to a
global extremum of QA(θ, γ, µ), by means of computing the determinant of Q̂[28]. Because
the above solutions are invariant with respect to the angle µ, we can safely disregard any
derivative with respect to the latter

det
(
Q̂
)

=det

([
QA
θθ QA

θγ

QA
γθ QA

γγ

])
= QA

θθQ
A
γγ −

(
QA
γθ

)2
=− αε2

[
4α sin2 (γ − φ) cos2 (2θ) (3.24)

− (sin (−γ + φ+ 2θ) + sin (γ − φ+ 2θ))
(
α sin (−γ + φ+ 2θ) (3.25)

+ α sin (γ − φ+ 2θ) + (p01 − p10) cos (2θ)
)]

(3.26)

In general, it is possible to identify the nature of an extremum point by checking

whether det
(
Q̂(θi, γi)

)
< 0, in which case the eigenvalues of Q̂ indicate slopes of opposite

sign for the variables (θ, γ), at point QA(θi, γi). Which ultimately indicates the presence
of a saddle point.

Going through each case, we find that both solutions given in Eqs. (3.20,3.22), return
a determinant

det
(
Q̂
)

= −4α2ε2 (3.27)

Because α, ε ∈ R, Eq. (3.27) is negative, independently from the value taken by either the
correlation strength α or the energy ε. Thus, Eq. (3.27) returns us the presence of saddle
points for the the two solutions (3.20,3.22).

If we instead consider the points given by the solutions given in (3.21,3.23), we find
both determinants of the Hessian matrix to respectively be

det
(
Q̂
)

= 4α2ε2. (3.28)

Eq. (3.28) ensures us that the solutions (3.21,3.23) represent either matxima or minima
points of the change of energy ∆EA. To establish whether the solutions represent minima
or maxima for the system, one can deduct the sign for QA

θθ establishing if all neighbouring
points are either increasing or decreasing in value [28]. Once a solution that maximizes
∆EA is established, it is then possible to define a time evolution unitary for optimal
reverse energy flow.

3.2 Results from a numerical approach

In this section we provide numerical results obtained through the theory presented in the
previous sections, over a set of initial states presented in Ref. [7]. Because the whole
system never reaches full-thermalization, the states of the system will present an oscilla-
tory periodical behaviour. Thus, almost all the visualizations represented in this section
will present periodicity. Although, all peaks shown in each graph would need to marked
by the corresponding solution, for sake of visual simplicity, we only plot solutions where
n = 0. The discussed qubits are two spin-1/2 particles, prepared in thermal state. In
their publication (Ref. [7]), the authors provided a global Hamiltonian, which they used
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to accordingly evolve their system. Here, we disregard the given Hamiltonian. Instead,
we make use of the provided initial states, for which we will find the optimal unitary
evolution to obtain reversed energy flow. From the found unitary we then proceed on
deriving its generating Hamiltonian, and lastly, we will study how different parameters
affect the reverse exchange of energy between the two qubits.

All the values used in this section, together with their provided uncertainty, can be
found in table 1, in the appendix (section 5.3). In the publication, the local Hamiltonian
Ĥi (i ∈ {A,B}), corresponding to each qubit system, was defined as [7]

Ĥi =

[
0 0
0 hν0

]
=

[
0 0
0 2π

]
, (3.29)

where h corresponds to Planck constant, and since ~ = 1 ⇒ h = 2π; while the term ν0
corresponds to a frequency for the local Hamiltonian.

A suitable representation, for the considered spin-1/2 systems, can be derived through
the use of Eq. (2.33). By using the Hamiltonian in Eq. (3.29), the two qubits can be rep-
resented in the energy basis as

%A(0) = 1
ZA

[
1 0
0 e−βAhν0

]
=

[
0.81 0

0 0.19

]
(3.30)

%B(0) = 1
ZB

[
1 0
0 e−βBhν0

]
=

[
0.85 0

0 0.15

]
(3.31)

The above density operators can be thought as of two distinct systems, both at ther-
mal equilibrium, where TB < TA. The chosen correlation term is χ = −0.14|01〉〈10| −
0.14|10〉〈01| [7]. Therefore, once the two qubits are placed into thermal contact, the joint
system representation becomes

%AB(0) = %A(0)⊗ %B(0) + χ =


0.688 0 0 0

0 0.124 −0.14 0
0 −0.14 0.159 0
0 0 0 0.029

 . (3.32)
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(a) (b)

Figure 3: a) Energy change plot over all the possible combinations of the rotational angles (θ, γ) for
qubit %A (the rotational angle µ has been disregarded given the invariance of the found solutions with
the values taken by the latter); b) Contour plot of the energy change for qubit %A for different unitaries.
The four solutions (3.20-3.23) have been marked onto the plot to show how these relate with the change
in energy of qubit A.

Using the state presented in Eq. (3.32), we can use Eq. (3.16) to explore all possible
changes in energy of either qubits, when undergoing a set of possible unitary evolutions.
Fig. 3.a depicts the landscape of possible changes in energy corresponding to all possible
unitaries Û , defined by the rotation angles θ and γ (see Eq. (3.14)). Fig. 3.b represents
the contour plot of image 3.a, where solutions (3.20-3.23) were graphed: the black dots
represent the two solutions corresponding to saddle points, while the red dots represent
the two global extrema. From Fig. 3.b it can be extrapolated that result (3.23) can be
used in order to obtain a unitary evolution capable of maximizing the energy change for
qubit %A reversing the flow of energy.

Considering result (3.23), the optimal unitary becomes:

Û =



1 0 0 0

0 1√
1+

(
p01−p10+

√
4α2+(p01−p10)2

)2

4α2

− p01−p10+
√

4α2+(p01−p10)2

2α

√
1+

(
p01−p10+

√
4α2+(p01−p10)2

)2

4α2

0

0
p01−p10+

√
4α2+(p01−p10)2

2α

√
1+

(
p01−p10+

√
4α2+(p01−p10)2

)2

4α2

1√
1+

(
p01−p10+

√
4α2+(p01−p10)2

)2

4α2

0

0 0 0 1


(3.33)

=


1 0 0 0
0 0.751 0.660 0
0 −0.660 0.751 0
0 0 0 1

 (3.34)
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Using the unitary of Eq. (3.34), as the time evolution operator, for the state given in
Eq. (3.32), returns a state whose phase relationships have disappeared, for which the
energy of qubit %A has increased, effectively encapsulating the phenomenon of reversed
energy flow

%AB(tf ) = Û%AB(0)Û † =


0.688 0 0 0

0 0 0 0
0 0 0.283 0
0 0 0 0.029

 (3.35)

hence the change in energy for qubit %A:

∆EA = tr
(

trB (%AB(tf )) ĤA − %A(0)ĤA

)
= tr

([
0 0
0 0.774

])
> 0 (3.36)

As the next step, the generating Hamiltonian corresponding to the optimal unitary of
Eq. (3.34), can be found. Applying Eqs. (2.18) and (2.14), we derive a representation of
the derived Hamiltonian, as a linear combination of Pauli matrices

ĤAB =
1.698

tf
(σ̂2 ⊗ σ̂1 − σ̂1 ⊗ σ̂2) (3.37)

We see that the found interaction Hamiltonian corresponds to the global Hamiltonian
presented in Ref. [7]. Eq. (3.37) is a representation of the Dzyaloshinskii–Moriya Hamil-
tonian, which is stated to be experimentally feasible to realize [7].

3.2.1 The role of information in reversal heat flow

By solving the problem of energy exchange for the scenario of two uncoupled systems,
in section 2.1.2 we rediscovered both Clausius and Kelvin’s statements. While deriving
Eq. (2.41), we explored, and discussed, the need for some coupling to pre-exist between the
systems, in order to observe reverse flow of energy, and therefore falling in disagreement
with both statements.

In this section we seek to explore the role played by the initial correlations in estab-
lishing an anomalous energy flow between the two qubits.

Eq. (3.32) gives us a joint system whose correlation strength is bounded by Eq. (3.13)

−0.14 ≥ α ≥ 0.14. (3.38)

Within the newly obtained boundaries, we firstly study the result of varying the strength
factor α, on the amount of correlation between two qubits, this will enable us to explore
how to maximize its initial value. We then compare the obtained result with the energy
exchanged as a function of α.
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Figure 4: The measure of mutual information as function of α.As expected, we firstly notice that a lack
of correlation between the qubits infers a lack of shared information between the two. Moreover the curve
for the mutual information presents a symmetry around the value α = 0. This symmetry arises because
we can integrate the factor −1 within the complex phase of the correlation term χ (as −1 = eiπ).

Fig. 4 depicts the mutual information for the joint system (3.32) as a function of the
correlation strength α. Fig. 4 confirms that when χ = 0, then the system can be considered
to be completely uncoupled. The figure also shows a symmetry for the measure of mutual
information, around the value α = 0. This symmetry can be explored through Eq. (2.41):
because the mutual information is independent of the sign of α, we can expect the energy
exchange between the two qubits to present the same symmetry when plotted as a function
of the correlation strength.
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Figure 5: The energy change for both qubits as function of α. The blue and the orange line respectively
represent the change in energy of qubit A and qubit B. The green line represents the sum of the changes
in energy of the two qubits, demonstrating the ability of the used unitary to maintain the total energy
of the system invariant.

Fig. 5 shows the energy exchange between the qubits, as a function of α, under the
constrain of a time evolution dictated by the unitary derived in Eq. (3.34). Both plots
4-5 agree on the observation that to maximize the effects of energy reversal, the absolute
value of α must be at its greatest. We thus conclude that to maximize the reverse energy
exchange within a two-qubit system |α| =

∣∣√p01p10∣∣ (see Eq. (3.13)).

3.2.2 The mutual information of the final state

Concerning the role of correlation within the phenomenon of energy reversal, the last
aspect we have left to cover is the value of the mutual information between the final
states %A(tf ) and %B(tf ). As previously stated, Eq. (2.41) tells us that, in order to recover
energy reversal, the chosen time evolution unitary must be able to reduce the amount of
shared information between the systems ∆I(%A : %B) < 0.
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(a) (b)

Figure 6: a)Mutual information between the final states %A(tf ) and %B(tf ), as function of all possible
time evolution unitaries; b)Contour plot for the Mutual Information between the final states %A(tf ) and
%B(tf ), for all possible time evolution unitaries. The solutions (3.21, 3.23) are graphed respectively as the
black and red dot. Both solutions return a minimization of the mutual information at t = tf (|α| = 0.14).

Fig. 6.a represents the mutual information between states %A(tf ) and %B(tf ), as a function
of the angles θ and γ defining the general 2D time evolution unitary. On the right, Fig. 6.b
represents its contour plot. Through Eq. (3.36), we analytically proved solution (3.23) to
represent the optimal time evolution unitary for energy reversal: Fig. 6.b shows that, for
the same solution(red dot), there is a corresponding minimization in the value taken by
the mutual information at time t = tf . This observation matches with the expectations
obtained by studying Eq. (2.41). Although, from the same plot 6.b, it is also possible
to notice an equivalent decrease of mutual information, for the time evolution returning
a standard flow of energy (solution (3.21)). We therefore conclude that the condition of
minimizing the mutual information between two systems is not enough to guarantee the
occurrence of anomalous energy flow.

As mentioned in section 2.2.6, to obtain energy reversal, the change in mutual in-
formation, must be greater than the sum of the relative entropies between the initial and
time evolved states of both systems |∆I(%A : %B)| >

∑
i S(%i(tf )||%i(0)) (i ∈ {A,B}). To

understand what other conditions is the time evolution required to fulfill to optimize en-
ergy reversal, we plot the entropic measure of distance between the initial and final state
of the two systems, as function of the angles θ and γ (Fig. 7).
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(a) (b)

Figure 7: a)Relative entropy, between the initial and final states of both qubits, as function of all
possible time evolution unitaries; b)Contour plot for the relative entropy, between the initial and final
states of both qubits, for all possible time evolution unitaries. The solutions (3.21, 3.23) are graphed
respectively as the black and red dot. Solution (3.21) returns a global maxima for the relative entropy,
while solution (3.23) returns a local maxima (|α| = 0.14)

Fig. 7.a depicts a series of global and local maxima points, while Fig. 7.b shows us the
analytical solution for the optimal time evolution unitary(red dot) to coincide with one
of the local maxima. Fig. 7.b also provides a way of reasoning behind the ”problem”
presented by the periodicity of the minimization of mutual information (see Fig. 6). For
solution (3.21), energy follows a ”standard direction” due to the maximization of the term∑

i S(%i(tf )||%i(0)) in Eq. (2.41). On the other hand solution (3.23) is capable of reversing
the exchange of energy since it corresponds to a simultaneous minimization of both the
change in mutual information and

∑
i S(%i(tf )||%i(0)) (see Eq. (2.41)).

One last remark has to be discussed. From Fig. 6.b we can notice how result (3.23) does
not return a final state whose correlation has been completely ”destroyed”. This observa-
tion opens to the question on whether altering the conditions on the time evolution would
enable for more energy to be exchanged between the qubits.

4 Conclusion

In this thesis we studied the reversal of the energy flow between initially correlated qubits
set to interact at different initial temperatures: we related the effective temperature of
each qubit to the respective population of their two levels. In order to bring forth the
differences between the two, throughout this thesis we compared the studied correlated
case with an uncorrelated analog case.

With the derivation of Eq. (2.26) we established an invariance of the total entropy
of a quantum system undergoing a unitary time evolution. The Second Law of Ther-
modynamics dictates that for energy exchange to occur in isolated systems, the system’s
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entropy must increase, therefore, under unitary transformation, an uncorrelated system
would not present any energy exchange between its components. Figs. 5-6 show how
energy exchange can arise in these instances only when an initial degree of correlation
is present between the subsystems and it is consequentially decreased by the time evolu-
tion. By exploring the underlying relation between initial correlations and the direction
of thermodynamic processes, we determined the importance of the initial conditions to
establish an exchange of energy, as well as its direction.

In general, for energy exchange to be initialized, during the thermal contact between
the two qubits, an initial degree of correlation between the two must be established before
the start of the protocol. Moreover, the correlation between the two subsystems must be
reduced during the interaction: this is a necessary result that was derived by analyzing
Fig. 4. Specifically, to obtain the seeked anomalous energy flow, the change in the mutual
information between the two qubits must be greater than the sum of the relative entropies
between the initial and time evolved states of both qubits.

To maximize the amount of energy flowing from one qubit to the other we used the
formalism of Lagrange multipliers with the constraint of an energy-conserving unitary
evolution. With this we identified an optimal time evolution for the reversal of energy
flow within the system. We explored the plausibility for a physical realization of the found
optimal time evolution, through the derivation of the Hamiltonian generating said unitary.
The generating Hamiltonian was derived for the initial states provided in Ref. [7]. The
Hamiltonian, derived in the Pauli basis (3.37) , takes the form of the interaction Hamil-
tonian sometimes referred to as the Dzyaloshinskii–Moriya interaction Hamiltonian [7].
The Dzyaloshinskii–Moriya Hamiltonian corresponds to the same Hamiltonian used in
the referenced publication, and it is stated to be a relatively easy interaction to recreate
in a laboratory environment [7].

In conclusion, by optimizing Eq. (3.16) we were able to find solutions for time evolu-
tions indeed capable of reversing the direction of the energy exchange between qubits. We
have also observed the importance of initial conditions in determining important proper-
ties relative to the interaction between two bodies. Accordingly, our results clearly show
that it is possible to have a time-local inversion of the arrow of time: that is, by proper
initial conditions, correlations and applied perturbation, the system can have reversed
(cold to hot) energy flow. Although, it has to be emphasized how, the reversal of the time
arrow is only possible strictly within a well defined time interval. This is because quantum
systems as the one described in this thesis never fully thermalize. This ”impossibility of
full-themalization”, leads to an oscillatory behaviour of the states of the system, where
energy is then exchanged back and forth between the qubits.

The study of how this effect presents itself in higher dimensional systems is an inter-
esting subject for future analysis. The constraint of having an isolated system could also
be removed by allowing unitaries capable of acting over the whole system. By considering
non-isolated systems, our hope is to find evolutions capable of driving a higher reduction
in the mutual information between the qubits, allowing for higher amounts of energy to be
exchanged between the two. These studies could then be used to find a more generalized
approach to energy reversal within the framework of Quantum Thermodynamics.
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5 Appendix

5.1 Deriving the time derivative of density matrices

In this section we are set to derive the formulation of Eq. (2.20), for the time derivative of
a density matrix for a pure state. We begin by exploring the time evolution of the state
|ψ(t)〉. To do so we employ the use of the time dependent Schrodinger’s equation

i
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉, (5.1)

where Ĥ(t) is the Hamiltonian dictating the time evolution of |ψ(t)〉. Using Eq. (5.1) we
start rewriting the time derivative for the pure state represented by the density operator
%(t)

d

dt
%(t) =

d

dt
|ψ(t)〉〈ψ(t)| =

(
d

dt
|ψ(t)〉

)
〈ψ(t)|+ |ψ(t)〉

(
d

dt
〈ψ(t)|

)
(5.2)

d

dt
%(t) =

1

i

(
Ĥ(t)|ψ(t)〉〈ψ(t)| − |ψ(t)〉〈ψ(t)|Ĥ(t)

)
=

1

i

[
Ĥ(t), %(t)

]
(5.3)

5.2 Deriving the general form of a 2x2 unitary

Let us define a general 2x2 unitary U as:

U =

[
U1 U2

U3 U4

]
. (5.4)

Because we defined the matrix in Eq. (5.4) as unitary operator one can write UU † =
UU−1 ⇒ U † = U−1

U † =

[
U∗1 U∗3
U∗2 U∗4

]
= U−1 =

1

det(U)

[
U4 −U2

−U3 U1

]
, (5.5)

UU † =

[
|U1|2 + |U2|2 U1U

∗
3 + U2U

∗
4

U∗1U3 + U∗2U4 |U3|2 + |U4|2
]

=

[
1 0
0 1

]
. (5.6)

We can constrain U to only represent rigid rotations through det(U) = U1U4−U2U3 = 1.
Therefore, Eq. (5.5) returns the relations U1 = U∗4 and U2 = −U∗3 , while Eq. (5.6) returns
three distinct constraints

|U1|2 + |U2|2 = 1, (5.7)

|U3|2 + |U4|2 = 1, (5.8)

U1U
∗
3 + U2U

∗
4 = 0. (5.9)

(5.10)

A pair of complex numbers {Ui, Uj} satisfying the constraints presented in Eqs (5.7,5.8),
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can always be parametrized as Ui = eiµi cos(θ) and Uj = eiγj sin(θ) (for γ, θ, µ ∈ R).
Applying all the constraints found until now, one gets

U1 = eiµ cos(θ), (5.11)

U4 = e−iµ cos(θ), (5.12)

U2 = eiγ sin(θ), (5.13)

U3 = −e−iγ sin(θ), (5.14)

U =

[
eiµ cos(θ) eiγ sin(θ)
−e−iγ sin(θ) e−iµ cos(θ)

]
. (5.15)

5.3 Values used for Numerical approach

Provided Value Used Value
β−1B 3.66 ± 0.09[peV] 3.66 [peV]
β−1A 4.30 ± 0.11[peV] 4.30 [peV]
ν0 1000 [Hz] 1[kHz]
h 4.135 ×10−15[eVs] 2π
α -0.19 ± 0.01 -0.14

Table 1: Table comparing the values provided by the publication with the counterparts
used in the numerical approach. Note that in this thesis we set ~ = 1, hence h = 2π [7].
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