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Abstract

The goal of the thesis is to simulate the Ericsson Many-Core Architecture, EMCA,
and implement a dynamic scheduler for the system using reinforcement learning
methods. The system contains shared resources that receive and complete jobs.
Also, the deadlines and latency definitions can change depending on the job type.
The scheduler should aim to avoid missing deadlines as well as aim to reduce the
overall latency in the system. A python simulation has been implemented of the
Ericsson Many-Core Architecture and two reinforcement learning based schedulers
have then been developed and used for different configurations. They are evalu-
ated by comparing their performance to a random and a static scheduler. The first
scheduler uses Q-learning and the second uses a version of Q-learning with a neural
net that approximates the Q-function. The results showed that the second version
experienced issues with convergence which caused deadline misses and poor la-
tency. The regular version of Q-learning showed promising results, avoiding dead-
line misses and was able to reduce the latency below that of the static scheduler
for one of the systems. There are still some issues that could be addressed as well
as avenues to explore regarding the scheduler. Furthermore, in order to apply the
scheduler to the real system, some modifications are necessary. However, the simu-
lations show that the reinforcement learning can successfully be used as a scheduler
on the EMCA for different configurations.
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1
Introduction

Scheduling allows for the distribution of shared resources and occurs in many dif-
ferent systems. However, in cases such as the Ericsson Many-Core Architecture,
EMCA, there are many different configurations. This means that either a sched-
uler has to be designed specifically for each configuration or a general scheduler
must be used that ensures deadlines are met, but might be sub-optimal for certain
configurations. Reinforcement learning could make it possible for a scheduler to
be generated automatically, which is of commercial interest in telecommunications
where specifications are in flux. An example of this is the ongoing introduction of
the new generation of wireless access technology in the form of 5G/New Radio
[Erik Dahlman, 2018]. Also, using reinforcement learning could lead to schedulers
that lower system latency compared to static schedulers that might be overly cau-
tious. Furthermore, reinforcement learning is an area of active research and appli-
cations, such as the one provided by this thesis, provide challenges that could be of
theoretical interest.

In order to run 5G signal processing Ericsson uses a tailormade system on a
chip, the EMCA, in the base station. In the EMCA there are many concurrent jobs
as well as shared resource pools. In the system, one or several carriers are used that
can send and receive information from users through modulation of radio signals.
Beamforming is performed when the base station sends and receives information.
Beamforming requires a large amount of calculations which can increase latency
in the system. This can be mitigated through the use of beamforming accelerator
cores, BAC, that are part of the EMCA. These are accelerators used to decrease the
computation time of the calculations. However, there are only a limited amount of
these cores in the system and thus it would be optimal to share these resources as
effectively as possible. The beamforming is divided into jobs which the cores pick
from a priority queue.

Scheduling in this context means dividing the beamforming calculations be-
tween BAC through deciding the size of the jobs, which implicitly determines the
number of jobs. The scheduler can also wait before sending jobs to the priority
queue in order to increase overall latency. Finally, each job is associated with a
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1.1 Objectives

priority which the scheduler is able to set. This will determine which jobs are com-
pleted first if there is competition for the BAC.

Furthermore, latency definitions differ for uplink, recieving from user, and
downlink, sending to user. For uplink, all calculations should be completed as soon
as possible, as opposed to downlink where calculations should be completed as late
as possible without missing deadlines. This is due to the different operations nec-
essary for sending versus receiving from a user and is explained further in depth in
Section 2.2.

The scheduling algorithm needs to consider that it has to run in many products
and environments and has to take the following into account:

• The job execution time, periodicity, deadline, and number of jobs in the sys-
tem will change based on deployment and configuration.

• The job runs in a multi-core environment with other concurrent jobs.

• Some jobs in the pool have strict deadlines and some jobs more relaxed dead-
lines.

• The system can run in time division duplex, TDD, or frequency division du-
plex, FDD. This determines when uplink and downlink beamforming work is
generated by the simulation.

• Resource constraints include: number of cores, core processing power, la-
tency and buffering.

1.1 Objectives

The thesis objectives can be summarized as follows. Implement a multi-core
scheduling environment in Python which focuses on modeling the EMCA part that
handles the scheduling of the beamforming computations. Schedule jobs in the sim-
ulated environment according to known Uplink, UL, or Downlink, DL, profiles and
configurations at Ericsson. Implement scheduling algorithms in the simulated en-
vironment which makes sure that all the job deadlines are met with as low latency
as possible for both UL and DL. The algorithm should be adaptive and possible to
apply to any configuration with regards to: number of jobs, job time, job periodicity,
job deadline and number of resource pool cores.

The first simulation model should focus on the beamforming accelerator re-
source, when this one is known, complexity of job chaining between resources can
be added.

11



Chapter 1. Introduction

1.2 Delimitations

The reinforcement learning algorithms are limited to two versions of Q-learning.
Also, while the EMCA simulator aims to model the real system, some simplifica-
tions are made, see Chapter 3. Furthermore, the possible actions that the scheduler
could make do not correspond to all actions that could be taken in the system. There
are valid arguments for both increasing and decreasing the number of actions for
the scheduler, see Chapter 6.

Two systems with different configurations are used in order to evaluate the
schedulers.

1.3 Related Work

Using reinforcement learning for dynamic scheduling is not unprecedented. For ex-
ample, [Wang and Usher, 2005] where Q-learning is used on a simulated system to
schedule jobs. Also, there is also an example in mobile communications where a
reinforcement learning algorithm is used to schedule cellular network traffic [Chin-
chali et al., 2018]. Thus, there is promise in using reinforcement learning for dy-
namic scheduling.

1.4 Outline of the Report

A brief overview of the report structure and chapters is given below.

Introduction
The introduction gives a motivation for the necessity of a dynamic scheduler in
a system with shared resources. It also gives account of the goal, objectives and
delimitations of the report. Finally, it presents an outline of the report.

Background
The background contains descriptions of the system and its components. It also
introduces technical details required to understand the challenges inherent in the
system.

Model
This chapter provides an overview of how the simulated system is implemented and
how it may differ from the real system.

Reinforcement learning
Gives an account of algorithms and concepts used in the reinforcement learning
based schedulers.
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1.4 Outline of the Report

Result
Presents and discusses the results of two reinforcement learning based schedulers
applied on four systems. Also, provides an account of how the input and output of
the reinforcement learning algorithms are derived.

Discussion
The discussion chapter discusses general matters regarding the scheduler design.
Furthermore, possible improvements are presented here.

Conclusion
An overview of the conclusions that can be made from the results as well as the
implementation in general.
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2
Background

The following sections aims to explain the necessary technical details to give
the reader a basic understanding of the system. Furthermore, certain parameters,
state/action spaces and design variables correspond to concepts explained in this
chapter.

2.1 Transmission

The EMCAs are used in a base station which receives and transmits data to a user. A
transmission is called downlink, DL, when data is transmitted from the base station
to a user. Likewise, when a transmission is sent from a user to the base station it is
called Uplink, UL.

LTE, Long Term Evolution, is a set of technical specifications and standards for
mobile communications first released in 2009. New Radio, NR, is a newer standard
first available in 2017. NR was designed in order to make better use of new tech-
nologies but inherits a lot of structures from LTE [Erik Dahlman, 2018]. LTE is thus
often more associated with 4G and NR is more often associated with 5G.

Orthogonal frequency-division multiplexing, OFDM, is a transport technology
for communication systems based on using several overlapping subcarrier frequen-
cies and sending data in parallel. These subcarriers each have a center frequency,
of maximum signal power, and the spacing in frequency between subcarrier center
frequencies is called subcarrier spacing [Ergen, 2009].

The largest unit in a 4G/LTE or 5G/NR transmission is called a radio frame,
which is 10 ms. A radio frame consists of 10 subframes of 1 ms. In both 4G/LTE
and 5G/NR OFDM symbols are used and each subframe is divided into slots, each
slot containing 14 OFDM symbols, see Figure 2.1.

The numerology determines the subcarrier spacing in kHz, which in turn de-
termines the time intervals between symbols in the system, see Figure 2.2. Thus
for different numerologies there are different amount of slots per subframe [Erik
Dahlman, 2018].
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2.1 Transmission

One slot

One OFDM symbol

#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13

Figure 2.1 One slot is defined as 14 OFDM symbols.

One radio frame, 10 ms

#0 #1 #2 #3 #4 #5 #6 #7 #8 #9

One subframe, 1 ms

15 kHz

One slot, 1 ms

30 kHz

One slot, 0,5 ms

60 kHz

One slot, 0,25 ms

Figure 2.2 Radio Frame, subframes and slots for 15 kHz, 30 kHz and 60 kHz nu-
merologies.

Numerology is usually referred to by a number, for example, numerology 0.
Each number corresponds to a subcarrier spacing, see Table 2.1. LTE supports nu-
merology 0 and NR supports numerology 0-3.

Number Subcarrier spacing kHz
0 15
1 30
2 60
3 120

Table 2.1 Numerology number conversion to subcarrier spacing.

The duplex schemes determine how UL and DL transmissions are separated.
For time division duplex, TDD, a single carrier frequency is used and transmissions
are distinguished by time. Each OFDM symbol is either assigned as UL or DL.
For frequency division duplex, FDD, the transmissions are carried out on different
carrier frequencies. Thus each OFDM symbol is both UL and DL [Erik Dahlman,
2018]. Several data streams, called layers, can be sent simultaneously to one or
several users. This is done in order to increase throughput where each layer can
be beamformed [Advanced antenna systems for 5G networks]. However, increasing
the number of layers increases the complexity of the beamforming process causing
longer job times in the BAC.
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Chapter 2. Background

Beamforming
Beamforming refers to the ability to direct radio energy toward a specific receiver
through constructive interference of radio signals by manipulation of the phase and
amplitude of the signals. This enables higher signal strength at the user and thus
higher throughput. Likewise, beamforming when receiving refers to the ability to
collect the signal energy from a transmitter [Advanced antenna systems for 5G net-
works]. However, beamforming requires the completion of large amount of matrix
calculations which must be finished quickly to lower overall latency. Beamforming
accelerator cores, BAC, can be used in order to accelerate these calculations. The
BAC can in this case be viewed as resources and as previously mentioned, there are
benefits to sharing resources.

2.2 Components

The EMCA is used in the lower layers of the base stations and is necessary for the
beamforming process in the radio unit. There are several components in the system.
However, the components relevant to the scheduler are the carriers and the resource
pools in the form of queues and beamforming accelerator cores, BAC.

Carrier
The carriers generate the symbols in a transmission. Each carrier has a bandwidth,
duplex scheme and numerology, which will affect the time of arrival and deadline
of a symbol. The bandwidth, in kHz, is determined by the number of subcarriers
in the carrier as well as the subcarrier spacing measured in kHz per subcarrier. The
duplex scheme is either TDD or FDD described in Section 2.1.

Super Jobs
Super jobs, SJ, represent multiple underlying jobs in the system related to beam-
forming. However, from the scheduler’s perspective these are the generated jobs
and in the report the terms jobs and super jobs are used equivalently.

A physical resource block, PRB, consists of 12 sub-carriers in the frequency
domain and one OFDM symbol in the time domain. The PRB associated with a
super job corresponds to beamforming work load and higher PRB causes the super
job to take longer to complete by a BAC.

Each symbol in the transmissions translates to the creation of jobs for the beam-
forming accelerator cores. The job size and number of PRBs is determined so that
the whole bandwidth of the carrier the symbol belongs to is used. In TDD, UL and
DL symbols correspond to different job types. DL transmissions create Beam-To-
Antenna, BTA, jobs whereas UL creates two Antenna-to-beam job types, ATB1 and
ATB2. The super job parameters are: the size of the super job in PRB, the size of
the associated beamforming job in PRB and the job type: ATB1, ATB2 or BTA.
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2.2 Components

Each carrier has a sub-carrier spacing in kHz determined by the numerology.
Thus, the bandwidth of each carrier can be translated into PRB. For example, a car-
rier with 100 MHz bandwidth and sub-carrier spacing of 30 kHz, corresponds to
273 PRB. Since PRB consists of 12 sub-carriers in the frequency domain this cor-
responds to 273 ·12 ·30≈ 98,28MHz. The whole bandwidth cannot be utilized be-
cause guard bands in the bandwidth are needed to avoid interference [Erik Dahlman,
2018]. This means each OFDM symbol corresponds to 273 PRB beamforming work
load.

Scheduler
The scheduler is responsible for creating Super Jobs from symbols and determining
their properties. Also, it must determine the priority and the time to send them to
the priority queue.

Resource Pools
The resource pools consist of a priority job queue and several BACs. The BAC con-
tinuously pops jobs with the highest priority from their assigned priority job queue.
The BAC is responsible for performing the beamforming computations associated
with the job picked from the priority queue.

Latency
In general, latency for jobs should be minimized in the system. However, the de-
sired behaviour differs between UL and DL when using TDD and different latency
definitions are used, see Figure 2.3. For UL it is optimal to reduce the wait time
before sending the job to the job queue as much as possible. For DL the job should
be completed as close to the deadline as possible, without missing it, in order to
reduce the margin and, thus, the latency. There are several reasons, UL consists of
receiving information and when beamforming is complete the information can be
received immediately. For DL the transmission is sent to the user at a determined
time that cannot be preempted. Thus, there is no benefit to completing DL jobs early
and completing the job late reduces memory usage since the data can be stored for
less time.
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Chapter 2. Background

Symbol arrival Queue arrival BAC arrival Job done deadline

Wait Queue time Job process time margin

UL-system latency

DL-system latency

Figure 2.3 Latency definitions for UL and DL. Symbol arrival means the sched-
uled arrival of the symbol to the system. Queue arrival is the arrival of the job created
from the symbol in the job queue. BAC arrival is the job arrival time to a BAC in the
system.

2.3 System Overview

In the system, symbols arrive at periodic time intervals determined by the number
of carriers, as well as their numerology and duplex scheme. Super job tokens, SJ
tokens, are generated from symbols. These tokens are sent to a priority queue and
then distributed among beamforming accelerator cores. When a core has received a
SJ token it will complete the necessary beamforming computations associated with
the token. The time until completion are determined by job and carrier parameters.

The amount of super jobs generated from a symbol, the priority, and when to
send the super jobs to the queue, are all determined by the scheduler. The Beam-
forming Accelerator cores pop super jobs from the queue according to priority and
complete them and the associated beamforming computations.

Static scheduler
A static scheduler, provided by Ericsson, can be used on the system which schedules
the jobs based only the current symbol job type. Thus the scheduler is restricted to
three static actions, one for each job type. However, for sufficient number of BACs
it will ensure that all deadlines are met. This scheduler is used as the baseline when
comparing other scheduling algorithms.
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3
Model

In order to design the algorithm a Python-based simulation model of EMCA was
developed. SimPy, a discrete event simulator, was used in order to create the model
[Scherfke and Lünsdorf, 2020]. SimPy is able to simulate time and let processes
add events to be triggered at a certain timestep or event. Thus, information of future
events are hidden from the scheduler, mimicking the real process. The simulated
time did not include the runtime of the scheduling algorithm and the job queue.
This is a simplification of the real process. However, the time is small compared to
the job process time and therefore have a small effect on the latency.

3.1 Simulation Components

Queues
The simulation model uses queues in order to simulate the system, see Figure 3.1.
A list of symbols marked with timestamps are extracted from a simulated traffic
file. Then, using a SimPy process, the symbols are sent as symbol tokens to a sym-
bol FIFO queue at the time corresponding to the timestamp. The Agent block is
responsible for generating and scheduling super job tokens from symbol tokens, as
well as handling feedback from the beamforming accelerator cores. The SJ tokens
are then sent to a Priority queue where beamforming accelerator cores can retrieve
them when available. A result token is generated from a SJ token when the BAC is
finished with the SJ token.

Beamforming Accelerator Cores
The beamforming accelerator cores are modelled as a process that continually pops
jobs from the SJ queue and sleeps for the estimated time it takes to complete the
job. The beamforming job time is estimated using the properties of the SJ token as
well as the associated carrier.
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Chapter 3. Model

Symbol Queue
Symbol Tokens

Agent BACBACBACBAC

SJ Queue

Result Queue

SJ Tokens

Result Tokens

Figure 3.1 Queue structure in the simulation

Scheduling
The Agent in Figure 3.1 is responsible for scheduling the symbol as jobs on the
BAC:s. There are three actions that must be determined: SJ PRB size, priority in
the SJ token queue and the time to wait until sending the created SJ token to the SJ
token queue. In this step the simulation can switch between the static scheduler and
the RL scheduler depending on simulation setup.

Jobs and Job Types
All jobs generated from DL symbols in the system are of type BTA but UL sym-
bols generates both ATB1 and ATB2 jobs. This is handled in the simulated traffic
file by generating two symbol tokens for each UL symbol, one of type ATB1 and
one of type ATB2. ATB1 symbols are handled in a more static way in the current
implementation than ATB2 symbols. One ATB1 job is generated from each ATB1
symbol with a fixed 16 PRB size. However, the priority and waiting time before the
job is sent to the job queue are determined by the scheduler.
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4
Reinforcement Learning

A reinforcement learning, RL, system consists of an agent and an environment, see
Figure 4.1. The agent receives the current state, st from the environment at time step
t. The agent may then influence the environment with an action, at , which changes
the state of the environment to st+1. This agent in turn, receives either a reward or
a penalty, rt , for the action-state pair, at and st . The agent may then choose an ac-
tion for the next state, st+1, and the process continues. The goal of the agent is to
select the best possible action, depending on the state, in order to maximize the to-
tal reward. This is achieved by the agent trying to improve its decisions over many
iterations, referred to as the training process [Sewak, 2019]. Additional elements
to reinforcement learning are the policy, the value function as well as the model.
The policy is the mapping that the agent does between states in the environment
and actions. The value function aims to capture long term benefits of certain states
or actions. A model is something that reproduces the behaviour of the environment
or something that allows inferences on how the environment will behave. Methods
that use models are called model-based methods as opposed to model-free meth-
ods. Reinforcement learning is often formalized using incompletely known Markov
decision processes, MDPs. Markov decisions processes are intended to include the
aspects necessary to the agent, the concept of a state, action and goal [Sutton and
Barto, 2018].

The initial development of reinforcement learning resulted from the combina-
tion of three threads of research in the late 1980s. Learning by trial and error, opti-
mal control using value functions and dynamic programming, as well as temporal-
difference learning. The term "optimal control" was minted in the 1950s and refers
to the problem of designing a controller that maximizes or minimizes a measure of
a dynamical system over time. Dynamic programming is a class of methods that
can be used to solve optimal control problems, assuming the system is fully known.
Furthermore, Richard Bellman introduced the discrete version of the optimal con-
trol process, something that has been previously mentioned, the Markov Decision
processes, MDP[Sutton and Barto, 2018].

There are many modern advances in the field of reinforcement learning but a
famous example is the computer program known as AlphaGo, which was used to

21



Chapter 4. Reinforcement Learning

defeat a world champion in the complex game of Go in March 2016. Reinforcement
learning was an important part of the algorithm which allowed it to learn a model
of its environment [AlphaGo]. This illustrates the potential of the reinforcement
learning framework.

Agent Environment

at

rt

st

Figure 4.1 The general reinforcement learning system.

4.1 Temporal-difference Learning

The value function, V (st), can be defined recursively as an expectation, see Equa-
tion 4.1. The temporal-difference algorithm is able create an estimate of this func-
tion [Sutton and Barto, 2018].

V (st) = E [rt+1 + γV (st+1)] (4.1)

where γ is the constant discounting factor.
Temporal-difference, TD, learning is a method that is both able to learn from

experience without a model of the MDP and uses bootstrap. Bootstrap refers to
being able to update estimates based on other learned estimates without waiting for
a final outcome [Sutton and Barto, 2018]. Thus using temporal-difference, value
functions can be updated for each successive action and reward instead of waiting
until the simulation has finished. There are many variants of Temporal-difference
learning, but the one relevant to the purpose of this thesis is the TD(0) variant. For
each step TD(0) updates the estimate of the value function, V (st), according to the
update in Equation 4.2 [Sutton and Barto, 2018].

V (st)←−V (st)+α [rt+1 + γV (st+1)−V (st)] (4.2)

where α is a constant learning factor, γ is the constant discounting factor for the
value function estimate of the new state.

The target for the TD update is the reward and discounted value of the next
state, rt+1 + γV (st+1). α corresponds to the degree that the TD target updates the
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4.2 Q-learning

new estimate. If α is 1, then the target replaces the estimate, V (st). If α is between 0
and 1, then the new estimate is a combination of the TD target and the old estimate.

4.2 Q-learning

The Q-learning algorithm is a model-free and off-policy temporal difference con-
trol RL algorithm [Sutton and Barto, 2018]. Model-free in this context means that
the algorithm does not require a prior understanding of the model of the underly-
ing MDP of the system. Off-policy means that the policy itself is not used when
exploring the MDP, see Section 4.3.

The algorithm uses the state-action value function, the Q-function, which aims
to capture the current and future reward when taking an action, at , from a state,
st . By estimating and maximizing the Q-function, the algorithm may determine the
best next action in each state in the MDP. The estimation of the Q-function can
be achieved through temporal difference learning, TD(0). Thus to update the Q-
function a tuple containing the state, action, (st ,at), reward, rt , and the next state,
st+1, is required, see Equation 4.3 [Sewak, 2019].

Q(st ,at ) = (1−α)Q(st ,at )+α(rt + γ max
at+1

Q(st+1,at+1)) (4.3)

where α is the learning factor, γ is the discounting factor, and at+1 is the next action
that maximizes the current Q-function [Sewak, 2019].

In the regular Q-learning algorithm, the Q-function is usually expressed as a
table with a size corresponding to the number of states as rows and number of
actions as columns. This Q-table can be zero initialized. Thus Q(st ,at ) corresponds
to an element in the table and can be updated according to Equation 4.3. Since the
agent estimates the Q-function it requires many iterations of the process in order
to converge. The iterations required for the agent to sufficiently estimate the Q-
function is refereed to as the training process [Sewak, 2019].

4.3 Exploration versus Exploitation

When considering the mechanism of choosing an action, i.e., the policy, we must
consider the explore versus exploit dilemma. Exploit means using the knowledge
that the agent has accumulated to choose the best action. In the case of Q-learning
this corresponds to choosing an action through a = maxa Q(s,a). Explore means
collecting new information for the agent thus making it possible for the agent to
improve. For Q-learning this is done off-policy which means that the policy for
exploration can be disconnected and separate to the RL algorithm as opposed to
the SARSA algorithm, State-Action-Reward-State-Action, which is another RL al-
gorithm. For Q-learning, the explore versus exploit problem can be handled by an
algorithm such as the epsilon-greedy algorithm [Sewak, 2019].
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Chapter 4. Reinforcement Learning

The epsilon greedy algorithm handles the explorations phase by using a constant
probability, ε , of choosing a random action in each step. The chance of choosing
greedily, by exploiting, is then 1− ε . The choice of ε is meant to be based on how
deterministic the underlying MDP is, generally more stochastic MDPs require larger
ε [Sewak, 2019].

4.4 Deep Q-learning

The deep Q-learning network algorithm, DQN, is a version of Q-learning where
the Q-function is approximated with a neural network, a Q-network. Usually this is
applied when the action and state spaces are large. The most common applications
involve images as inputs, and thus the definition of DQN uses convolutional neural
networks. However, since the state space in this system does not consist of images
this is replaced with a fully connected feed-forward network.

Updates in the DQN are handled in a similar way as in Q-learning but use
back-propagation. Two Q-networks are used, one for estimating the current Q(st ,at)
value, the online network, and one for estimating the future target maxat Q(st ,at),
the target network, see Equation 4.3. The target network is not updated at every
step, but instead copies the online network every, c steps. This is done because of
issues with convergence in case of too frequent correlated data. Furthermore, using
the same function to update itself might cause it to become unstable [Sewak, 2019].

Neural Networks
A neural net consist of layers which takes an input and produce an output. Each
layer have a number of neurons or units, which is interconnected with the next layers
neurons with weights. One neural net may have an input layer, then several hidden
layers and finally an output layer. Each layer also have an activation function which
determines the output of the neurons. A loss function quantifies how good the neural
net is performing and is used when updating the network weights. When training
the neural net, it is this loss function that is minimized [Gad and Jarmouni, 2021].

Experience Replay Buffer
If concurrent updates of the agent have high correlation, it might slow down or
hinder convergence. Therefore, a replay experience buffer is used in order to reduce
the correlation between updates. Instead of updating the Q-values instantly for a
tuple (st ,at ,rt ,st+1), the tuple is stored in an experience replay buffer implemented
as a ring buffer. Then a batch of random tuples from the ring buffer is sampled and
used to update the neural net similar to Equation 4.3.

Double Q-learning
In instances where the state space and state-size are very large, it may take a long
time for the agent to gain sufficient information of the system. This may cause the
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4.4 Deep Q-learning

Q-values to be over-estimated leading to sub-optimal training. In order to solve
these issues in each update, the action can be determined from the online network
but the values are used from the target network.

However, due to lack of time this modification was not implemented. For even-
tual future investigations into DQN it is highly recommended to use Double Q-
learning.
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5
Results

Different systems are used in order to evaluate the scheduling algorithms, see Ta-
ble 5.1. For simplicity, a pattern of 10 UL symbols followed by 10 DL symbols
are generated from each carrier in the systems. In all tested systems 40 BACs are
used and the carrier bandwidth is 100 MHz. Four schedulers are applied on each
system, the baseline, Q-learning based scheduler, DQN based scheduler and a ran-
dom scheduler. The random scheduler picks random actions in the action space of
the reinforcement learning based schedulers. The purpose of the random scheduler
is to both illustrate the difficulty scheduling the system as well as act as a point of
reference for the other schedulers. Furthermore, a constant ε = 0.1 has been used
for exploration in the RL schedulers during the training process. Then during the
simulations used to compare the schedulers, it is set to ε = 0, i.e. no exploration
takes place.

Table 5.1 Carrier setup for the systems.

Name # Carriers # Antennas # Layers DD numerology
System 1 1 64 16 TDD 1
System 2 5 64 16 TDD 0

The RL schedulers have been trained on the system before being evaluated.
The Q-learning based schedulers have been trained on 200000 simulations. Since
the DQN based schedulers take longer to train per simulation, they have only been
trained on 20000 simulations. The DQN experience replay buffers have been initial-
ized with values from the baseline scheduler in order to try to improve the scheduler.

5.1 I/O Design

In order to use RL algorithms the system must be converted in a way that it can be
seen as a Markov decision process, MDP. Thus, a state and action space must be
defined for the scheduler.
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5.1 I/O Design

State Space
The state space for the algorithm is part of the overall design and has been chosen
to try to capture the system properties. This choice is non-trivial, since an excess
of states causes the training process to take too long and too few states might not
be enough for the algorithm to make an optimal choice. In the current algorithm,
the state consists of: job type, symbol index and the total number of SJ tokens in
the resource pool, i.e. jobs in the queue or worked on by the BACs. Since the static
scheduler determines an action per symbol input, this should be reflected in the state
space. The reasoning behind the job type state property is that it determines the
latency definitions and should thus be known to the scheduler. The symbol index
aims to confer a sense of time to the algorithm. The total number of jobs in the
resource pool gives information on how busy the resource pool is when the jobs are
scheduled.

Action Space
The action space corresponds to the decisions the scheduler makes. The current ac-
tion space consists of the SJ size in PRB, the priority in the queue, and the wait-time
before sending the job to the resource pool. Similarly to the state space, this is also
a design problem as there are many options for how much freedom the scheduler
has in determining an action. For example, the job queue supports more priorities
than three, however, as there are only three different types of jobs, the choice has
been made to restrict it to three.

The priority will not matter as much when there is not much traffic since the
BAC will pick and complete all the jobs in the queues before there is any compe-
tition of the BAC. The priority will be important when there are both DL and UL
jobs in the job queues. This is because the latency definitions encourage that DL
jobs should be completed late and UL jobs should be completed early. This means
that if UL jobs have higher priority when DL jobs are sent to the queue there is a
larger risk that the DL jobs will miss their deadlines. Perhaps it would be beneficial
to restrict the scheduler to assign priority only in the shift between UL and DL, or
perhaps to assign priority in a static way instead. This might make it easier for the
scheduler to find an optimal policy.

Reward Function
The goal of the reward function is to reward desired results. The desired result in
the system is to decrease the latency as well as to ensure that deadline requirements
are met. Equation 5.1 has been designed in order to reflect this on a symbol basis.

r(x) =

 e−kDL·x for DL
e−kUL·x for UL
−1 if deadline is missed

(5.1)
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Chapter 5. Results

where x is the maximal latency of SJ from the same symbol and kDL and kUL are
positive constants.

Low latency is rewarded with higher rewards, whereas deadline misses are pe-
nalized with a −1 penalty. Also, two different exponents, kDL and kUL, were used
because the latency is defined differently for UL and DL, see Figure 2.3. The reward
function also restricts the reward between 1 and −1. This is important because if
the total reward can grow too large from the reward from one action, it might be
optimal to miss deadlines to maximize the reward, which is not a desired behaviour.

In the simulation the reward is determined by collecting all the result tokens
corresponding to a symbol token and then calculating the latency for the last result
token. Then the reward function is applied to get the reward corresponding to this
symbol token.

Simulation Feedback
Note that the scheduler does not receive the reward and the next state instanta-
neously when determining an action. It must wait until the corresponding jobs are
finished until a reward can be determined and for the next symbol to arrive in order
to get the next state. Thus the scheduler stores the state until it can pair it with a
reward and the next state and update the estimate of the state-action value function,
i.e., the Q-function.

5.2 RL Implementation Details

Q-Learning
The Q-learning algorithm is implemented with a matrix spanning the action and the
state space. The parameter values used in the two systems are: a learning factor of
α = 0.5 and a discount factor of γ = 0.99.

DQN
The DQN is implemented through the Keras application programming interface and
the machine learning platform, Tensorflow, see [Chollet et al., 2015] and [Martín
Abadi et al., 2015]. The neural net is implemented with an input layer of 64 units,
with the states as inputs, 4 hidden layers of 256 units each and an output layer
with units corresponding the the total number of actions. All layers except the out-
put use the rectified linear unit activation function and the output layer use a linear
activation function. The states used as inputs are translated into numbers and re-
stricted between 0 and 1. The Adam optimizer is used to compile the Keras model
and the the Huber loss is set as the loss function. Further information regarding
the activation function, optimizer and the loss function can be found in the Keras
documentation [Chollet et al., 2015].

The parameters used in the simulations were γ = 0.99 and the learning rate were
set to a low number to try to increase stability, α = 0.0001. The experience replay
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buffer used a batch size of 64, i.e. each update used 64 experience tuples from the
experience replay buffer. Finally, the target network is updated every c = 10000
updates.

5.3 System 1

The number of missed deadlines and latency for each scheduler and job type can
be seen in Table 5.2. It is evident that the Q-learning based scheduler achieved the
lowest overall latency, with better latency for BTA but worse for ATB1 and ATB2
compared to the baseline. The DQN based scheduler suffers from deadline misses
and poor latency. It even performs worse than the random scheduler for BTA jobs.

Table 5.2 Number of deadline misses, total latency and latency per job type using
different schedulers in system 1.

Scheduler Deadline misses Total latency ATB1 ATB2 BTA
Baseline 0 1001421 121050 251801 628570

Q-learning 0 997167 198825 263491 534851
DQN 26 1580366 341384 572875 666107

Random 217 1957882 553700 872269 531913

Q-learning
It can be difficult to determine if the reinforcement learning algorithm improves
during the training process. The average rewards during the training process are
too erratic to analyze because of exploration and random actions that could lead
to poor rewards. However, the average estimated Q-values of the state-action pairs
per simulation seems more stable and an increase in Q-values corresponds to the
scheduler choosing better actions over time. The average Q-values for each simu-
lation are plotted in Figure 5.1. The Q-values seems to increase first rapidly, and
then slower as it becomes harder to get better rewards to increase the estimate of
the state-action values. The plot still varies heavily between high and low average
Q-values but a positive trend can be observed. The variation is most likely because
of the exploration, that the scheduler does not always pick the highest Q-value when
determining an action during the training process. Since there is a positive trend it
is possible that running the algorithm further would increase the average Q-values
and likely find a better policy. However, as the training process takes a long time,
there was not enough time to properly attempt this and analyze those results.

The final simulation with the Q-learning based scheduler is presented in Fig-
ure 5.2 and Figure 5.3. Figure 5.2 shows the accumulative rewards of the scheduler
in the final simulation for each action of the scheduler. Interestingly, the scheduler’s
total reward does not exceed that of the baseline even though the overall latency is
lower, see Table 5.2. Thus the scheduler did not beat the baseline in terms of the
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Chapter 5. Results

Figure 5.1 Average Q-values over the training process. Each time step corresponds
to a simulation.

goal of a reinforcement learning algorithm i.e. maximizing the total reward. This is
most likely because the reward function, see Equation 5.1 is not linear in terms of
latency. One improvement to the system could be to design a linear reward function
in order to better align the reinforcement learning goal to the general goal of the
scheduler.

Figure 5.2 The cumulative rewards for the Q-learning based scheduler compared
to baseline and the random scheduler.

The distributions of jobs on the BACs on the y-axis, with time on the x-axis,
can be seen in Figure 5.3. Each box represent one job being completed by a BAC
and the vertical lines represent the arrival of symbols to the system. The optimal
choice for the scheduler when there are only uplink jobs is to reduce the latency by
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5.3 System 1

sending the jobs to the BAC as soon as possible. This is not the case when viewing
Figure 5.3 and Figure 5.6 as there seems to be a wait time for the ATB1 jobs in the
first part of the simulation. This seems to indicate that the agent has not found the
overall optimal solution. However, BTA jobs are completed later than the baseline
in the end of the simulation. According to the latency definitions for uplink, see
section 2.2, this corresponds to lower latency. This is reflected in Table 5.2 where
the latency for the the Q-learning agent is higher for ATB1 jobs than the baseline,
but lower for BTA jobs.

Figure 5.3 An overview of the jobs distributed over the BAC. The y-axis represents
the BAC cores, one per 10 units. The vertical lines represent when symbols arrive to
the system, colored red for DL and blue for UL.

The plots in Figure 5.4, Figure 5.5 and Figure 5.6 are scatter plots of the choices
that the scheduler makes. The PRB size plot is somewhat misleading as the ATB1
job type is static and set to 16. Thus it seems that the PRB size for the other job types
are scattered in both larger and smaller sizes. The priorities do not seem to exhibit
a discernible pattern. The wait times are lower for UL and higher for DL, this is the
desired behaviour as the latency definitions encourage DL jobs to be completed as
close to their deadline as possible. However, around the transition between DL and
UL, it seems that DL have generally lower wait times, perhaps in order to reduce
the chance of missing a deadline because of a busy BAC.
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Figure 5.4 A scatter plot for the Q-learning scheduling agent choices in PRB sizes
for each step. Blue corresponds to downlink and red corresponds to uplink.

Figure 5.5 A scatter plot for the Q-learning scheduling agent choices in priority
for each step. Blue corresponds to downlink and red corresponds to uplink. 0 corre-
sponds to the highest priority and 2 corresponds to the lowest.
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Figure 5.6 A scatter plot for the Q-learning scheduling agent choices in wait time
for each step. Blue corresponds to downlink and red corresponds to uplink.
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DQN
The average Q-values for the DQN agent, see Figure 5.7, seem to diverge. It seems
that the scheduler overestimates the Q-values since the average grows far beyond
the maximum total reward of 30. Since the state-action values represent an expected
future reward of taking an action in a state, this is not reasonable. Overall, it seems
the agent does not converge. This is supported by the loss function of the neural net,
see Figure 5.8, that seem to grow instead of converge.

Figure 5.7 Average Q-values over the training process. Each timestep corresponds
to a simulation.

Figure 5.8 Loss in the neural net during the training process.

The cumulative rewards can be seen in Figure 5.9 and while the agent performs
better than the random scheduler, it is worse than the baseline in terms of latency
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and total reward, see Table 5.2.

Figure 5.9 The cumulative rewards for the DQN based scheduler compared to
baseline and the random scheduler.

From the job type and deadline plots in Figure 5.10 and Figure 5.11 it can be
observed that the algorithm fails in areas of only uplink jobs or only downlink jobs.
Furthermore, it schedules the uplink jobs much later compared to the baseline, thus
increasing the latency. This is not surprising since the algorithm does not converge.

Figure 5.10 An overview of the jobs distributed over the BAC. The y-axis rep-
resent the BAC cores, one per 10 units. The vertical lines represent when symbols
arrive to the system, colored red for DL and blue for UL.

The plots in Figure 5.12, Figure 5.13 and Figure 5.14 are scatter plots of the
choices that the DQN scheduler makes. The scheduler seems to prefer higher PRB
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Figure 5.11 An overview of the jobs distributed over the BAC and if they met or
missed their deadlines.

sizes, in general low wait times and assigns the same priority in many decisions.

Figure 5.12 A scatter plot for the DQN scheduling agent choices in PRB sizes for
each step. Blue corresponds to downlink and red corresponds to uplink.

36



5.3 System 1

Figure 5.13 A scatter plot for the DQN scheduling agent choices in priority for
each step. Blue corresponds to downlink and red corresponds to uplink. 0 corre-
sponds to the highest priority and 2 corresponds to the lowest.

Figure 5.14 A scatter plot for the DQN scheduling agent choices in wait time for
each step. Blue corresponds to downlink and red corresponds to uplink.
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5.4 System 2

The number of missed deadlines and latency for each scheduler and job type can be
seen in Table 5.3.

Table 5.3 Number of deadline misses, total latency and latency per job type using
different schedulers in system 2.

Scheduler Deadline misses Total latency ATB1 ATB2 BTA
Baseline 0 5426884 584520 1985264 2857100

Q-learning 0 10333449 2015532 2328240 5989677
DQN 185 17678841 6982557 2859370 7836914

Random 152 14573144 4857540 5357121 4358483

This system is more difficult for the reinforcement learning algorithms. This
is because the five carriers each generate 20 symbols. These 20 symbols in turn
is treated as 30 symbols in the simulation, because each of the 10 UL symbol is
split into two symbols corresponding to the UL job types. Thus the scheduler must
schedule 150 symbols in the simulated environment instead of 30 as the previous
simulation. In the current implementation this increases the state space of the sched-
uler since the symbol index is used as a state. Thus it is not surprising that the DQN
scheduler performs even worse on this system as seen in Table 5.3. Because of this
only the performance of the regular Q-learning algorithm is shown in depth below.

Q-learning
The average Q-values for each simulation has been plotted in Figure 5.15.

Figure 5.15 Average Q-values over the training process. Each timestep corre-
sponds to a simulation.
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The cumulative reward for the baseline, random and Q-learning based scheduler
can be seen in Figure 5.16.

Figure 5.16 The cumulative rewards for the Q-learning based scheduler compared
to baseline and the random scheduler.

The job distribution over the BAC can be viewed in Figure 5.17. It can be ob-
served that the BACs are busier when the RL agent is used than the baseline.

Figure 5.17 An overview of the jobs distributed over the BAC. The y-axis rep-
resent the BAC cores, one per 10 units. The vertical lines represent when symbols
arrive to the system, colored red for DL and blue for UL.

The PRB size, priority and wait time actions of the scheduler can be viewed in
Figure 5.18, Figure 5.19 and Figure 5.20. Interestingly, it seems that a low PRB size
of 8 is a common choice which makes the BAC busy, as can be seen in Figure 5.17.
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The priority seems to mostly be 0, which corresponds to the highest priority in the
simulation. However, it seems that most jobs are set to the same priority in the area
where downlink and uplink symbols meet. This seems to indicate that perhaps the
scheduler does not use the priority to achieve lower latency. Perhaps it does not
contribute enough to the reward or perhaps the scheduler has not explored enough
of the action space. For wait times, it seems that the final part of the simulation
with only downlink symbols are scheduled with higher wait times. The rest of the
symbols are mostly scheduled with low wait times.

Making the BACs busier while not missing deadlines has the potential to de-
crease latency. This divides the work on more BACs and increases throughput.
However, it seems that the Q-learning scheduler suffers from not completing ATB1
jobs immediately as can be seen in Table 5.3. Furthermore, it seems that BTA jobs
also achieve poor latency. This can probably be explained by the wait time actions
in Figure 5.6 which show that many DL symbols have been assigned with low wait
times, which for DL means higher latency.

Figure 5.18 A scatter plot for the Q-learning scheduling agent choices in PRB
sizes for each step. Blue corresponds to downlink and red corresponds to uplink.
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Figure 5.19 A scatter plot for the Q-learning scheduling agent choices in prior-
ity for each step. Blue corresponds to downlink and red corresponds to uplink. 0
corresponds to the highest priority and 2 corresponds to the lowest.

Figure 5.20 A scatter plot for the Q-learning scheduling agent choices in wait time
for each step. Blue corresponds to downlink and red corresponds to uplink.
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6
Discussion

6.1 Simulation Design

Some parts of the simulation could be extended. While FDD has been implemented
in the simulation, the choice was made to exclude the configurations that use it from
the results. This is because configurations that use TDD were tested and examined
to a higher degree than FDD. Thus the simulation results could not be trusted when
using FDD. Future tests with FDD when the simulation has been tested further could
provide interesting results.

The simulation generates one ATB1 symbol token and one ATB2 symbol token
from one uplink symbol. One change to the general design that would simplify the
problem would be to not schedule ATB1 and ATB2 separately. The job types take
different amount of time to complete, however, they share the latency definitions.
As can be seen in Table 5.2 ATB1 contributes to the latency increase. Furthermore,
in Figure 5.3 and Figure 5.6 it can be observed that the scheduler actually schedules
ATB1 jobs with a wait time larger than zero even when BACs are available. Thus, in
order to make the system easier to control it might be beneficial to abstract the job
types to UL versus DL and let the scheduling between job types in UL be handled
in a static way.

6.2 Scheduler Design

The design of the state space requires some tweaks in order to be applied to the
real system. The real system is a continuous task where the number of symbols
increases indefinitely. Thus the state property of symbol index is not suitable as
it would increase infinitely. One possible way to do this would be to replace the
symbol index with a property that captures progression in time but does not increase
indefinitely, perhaps using subframe and slot number in a radioframe as part of the
state space, see Section 2.1.

As discussed previously the action space is part of the design and care will have
to be taken in how much freedom the schedulers are allowed. For example, it might
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not be reasonable to include priority as part of what the scheduler is allowed to
decide. As discussed before in Section 5.1, it mostly matters when there are both
DL and UL jobs in the job queue. Perhaps the priority could be assigned so that
DL jobs are prioritized higher than UL jobs in order to avoid DL jobs missing their
deadlines. Similar arguments could be made to further restrict the action space of
the scheduler. For example, some possible wait times will never be optimal as they
will always result in missed deadlines. On the other hand, these actions also make it
easier to check if the scheduler actually converges since it is guaranteed that some
actions will result in poor performance. Furthermore, the scheduler is meant to be
able to handle different configurations and thus it can be difficult to determine that
some combination of action should be allowed or not.

It is clear from the results that the DQN-based scheduler performed poorly.
However, it should be noted that this does not necessarily mean that it is unreason-
able to investigate this algorithm further for the purpose of scheduling. The regular
Q-learning scheduler has been easier to implement and there is a possibility that
the DQN scheduler performs poorly because of human error. If this is the case, it
it probable that there is a problem with the design of the neural net that approxi-
mates the Q-function or the parameters used for the simulations. Furthermore, the
DQN has been able to handle complex systems, for example being able to play Atari
games [Volodymyr Mnih and Silver, 2015]. One important thing to consider here is
that DQN is usually used in a system where the states consist of pictures and the Q-
function is estimated through underlying convolutional neural nets. Thus the DQN
has potential in the fact that it is better suited to handle large state spaces which
might become a problem for the regular Q-learning scheduler when developed fur-
ther.

This thesis has used Q-learning based schedulers in trying to schedule in an op-
timal way. However, other reinforcement learning algorithms might be better suited
to this task. For example the current Q-learning schedulers are model-free and do
not require any information about the underlying Markov decision process. But it
is known when symbols will arrive to the scheduler and in some configurations it
is also known beforehand if these symbols are uplink or downlink. Perhaps if this
information of the underlying Markov decision process could be incorporated in a
model-based scheduler it could beat the Q-learning based schedulers.
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7
Conclusion

A simulation of the scheduling environment has been implemented and several
scheduling algorithms have been implemented. While there was not enough time
to examine FDD, most of the important system dynamics were simulated. Two re-
inforcement learning based schedulers were implemented and tested on the system,
and one of them provided promising results.

The results shows that the Q-learning based scheduler were able to beat the
baseline in terms of total latency for system 1. Furthermore, even if the scheduler
was unable to beat the baseline for system 2 it still passed all deadlines. The DQN
based scheduler, however, faced issues regarding convergence in system 1 and 2
which led to missed deadlines and poor latency. As discussed previously, there are
some additions and revisions that could be made to the scheduler. The primary of
these is the ability to handle the continuous task of the real system. This requires
some modification of the state space of the scheduler. Another interesting prospect
is to investigate to what degree the scheduler should be limited in the action space
in order to ensure better performance. Furthermore, some modifications to how the
symbols are handled by the overall simulation is suggested.

In conclusion, it is shown that the Q-learning based scheduler is able to handle
scheduling on the EMCA for two different configurations in terms of passing dead-
lines on the simulated system. For one of these, the simulated total latency was also
reduced. While these results provide validation for reinforcement learning-based
schedulers, there are also additional steps required until it could be applied on the
real system.

44



Bibliography

Chinchali, S., P. Hu, T. Chu, M. Sharma, Bansal, M., Misra, R., M. Pavone, and
S. Katti (2018). “Cellular network traffic scheduling with deep reinforcement
learning”. DOI: https://doi.org/10.1016/j.engappai.2004.08.018..

Chollet, F. et al. (2015). Keras. https://keras.io.
DeepMind. Alphago. URL: https : / / deepmind . com / research / case -

studies/alphago-the-story-so-far.
Ergen, M. (2009). Mobile Broadband. Springer US. ISBN: 9780387681924.
Erik Dahlman Stefan Parkvall, J. S. (2018). 5G NR, The Next Generation Wireless

Access Technology. Academic Press.
Gad, A. F. and F. E. Jarmouni (2021). Introduction to Deep Learning and Neural

Networks with Python. Academic Press. ISBN: 9780323909334.
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, et al. (2015). TensorFlow: large-scale
machine learning on heterogeneous systems. Software available from tensor-
flow.org. URL: https://www.tensorflow.org/.

Scherfke, S. and O. Lünsdorf (2020). Simpy, discrete event simulation for python.
URL: https://simpy.readthedocs.io/en/latest/index.html (visited
on 2021-04-08).

Sewak, M. (2019). Deep reinforcement learning. Springer.
Sutton, R. and A. Barto (2018). Reinforcement Learning: An Introduction. Second

edition. MIT Press. ISBN: 9780262352703.
Volodymyr Mnih, K. K. and D. Silver (2015). “Human-level control through deep

reinforcement learning”. Nature. DOI: https : / / doi . org / 10 . 1038 /
nature14236.

von Butovitsch, P., D. Astely, A. Furuskär, B. Göransson, B. Hogan, J. Karlsson, and
E. Larsson. Advanced antenna systems for 5g networks. URL: https://www.
ericsson.com/en/reports-and-papers/white-papers/advanced-
antenna-systems-for-5g-networks.

45

https://doi.org/https://doi.org/10.1016/j.engappai.2004.08.018.
https://keras.io
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://www.tensorflow.org/
https://simpy.readthedocs.io/en/latest/index.html
https://doi.org/https://doi.org/10.1038/nature14236
https://doi.org/https://doi.org/10.1038/nature14236
https://www.ericsson.com/en/reports-and-papers/white-papers/advanced-antenna-systems-for-5g-networks
https://www.ericsson.com/en/reports-and-papers/white-papers/advanced-antenna-systems-for-5g-networks
https://www.ericsson.com/en/reports-and-papers/white-papers/advanced-antenna-systems-for-5g-networks


Bibliography

Wang, Y.-C. and J. M. Usher (2005). “Application of reinforcement learning for
agent-based production scheduling”. DOI: https://doi.org/10.1016/j.
engappai.2004.08.018..

46

https://doi.org/https://doi.org/10.1016/j.engappai.2004.08.018.
https://doi.org/https://doi.org/10.1016/j.engappai.2004.08.018.


Document name 

Date of issue 

Document Number 

Author(s) Supervisor 

 
Title and subtitle 

Abstract 

Keywords 

Classification system and/or index terms (if any) 

Supplementary bibliographical information 

ISSN and key title ISBN 

Language Number of pages Recipient’s notes 

Security classification 


	Acronyms
	Introduction
	Objectives
	Delimitations
	Related Work
	Outline of the Report

	Background
	Transmission
	Components
	System Overview

	Model
	Simulation Components

	Reinforcement Learning
	Temporal-difference Learning
	Q-learning
	Exploration versus Exploitation
	Deep Q-learning

	Results
	I/O Design
	RL Implementation Details
	System 1
	System 2

	Discussion
	Simulation Design
	Scheduler Design

	Conclusion
	Bibliography



