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Abstract

Distinguishing between people's voices is something the human brain does nat-
urally, using only frequencies picked up by the inner ear. The �eld of speaker
recognition is concerned with making machines do the same thing using digitally
sampled speech and data processing. The processing extracts relevant informa-
tion about the speech from the high dimensional acoustic data which can help the
machine understand to which speaker a speech sample belongs. Several methods
exist to solve this problem, most of which are based on modelling a sample as a
sequence of time frames, each representing the current frequency characteristics of
the sound input. A common choice of frequency characteristics are Mel-Frequency
Cepstral Coe�cients (MFCC), which represent the overall shape of the frequency
spectrum representation of the input during each time frame. This thesis presents
a di�erent approach, inspired by �ndings of how the human brain processes tac-
tile sensory input, which lets an unsupervised learning model pick out important
combinations of frequencies from the signal. These di�erent combinations of fre-
quencies arise because they have an observed spatiotemporal relationship across
multiple data samples and speakers, in which their intensities correlate in time.
Extracting spatiotemporal patterns between input frequencies as features instead
of the overall spectrum shape can lead to new, more robust ways of encoding
auditory data.
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Popular Science Summary

Recognizing the voices of people you know is probably something you

take for granted. However, when considering the task in more detail it

is astounding how the brain manages to distingush between the voices

of almost everyone you've met solely based on the frequencies picked up

by your inner ear. Based on recent insights into how the brain processes

the sense of touch, this thesis presents a new way of approaching the

problem of making sense of sound.

When you are recognizing someone's voice, you are not distingusishing one
certain frequency associated with that person, but rather you recognize a com-
bination of many di�erent frequencies in intricate patterns over time that makes
the voice sound familiar. These di�erent frequency combinations are a result of
a persons vocal tract which creates resonances at certain frequencies. A persons
voice is therefore much like an acoustic �ngerprint, as the vocal tract encompasses
many di�erent aspects of a persons physiology, from the shape of the tounge to
the width of the nostrils. A �ngerprint can be photographed and relatively easily
reproduced. To reverse-engineer a persons vocal tract from speech is a much more
di�cult task. For this reason, your voice is a good biometric that can be used for
authenticating yourself when accessing private information.

Speaker recognition is the scienti�c �eld of trying to determine who is speak-
ing. Today this is normally done with machine learning techniques, in particular
arti�cial neural networks. In order for these networks to easier process all of the
intricacies of sound, only the very general shape of the frequency representation is
used. This approach is e�cient but far from how our own human hearing functions.

At the most basic level, the human brain processes sensory data through the
activations of vast numbers of neurons. Recent �ndings has found that for the
sense of touch, the brain might make sense of all this incoming data by learning
to distinguish recurring temporal patterns in the activations. Based on these
principles this thesis presents a new biologically inspired way of dealing with sound
data.
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Chapter1
Introduction

Robust machine learning requires the ability to clearly distinguish between dif-
ferent patterns of incoming data and being able to separate recurring patterns
from noise. This is mainly achieved through supervised tuning of parameters dur-
ing training in order to minimize a certain loss function. Biological systems, in
contrast, learn in an unsupervised manner to distinguish between sensory input.
In the central nervous system, a huge amount of data is constantly being regis-
tered and processed in order to extract meaningful patterns. These sensory input
patterns are spatiotemporal, i.e not only do the types of active neural pathways
determine how the input is interpreted, but also the order and timing in which
they activate. Given that biological systems successfully process large amounts of
sensory data, an understanding of this process could lead to new ways of designing
machine learning models. It is natural to apply such a biology-inspired processing
approach to sensory-like data, since that is the domain it was evolved to function
in.

In the case of auditory data, a lot of active research is being carried out in
the �elds of speech and speaker recognition. Most systems use recurrent or con-
volutional arti�cial neural networks (ANNs) for capturing the temporal context
of sequential speech segments with good results compared to using conventional
ANNs. With some exceptions, most of these ANN models operate on static fea-
tures extracted from segments of sound containing speech. These features are low
dimensional representations of the current auditory character of the sound, which
process each feature independently from the others. A frequently used feature
extraction technique is Mel-Frequency Cepstral Coe�cients (MFCC) extraction
which captures the general shape of the frequency spectrum of the sound at each
time segment. The main disadvantage of this approach is that relevant time dy-
namics and/or �ner grained acoustic features may be lost because they are invisible
to the learning part of the network. Noise is also incorporated into the acoustic
features to a relatively high degree. Some type of encoding which reduces the
high dimensionality of the acoustic input is often needed to e�ectively process
the data. However, preferably these encodings would be learned by some process
which �lters out noise and accounts for the temporal context of each feature.

This thesis aims to determine how biology-inspired data processing, based on
recent insights into the cuneate nucleus' functioning in processing tactile input,
performs compared to MFCCs in the �eld of speaker recognition. Translating the
neurophysiology of the cuneate nucleus into a software model could lead to new
ways of encoding high dimensional data with temporal components. The hypoth-

1
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esis is that the same mechanisms through which the cuneate nucleus segregates
tactile data can be applied to segregate acoustic data as well. The motivation
behind this is that both types of inputs emerge from a large number of receptors
which can be interpreted in terms of their spatiotemporal behavior. A model emu-
lating these mechanisms could �nd encodings which discriminate between speakers
when trained with speech data and could hence be used in the �eld of speaker
recognition.

1.1 Background on Speaker Recognition

Speaker recognition (or voice biometrics) is the process of identifying a speaker
based on speech. Raw speech audio is high dimensional sequential data from which
the goal is to extract speaker embeddings. Speaker embeddings are numerical
vectors that represent a point in a high dimensional space which can be used to
determine how similar two utterances are depending on the distance between their
embeddings. This method of extracting embeddings reduces the dimensionality
of the input and eliminates the time-dependant component of the data since the
whole utterance is condensed into one single vector. This speaker embedding can
be used to distinguish between speakers or validate a claimed identity during an
authentication session.

1.2 Background on the Cuneate Nucleus

Sensory information is processed very di�erently in the nervous system of animals
compared to the usage of static feature extraction algorithms. The nervous system
adapts to input and learns how to distinguish between stimuli in an unsupervised
manner. In the case of tactile input, work done by Jörntell H. et al. [9] show that
the nervous system is able to segregate between di�erent types of haptic stimuli in
the neurons of the cuneate nucleus (CN ), a region which processes tactile inputs
before they reach the cortex. The neurons manage to dynamically encode unique
spatiotemporal patterns from the 10'000s of primary a�erents (PAs) emerging from
tactile sensors in the skin even though their receptive �elds are similar. In essence,
the high dimensional input features are encoded before being further processed by
the brain.

1.3 Background on Auditory Perception

Similarly to tactile inputs which emerge from mechanoreceptors in the skin, au-
ditory inputs emerge from thousands of hair cells in the cochlea. These hair cells
sense vibrations of the �uid inside the cochlea through their stereocilia organelles
which convert the vibration's mechanical energy to action potentials which travel
to the the brain via the auditory nerve. These hair cells respond in correlation with
their position inside the cochlea. The spiral shape of the cochlea acts as a low pass
�lter, the outer parts responds to high frequencies while the inner parts responds
to increasingly lower frequencies. Hence the PAs emerging from the cochlea carry
information about speci�c frequency components of the sound.
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Chapter2

Theory

This chapter will introduce the two feature extraction approaches to be compared
which will be called MFCC and Cuneate Nucleus (CN ) feature extraction re-
spectively. The chapter starts with explaining the general state of the speaker
recognition �eld and the theory behind human speech generation.

2.1 Speaker Recognition

The performance of a speaker recognition system depends mainly on the speaker
transform and the resulting speaker embedding. The speaker transform is a way of
mapping the high dimensional acoustic input from an utterance to a low dimen-
sional utterance-level representation of the speaker called the speaker embedding.

The utterance is usually divided into smaller time frames which represents the
state of the frequency spectrum at each time instant. The process of applying
the speaker transform in order to yield a speaker embedding is shown in �gure
2.1. The �gure illustrates how the utterance is divided into segments called frames
which are created by sliding a window function across the signal with a certain step
length. The signal is multiplied by the window function at each time step to create
individual frames where the amplitude of the signal gradually diminshes closer to
the edges of the frame. Since a Fast Fourier Transform (FFT) is usually applied
to the frames, the window function helps to reduce spectral leakage resulting from
discontinuities at the frame edges. The features associated with each frame are
called frame level features to emphasize that they only carry information about
that particular time frame and not the whole utterance.

The speaker embedding is an n-dimensional vector of real valued numbers
where embeddings of the same speaker are ideally close in the n-dimensional space
and distant for di�erent speaker. This means that the quality of a speaker trans-
form depends on the ability to minimize the distance between di�erent utterance's
speaker embeddings from the same speaker and maximizing the distance between
speakers. Doing so creates data clusters from which a classi�er clearly can distin-
guish between speakers.

There are two subcategories of speaker recognition, speaker identi�cation and
speaker veri�cation. Central to both categories is the concept of a speaker model,
this model is a general representation of a speaker that is created based on previ-
ously recorded utterances from that speaker. This representation can be a numeri-

3
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Figure 2.1: Illustration of the process of creating the frame level
features used by the speaker transform

cal vector or integrated into the layers of a neural network. Speaker model vectors
are usually created during an enrollment phase where the average of a number of
utterance embeddings are used as a speaker model. For an integrated approach
a neural network is simply trained to categorise an utterance into a �xed speaker
set.

Speaker identi�cation is the process of identifying an unknown speakers' utter-
ance as coming from some speaker in a �xed set of registered speakers. The speech
utterance is compared with speech models from known speakers and the unknown
speaker is identi�ed as the speaker whose model had the best match. This problem
is suitable for an entirely integrated approach using a neural network because no
embeddings needs to be extracted since the classes are limited to the classes used
during training of the ANN.

Speaker veri�cation is the process of accepting or rejecting a claimed identity
of an unknown speaker based on if an utterance matches a predetermined speaker
model well enough. Usually, this speaker model is a vector created by averaging a
number of embeddings during the enrollment phase. The performance of a speaker
veri�cation system is often measured in its Equal Error Rate (EER) which is the
point at which the amount of false accepts and false rejections are equal. This
measure is needed since the threshold for accepting a claimed identity can be
changed depending on if the desired system should be strict or loose. The EER rate
is a way of standardising the performance measure of speaker veri�cation models
so that they can be compared more easily. This thesis is exclusively concerned
with the speaker veri�cation problem.

2.2 Embedding Model Variations

Until a few years ago, the state-of-the-art embeddings were created using classi-
cal statistical methods such as Gaussian Mixture Models (GMM) combined with
Universal Background Models (UBM) which were used to model the sequence of
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frame level features extracted from audio input. Recently however, speaker recog-
nition systems have undergone a fundamental shift from statistical methods to
Deep Neural Network (DNN) embedding extraction which was �rst proposed by
Variani et al. [2]. These embeddings are called d-vectors and are based on ex-
tracting features from the last hidden layer of a DNN. Features extracted in this
way carry condensed information from the previous layers which the DNN uses in
order to make a correct classi�cation in the �nal layer. Typically, the �nal layer is
a softmax layer which turns the output from the previous hidden layer to a proba-
bility distribution over the classes in the training set. In speaker recognition each
speaker belongs to one class. The underlying hypothesis of this method is that
the trained neural network has learned e�cient representations of the speakers in
the training set which can be generalised to represent also unknown speakers. The
cosine similarity metric (which is discussed in more detail in chapter 3, section
3.1) is often used to de�ne how well two DNN embeddings match.

In order to obtain a single utterance-level speaker embedding the frame-level
features need to be either concatenated and stacked at the input or fed to the
model sequentially to let the model handle the temporal context. The former is
the method of choice for Multilayer Perceptron (MLP) and Convolutional Neu-
ral Network (CNN) architectures while the latter is used for Recurrent Neural
Networks (RNN). Generally MLP models have been outperformed by other ar-
chitectures, such as Long Short-Term Memory (LSTM) [3, 4], Time Delay Neural
Network (TDNN) [5] and CNN [6] based models.

2.3 Input Feature Extraction Variations

In most speaker recognition systems the speech input is divided into a number of
frames using a 25ms sliding window from which acoustic features are extracted,
usually binned frequencies from the spectrum representation of the input. Fur-
ther feature extraction from the frequencies is often carried out for dimensionality
reduction since the frequency data can be too high-dimensional to be used di-
rectly with machine learning methods. However, since the advent of deep learning
networks which can handle higher dimensional input, using the binned frequency
spectrum directly as features has become increasingly popular.

Despite the shift in architecture the feature extraction step in most models
have remained the same, namely extracting frame-level Mel Frequency Cepstral
Coe�cients (MFCC). MFCCs are static acoustic features which capture the gen-
eral shape of the frequency spectrum (spectral envelope) at each time frame. The
MFCC features are static in the sense that the same feature extraction steps are
carried out regardless of the temporal context of the feature.
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2.4 Speaker Features

To understand the reasoning and e�cacy behind MFCCs and other acoustic fea-
ture extraction methods it is useful to model human speech generation as a signal
convoluted with a �lter. This model is called the source-�lter model. The signal
represents the glottal pulse, the frequency that originates in the vocal cords. This
signal carries information about the speakers pitch. The �lter represents a persons
vocal tract which transforms the glottal pulse into a more characteristic sound de-
pendant on several factors, including nasal cavity shape, teeth placement, tongue
shape etc. From a speaker recognition viewpoint the nature of the vocal tract �l-
ter should be accentuated in order to �nd the most discriminative features. Pitch
information can also be important, however, the information that it carries is not
as rich as the vocal tract �lter. Figure 2.2 illustrates the analogy between human
speech generation and convoluting a signal with a �lter. The resulting peaks in
the frequency domain results from resonance in the human vocal tract and are
called formants. These high energy frequencies determine the distinct sound of
the speech. For example, the approximate frequency positions of the �rst two for-
mants (F1 and F2) are su�cient to distinguish between most spoken vowels. This
is a fundamental functional principle in speech recognition since formant place-
ments determine which vowels and by extension which words are spoken. There
exists variations of formant positions between speakers for the same vowels. In
particular the higher order formants (F3, F4, F5 etc.) are mainly involved in pro-
ducing the distinct voice for a speaker. Consonants do not produce the same kind
of resonance in the vocal tract but instead produces a noise-like peak in the higher
end of the frequency spectrum. These consonant frequencies can in principle also
carry speaker speci�c information.

Figure 2.2: Source-�lter theory analogy between human vocal tract
and frequency �ltering
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2.5 MFCC Feature Extraction

MFCCs are commonly used in the �eld of speech recognition and speaker recogni-
tion. They capture the identity of sound relevant to human hearing by representing
the general shape of the frequency spectrum with frequencies scaled to mirror hu-
man auditory perception. Figure 2.3 illustrates the di�erent steps in processing
audio into its MFCCs.

Figure 2.3: Substeps for MFCC extraction

First the audio signal is divided up into frames of typically 25ms using a window
function. This time span is widely used in the speech analysis �eld based both on
qualitative arguments and more systematic studies [8]. The windows are converted
to the frequency spectrum using the Short-Time Fourier Transform (STFT). To
better mirror the auditory perception of humans the frequencies are mapped to the
mel scale through a triangular �lterbank. The mel scale is an empirically deduced
logarithmic frequency scale which is more dense at lower frequencies, de�ned as in
equation 2.1 below.

fmel = 2595 · log10(1 +
fHz

700
) (2.1)

Figure 2.4 shows an example of a mel-spaced �lterbank which creates a number
of weighted averages of frequencies in di�erent frequency bins, these bins and the
weight distribution within them are represented by the triangular �lters seen in
the �gure. Each coloured triangular �lter represents one mel-frequency bin. The
overlapping of the �lters causes the data to be smoothened and the bins to be
correlated. The amount of frequencies per bin is smaller at lower frequencies in
order to mimic the observation that human hearing is more sensitive to changes
in pitch at low frequencies. The �lterbank reduces the dimensionality of the input
from the number of frequencies to the number of �lters. The logarithm of the
spectrum is taken which more closely resembles the way humans perceive sound
intensity depending on frequency.

To yield a representation of the general shape of the spectrum (spectral enve-
lope) the discrete cosine transform is applied. This is a way to reduce the dimen-
sionality of the data and to decorrelate the frequencies because of the overlapping
triangular �lterbanks. The result is a representation of the frequency spectrum
in the quefrency domain as a function of the cosine basis functions of di�erent
periods. The quefrency domain represents the frequencies present in a spectrum
when viewed as a time-domain signal. The lower end of the quefrency axis car-
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ries information about the general shape of the spectral envelope while the high
end captures the more fast changing spectral details. Usually, the higher cepstral
coe�cients are discarded as they incorporate too much noise. The bene�ts of
adding higher level MFCCs usually diminishes after approximately the �rst 10-20
coe�cients depending on the application and required level of detail. The MFCC
coe�cients are usually used as sequential input to machine learning algorithms
which classify the audio sequence as coming from a certain speaker (in the case of
speaker recognition) or as corresponding to di�erent words (speech recognition).

Figure 2.4: Mel spaced triangular �lterbank with 15 �lters

2.5.1 MFCC Deltas

An improvement to static MFCC extraction is to incorporate the �rst (∆) and
second (∆∆) order derivatives of the coe�cients with respect to the discrete time
steps. This means that the feature vector carries explicit information about the
changes in individual quefrencies of the cepstrum. This addresses some of the
temporal context of the input frames. However, the temporal information is lim-
ited to the individual changes in each feature and does not capture any temporal
relationships between the features. Furthermore, the ∆/∆∆ features are linear
transformations of the input features which in principle can be performed inside
the hidden layers of ANNs.

2.6 Cuneate Nucleus

The neurons in the cuneate nucleus (CN) form an interface for tactile sensory in-
put before it reaches the brain cortex. Large numbers of primary a�erents (PAs)
emerging from receptors in the skin reach the CN which processes the input before
relaying it on to further brain networks. Results from in-vivo experiments [9] has
shown that the cuneate neurons are able to segregate between di�erent types of
tactile stimuli despite sharing a similar receptive �eld. The neurons seemingly re-
spond to unique combinations of inputs in time, capturing spatiotemporal patterns
in the PAs. One of the main characteristics of the cuneate neurons is an almost
binary division of the synaptic weights into high and low weight synapses [10],
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where low weight synapses are most prevalent. In practice this means that the
neurons are mostly responsive to a very sparse set of synapses. This sparse weight
distribution indicates learning of the synaptic weights and may have an impor-
tant role in the cuneate neurons decoding of tactile PAs. The excitatory synapses
are observed to have a speci�c impact for a given neuron, while the inhibitory
synapses are relatively uniform and low weighted [11] which means that their ef-
fect on the neuron is primarily as a group. Presumably, these synaptic weights
are strengthened and weakened gradually through conventional correlation-based
synaptic plasticity (Hebbian learning).

2.7 Cuneate Nucleus Model

The Cuneate Nucleus model (CN model) is a biology inspired feature extractor
emulating the mechanism through which the neurons of the cuneate nucleus encode
tactile inputs. The main function of the model is to capture lower dimensional
representations of certain spatiotemporal patterns present in input. This model
consists of a set of neurons, each connected to a �xed set of arti�cial PA inputs
through a number of synapses. The synapse connections are illustrated in Figure
2.5. A central concept for the model is the activity of the neurons, which is
summarized as the concentration of calcium ions (Ca2+) in the main compartments
of the neurons. This calcium activity is refered to as the Ca2+tot activity and is the
numerical output reading from the CN model. The Ca2+tot activity is a non-linear
function of the local calcium (Ca2+loc) activities in each synaptic space and several
intrinsic parameters. The Ca2+loc activity in a synapse is equal to the amplitude of
the incoming PA multiplied by the synaptic weight of the synapse. The input A to
the main compartment Ca2+tot activity from the n synapses is hence a function of
the incoming PA activity to each synapse ai and its synaptic weight wi according
to 2.2.

A =

n∑
i=1

wi · ai (2.2)

The input from the synapses A a�ects Ca2+tot activity through a dynamic relation-
ship called the dynamic model. This model has two main functions, to accentuate
sudden increases in activity and to enter into a state of afterhyperpolarization
(AHP) after a period of high activity. During the AHP phase it is harder for
Ca2+loc activities to raise the Ca2+tot activity level which mimics the way biological
neurons function after they have �red. This behaviors results in more distinct
learning which is highly dependant on the dynamics of the input PA information.
There are two kinds of synapses, excitatory and inhibitory. Excitatory synapses
contribute to a positive change in Ca2+tot activity while inhibitory synapses con-
tribute to a negative change in Ca2+tot activity. To mimic the �ndings from the
in-vivo experiments [11], the excitatory synapses are speci�c to one PA. In con-
trast to the excitatory synapses, each CN has one inhibitory synapse which instead
is receiving information uniformly across the whole batch of PAs, i.e the inhibitory
synapse calcium activity is equal to the sum of all PAs. It is assumed that the high
weight excitatory synapses generally have correlated PA activity i.e they respond
to speci�c patterns present in the corresponding PA for all types of stimuli [11].
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Figure 2.5: Synapse connections for the cuneate neurons. A illus-
trates the di�erence between excitatory (blue) and inhibitory
(red) synapse connections. B shows the terminology for the
neuron compartments.

2.7.1 Dynamic Feature Extraction

Used as an unsupervised feature extractor, the CN model output is dependant on
both the spatial and the temporal components of its input features. This allows
for large amounts of information to be extracted from time-changing inputs as a
function of both amplitude, rate of change, timing and the internal state of the CN.
Each output state will be highly dependant on the previous context, in particular,
each PA's e�ect on the output will be determined not only by its own previous
context, but also the previous context of every other PA. This allows the model to
gradually become responsive to spatiotemporal relationships between PAs during
the correlation based (Hebbian) learning.

2.7.2 Learning of the Synaptic Weights

The synaptic weights of the CN model neurons are gradually learned based on a
number of parameters. An overview of the learning model can be seen in Figure
2.6. The �gure illustrates the mechanisms which determine the changes in the
synaptic weights. The underlying principle is the Hebbian learning rule, meaning
that weights of synapses whose activations are correlated with high total Ca2+tot
activity are increased (Long Term Potentiation, LTP) while decorrelated synapses
lower their weights (Long Term Depression, LTD). The inhibitory synapse weights
are an exception in that they simply increase/decrease by a �xed magnitude in
order to lower the mean Ca2+tot activity to a desirable level called the calcium set
point (Ca2+set), which is discussed later in this section. The inhibitory weights are
bound in the interval [−1, 0]. For excitatory weights, the factors which directly
a�ect the rate of the learning are the degree of correlation, the excitatory learning
rate (rexc) and the current weight of the synapse. Excitatory synaptic weights exist
in the interval [0, 1] and are most susceptible to change at low weights according
to a function yielding the synaptic weight compensation (Kcomp) shown in �gure
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2.7. The change in the weight is proportional to Kcomp which is a function of
the current weight. This model increases the synaptic plasticity of low weight
synapses in order for the model to be susceptible to novel input patterns. The
excitatory learning rate is an intrinsic parameter optimized in order to maximize
the amount of samples (stimulus representations) processed before the weights
converge to the low/high weight binary division. This is in order for the model to
generalize better and not be overly biased by the types of stimulus presented in
the beginning of learning. Since all neurons in the model share the same behavior,
the initial weights of the synapses (seed weights) are di�erent for each neuron.
The seed weights are randomly generated based on a log-normal distribution and
is the reason why the neurons potentiate di�erent combinations of synapses during
training.

Figure 2.6: The learning model. Small squares indicate static hy-
perparameters.

Figure 2.7: Weight com-
pensation

Figure 2.8: Learning
threshold gain
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In order to de�ne correlation more precisely, thus preventing insu�ciently
correlated synapses from potentiating a Learning Polarity Threshold (LPT) is
dynamically adapted for the Ca2+tot activity during training. This threshold is set
so as to keep the total sum of excitatory synaptic weights around a prede�ned level
called wset. This mechanism keeps the synaptic weights in a desirable operating
point by increasing the threshold for correlation if the weights increase beyond the
set point and vice versa. The learning polarity threshold is de�ned by equation
2.3 below.

LPT = mean(Ca2+tot) ·KLPT (2.3)

The gain factor, KLPT , is de�ned by two linear slopes shown in �gure 2.8. The
�gure shows the excitatory synaptic weight set point wset which is located at the
intersection of the two slopes. The mean Ca2+tot activity is de�ned as the aver-
age of the three most recent means in order to smoothen the threshold changes
between stimulus presentations. A corresponding correlation threshold, Local Ac-
tivity Threshold (LAT) is also used for all Ca2+loc activities, which is statically set
so that only a certain upper range of the local activity is considered active for the
learning part of the model. This threshold can be set freely depending on input
characteristics in order to determine what input amplitude is signi�cant enough
for a�ecting the learning. In order for correlation to occur both synaptic (LAT)
and main compartment (LPT) thresholds must hence be exceeded by the local
and total activity respectively. Decorrelation occurs when the local Ca2+ thresh-
old (LAT) is exceeded in the synapse but the Ca2+tot activity does not exceed the
LPT threshold.

The weight change ∆w is de�ned as in equation 2.4 below. For each synapse,
the instantaneous correlations are integrated in order to determine the degree of
correlation for each full stimulus presentation (t ∈ [0, tmax]). The resulting integral
is then multiplied by the synaptic weight compensation and the excitatory learning
rate and the resulting weight change is added/subtracted to the previous synapse
weight. An example of such a correlation process is illustrated in �gure 2.9.

∆w = rexc ·Kcomp ·
∫ tmax

0

(Ca2+tot(t)− LPT ) ·max{Ca2+loc(t)− LAT , 0}dt (2.4)

The inhibitory weights are another control mechanism in order to keep the mean
Ca2+tot activity around the Ca2+set setpoint. This is required in order to prevent the
Ca2+tot activity from being too high which prevents the desired dynamic model be-
havior. If the mean Ca2+tot level exceeds Ca

2+
set the inhibitory weight is increased by

a �xed small change and vice versa. This change is equal to an intrinsic parameter
called the inhibition learning rate (rinh).

A summary of all the tunable hyperparameters and their main functions are
shown in table 2.1.
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Figure 2.9: Graphs showing a net negative correlation between local
Ca2+ activity and total Ca2+ activity.

Hyperparameter Function

Excitatory learning rate (rexc)
Controls the rate of change
for the excitatory weights

Excitatory weights setpoint (wset) Controls the sum of the excitatory weights

Inhibitory learning rate (rinh)
Controls the rate of change
for the inhibitory weights

Local activity threshold (LAT ) De�nes the lowest activity limit for learning

Calcium setpoint (Ca2+set) Controls the Ca2+tot activity

Table 2.1: Overview of the tunable model hyperparameters

2.8 Theoretical Comparison Between MFCC and Cuneate Nu-

cleus Feature Extraction

Whereas MFCC coe�cients are a compact way of representing the spectral enve-
lope, the CN model is learning spatiotemporal patterns in the power spectrum.
One of the main theoretical di�erences between the two feature extraction ap-
proaches is the degree to which the temporal context a�ects the output. MFCC
coe�cients are static in the sense that they capture the cepstral state of each time
frame without any notion of its temporal context, instead the context is usually
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handled by other models such as RNNs. The output from the CN model neurons
given a frequency input is highly dependant on the previous inputs which has
changed the internal state of the model.

MFCC coe�cients can be complemented with delta coe�cients, as discussed
in section 2.5.1, which represent the �rst and second order derivatives for each
coe�cient which provides temporal context. Because the delta coe�cients are a
linear transformation of the features they are in theory redundant when combined
with any densely connected ANN layer though they can still result in more ro-
bust performance. Deltas does not provide any information about the temporal
relationships between the di�erent coe�cients whereas the CN model output is
dependant on the timing of increased activity between the PA frequencies. Cer-
tain combinations of activity behaviors in PAs would be required in order for the
model neurons to respond with a substantial increase in total activity. In essence
this is a way to encode certain spatiotemporal patterns between PAs.

The CN model is unsupervised, just like MFCC extraction, but it adapts the
neuron responses to the dataset inputs during training without the need for the
dataset's target classes. The patterns that the model becomes sensitive to can
be present in multiple speakers however the assumption is that the combinations
of outputs from the neurons can as a group distinguish between speakers. For
example certain combinations of neurons might be particularily active during an
utterance from a speci�c speaker but not for others, or the timings of the neuron
outputs may di�er.

MFCC noise can be reduced by discarding the higher order cepstral coe�cients
as they become increasingly more susceptible to fast changing spectral details.
This process functions as a low pass �lter, enabling more robust learning but also
reducing the amount of �ner grained details in the data. The CN model diminishes
noise impact during training through lowering the synapse weights of PAs that
usually are irrelevant to the main compartment Ca2+ activity and requiring the
inputs to exceed the synaptic LAT threshold to have an e�ect on learning. Because
the model is sensitive to the timing of increased inputs, i.e temporal patterns, it
should in theory not respond to sporadic inputs such as noise.
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Experimental Setup

3.1 Network architecture

In order to compare the e�ects between using CN model feature extraction and
MFCCs two speaker veri�cation models were created which were comparable in
every aspect after the feature extraction step. The di�erence in the feature extrac-
tion outlines for the two approaches can be seen in �gures 3.1 and 3.2. The main
part of the models is the neural network which was based on previous work done
with the d-vector approach to speaker recognition, primarily Apple's 2018 paper
from the ICASSP conference [3]. This neural network will be called the embedding
network since it is generating the speaker embeddings.

The embedding network seen in Figure 3.3 and the subsequent classi�er were
kept the same for both comparisons. The embedding network is an ANN with an
LSTM-Linear-Softmax architecture. The size of the linear layer determines the
size of the speaker embedding and is �xed at 128 nodes which yields a numerical
speaker embedding vector of size 128. The size of the linear layer was chosen based
on Apple's model implementation. The size of the softmax layer is equal to the
number of speakers in the training set. The LSTM layer size is 512 units and
only the last output of the LSTM layer is fed to the densely connected linear layer
in order to obtain a single, utterance-level embedding. Like in Apple's model [3]
the LSTM activation function is the tanh activation function, adam optimization
is used for batch gradient descent and categorical crossentropy is used as loss
function.

The embedding classi�er used is the cosine similarity metric which is de�ned as
the cosine of the angle θ between the speaker model A and the current embedding
B which is given according to equation 3.1.

Similarity score ≡ cos(θ) =
A ·B

‖ A ‖‖ B ‖
(3.1)

The similarity score ranges between −1 and 1 where a higher score means that the
angle between the two length normalized embeddings is smaller and thus they are
considered to be more similar.

15
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Figure 3.1: MFCC feature
extraction outline

Figure 3.2: CN feature ex-
traction outline

Figure 3.3: Embedding network

3.2 Dataset

The dataset used in the comparison was Google's Speech Commands which consists
of one word audio samples from a list of 10 short words uttered by di�erent speak-
ers. The dataset is hence semi-text dependent since the same words are uttered
by every speaker. There exists repetitions of the same word by the same speaker.
For the training and testing of the embedding network 1'500 and 270 speakers
were used respectively, totaling in 46'320 and 9'309 number of utterance samples
respectively with an average number of samples per speaker of 30. The training
of the CN model used 150 speakers with a total of 4'549 utterance samples where
each sample is refered to as a stimulus presentation. Because speaker veri�cation
is an open-set problem where speakers not included in the training set should be
able to generate e�ective speaker models, the training and testing sets consisted of
separate speakers. The sample rate of the dataset is 16'000Hz which meant that
the upper frequency limit for the �lterbanks was 8'000Hz according to Nyquist's
theorem. The used range of frequencies for all models was hence chosen between
0 and 8'000Hz in order to maximize the amount of frequencies considered.
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3.3 MFCC Model

The MFCC model uses a 25ms sliding Hanning window with a step size of 10ms,
which are well-established time parameters for MFCC coe�cients. The number
of mel-�lterbanks used were 26 which is a common MFCC �lterbank count for
the range 0 to 8'000Hz. As in the Apple implementation, 20 mean-normalized
MFCCs were extracted from each frame and these were used as sequential input
to the LSTM layer. With the added ∆ and ∆∆ coe�cients, representing the �rst
and second order derivative for each original coe�cient, 60 features were extracted
in total.

3.4 CN Model

The CN model uses a smaller window and step size (10ms and 4ms respectively)
than the MFCC model and operates on the logarithmic mel-frequency binned
spectrum. The reason for the shorter time frames was to have a higher temporal
resolution in order to capture more �ne-grained input patterns. A total of 100
mel-�lter banks were used so that 100 input sequences representing the changes in
the energy of each frequency bin were used as input to the CN model. The reason
for using more �lterbanks than for the MFCCs was to present the model with
more narrow frequency ranges for the PAs to make the learning more speci�c.
Furthermore, the inclusion of a large number of PAs more closely mimicks the
functionning of the biological cuneate nucleus. Each neuron in the CN model
was connected to all of the 100 inputs but the initial synaptic seed weight for each
neuron was randomly assigned using a log-normal distribution (mean = 0, variance
= 1). The frequency input signal was preprocessed in order to remove low level
amplitude noise and accentuate signi�cant increases in amplitude. Both 10 and 40
neurons were used in di�erent tests in order to evaluate the e�ect of the number
of neurons on the performance. In order to examine the learning behavior of the
model and to tune the model hyperparameters the synaptic weights were plotted
during training. The seed and end weights were saved in order to determine how
the PAs contributed to the weight outcome.

3.5 Evaluations

3.5.1 Dataset Performance

In order to draw conclusions about the performance of the CN model in comparison
to MFCC extraction, di�erent Equal Error Rate (EER) performance evaluations
were made. One evaluation with a clean test set (without any added noise) and
several others with varying levels of Signal-to-Noise Ratios (SNR). The noise added
to the utterance samples was additive white gaussian noise and the SNR ratio for
each sample is de�ned as in equation 3.2. The performance of a baseline CN model
with randomized end weights was examined in order to determine if the learning
process was succesfull in choosing the most relevant combinations of end weights.
A comparison using the mel �lterbanks directly as features to the embedding
network was also carried out.
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SNR =
Psample

Pnoise
=
RMS2

sample

RMS2
noise

= 10 · log10
RMS2

sample

RMS2
noise

[dB] (3.2)

3.5.2 CN Model Behavior

To determine which role the seed weights had on the end weights outcome these
were compared after learning in order to �nd any relationship between them. The
end weights of di�erent neurons were also compared to determine if the neurons
potentiated unique combinations of synapses.

The di�erence in the degree of correlation between PA activities of synapses
that ended with High End Weights (HEW) and synapses that started with high
seed weights but ended with Low End Weights (LEW) was examined to determine
if HEW synapses potentiated in relation to the underlying degree of correlation
between the HEW synapse's PAs. Correlation here refers to the overall overlap
in activity between two PAs. The hypothesis was that HEW synapses would
have more correlating PAs on average which would help to explain the end weight
distribution since synapses that are active together might have a higher probability
of having rises in activity simultaneously. The desired behavior of the model would
mean that if two synapses rise in activity together they are more likely to increase
the Ca2+tot activity and hence both potentiate together. The level of correlation
between two PA sequences was determined based on the numpy function correlate
which computes the cross correlation of two 1-dimensional sequences.
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Results

This chapter presents the results regarding both the general behavior of the CN
model in section 4.1 and the performance comparisons between the models in
section 4.2.

4.1 CN Model Behavior

4.1.1 End Weight Distributions

The end weight distributions for the CN model provides indications of potential
bias towards potentiating certain synapses. Together with the seed weights, the
end weights also show the impact of the initial weight con�guration on the �nal
synaptic weight distribution. Figures 4.1 and 4.2 are bar graphs showing the
synaptic weights of the seed weights (green) and end weights (blue) for all synapses
ranging from synapses with low frequency PAs to high frequency PAs. The pink
segments of the �gures clari�es where seed and end weight bars overlap.

An example of seed and end weights for a neuron can be seen in �gure 4.1
where the frequencies range from 0 to 8'000Hz on the mel scale. One of the obser-
vations from the results was a tendency for the model to potentiate synapses within
particular subregions (bands) of the frequency spectrum. These frequency bands
varied depending on the seed weight con�guration, where a high inital weight dis-
tribution in an area encouraged the model to potentiate the synapses there. When
the seed weight distribution was de�ned as the log-normal distribution across the
whole spectrum the model tended to frequently potentiate the highest available
frequencies. In order to steer the model into choosing frequencies more evenly
across the spectrum the seed weights were adjusted to have a higher mean in the
lower half of the spectrum (with a mean of 1 instead of 0). The speci�c combi-
nation of potentiated synapses were di�erent for each synapse due to the di�erent
seed weights. This is illustrated in �gure 4.2 where four neuron's end weights are
presented from the same CN model training.

19
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Figure 4.1: Seed weight (green) and end weight (blue) for each
synapse of a neuron with PAs ranging from 0 to 8000 Hz. Pink
segments indicates overlapping bars.

(a) CN1 (b) CN2

(c) CN3 (d) CN4

Figure 4.2: End weights (blue) and seed weight (green) for four
di�erent neurons during the same CN model training. Pink
segments indicates overlapping bars.
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4.1.2 Seed Weight Bias

The seed weights' role is to steer the CN model neurons into �nding di�erent
temporal patterns. However, an end weight distribution that is entirely determined
by the seed weight magnitude of each synapse is an indication that the learning
was too strongly dictated by the seed weights.

There was no bias towards potentiating the highest seed weight synapses across
the whole frequency range which can be deduced from the weight distributions in
�gures 4.1 and 4.2. This behavior is desired but it is possible that one contributing
factor is the potentiation of synapses in distinct frequency ranges and the depres-
sion of both high and low weight synapses outside this range. Within the HEW
synapses there were clear signs that high seed weight synapses were generally more
potentiated. Figure 4.3 shows an example of how the synaptic seed weights pro-
gressed towards the end weights during training of a neuron. It can be noted that
several high seed weight synapses gets depressed during training but they generally
belong to synapses outside the neurons particular frequency lump.

Figure 4.3: Example of synaptic weight progression during learning
for a neuron

4.1.3 Correlation Index

The correlation analysis is illustrated by the box plot in �gure 4.4 which shows the
median degree of correlation for each HEW (green) and LEW (red) synapse for 30
di�erent seed weight con�gurations. The degree is represented by the correlation
index which results from the average correlation of each synapse PA with each
of its own HEW/ LEW weight category synapses for every stimulus presentation.
The hypothesis that the HEW synapses would have more correlating PAs on av-
erage could not be con�rmed from the �gure but there were clear indications that
the HEW synapses had a larger variance in correlation index. This shows that the
model potentiated synapses which had a wide variety of correlation amongst them-
selves and/or depressed synapses which were evenly correlated with each other.
This suggests that the model can �nd spatiotemporal patterns in both generally
overlapping and non-overlapping PAs.

The correlation results showed no clear signs of being related to the frequencies
of the HEW synapses which was notable since the higher frequency synapses tended
to potentiate without any modi�cation of the seed weight con�guration. This
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could indicate that there was something not captured by the correlation index
which caused high frequency synapses to potentiate, which by extension could
indicate that the lack of overlap between HEW synapse PAs does not suggest that
the learning behavior was undesirable.

Figure 4.4: Correlation analysis of HEW (green) vs LEW (red)
synapses for di�erent seed weight distributions. Circles indi-
cate data outliers.

4.1.4 Neuron Activation Behavior

The total calcium activity in the neurons behaved in the intended way with sudden
activations during short time segments followed by a period of afterhyperpolariza-
tion (AHP). During the AHP period the total calcium acitivity was less sensitive
to increases in the synaptic calcium activities. Through tuning of the inhibitory
synaptic weights overactivation was prevented which otherwise caused the activity
to be less dynamic. Figure 4.5 shows the di�erence in neuron response to the same
input for seed weights (a) and end weights (b) for the same neuron presented in
�gure 4.1. The inhibitory synaptic weight for both con�gurations was allowed to
converge before testing. After the synaptic weights learning phase the neuron re-
sponds more dynamically and more localized in time. It can also be noted that the
end weight con�guration is more responsive to PA's during periods of low general
activity.
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(a)

(b)

Figure 4.5: Comparison of neuron response to the same PA input.
Net synaptic Ca2+loc activity is the sum of both excitatory and
inhibitory synaptic activity. The underlying excitatory synap-
tic acitivty is shown for all excitatory synapses beneath the re-
sponses.
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4.2 Dataset Performance

The EER performance of the trials with the clean dataset and with di�erent SNR
ratios are shown in table 4.1. Figure 4.6 illustrates the gradual decrease in perfor-
mance for the increasing SNR ratios given in table 4.1.

4.2.1 Clean Dataset

Looking at the results in table 4.1 it is clear that MFCC coe�cients outperformed
the CN model neuron outputs. For clean data, the temporally dependant fea-
tures captured by the MFCC+∆/∆∆ coe�cients greatly improved the perfor-
mance when added to the MFCC coe�cients. Using the mel �lterbanks directly
lead to better performance than using non-delta MFCCs but did not outperform
MFCC+∆/∆∆ features for the clean dataset. Increasing the number of neurons
improved the performance of the CN model. The CN model with randomized
synaptic end weights performed better than with learned weights for the clean
dataset which indicate that the learning of the synaptic weights was not optimal,
this is further addressed in the conclusion.

Features\SNR (dB) Clean
20

(13dB)
1

(0dB)
0.1

(-10dB)
0.01

(-20dB)

Mel Filterbanks (40 �lt.) 2.5 13.5 25.5 33.4 35.1
MFCC+∆/∆∆ (60 Coe�.) 1.4 16.4 30.1 35.0 38.2
MFCC (20 Coe�.) 3.6 14.5 23.1 32.3 34.5
CN (10 Neurons) 16.9 35.0 39.7 43.7 46.2
CN (40 Neurons) 14.5 33.0 34.5 42.1 44.4
CN (10 Rnd. Neurons) 12.5 26.2 38.2 42.5 45.1

Table 4.1: Speaker Veri�cation Equal Error Rate (EER%) for the
clean dataset and with di�erent level of SNR.

4.2.2 Noise Dataset

The introduction of noise degraded the performance for all features, particularly
for MFCC+∆/∆∆ coe�cients which reached higher EER rates than non-delta
MFCCs for SNR ratios of 20 and above. At SNR 1 the performance di�erence
between the CN models and the MFCC coe�cients decreased signi�cantly from
the clean dataset. For the CN model with 40 neurons (CN40) and MFCC+∆/∆∆
coe�cients the percentage point di�erence changed from 13.1% to 4.4%. Between
the same SNR levels (clean to SNR 1) the percentage point increase in EER
for CN40 was 20 % while the percentage point increase for the MFCC+∆/∆∆
coe�cients was 28.7%. Even more signi�cant was the percentage point increase
di�erence between SNR 1 and 20 where CN40 EER only increased by 1.5 % while
MFCC+∆/∆∆ increased by 13.7%. The CN model with 10 neurons also showed
less in�uence by noise from SNR 1 to 20 with an EER increase of 4.7%.

This distinct characteristic of the performance degradation from noise for
CN40 (that it remained relatively unchanged between 20 SNR and 1 SNR) is
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likely due to the nonlinear behavior of the CN model. The noise has to surpass a
certain level before it has an e�ect on the total calcium activity of the neuron due
to the e�ects of inhibition and the need for synaptic activities to increase simulta-
neously. This principle and the results indicate that there are regions of increasing
noise levels where the CN model performance remains mainly unchanged before
surpassing a level at which it starts deteriating again. The MFCC coe�cients
intuitively do not show this behavior since the noise is incorporated into the co-
e�cients in a continous manner by gradually scewing the shape of the frequency
spectrum.

The MFCC coe�cients and the mel �lterbanks had a similar performance
decrease with added noise which is intuitive since the MFCC coe�cients are just
a more compact representation of the mel-frequency spectrum.

Figure 4.6: Illustration of the e�ect of di�erent signal-to-noise ratios
on EER performance for the CN model, MFCC+∆/∆∆ and
MFCC features.
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Chapter5

Conclusion

The results showed a clear di�erence in the performance with clean and noisy
data for all model types. However the the CN models, while not performing as
well as the other approaches for clean data, shows promise for performing well
in noisy conditions. The principles behind the model, based on being susceptible
only to speci�c timings of frequency activities, together with the noise performance
results indicate that the model can function relatively undisturbed by increased
noise levels below certain thresholds.

The inclusion of the ∆/∆∆ features for the MFCC coe�cients caused the
model to perform substantially better for the clean dataset. This indicates that
there is a bene�t to be gained from presenting the embedding network with features
carrying information about their temporal context. However, in the presence of
noise the performance of MFCC+∆/∆∆ features degraded quickly. This behavior
for MFCC delta coe�cients to perform well during clean conditions but poorly
in noisy conditions is generally well known [12]. This is intuitively reasonable
since di�erentiation tends to amplify noise and in particular for the ∆∆ features
which are a di�erentiation of a di�erentiation. In this domain the CN model has a
potential advantage of carrying temporal information while also being less sensitive
to noise than MFCC+∆/∆∆ features.

The reason for not �nding any clear relationship between HEW synapses and
PA correlation may be because a high degree of PA overlap may be an unsu�-
cient guarantee for correlation with the total calcium activity for two PAs. For
example, two PAs which are active during extended periods may be active to-
gether during longer periods of time and hence yield a higher correlation index.
However, during this time the neuron may enter the AHP state which causes the
corresponding synapses to decorrelate with total calcium activity. The correlation
analysis might be best suited for data where the PAs are more sparse and hence
cause the correlation of two PAs to be more signi�cant.

The problem with the concentration of HEW synapses in certain bands of the
PA frequency spectrum might be a consequence of the fact that the frequency
bins of acoustic data generally are correlated with neighbouring frequencies. This
could potentially be solved by making the model more susceptible to high temporal
resolution patterns between frequency bins since broader patterns otherwise will
overshadow �ner ones.

27
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5.1 Points of Further Study

The main focus of further studies will be on the learning of the synaptic weights
which showed signs of being sub-optimal for the presented model based on the
randomized weight results. One of the solutions could be to make the learning
process more democratic with respect to potentiating synapses across the whole
available spectrum instead of having the clustering behavior observed in the pre-
sented model. Such a democratization principle could be hardcoded like a limit
to the amount of potentiated synapses in a frequency band or dividing the fre-
quency spectrum up into smaller frequency segments from which a certain amount
of synapses may be potentiated. Other less direct solutions might be to �nd other
ways of preprocessing the input or increasing the time resolution further, thus
potentially encouraging potentiation of synapses from a wide range of frequencies
who share more �ne grained temporal patterns.

Another area of interest would be to �nd other ways of decoding the CN
model output instead of using a deep LSTM architecture since the CN model
itself already captures some of the temporal context of the input which recurrent
neural networks like LSTMs normally are used for.

Finally some things which were outside of the scope of this thesis were to run
models with even greater numbers of neurons, test performance on di�erent kinds
of noise such as reverberation and real-life background audio, and to run the model
on a completely text-independent dataset.
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