
Generative Adversarial
Networks in Lip-Synchronized
Deepfakes for Personalized
Video Messages

Johan Liljegren

Pontus Nordqvist

Master’s thesis
2021:E33

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
E
N
T
R
U
M

S
C
IE

N
T
IA

R
U
M

M
A
T
H
E
M
A
T
IC

A
R
U
M

Master’s Thesis

Centre for Mathematical Sciences

Degree Project in Mathematics for Engineers, FMAM05

Generative Adversarial Networks

in Lip-Synchronized Deepfakes

for Personalized Video Messages

Authors

Johan Liljegren Pontus Nordqvist
johan.liljegreen@gmail.com p.nordq@gmail.com

Submitted on July 1, 2021

Supervisor Supervisor

Dr. Carina Geldhauser Michael Truong

Lund University Sinch AB

Examiner

Prof. Claus Führer

Lund University

mailto:johan.liljegreen@gmail.com
mailto:p.nordq@gmail.com

Abstract

The recent progress of deep learning has enabled more powerful frameworks to create good-quality deepfakes.
Deepfakes, which are mostly known for malicious purposes, have great potential to be useful in areas such as
the movie industry, education, and personalized messaging. This thesis focus on lip-synchronization, which
is a part of a broader pipeline to develop personalized video messages, using deepfakes. For this application,
the deep learning framework Generative Adversarial Networks (GAN), adapted to a given audio and video
input, was used. The objectives were to implement a structure to perform lip-synchronization, investigate
what variations of GANs excel at this task, and also how different datasets impact the results.

Three different models were investigated: firstly, the GAN architecture LipGAN was reimplemented in
Pytorch, secondly, a GAN variation, WGAN-GP, was adapted to the LipGAN architecture, and thirdly,
a novel approach that takes inspiration from both models, L1WGAN-GP, was developed and implemented.
All models were trained using the dataset GRID and benchmarked by the metrics PSNR, SSIM, and FID-
score. Lastly, the influence of the training dataset was tested by comparing our implementation of LipGAN
with another implementation trained on another dataset, LRS2.

WGAN-GP did not converge and resulted in suspected mode collapse. For the two other models, we showed
that the LipGAN implementation performed best in terms of PSNR and SSIM, whereas L1WGAN-GP per-
formed better than LipGAN according to the FID-score. Yet, L1WGAN-GP produced samples that were
polluted by artifacts. Our models trained on the GRID dataset showed bad generalization performance com-
pared to the same model trained on LRS2. Additionally, the models trained on less amount of data were
outperformed by models that were trained on the full dataset.

Finally, our results suggest that LipGAN was the best performing network, and with it we successfully
managed to produce satisfying lip-synchronization.

Keywords: Generative Adversarial Networks, GAN, Lip-Synchronization, Deepfake, Deep Learning,
Autoencoder, WGAN-GP, L1WGAN-GP, Skip-Connections, FID-score.

i

Acknowledgments

Firstly, we would like to thank our supervisor from LTH, Carina Geldhauser. For every contribution that you
have made to our thesis in reviewing papers, weekly meetings, inviting us to AI Lund seminars, scheduling
meetings with experts, and inviting us to Russian seminars.

Secondly, we would like to thank our supervisors at Sinch, Michael Truong and Simon Åkesson, for helping
us with the technical aspects of the thesis. A special thanks go out to the director of ML and AI at Sinch,
Pieter Buteneers for coming with clever suggestions on how to improve our thesis. Also thanks to Sinch in
general for providing us with the necessary equipment and computational power to complete the thesis. We
would also like to thank all the other master students at Sinch for making us never feel alone in our struggles.

We would also like to thank some people, presented in no particular order; Henning Petzka for provid-
ing insight on GANs and FID-score. Our roommates, Tim and Arvid, for enduring us working at home for
5 months. The lovely people at Delphi Pizzeria for providing us with nutritious food for the duration of the
thesis. Johan’s sister Sofie for proofreading our report, sorry for all the Swenglish. And most importantly to
our families for their everlasting support.

Lastly, we would like to thank everyone we have been in contact with for actually replying to their emails in
a pandemic.

Johan Liljegren & Pontus Nordqvist
Kämnärsrätten, June 7th, 2021

ii

Symbols

A Audio segment from the data distribution Pr

A′ Time-unsynced audio segment from the data distri-
bution Pr

D Discriminator in case of classification or else critic

D∗ Optimal discriminator in case of classification or else
critic

d L2 distance between two fixed embedding represen-
tations

E Fixed representation in embedding

E Expected value

f Generic function

G Generator

G∗ Optimal Generator

g Test image

H Horizontal and vertical dimension of image

hn Hidden layer with index n

H Feature map, result from the convolution operation

K Kernel matrix for CNNs

k Optimization iteration

l Labels for data

L Loss function

M Number of frequency channels in mel spectrogram

m Margin for contrastive loss

N Number of skip connections / size of input / size
of mini-batch

P Probability

Pg Generated data distribution from the generator

Pr Real data distribution from the true data

Pz Input data distribution to generator

r Reference image

R Regularization term

S True frame from data distribution Pr

S′ True time-unsynced frame from data distribution Pr

Ŝ Faked frame from data distribution Pg

T Time window in mel spectrogram

t Time

W1 Wasserstein-1 distance, also known as earth mover’s
distance

x Input to perceptron.

x̂ Output of an autoencoder with input x

x̃ Input to residual block

X Desired distribution in generative models

y Output

Z Prior distribution in generative models

α Time step for the shifting of the frames

β Exponential decay rates for momentum estimates in
ADAM

δ Small scaling factor in Leaky ReLU

Γ Joint distribution

η Learning rate

λ Gradient penalty coefficient

ξ Weight clipping bounds

Φ Mapping function for a residual block

ϕ Activation function

ω Weights in a nerual network

iii

Acronyms

ADAM Adaptive moments estimation, optimizer

ANN Artificial neural network

ASR automatic speech recognition

CNN Convolutional neural network

DCGAN Deep convolutional generative adversarial network

DGM Deep generative models

FFT Fast fourier transform

FID Fréchet inception distance

GAN Generative adversarial network

GPU Graphics processing unit

MFC Mel-frequency cepstrum

MFCC Mel-frequency cepstral coefficient

MLP Multi-layer perceptron

NLP Natural language processing

PSNR Peak signal-to-noise ratio

ReLU Rectified linear unit

SGD Stochastic gradient descent

SSH Secure Shell Protocol

SSIM Structural similarity index measure

TTS Text-to-speech

VAE Variational autoencoders

WGAN Wasserstein generative adversarial network

WGAN-GP Wasserstein generative adversarial network - gradient penalty

iv

Contents
1 Introduction 1

1.1 Disposition . 1
1.2 Problem Setting . 1
1.3 Previous Work . 2
1.4 Ethical Considerations . 3

2 Background 4
2.1 Machine Learning & Deep Learning . 4
2.2 Artificial Neural Networks . 5

2.2.1 Perceptron . 5
2.2.2 Loss functions . 6
2.2.3 Gradient descent . 6
2.2.4 Stochastic gradient descent . 7
2.2.5 Optimizers & Momentum . 7
2.2.6 Learning . 7

2.3 Convolutional Neural Networks . 8
2.4 Autoencoders . 10

2.4.1 Skip connections . 11
2.5 Audio representation . 12

3 GAN 14
3.1 Generative Models . 14
3.2 Generative Adversarial Network . 15

3.2.1 Original implementation . 16
3.2.2 Training . 16
3.2.3 Convergence and stability . 17
3.2.4 Helvetica scenario / Mode collapse . 18
3.2.5 GAN variations . 18

3.3 Wasserstein Generative Adversarial Network . 19
3.3.1 Enforcing Lipschitz constraint . 20
3.3.2 Remarks about the W1 approximation . 21

3.4 LipGAN . 22
3.4.1 Generator G . 22
3.4.2 Critic D . 23
3.4.3 Losses . 24

4 Technologies & Datasets 26
4.1 Software . 26

4.1.1 Python . 26
4.1.2 numpy . 26
4.1.3 Pytorch . 26
4.1.4 OpenCV . 27
4.1.5 FFmpeg . 27
4.1.6 dlib . 27
4.1.7 librosa . 27

4.2 Hardware . 27

v

4.3 Datasets . 27

5 Methodology 29
5.1 Data Pre-processing . 29
5.2 LipGAN implementation . 30

5.2.1 Architectural implementation . 30
5.2.2 Training implementation . 31
5.2.3 Inference implementation . 32
5.2.4 Code implementation . 32

5.3 WGAN-GP implementation . 33
5.3.1 Architectural implementation . 33
5.3.2 Training implementation . 33
5.3.3 Inference implementation . 34
5.3.4 Code implementation . 34

5.4 Experiments . 34

6 Metrics 35
6.1 PSNR . 35
6.2 SSIM . 36
6.3 FID-score . 36
6.4 Other considerations . 37

7 Results 38
7.1 LipGAN . 38

7.1.1 Losses . 38
7.1.2 Sample inspection . 39

7.2 WGAN-GP . 41
7.2.1 Losses . 41
7.2.2 Sample inspection . 42

7.3 L1WGAN-GP . 44
7.3.1 Losses . 44
7.3.2 Sample inspection . 45

7.4 Comparison Between the Models . 46
7.4.1 SSIM . 46
7.4.2 PSNR . 47
7.4.3 FID . 47
7.4.4 Qualitative results . 47

7.5 Impact of dataset . 49

8 Discussion & Further Work 50
8.1 LipGAN . 50
8.2 WGAN & L1WGAN-GP . 51
8.3 Comparison Between the Models . 52
8.4 Dataset . 52
8.5 Limitations . 53
8.6 Further Work . 54

9 Conclusion 56

vi

CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

This thesis was carried out in collaboration with Sinch Sweden AB and was done remotely due to the Covid-19
pandemic. Access to specific hardware and other resources was granted through laptops and SSH connections.
For this thesis, the workload was divided equally between the two authors. Programming tasks were done
using pair programming.

1.1 Disposition

In this initial chapter, we present the problem and outline the aim of this work. The second chapter, chapter 2
Background, is about the theoretical background of the thesis. This chapter will describe the basic knowledge
required to understand the concepts of deep learning. A third chapter, chapter 3 GAN, describes the mainly
researched component of the thesis. Different variations of GANs and their properties will be described.
After this, a chapter about the technologies and the datasets used in the project, chapter 4 Technologies &
Datasets, is presented. The technologies presented concern both the software and hardware used to realize
the models that were used. Following this, a chapter about the methodology used in the thesis, chapter 5
Methodology, follows. This chapter presents the pre-processing used, the implementation details and ends
with an introduction to the experiments conducted. Before the results are presented, chapter 6 Metrics
describes the theoretical background of the different metrics used. Following this, the chapter containing the
results for the experiments conducted in this thesis, chapter 7 Results, is presented. chapter 8 Discussion &
Further Work, containing a discussion about the results and limitations of the model, as well as suggestions
for further work. These include extensions of this project and different approaches to similar problems in
the field of deepfakes. Lastly, the thesis ends with chapter 9 Conclusion, containing all drawn conclusions for
this thesis.

1.2 Problem Setting

Sinch have the ambition to launch a service that utilizes deepfakes to create personalized video messages.
This service is intended to provide customers with an automated video message that offers a more personal
feeling than traditional automated messages, such as generic text messages. Deepfake is a portmanteau of
the words deep learning and fake, and denotes synthetic media that has been created by machine learning or
deep learning. A deepfake often contains the altering of a person’s face so that it is swapped with someone

–1–

CHAPTER 1. INTRODUCTION 1.3. PREVIOUS WORK

else’s face in a video.

In the service that Sinch wants to provide, the face remains the same but the audio is swapped to
contain automated speech making, the video personalized for the customer. The input should be in the form
of a text sentence that produces audio for an already existing video. This audio and video are then combined
in a lip-synchronization procedure so that the audio matches the person in the video. The realization of this
service is part of a long pipeline that would include several stages and segments. In this thesis, the focus is
put on the lip-synchronization stage, see figure 1.1.

Input
Text message

Text-to-speech
Voice synthesiser

Sample audio

Sample video

Lip-synchronization Output
Lip-synced video

Figure 1.1: A sketch of our vision of a pipeline for a personalized video message service. This thesis focuses
on lip-synchronization which is marked by the dashed circle.

This thesis aims to provide Sinch with a proof of concept that, for a given video sample and audio sample,
deep learning can be used to provide satisfying lip-synchronization with low amounts of visual artifacts.
This will be done with the deep learning structure General Adversarial Network (GAN). Several different
implementations of GANs that use different loss functions and frameworks exist. An initial model will be
implemented and some different variations will be tested and compared to this model. The performance
of the different implementations will be evaluated by quantitative metrics and qualitative inspection of the
outputs.

Further, some other interesting parameters will be investigated. The amount of data required and if
this can be minimized to benefit the calculation time. Also how the chosen dataset contributes to the
properties of the model performance. These goals can be formulated as:

• Given an input video and an input audio sample implement a GAN that produces realistic lip-
synchronized videos, with little to no visual artifacts.

• Investigate different GAN architectures and compare these to each other through quantitative measure
and qualitative assessment.

• Investigate how the amount of data affects the model’s performance and output.

• Investigate the impact of the chosen dataset and how it affects the model.

1.3 Previous Work

Deepfakes and automated lip-synchronization have risen to prominence ever since deep learning became
more popular due to recent improvements in hardware. A famous example is generating deepfakes of the
former president of the United States, Barack Obama. This project was introduced by Suwajanakorn et
al. [1] in 2017 and utilizes traditional computer vision. The example of President Obama was used due

–2–

CHAPTER 1. INTRODUCTION 1.4. ETHICAL CONSIDERATIONS

to the extensive amount of video material available for training, which is of importance to produce a
good deepfake. The author emphasizes the problem of creating a credible fake video due to the human
attentiveness to details in the mouth area. An extension was made by Kumar et al. [2] later the same
year, called ObamaNet, that integrates text-to-voice synthesizing to the model. It also converts the original
version from a traditional computer vision model to a deep learning approach. They use the deep learning
models recurrent neural networks for audio processing and a special type of autoencoders called U-Net for
video processing. This was a part of the paradigm shift during the 2010s when traditional computer vision
models were outperformed by deep learning.

Many recent works have focused on different techniques and approaches to produce lip-synchronizing
methods. Yao et al. [3] use a phoneme search approach to target mumbling and unwanted words in videos to
remove them. This is done by a large pipeline that contains deep learning structures such as a GAN. Zhou
et al. [4] have a supervised learning approach to lip-synchronization. In this work, audio and video from
different persons are labeled and then used to create audio- and video embeddings, which are combined by
a temporal GAN.

Several implementations of a data-driven unsupervised learning approach have been made. These
learn the lip movements from audio directly from the input without any additional techniques such as
phoneme searching. These include the work by Chung et al. [5] that uses encoders for audio and video
separately which are then concatenated to a single embedding. This embedding is then decoded by a single
decoder to produce a video. Similarly, Chen et al. [6] uses encoder and decoders in the same manner but
with a more advanced pipeline that uses more networks. In 2019 Prajwal et al. [7] introduced LipGAN, a
network used to perform automated translation of videos. It utilizes the same data-driven approach and a
GAN in combination with autoencoders.

1.4 Ethical Considerations

Deepfake is a word that often brings negative associations. It is known for being used with malicious intent
to produce revenge porn videos or fake news. Though there can be good uses for deep fakes as well, such
as automated translation, which was mentioned above, one should tread carefully when using techniques
like this and it is up to the user to practice good ethics. Developing the science behind deepfakes can
additionally contribute to techniques that detect deepfakes.

Since software like this clearly could be used for malicious intent, images or videos produced with
such methods should be transparent with their origin. A solution to clearly indicate that a produced video
is of deepfake origin would be to use watermarks, both visual and in the audio. This could be audio in a
frequency range that is not audible for humans. Ethical concerns are raised by some authors and sound
remarks have been made by, for example, Yao et al. [3] and Fried et al. [8].

–3–

CHAPTER 2. BACKGROUND

CHAPTER 2

Background

In this chapter, parts of the background theory for this thesis are introduced, including machine learning,
deep learning, artificial neural networks, and their components. Additionally, the specialized network classes
convolutional neural network and autoencoders with skip connections are presented. Lastly, the theory
surrounding audio representation for machine learning applications is introduced.

2.1 Machine Learning & Deep Learning

Machine learning is a study of artificial intelligence that can be defined as follows; ”The field of machine
learning is concerned with the question of how to construct computer programs that automatically improve
with experience” [9]. In present time, computer programs, or algorithms, are generally not near-human
intelligence in learning. However, in some specific learning problems, they produce efficient and powerful
solutions. These include speech recognition, data mining and image segmentation [9].

For a machine learning algorithm to learn from its experience it needs some form of feedback. Re-
garding this problem, there are several approaches; supervised learning, reinforcement learning and
unsupervised learning. Supervised learning labels all inputs as either true or false, whereas in unsupervised
learning there are no labels at all. In reinforcement learning, the feedback is in the form of an evaluation if
the performed move was either good or bad, without conveying the correct move [10].

Several models that implement machine learning algorithms exist. One of these models is the artifi-
cial neural network (ANN). This implementation builds on the idea to model the biological neurons in a
human’s brain, and hence create a network of individual artificial neurons [10]. This is a divide-and-conquer
approach to problems where several neurons can be combined in a network to perform one task. When
several of these networks are connected in independent layers and grow dense, they form what is known as
deep neural networks and the employment of these is known as deep learning [11].

–4–

CHAPTER 2. BACKGROUND 2.2. ARTIFICIAL NEURAL NETWORKS

2.2 Artificial Neural Networks

2.2.1 Perceptron

Artificial neural networks are, much like the human brain, made up of several small calculating units. These
units can be connected both in series and in parallel to form dense networks. The most basic ANN consists
of only input, one calculating unit, and output. This network is called a perceptron [9] and can be used to
solve problems like linear regression. Though it is almost trivial in its structure, it can be used to show the
theory of neural networks.

x1

x2

xN

ϕ

x0

ω1

ω2

ωN

ω0

y

Figure 2.1: Visualization of a perceptron with input x, bias x0 and, output y.

A perceptron is shown in figure 2.1. The network can be traversed by

y = ϕ

(
N∑
n=1

ωnxn + ω0

)
(2.1)

where x1, x2, ..., xN are inputs to the network and x0 = 1 is a bias node, included to prevent the weights
from being all zeros. The weights of an ANN are denoted as ωn and signifies the adjustable parameters in
the network. As training commences it is the weights that get an updated value and thus represent the past
experience of the neural network. Lastly, ϕ is known as the activation function [12].

A vast number of activation functions exist and are used in different scenarios, such as the Sigmoid,
Tanh, Softplus and ReLU [12]. The latter is a popular choice in deep learning [12], since it is computational
efficient which is important in a dense network. The ReLU, or Rectified Linear Unit, is defined for a scalar
input a as

ϕReLU(a) = max(0, a). (2.2)

Further, ReLU comes in variants such as Leaky ReLU, which is defined as

ϕLeaky-ReLU(a) =

{
a ∀a > 0,

δa otherwise
(2.3)

–5–

CHAPTER 2. BACKGROUND 2.2. ARTIFICIAL NEURAL NETWORKS

where δ > 0 is a small scaling factor [13]. A single perceptron is most often not desired since it is only
capable to perform simple tasks. More complex problems can be solved by increasing either the number of
hidden layers or the number of hidden nodes. When the number of hidden layers is larger than one, the
network is called a multi-layer perceptron (MLP), and is shown in figure 2.2.

x1

x2

xN

h11

h21

h31

hm1

h12

h22

h32

hm2

y1

yM

h1n

h2n

h3n

hmn

Figure 2.2: Fully connected multi-layer perceptron with m hidden nodes and n hidden layers, N inputs,
and M outputs.

In theory, these networks can grow infinitely large and dense to solve increasingly complex problems which
is stated by the universal approximation theorem, which says that a MLP can approximate any continuous
function with a compact definition range [11]. This theorem accredits that MLPs in specific, and ANNs in
general, are powerful tools of approximation.

2.2.2 Loss functions

As stated in section 2.1 Machine Learning & Deep Learning, a machine learning algorithm improves with
experience, which requires a metric to measure its performance. Therefore, the network should be trained in
a way that the updated weights perform the desired task with a better result than previous iterations. This
improvement in quality is quantified by a loss function L.

There are large freedoms in choosing the loss function, it can for example be a metric or a measure
of some important property of special interest in the network. Though, it should be noted that in an ANN,
the loss function serves as the objective function of an optimization problem, which is being minimized by
the network. This means that the choice of the loss function is of considerable importance [12].

2.2.3 Gradient descent

When a loss function that measures the success of the network is acquired, the calculations in the neural
network are an optimization problem. The objective is to find the optimal weights ω∗ by minimizing the loss
function L for every ω ∈ R i.e

ω∗ = arg minL(ω). (2.4)

This can be done in a manner of taking a small step η > 0 towards the steepest direction of the negative
gradient of the objective function. An analogy to real life is reaching the bottom of a valley by taking
small steps in the steepest downward direction. This method is called gradient descent and was proposed

–6–

CHAPTER 2. BACKGROUND 2.2. ARTIFICIAL NEURAL NETWORKS

by Cauchy [14] in 1847, as an iterative method to solve optimization problems. A step from k to k + 1 in
gradient descent, is defined as

ω(k+1) = ω(k) − η∇ωL(ω). (2.5)

For deep learning applications, the constant η is usually called the learning rate. This learning rate is often
chosen as a small constant [11] and can be tuned to make training more efficient.

Gradient descent is an effective method to minimize an objective function under most circumstances.
However, this approach is prone to some difficulties such as getting stuck in a local minimum or suffering
from vanishing gradient problems if the slope is or close to completely flat.

2.2.4 Stochastic gradient descent

Stochastic gradient descent (SGD) is a variation of the original gradient descent that introduces a stochastic
element to the algorithm. This randomization takes shape as sampling random subsets of the data into
mini-batches. The step now becomes

ω(k+1) = ω(k) − 1

N

N∑
n=1

η∇ωLn(ω), (2.6)

where N is the mini-batch size. When all mini-batches have been used once for updating the weights one epoch
has been performed [12]. The mini-batch approach prevents the algorithm to get stuck in local minimums
since the gradients are updated several times for each iteration instead of only once. This also makes SGD
converge faster than gradient descent. While SGD remedies these problems the computational efficiency is
still unsatisfactory [11].

2.2.5 Optimizers & Momentum

Gradient descent algorithms can be further enhanced in terms of convergence speed and avoiding local
minimums by introducing momentum as an addition to the algorithms. These momentum-based additions,
such as AdaGrad, RMSProp, ADAM, and others, are known as optimizers [12].

Momentum in gradient descent was proposed by Polyak [15] as a method to speed up the conver-
gence of iterative methods. Momentum in gradient descent refers to the momentum in mechanics.
Momentum makes use of both current and past gradients. This can be seen as not only taking the accelera-
tion, gradient from the current step, into account but also the velocity, past gradients, when taking a step [11].

A robust optimizer is ADAM which was introduced by Kingma et al. [16] in 2014. ADAM stands
for adaptive moment estimation. It utilizes running averages of past gradients and past squared gradients.
These are weighted by the decay constants β1 and β2 which can be tuned as hyperparameters. The
functionality of ADAM is that it learns the optimal learning rate during training. ADAM is used in several
implementations of ANNs by for example Prajwal et al. [7], Chen et al. [6] and Karras et al. [17].

2.2.6 Learning

Networks like the MLP belong to a type of ANNs that are known as feed-forward networks. Since there is no
feedback in the hidden layers or the different perceptrons at all, the only direction in the network is forward.
When an ANN is traversed from input to output it performs, what is called a forward pass. The predictions
made by the network are then used to calculate the loss L. In supervised learning, a label is passed into the

–7–

CHAPTER 2. BACKGROUND 2.3. CONVOLUTIONAL NEURAL NETWORKS

loss to form a score that represents a performance measure of the network.

Since there is no internal feedback in the network, it lacks a way to update its weights during a for-
ward pass, which represents the learning process. In a feed-forward network, the gradients can be calculated
after the forward pass by using the back-propagation algorithm. This algorithm was introduced by Rumelhart
et al. [18] as a computationally efficient algorithm to calculate the gradients of a neural network, which are
used in the gradient descent algorithm. The weights are updated after each forward pass in the opposite
direction, backward, and thus this is called a backward pass.

The forward pass in combination with the backward pass is what represents one iteration through
the network. Every time the weights are updated the network has learned from experience and thus fulfills
the definition of machine learning stated in section 2.1 Machine Learning & Deep Learning. A flowchart of
the learning process of an ANN is displayed in figure 2.3.

Input
x

Hidden Layer
h1

Hidden layer
hn

Prediction
y

Loss function
L

Label
l

Score
L(y, l)

Optimizer
(SGD)

Weights
ω1

Weights
ωn

Forward pass

Backward pass

Figure 2.3: Flowchart of the learning process of an artificial neural network using back-propagation.

2.3 Convolutional Neural Networks

Convolutional neural networks (CNN) is a type of deep-learning model that is commonly used in computer
vision applications [12]. In the context of image recognition, LeCun [19] is credited for being the first to use
CNN with back-propagation. CNNs are designed to exploit data that has a grid-like topology [11]. This
could for example be time-series vectors or images, which can be viewed as a two-dimensional grid of pixels.
Data with this structure have spatial relations, which means that they are related to other data points close
to its vicinity.

The main operation in a convolutional neural network is convolution which is defined, for two dimen-

–8–

CHAPTER 2. BACKGROUND 2.3. CONVOLUTIONAL NEURAL NETWORKS

sions, as

H(i, j) = (X ∗K)(i, j) =

M∑
m=1

N∑
n=1

X(i, j)K(i−m, j − n) (2.7)

where X is an input matrix, K is the kernel matrix and the output H, is called a feature map. If the
convolution is used in the context of images, then X would be an image with dimensions M×N . Convolution
in this case can be viewed as the kernel floating across the image and collecting data in a region combining
it into a feature [11]. A visualization of this can be seen in figure 2.4.

Input image

Filtered image

Kernel matrix
K

Feature map
H

Figure 2.4: Feature extraction in a CNN.

During a forward pass in neural networks, such as the MLP, the hidden layers use matrix multiplications to
traverse from input to output. In this case, all inputs interact with all outputs and thus creates a network
with many parameters. If a CNN is used, the kernel matrix K can be made smaller than the input which
leads to sparse connectivity. This lowers the number of parameters in the network, while still being able to
preserve the features of the data [11]. This enhances the computational complexity of a CNN in comparison
to other network types.

There are some other components of a CNN layer that needs to be taken into consideration. The
data can be padded with zeros around its boundaries. This is done to preserve information close to the
boundaries and to enforce specific dimensions of the resulting data [11]. Stride can be introduced to make
the kernel skip a defined amount of steps to avoid overlapping and since the number of convolutions shrinks
so does also the number of parameters. Finally, a pooling-filter can be applied as a final component to a
CNN-layer. A pooling filter ensures that the output of the prior components is invariant to small translations
of the input [11]. In other words, the pooling filter makes the features invariant to their location. For
example, in image recognition, it could be more important whether an image contains a specific object
rather than where it is located in the data. However, in the case of lip-synchronization, the main problem
of the thesis mentioned in section 1.2 Problem Setting, features must remain at the same location.

–9–

CHAPTER 2. BACKGROUND 2.4. AUTOENCODERS

The results of a CNN with many hidden layers, a deep convolutional neural network, is a feature
map that is compressed to low dimensions. Since the convolution is a linear operation the CNN process can
be inversely calculated by using the transpose of the matrix defined by the convolution [11]. The kernel
of the CNN produces a down-sample of the input size and the transpose convolution corresponds to an
up-sample of the data size.

2.4 Autoencoders

Conceptually, an autoencoder can be seen as a trained feed-forward ANN where the input x gets mapped
to the output x̂ [11]. However, before the input x is transformed into the output x̂, it gets encoded into a
compressed representation and then decoded again to the non-compressed representation. The compressed
representation is denoted as the embedding while the part which transforms the input x to the embedding
is denoted as the encoder and the part which transforms the embedding to the output x̂ is denoted as the
decoder. When a specific input gets passed through to the embedding, its representation in the embedding
is denoted as its fixed representation E. Additionally, it shall be noted that an autoencoder can have several
encoders and decoders, as long as they all map to and map from the same embedding [5]. A schematic over
the structure of an autoencoder can be seen in figure 2.5.

Input
x

Output
x̂

Embedding
x1

x2

xn

x̂1

x̂2

x̂n

E

Figure 2.5: Schematic overview of an autoencoder.

The important notion about autoencoders is that they do not want to copy the input x perfectly to the
output x̂. Instead, the embedding will cause an information bottleneck so the autoencoders need to priorities
the data which gets kept for the output. If the autoencoder gets trained ideally, it will only learn to keep the
useful properties of the input x to produce the desired output x̂. In a way, this can be viewed as a form of
feature extraction from the data, and therefore, autoencoders are frequently used for unsupervised learning
[11].

–10–

CHAPTER 2. BACKGROUND 2.4. AUTOENCODERS

2.4.1 Skip connections

A special type of ANN is the Residual Neural Network which utilizes skip connections to identity map
specific layers outputs to each other [11]. These skip connections can also be applied to an autoencoder.
More formally, a skip connection is a connection which adds the input x̃ to its output Φ(x̃) to yield the total
output

y = Φ(x̃) + x̃. (2.8)

The mapping Φ can consist of a single ANN layer to multiple ANN layers. Further, the mapping Φ together
with its skip connection is usually denoted as a residual block. A visualization of a residual block with output
y can be seen in figure 2.6.

Input
x̃

Weight layer
ω

Weight layer
ω

Activation function
e.g ϕReLu

Φ (x̃)

Activation function
e.g ϕReLu

Output
y

Residual block

Skip connection

Φ (x̃) + x̃

Figure 2.6: Visualization of a simple residual block with a skip connection and input x̃ and output y.

Additionally, skip connection can also be applied to an autoencoder. Although, the input x̃ dimension
needs to match the connected mapping Φ(x̃), which is easily done for an autoencoder by connecting to the
corresponding encoder/decoder layer. However, a linear transformation can be used to make the input x̃
match the dimension of the connected mapping Φ(x̃). Additionally, weights can also be added to the identity
mapping of x̃ in (2.8). An example of an autoencoder with skip connections between the encoder and decoder
can be seen in figure 2.7.

–11–

CHAPTER 2. BACKGROUND 2.5. AUDIO REPRESENTATION

Input
x

Output
x̂

Encoder Decoder

Embedding

Skip connections

x̃1 x̃N

Figure 2.7: An example of skip connections in an autoencoder with N skip connections. The yellow blocks
represent a general residual block.

The motivation behind the use of skip connections is that the identity mapping will enable deeper networks
by reducing training error. Consequently, these deep networks will presumably enable a more accurate result.
Meanwhile, an exact mapping of x̃ will not add any extra parameters or computational complexity [20].

2.5 Audio representation

Speech is an essential part of lip-synchronization since it determines the lip movements of a person. Human
speech is produced by the vocal cords in the form of vibrations that propagates as an acoustic wave, which is
known as audio. As audio and speech are time-continuous waves, they need to be quantified into numerical
values. This process must preserve the contents as well as the perceptual features.

For audio analysis, mel-frequency cepstral coefficients (MFCC) and mel-frequency cepstrum (MFC),
more commonly known as mel-spectrogram, have been frequently used to represent speech and audio [21,
22]. These representations have also been widely used in different machine learning projects by, for example,
Chen et al. [6] and by Prajwal et al. [7]. Mel frequency cepstral coefficients are simply the coefficients that
make up a mel-frequency cepstrum. This method of representing audio was proposed by Mermelstein [23] in
the context of speech recognition.

The idea of the mel-frequency cepstrum is to give a compact feature preserving representation of au-
dio by creating a spectrogram with the mel-scale on its frequency axis. The mel-scale, or melody scale, is a
non-linear scale developed to represent the perceptual scale of pitches. The human audible spectrum ranges
from around 20 Hz to 20000 Hz. A specific difference of frequency in the lower side of this spectrum is more
clearly audible than a difference in the higher range of the spectrum. Thus, the equal distances between
pitches are non-linear and given by the mel-scale [21].

To produce the MFC, and by extension the MFCCs, the audio signal is cropped into T equal spaced
time windows of audio that then are transformed to the frequency domain by for example fast Fourier
transform (FFT). The frequency spectrum produced is then split into M equally spaced channels, according

–12–

CHAPTER 2. BACKGROUND 2.5. AUDIO REPRESENTATION

to the mel-scale. The MFCCs are obtained by choosing the lowest amplitudes of the spectrum. However,
Purwins et al. [21] advises against this due to information and spatial relations being destroyed. Yet, MFCCs
does have some merit in creating models when compressed data is required.

–13–

CHAPTER 3. GAN

CHAPTER 3

Generative Adversarial Network

This chapter is a general introduction to Generative Adversarial Networks. Here we introduce relevant
concepts such as generative models followed by the original implementation of GAN. Additionally, problems
surrounding GANs, such as convergence, stability, and Helvetica scenario / Mode collapse are discussed.
Lastly, the specialized GANs WGAN-GP and LipGAN are introduced.

3.1 Generative Models

Generative models are statistical models that learn a representation of a probability distribution to create
data instances from that distribution. This can be seen as a generative model that captures the joint
probability of a target data distribution X and a label Y as defined by P (X,Y). The adversary of
a generative model is a discriminative model which captures the conditional probability P (X|Y) [24].
Examples of discriminative tasks are classification and regression which discern between data. When a
discriminative model is not separating data by labels and instead returns a scalar value it is known as a
critic [25], such as in a Wasserstein Generative Adversarial Network (WGAN).

In the context of artificial neural networks, generative models are called deep generative models (DGM) and
have many applications [26]. In this sense, the model attempts to learn a representation X defined over Rn
often under the circumstances that n is large and for a complicated distribution. This is denoted as the
target distribution and is used as training data for the DGM. The goal of the DGM is to obtain a generator
G, defined as

G : Rq → Rn (3.1)

where the prior distribution Z is in Rq. If the goal is achieved then for each sample x ∼ X , there exists
one point z ∼ Z such that G(z) ≈ x. The generator is desired as a component to map a point in the
more complicated distribution X to an easier distribution Z. This problem can be solved by function
approximation and thus a feed-forward neural network is suitable for this task [26].

A deep generative model is trained by samples x ∼ X to update the weights ω of the generator.
This is done to render the sample output from the generator, G(z), being indistinguishable from x. This
means that the probability distribution Z is transformed to the probability distribution of X , see figure 3.1

–14–

CHAPTER 3. GAN 3.2. GENERATIVE ADVERSARIAL NETWORK

for illustration. The similarity, or distance, between these distributions, is complicated to measure and thus
it is hard to determine when satisfying results are obtained [26].

X

G(Z)

Z

(a) Before training

XG(Z)

Z

(b) After training

Figure 3.1: Illustration of the probability distributions in a deep generative model.

A wide range of implementations of DGMs are used in many fields of machine learning. A type of DGM,
auto-regressive models, are used for natural language processing (NLP). A recent implementation of an
auto-regressive model is GPT-3 that was released in 2020. It uses deep learning to generate text that
looks authentic in a way that human evaluators have a hard time distinguishinging from texts generated by
humans [27]. Another implementation of DGM is the variational autoencoder (VAE) which was introduced
by both Kingma et al. [28] and Rezende et al. [29] in 2014. It has been used to perform image generation
and automatic image editing [12].

3.2 Generative Adversarial Network

Generative Adversarial Network (GAN) is an implementation of a DGM proposed by Goodfellow et al. [30]
in 2014. This was done in the context of utilizing generative models to create data, for example, natural
images, audio waveforms, or symbols in natural language corpora. A GAN consists of two ANNs that
work in tandem, a generative network, called the generator G, and a discriminative network called the
discriminator D. The discriminator is tasked with distinguishing a sample created by the generator from
a sample from the real probability distribution, this outputs a score based on the discriminator’s decision.
This process is repeated and consequently, G gets better at creating samples that look like they originate
from the real probability distribution. In the meantime, the discriminator also improves at distinguishing
between the two distributions. This can be viewed as a two-player-zero-sum game that continues, in theory,
until the probability distribution of the generated samples is the same as the target probability distribution.

More formally, the progress of a GAN can be expressed as the following. A noise variable z ∼ Pz is
used as input into the generator and thus mapped to data space as G(z) where G is some feed-forward
ANN. Pz is a random noise distribution, for example, Gaussian noise. A sample x is drawn from either
the distribution formed by the generator, Pg or the real distribution Pr. This is used as input into the
other network of the GAN, the discriminator, to form D(x). Where D(x) represents the probability of x
originating from either Pg or Pr. See figure 3.2 for a schematic sketch of a GAN.

–15–

CHAPTER 3. GAN 3.2. GENERATIVE ADVERSARIAL NETWORK

Generator
Pg

Real Data
Pr

Random Noise
z ∼ Pz

Sample
x ∼ Pr,Pg

Discriminator
D(x)

Score

Figure 3.2: Schematic of a GAN with generator G and discriminator D.

3.2.1 Original implementation

In the original version proposed by Goodfellow et al. [30], the discriminator takes shape as a binary classifier
with the labels l = {0, 1},

D : Rn → [0, 1] (3.2)

where n is the dimensions of Pg and Pr. D is trained to maximize the predictions of correct labels. The
discriminator’s loss function takes shape as a cross-entropy and is expressed as

LD = Ex∼Pg,Pr
[logD(x)]. (3.3)

The generator also employs a cross-entropy loss function. G on the other hand tries to minimize the correct
labeling to confuse the discriminator from making a good prediction. The loss for G is defined as

LG = Ez∼Pz [log(1−D(G(z)))]. (3.4)

The total loss is given by

L(G,D) = Ex∼Pg,Pr [logD(x)] + Ez∼Pz [log(1−D(G(z)))] (3.5)

where L is the objective function for the two-player min-max game [30, 31], earlier described as the zero-sum
game. The game is defined as

arg min
G

max
D
L(G,D). (3.6)

3.2.2 Training

Training the original GAN is done by performing the min-max game in equation (3.6). This is equivalent
to finding a Nash equilibrium for the weights of the two players, G and D [26]. A Nash equilibrium is a
two-player game where neither player can improve their cost function independent of the other player [32].
The cost function is, in this case, equivalent to the loss functions LG and LD. To find the Nash equilibrium
is a notoriously difficult problem to solve and one of the main complications with GANs [26, 31, 33]. The
complications lies in that optimizing the loss function L is a non-convex optimization problem where the
parameters, weights ω in this case, are extremely high-dimensional.

–16–

CHAPTER 3. GAN 3.2. GENERATIVE ADVERSARIAL NETWORK

Two problematic scenarios are described by Ruthotto et al. [26] during the initial phase of training.
Early on, the discriminator easily distinguishes between the real data, from Pr, and the generated data,
from Pg. If the discriminator is trained to optimality, then it would be impossible for the generator to
improve. This is true since the gradient ∇GL(G,D∗) would be close to zero. In the original implementation
by Goodfellow et al. [30], this problem is noticed and described as saturation in the generator loss LG. They
suggest a new loss function for the generator,

LG = Ez∼Pz
[− log(D(G(z))] (3.7)

to amend this problem. This version is called non-saturating GAN [34]. Another case could arise when D is
not trained sufficiently, then the process of updating the weights of G would become challenging.

The issue when gradients are close to zero is called the vanishing gradient problem. The opposite to
this problem, when a gradient is growing rapidly, is called exploding gradient problem. If one of these
problems arises, then the network becomes untrainable and thus worth nothing. This is not only a problem
in theory but also in practice when implementing a GAN numerically. Vanishing gradients will cause the
updates of weights ω to become smaller than machine accuracy and exploding gradients could cause the
gradients to overflow, making the value incorrect.

3.2.3 Convergence and stability

In [30], it is proven that the probability distribution Pg converges to Pr. This is true under some
conditions, such that the updates occur in function space, D and G have infinite capacity and, that the
resulting optimization problem is modeled as a convex-concave game. This yields well-defined global
convergence properties. However, these conditions are not met in real-life implementations [30, 33]. In re-
ality, it is often observed that gradient descent-based optimization does not lead to convergence for GANs [34].

Nagarajan et al. [33] show that GANs are locally stable if Pr and Pg are absolute continuous. This
is often not the case since both distributions may lie in lower dimension manifolds [34]. An example of this
could be walking straight ahead on a line, which is a one-dimensional manifold, where one can not reach the
starting point again, without making a discontinuous jump. Whereas when walking on a two-dimensional
manifold, like a sphere, walking back to the starting point is possible. Thus, in most cases, GANs are
unstable during training, even close to the equilibrium point.

During training, GANs exhibit an oscillating behavior. At the beginning of training, the discrimina-
tor pushes Pg towards the true data distribution Pr. While this happens the discriminator is trained to be
more accurate and thus its gradient increases. As Pg reaches Pr the discriminator’s gradient is the largest
and pushes away Pg from the equilibrium point, until Pg is back at a point close to where it began but with
opposite sign. This oscillating process continues infinitely and thus Pg never converges to Pr. This can be seen
as if the generator is trained to optimality, Pg is close to Pr, then the discriminator classifies the correct label
50 % of the times. This would make the feedback from D to G be worth nothing since it is completely random.

According to Nagarajan et al. [33], the theory of convergence and stability of GANs are far outpaced
by the practical applications. Despite the mentioned flaws above, GANs do work and produce powerful
solutions for learning complex real-world distributions [34]. Yet, attempts to remedy the drawbacks of
stability and convergence in GANs have been made. Nagarajan et al. [33] show that adding regularization
to the gradient descent can make it locally stable. Mescheder et al. [34] propose a gradient penalty to induce
local convergence.

Another way to improve stability in a GAN is to introduce normalization. Normalization is a method where

–17–

CHAPTER 3. GAN 3.2. GENERATIVE ADVERSARIAL NETWORK

each unit inputs to a unit each have zero mean and unit variance [35]. This can be done in different shapes
such as batch normalization [31] or layer normalization [25]. Normalization facilitates the optimization
process of a GAN by inducing the discriminator to produce better quality feedback [36]. Also, normalization
can be coupled together with running statistics to yield better performance.

3.2.4 Helvetica scenario / Mode collapse

In the original GAN implementation [30], a problem is mentioned where G collapses too many values z to the
same value of x which results in non-diverse samples. This is known as the Helvetica scenario [30] or more
commonly as mode collapse. The consequence of mode collapse is that the generator does not contribute
to training because it can not produce diverse samples. The problem arises when the generator optimizes
in a greedy way to fool the discriminator. G thinks that it has found an optimal sample and continues to
generate the same sample [36].

Mode collapse contributes to the training difficulties mentioned above. Some solutions do exist to
remedy mode collapse and one of them is to make the discriminator have high generalization capabilities
[36]. Another solution could be to implement gradient penalty or normalization [33, 34]. Mode collapse can
be noticed in image generation by ocular inspection of samples during training [26].

An example of mode collapse can be seen in figure 3.3, where the output of the GAN suffers from
mode collapse in two ways. Firstly, it fails to generate the desired colors of the real data, and secondly, it
only produces 3 out of 9 digits. In this experiment a NS-GAN was used to perform the image generation
[37].

(a) Original dataset (b) Mode collapse

Figure 3.3: Example of mode collapse on the CMNIST dataset [37].

3.2.5 GAN variations

Despite the aforementioned complications with GANs, they have gained prominence as one of the most
used methods for image generation that produce state-of-the-art results [33, 36]. Many modifications and
extensions to the original GAN implementation by Goodfellow et al. [30] have been made to tackle the
convergence and stability issues. These include Least Squares GAN [38], Wasserstein GAN [39], and
DRAGAN [40].

Other GAN versions focus more on ad hoc implementations to perform certain tasks instead of im-
proving the convergence properties. One of these implementations is called the deep convolutional generative

–18–

CHAPTER 3. GAN 3.3. WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK

adversarial network (DCGAN). It was proposed by Radford et al. [35] in the context of using unsupervised
learning in GANs to produce image representations. DCGAN implements a GAN structure with CNNs,
which are suitable for image processing. This stands in contrast with the original implementation of
GANs that used MLPs [30]. The structure of DCGANs includes some properties such as utilizing batch
normalization and ReLU as activation function [35]. Even though DCGAN still suffers from some of the
stability issues, it still poses a powerful implementation in image generation tasks.

3.3 Wasserstein Generative Adversarial Network

As previously mentioned, GANs are prone to instabilities during training and to mode collapse, and
hence, attempts have been made to mitigate this. One of the most notable is the Wasserstein Generative
Adversarial Network (WGAN), which was introduced by Arjovsky et al. [39] in 2017. Unlike classical
GANs which utilize a discriminatory approach of binary classification, WGANs take another path of
trying to minimizing the statistical distance between the generated data distribution Pg and the real
data distribution Pr [26]. Therefore, a WGAN consists of a generator G and a critic D, and not a
discriminator as in the original GAN. However, the two-player zero-sum game from the original GANs
persists, with slight modifications to the switching intervals between generator and critic during training [39].

The first remedy to the instabilities is to have a GAN loss function that is continuous everywhere
and differentiable almost everywhere. One cost function where this hold is the statistical measurement
earth mover’s distance (EMD), also known as the Wasserstein-1 distance W1. Consider the generated
data distribution Pg and the real data distribution Pr which forms the marginals for the joint distribution
Γ(Pr,Pg). Then the optimal transportation plan to move Pg from its support to Pr and its support, is given
by the EMD [41]. Further, using the Euclidean norm as distance yields the following

W1(Pg,Pr) = inf
γ∈Γ(Pg,Pr)

E(a,b)∼γ
[
‖a− b‖

]
(3.8)

for the samples a and b from the joint distribution Γ. Using Kantorovich-Rubinstein duality [42], equation
(3.8) can be written to the more practical formulation

W1(G(Pz),Pr) = max
f∈Lip(f)≤1

Ex∼Pr
[f(x)]− Ez∼Pz

[f(G(z))] (3.9)

where the maximum is taken over all 1-Lipschitz continuous functions f : Rn → R [39]. Additionally, it
shall be added that W1 is invariant up to a positive scalar k if the Lipschitz constraint is modified to be
k-Lipschitz [43]. Now, the problem becomes to find these functions f , which is done using approximation
through a neural network. Further, this network will act as the critic D in the WGAN setup, and W1 will
act as a loss function [26]. This yields the critic loss

LD = Ez∼Pz

[
D(G(z))

]
− Ex∼Pr

[
D(x)

]
. (3.10)

Furthermore, the gradient from the critic D will be used to train the generator G [39]. Likewise, this gives
the generator loss

LG = −Ez∼Pz

[
D(G(z))

]
, (3.11)

and lastly, the total loss

LWGAN(G,D) = Ez∼Pz

[
D(G(z))

]
− Ex∼Pr

[
D(x)

]
. (3.12)

–19–

CHAPTER 3. GAN 3.3. WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK

Similarly, the two-player zero-sum game will persist, and for the generator G to minimize (3.10) while the
approximate 1-Lipschitz continuous critic D will maximize (3.11) [25], i.e

arg min
G

max
D∈Lip(D)≤1

Ez∼Pz

[
D(G(z))

]
− Ex∼Pr

[
D(x)

]
. (3.13)

One advantage of solely using W1 as a metric is that this can be continuously observed so the critic
can be trained until optimally before the training of the generator, unlike classical GANs where this would
cause a vanishing gradient. Additionally, this will also help to mitigate mode collapse [39]. Lastly, if G
is continuous, differentiable almost everywhere, and locally Lipschitz continuous, then the loss W1 will be
continuous [26].

3.3.1 Enforcing Lipschitz constraint

One practical problem of a WGAN is to enforce the Lipschitz constraint. In the original implementation [39],
weight clipping was used to keep the weights ω in an compact interval [−ξ, ξ], after each gradient update.
One obvious question from this approach is what ξ should be? If ξ is too large, then it might take a long
time for the weights to reach their limit and consequently make it harder to train the critic to optimality.
On the contrary, if the weights are too small, then a vanishing gradient can occur [39]. However, it shall be
noted that these problems can be mitigated with batch normalization in the critic. However, this will make
the critic fail to converge according to [25].

Instead of answering the previous question, another approach that does not involve weight clipping
can be used. One of these methods is gradient penalty and was introduced as Wasserstein Generative
Adversarial Network - Gradient Penalty (WGAN-GP) in [25]. In this method, a regularization by a gradient
penalty RGP term is introduced. This gradient penalty is defined as

RGP = Ex̂∼Px̂

[(∥∥∇x̂D(x̂)
∥∥

2
− 1
)2]

(3.14)

where x̂ is the output of the generator i.e G(z) = x̂, z ∼ Pz. Introducing this term to the original WGAN
loss (3.12), together with the penalty coefficient λ yields

LWGAN-GP(G,D) =

Generator loss −LG︷ ︸︸ ︷
Ex̂∼Pg

[
D(x̂)

]
−Ex∼Pr

[
D(x)

]
+ λRGP︸ ︷︷ ︸

Critic loss LD

. (3.15)

The motivation behind the gradient penalty term in (3.15), is that a differentiable function is 1-Lipschitz iff
it has gradients with the norm at most 1 everywhere [25]. Therefore, the penalty terms penalize gradients
with norm separate from 1, and consequently encourages the norm to go towards 1. Unfortunately, this
introduction of the gradient penalty term increases the computational complexity and thus the time required
for convergence [44]. Additionally, the penalty terms for each critic input x̂ are calculated individually.
Therefore, batch normalization can not be used since it will input a whole batch instead. However, normal-
ization schemes that introduce no correlation between examples can be used. Notably, layer normalization
can be used [25]. Lastly, it shall be added that there are other penalty methods, notably WGAN-LS [45]
which modifies the penalty terms in (3.14) slightly. Additionally, there are also methods to circumvent the
Lipschitz constraint, such as WGAN-div [43], c-transform/(c, ε)-transform WGAN [46].

–20–

CHAPTER 3. GAN 3.3. WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK

3.3.2 Remarks about the W1 approximation

As of recent, the approximation of the Wasserstein distance W1 using (3.9) has been questioned and been
stated to be impossible to approximate in practice [44]. Firstly, they argued that it is impossible to optimize
over all 1-Lipschitz functions accurately. Therefore, an exact optimal discriminator will never be obtained.
Secondly, they noted that during practical implementations, the network does not have access to the full
distributions Pg and Pr, but only finite subsamples because of the use of mini-batches.

Besides pointing out the flaws of the approximation, there have also been comparisons to presumably
better approximations of the Wasserstein distance W1 [44, 47]. This highlights that the approximation in
(3.9) takes longer to converge to the true distance compared to other approximations. However, [44] also
looks into the generative performance of the different approximations, specifically between WGAN-GP and
the c-transform. There it is noted that while the c-transform is better in approximating the exact W1, it
outputs a worse objective generative performance in the task of face generation. It is noted that the faces
become more blurry than what WGAN-GP outputs, see figure 3.4 for samples from their experiments.

Additionally, the authors also argue that the Wasserstein distance W1 is not a suitable loss for the
task of image generation since it utilizes pixel-wise distance, which is not a perceptual distance metric for
human vision. Finally, they attribute the initial success of WGANs over classical GANs to the ability to
control the Lipschitz constant of the discriminator. Additionally, they emphasize the importance of good
initial hyperparameter tuning, which might give misleading results over different GANs.

(a) WGAN-GP (b) c-transform WGAN

Figure 3.4: Samples of generated faces using WGAN-GP and c-transform [44].

–21–

CHAPTER 3. GAN 3.4. LIPGAN

3.4 LipGAN

In the article Towards Automatic Face-to-Face Translation, Prajwal et al. [7] introduces LipGAN. They use
this GAN in a pipeline that inputs a video in the source language LA and translates it to a target language
LB with correctly lip-synced lips for the target language.

The pipeline starts by inputting the source language LA audio into an automatic speech recognition
(ASR) module which converts the speech to text. Further, this text is used as input to a translation
software which translates the source language LA text into target language LB text. Then, this text gets
converted to target language LB audio through a text-to-speech (TTS) module which then also gets processed
through a voice transfer software to make the output more human-like and diverse. This audio then gets
converted into mel-spectrograms, while the video gets chopped up into the corresponding frames of the video.

As usual, the GAN consists of a generator G and a critic D. Importantly, LipGAN is not a conven-
tional GAN in the sense that it does not input random noise into the generator G to produce the generated
distribution. Instead, LipGAN inputs frames and audio from an input distribution Pz and outputs a
generated lip-synced frame in the output distribution Pg. Further, the critic D will be fed real frames from
the data distribution Pr and generated frames from the generator’s output distribution Pg. The foundation
of LipGAN is built on the DCGAN structure in combination with residual blocks and skip-connections [7].

3.4.1 Generator G

As mentioned, the input to the generator consists of two images of dimension H × H × 3, which are
concatenated channel-wise to a tensor of dimension H ×H × 6. During training, these consist of a ground
truth frame where the lower part has been masked Sm and a time-unsynced frame S′, which is a frameshifted
with the time step ±α. The purpose of the masked frame Sm is to give the generator information about the
pose of the person. The masked frame Sm is obtained by taking the ground truth frame S and changing the
lower half of the image to a black color i.e for an H ×H frame, setting the lower H

2 ×
H
2 pixel values to 0

for an 8-bit image. As for the audio input, it consists of an audio segment A connected to a corresponding
frame S and is given as a mel-spectrogram of shape M × T , where M represents the number of frequency
channels, and T is the time window for the audio segment.

Moving over to the structure of the generator, it consists of an autoencoder that has three modules;
one audio encoder, one face encoder, and a face decoder. The audio encoder consists of a standard CNN
with 4 residual blocks and outputs and audio embedding. Likewise, the face encoder consists of a standard
CNN with 7 residual blocks and outputs to a face embedding. This face embedding gets concatenated with
the audio embedding, which forms one single embedding which gets passed to the face decoder. Similarly,
this face decoder consists of a standard CNN with 7 residual blocks. Importantly, there exist six skip
connections from a residual block in the face encoder to the corresponding residual block in the face decoder.
The purpose of these skip connections is to preserve facial information, which might be lacking in the
embedding. Finally, the face decoder outputs the generated output of the generator i.e a generated frame
Ŝ. An overview of LipGANs generator structure can be seen in figure 3.5.

–22–

CHAPTER 3. GAN 3.4. LIPGAN

Input
Mel-spectogram A
M × T

Input
Tensor of S ′ ,Sm
H ×H × 6

LipGAN generator G
Audio encoder

Face encoder

Embedding

Face decoder

Output
Frame Ŝ
H ×H × 3

Figure 3.5: Overview of the generator G used in LipGAN.

3.4.2 Critic D

The critic input consists of a true frame S from the data distribution Pr or a generated frame Ŝ from the
generator G, both as a tensor of size H ×H × 3. Importantly, LipGANs critic also gets fed true frames S
with time-unsynced audio A′ which shall be considered faked samples. This so it will learn to differentiate
unsynced audio as well, and not solely discriminate on the image quality.

As for the structure of the critic, it consists of an audio encoder and a face encoder. The first in-
puts mel-spectrogram of shape M × T and consists of a CNN with 4 residual blocks. Furthermore, the face
encoder consists of a CNN with 7 residual blocks. The output of the critic is two fixed representations for
the input in the audio embedding EA and in the face embedding ES . An overview of LipGANs critic D
structure can be seen in figure 3.6

–23–

CHAPTER 3. GAN 3.4. LIPGAN

LipGAN critic D

Audio encoder

Face encoder

Audio input
Mel-spectrogram A
M × T

Audio input
Mel-spectrogram A
M × T

Audio input
Time-unsynced mel-spectrogram A′

M × T

Face input
Real frame S
H ×H × 3

Face input
Real frame S
H ×H × 3

Face input
Generated frame Ŝ
H ×H × 3

Outputs
Fixed representation in
Audio embedding EA

and in
Face embedding ES

EA

ES

Figure 3.6: Overview of the critic used in LipGAN. Note the different input cases to the critic D.

3.4.3 Losses

Similar to a traditional GAN, LipGAN has a separate loss for the generator G denoted as LG and a separate
loss for the critic D denoted by LD. These losses are optimized in an attempt to obtain the optimal
generator G∗ and the optimal critic D∗.

Firstly, the critic outputs the contrastive loss Lc, which is frequently used for feature mapping, a
similar problem to lip-synchronization [4]. The ambition of the contrastive loss is to bring paired data
closer together while doing the opposite for unpaired data. The pairs in this case are the video and audio
embeddings and their labels determine their coupling. The contrastive loss is given by

Lc(di, li) =
1

2N

N∑
i=1

(
(1− li) · d2

i + li ·max(0,m− di)2
)

(3.16)

where N is the number of samples for computing the loss i.e usually the batch size, m the margin which is
a user-defined parameter, li which is the label for the sample e.g li = 0 for a fake sample, and li = 1 for
a true sample. Lastly, di represents the L2 distance between the samples fixed representation in the audio
embedding EA and in the face embedding ES i.e

di =
∥∥∥EAi − ESi ∥∥∥

2
. (3.17)

–24–

CHAPTER 3. GAN 3.4. LIPGAN

The contrastive loss Lc is then used to obtain two other losses, Lreal and Lfake, depending on which sample
gets inputted to the critic D. For a real frame S, together with the true audio A, and consequently the label
l = 1, the real loss is obtained as

Lreal = ES,A[Lc(D(S,A), l = 1)]. (3.18)

However, for the fake loss Lfake, two fake inputs can be used. Namely, a generated input from the generator
G(S′, A) = Ŝ with time-synced audio A, called Lface, or a real frame S with time-unsynced audio A′, called
Laudio. This yield the following combined loss

Lfake = Lface + Laudio (3.19)

where

Lface = EŜ,A[Lc(D(Ŝ, A), l = 0)],

Laudio = ES,A′ [Lc(D(S,A′), l = 0)].
(3.20)

These losses, Lreal and Lfake are then combined as an average as

LD(G,D) =
Lreal + Lfake

2
. (3.21)

This is the loss which the critic tries to maximize which yields the optimal discriminator

D∗ = arg max
D
LD(G,D). (3.22)

Moving over to the generator G, it utilizes a reconstruction loss Lre, which is given by

Lre(G) =
1

N

N∑
i=1

∥∥S −G(S′, A)
∥∥

1
. (3.23)

The generator tries to minimize this loss, while it at the same time tries to counter the discriminator’s loss
LD by minimizing it. In total, this yields the following optimal generator

G∗ = arg min
G
Lre(G) + LD(G,D). (3.24)

–25–

CHAPTER 4. TECHNOLOGIES & DATASETS

CHAPTER 4

Technologies & Datasets

In this chapter, the technology and the dataset for all models in this thesis are presented. The software used
includes; Python, numpy, Pytorch, OpenCV, FFmpeg, dlib, and librosa. The hardware used for the thesis
is described. Lastly, the dataset used for training all of the models is introduced. Additionally, the dataset
utilized by the original implementation of LipGAN [7] is also presented and compared to the one used for
the models in this thesis.

4.1 Software

4.1.1 Python

Python is an open-source general-purpose programming language. It has a big community and a rich selection
of packages, especially for machine learning, which it is especially suited for owing to Python’s generator
function. Therefore, Python was used for all of the implementations in this thesis.

4.1.2 numpy

Optimized numerical computations can be enabled in Python using the open-source library numpy [48]. It
is especially useful for linear algebra operations owing to its numpy array data type. For this thesis, numpy
is primarily used to store vector and matrices as numpy array objects, and to perform some basic linear
algebra operation on them.

4.1.3 Pytorch

Pytorch is an open-source machine learning framework for Python, C++, and Java, originally developed
by Facebook’s AI Research lab [49]. It described itself as being easy to use, while also providing high
performance; mainly owing to its use of hardware acceleration. One notable use of hardware acceleration
is its use of a graphical processing unit (GPU) for tensor operations, which it does using Nvidia’s parallel
computing platform CUDA [50]. Additionally, it can also utilize Nvidia’s cuDNN library, which provides
highly tuned implementations for common deep learning routines [51]. Altogether, this will provide a speed
boost for the task of deep learning, something which is especially important for GAN training. Therefore,
Pytorch was used in the thesis for all of the network implementations. Also, Pytorch provided all of the

–26–

CHAPTER 4. TECHNOLOGIES & DATASETS 4.2. HARDWARE

optimization solvers which were used for this thesis. Lastly, Keras [52] should also be mentioned as another
machine learning framework commonly used in Python, which was used in the original implementation of
LipGAN [7].

4.1.4 OpenCV

Open-Source Computer Vision Library (OpenCV) is an open-source computer vision library written natively
in C++ [53]. However, it has a wrapper to Python, and could therefore be utilized for the models in this
thesis. The purpose of OpenCV in this thesis, is to ease the task of resizing, loading, and saving images to a
desired format i.e numpy arrays and .jpg images.

4.1.5 FFmpeg

FFmpeg is an open-source multimedia software, which can decode, encode, transcode, stream, filter, and play
digital video or audio [54]. Its purpose for this thesis is to obtain the frames per second (fps) rate of the
videos used. Additionally, it is also used to separate or combine the video and audio.

4.1.6 dlib

The C++ toolkit dlib, is an open-source library containing many machine learning algorithms [55]. Addi-
tionally, dlib can also be used in Python. For this thesis, dlib is solely used for the task of face detection.
In the pre-processing step, this is done using its implementation of the histograms of oriented gradients
(HOG) + linear support vector machine (SVM) facial detection [56]. While for the inference, a pre-trained
max-margin object detection (MMOD) [57] CNN is used. The reason for the use of different facial detection
methods between pre-processing and inference is the tradeoff between accuracy and computational time,
where the MMOD CNN is more accurate but takes longer than the HOG + linear SVM approach. The latter
is especially important since the pre-processing of a 27-hour dataset can take days, even on modern hardware
using multithreading.

4.1.7 librosa

The open-source Python package librosa is a music and analysis tool [58]. For this thesis, it will be used to
process the audio. This processing consists of sampling the audio and convert it to mel-spectrograms, which
involves the steps described in section 2.5 Audio representation.

4.2 Hardware

As of 2021, working with GANs is a very computationally costly procedure, and consequently, can take a long
time to train. As an example, for this thesis, the fastest model to train still took about a day to train with
a small dataset and the fastest GPU available for the experiments. However, if this would be done without
utilizing the hardware acceleration mentioned in subsection 4.1.3 Pytorch, it would take approximately 26
days. Therefore all experiments were conducted using a GPU and the optimization mentioned in subsec-
tion 4.1.3 Pytorch. To further speed up the training process, experiments ran in parallel on two different
systems. The two systems used the GPUs Nvidia RTX 2080 TI and Nvidia RTX 2070 respectively.

4.3 Datasets

To train an artificial neural network, training data is required. This training data constitutes the experience
from which the machine learning algorithm learns. A dataset is divided into different data points and most

–27–

CHAPTER 4. TECHNOLOGIES & DATASETS 4.3. DATASETS

often there is a large quantity of these [11]. Since this thesis revolves around creating videos, the dataset
consists of these. A dataset can be more diverse if it includes videos in different settings. In general, the
performance of a network is determined by how well it achieves its task on data that it has not seen before.
Due to this reason a dataset is often split into training data and test data. The model is trained on the
training data and the performance is verified on the test data [11].

In this thesis, a dataset of videos called GRID was used. It was introduced by Cooke et al. [59] as
a corpus for tasks such as speech perception and speech recognition. GRID contains 33 unique speakers that
each utter 1000 sentences in separate videos, that are about 3 seconds long. In total, this results in about
27.5 hours of 25 frames per second video with a resolution of 360× 288 and a bitrate 1 kbit/s. Out of the 33
speakers, 16 were female and 17 were male, and all speakers had English as their first language. The videos
are filmed in a lab environment with a green screen background rendering a clinic setting for the videos.
The speakers are always faced forward and looking into the camera.

In the original implementation of LipGAN, a dataset called LRS2 [60] was used to train their model. This
dataset differs much from the GRID corpus. It is not made up of videos recorded in a lab environment but
made up of news recordings from the British Broadcasting Corporation. This makes the LRS2 being more
of a in-the-wild dataset that captures real conversations and different face poses. It also contains different
lighting, different backgrounds, and people with different origins, which GRID lacks. The total length of
data used in the implementation of LipGAN was around 29 hours [7].

The two aforementioned datasets differ a lot in terms of properties and thus they constitute the
properties of the resulting model after training. A model trained on GRID might perform better on
studio-recorded videos where the speaker looks into the camera whereas the LRS2 should perform better on
in-the-wild situations. For this thesis, the choice fell on the GRID dataset since it matches the preferences
of personalized video messages better, and due to its availability. Nine sample images from the respective
datasets can be seen in figure 4.1.

(a) GRID (b) LRS2

Figure 4.1: Samples of speakers from the datasets GRID [59] and LRS2 [60]. Note that the resolution in
the LRS2 samples is not representative since it is a screenshot.

–28–

CHAPTER 5. METHODOLOGY

CHAPTER 5

Methodology

Here, the methodology used in this thesis is discussed. The pre-processing, followed by our implementation
of LipGAN and WGAN-GP on the LipGAN architecture is presented, including architectural, training,
inference, and code details. The experiments conducted for this thesis are explained. Lastly, the novel model
L1WGAN-GP, developed in this work, is described in section 5.4 Experiments.

5.1 Data Pre-processing

Before the training data gets passed through any of the presented networks, it needs some pre-processing.
The GRID dataset was used for this thesis, and was the only dataset subject to pre-processing. This consisted
of the following parts:

• Chop up the video into frames.

• Crop out the face and rescale it to the correct image dimension H ×H × 3. Save it into .jpg format.

• Chop up the audio to corresponding audio segments in mel-spectrograms representation.

• Put the files in a specific file structure.

• Split data into train and test dataset.

This was mainly implemented using the preprocess and audio code1 from the original LipGAN article [7].
The reason to only use the faces as input data is to reduce visual disturbances such as background or
non-speaking persons. Also, it will reduce the input dimension and consequently reduce the computational
complexity of training the GANs.

The first step was done using the Python package OpenCV and the VideoCapture method, which
chopped up the frames to numpy arrays using the frames per second of the video. Then for the second
step, dlib was used to detect the faces in the frames using the HOG + SVM face detector. If a face was
detected, the face was rescaled into a H ×H × 3 numpy array and saved into a .jpg file using OpenCV. On
the contrary, if no face was detected, the frame was discarded. For the third preprocessing step, FFmpeg

1https://github.com/Rudrabha/LipGAN/tree/fully pythonic (fully pythonic branch)

–29–

https://github.com/Rudrabha/LipGAN/tree/fully_pythonic

CHAPTER 5. METHODOLOGY 5.2. LIPGAN IMPLEMENTATION

was used to separate the audio from the video and convert it into .wav format. Later, the Python package
librosa was used to load the .wav data file and convert it into a mel-spectrogram as a numpy array, which
then got compressed into the .npz format. Utilizing a .txt file with the desired file structure, the later steps
would put their output in the specified file structure.

All pre-processing resulted in training data which consisted of the real face inputs S, and the shifted
frame S′, which had been resized to size 96 × 96 × 3 i.e H = 96. Furthermore, the shifted frames S′ were
obtained by picking a frame using a time step ±α, where α is of random size α = 1, 2, ..., 6. As for the audio
data, it consisted of mel-spectrograms with M = 80 mel-frequency channels, and a time window of T = 27.
This time window equivalates to about 300 ms of total audio, which is spread out evenly before and after
the frame. Lastly, all data attributes can be seen summarized in table 5.1.

Table 5.1: Data attributes for the training data.

Data attributes
Input image horizontal/vertical dimension H 96

Frameshift time step α 1, 2, ..., 6
Mel-frequency channels M 80

Mel-spectrogram time window T 27

Finally, all the pre-processed data resulted in 2202106 frames of faces, together with 33000 mel-spectrograms.
This was then subdivided into the three sub-datasets GRIDSmall, GRIDFull, and GRIDTest. The first two
subsets, GRIDSmall and GRIDFull, contained 300 and 980 video samples respectively from each of the 33
speakers. As the name suggests, the latter subset, GRIDTest, was used to test the models and therefore had
no intersection of data with the two previously mentioned sub-datasets, which are used for training. Further,
the test datasets contained 43929 image samples, which was specifically chosen since it matches the sample
sizes used to calculate some specific GAN metrics, similar to other GAN comparison articles [61, 62]. All
sub-datasets can be seen summarized in table 5.2.

Table 5.2: Information about the data subsets used for all experiments.

Name Type Individual samples Videos per speaker
GRIDSmall Train 670758 300
GRIDFull Train 2190517 980
GRIDTest Test 44589 20

5.2 LipGAN implementation

As a first model for the task of lip-synchronization, an implementation of LipGAN [7], as described in
section 3.4 LipGAN, was used. Additionally, the training utilized the different subsets of the GRID dataset,
which was pre-processed as mentioned in section 5.1 Data Pre-processing.

5.2.1 Architectural implementation

The overall architecture was nearly identical to the one described in section 3.4 LipGAN. There were three
different types of residual blocks used. Namely, the generator’s convolutional block, the critic’s convolutional
block, and the transposed convolutional block.

–30–

CHAPTER 5. METHODOLOGY 5.2. LIPGAN IMPLEMENTATION

As the name suggests, the generator’s convolutional block was only used for the generator in the
face and audio encoder and the face decoder. There, the kernel was sized 4, 3, and 1 with a stride of 3, 2,
or 1. This creates the 1 × 1 × 512 output embedding from the face encoder and the audio encoder, which
concatenates to the joint 1×1×1024 embedding which inputs to the face decoder. This decoder also consists
of a transposed convolutional block, which does a transposed convolution using solely a kernel size of 3 and
a stride of 2. Lastly, both the generator’s convolutional blocks and the transposed convolutional block used
the ReLU activation function. Additionally, the blocks utilized batch normalization with a momentum of 0.8.

Moving over to the critic, it utilizes solely the critic’s convolutional block. In the face encoder, it
has convolutional blocks with the kernel sizes 7, 5, and 3 with a stride of 2 and 1. For the audio encoder,
it solely uses the kernel size 3 with strides of 3 and 1. For both encoders, the last layer consists of zero
padding on both sides of the input. This yielded the output embeddings ES and EA of size 1× 1× 512 each.
Additionally, all residual blocks used the LeakyReLU activation function, with a negative slope of 0.2. Lastly,
all blocks in the critic used instance normalization with a momentum of 0.1. In total, all implementations
resulted in a model with 47424915 trainable parameters, where 37087763 are for the generator and 10337152
for the critic.

5.2.2 Training implementation

For the training, a random seed for the initial weights ωInit was chosen, to be the same for all experiments,
unless otherwise mentioned, since the random seed has been shown to have an impact on the perfor-
mance for different GANs [63]. The random seed which was selected was the numpy random seed 10 i.e
numpy.random.seed(10).

As for the training, it consisted of 20 epochs with a batch size of 128. In each training step, the
critic had an equal probability to be given a real face input S together with time-unsynced audio A′ or a
faked face Ŝ from the generator together with time-synced audio A. Additionally, it was always given a real
data sample from the training dataset. Then, from the output score, backpropagation was used to train the
discriminator using its loss LD. This loss was then used together with the reconstruction loss Lre to obtain
the generator loss LG to train the generator by backpropagation.

For the contrastive loss Lc, a margin of m = 2 was used. Further, ADAM was used as optimizer for
both the critic and the generator. Additionally, for both networks, an initial learning rate of η = 10−3 and
the decay parameters β1 = 0.5 and β2 = 0.999 was used for ADAM. All training parameters can be seen
summarized in table 5.3.

Table 5.3: Training parameters used for the LipGAN model.

LipGAN training parameters
Random seed for ωInit numpy.random.seed(10)

Epochs 20
Batch size 128

Contrastive loss margin m 2
Initial learning rate η 10−3

ADAM first decay parameter β1 0.5
ADAM second decay parameter β2 0.999

–31–

CHAPTER 5. METHODOLOGY 5.2. LIPGAN IMPLEMENTATION

5.2.3 Inference implementation

For inference of the model, the inference data first had to be pre-processed. This was done in a similar matter
to the training data, as seen in section 5.1 Data Pre-processing, with frame and audio chopping combined
with the facial detection. However, the steps of putting the files in a specific file structure and splitting the
datasets were omitted. Lastly, it should be added that the inference data does not necessarily have to be
videos, but photos can be used as well. In this case, the photo corresponds to each mel-spectrogram in the
input audio.

For the inference, the pre-processed inference data was passed through solely the trained generator
to produce the generated face from the input audio and frames. This, together with the audio, was then
combined to a video using FFmpeg. To obtain a better result, the batch size of the generator was reduced to
64.

5.2.4 Code implementation

The implementations were inspired by the LipGANs author’s implementation1. However, for this thesis,
an up-to-date version of Pytorch was used, instead of the outdated Keras [52] version used in the original
implementation.

The code was structured to have a class for the generator and the critic which used a class for the
different residual blocks considers. These were implemented using Pytorch’s nn framework. The reason for
letting the residual blocks be its own class is to implement the skip-connections in the Pytorch framework.
Further, the contrastive loss was also implemented using the nn framework to the class ContrastiveLoss.
Due to the size of the training datasets, which were bigger than any of the system’s video or random access
memory, a specific training data handler had to be implemented. This was implemented using Pytorch’s
Dataset framework to the class TrainDataHandler. Similarly, this also had to be done for the inference
data with the introduction of the InferenceDataHandler class. Additionally, to obtain specific metrics, a
metric class was used. Also, a utility class was used to save training samples, save metrics, and save the
network during or after training. Lastly, the training or inference was initiated from their respective script.
A high-level overview of the implementation can be seen in figure 5.1.

Class
Generator

Class
Critic

Script
train

Class
Convblocks

Class
ContrastiveLoss

Script
inference

Class
Module

Class
LeakyReLu

Class
ReLU

Class
Sequential

Class
TrainDataHandler

Class
Dataset

Class
InferenceDataHandler

pytorch.nn pytorch.utils

Figure 5.1: High-level overview of the LipGAN implementation. The filled arrows indicate inheritance
while the dotted arrows indicate use of a class.

–32–

CHAPTER 5. METHODOLOGY 5.3. WGAN-GP IMPLEMENTATION

5.3 WGAN-GP implementation

Another model implemented for the task of lip-synchronization was the WGAN model. This model builds on
the original WGAN-GP [25] implementation as described in section 3.3 Wasserstein Generative Adversarial
Network. The model was trained on the same pre-processed data as all other models, which is presented in
section 5.1 Data Pre-processing.

5.3.1 Architectural implementation

The overall architecture mimics the implementation of LipGAN, as seen in subsection 5.2.1 Architectural
implementation, with slight modification. Fortunately, the LipGAN architecture used no batch normalization
in the critic, which can be a problem for a WGAN as mentioned in subsection 3.3.1 Enforcing Lipschitz
constraint. Similarly, the number of trainable parameters stayed the same, at 47424915 where 37087763 are
for the generator and 10337152 for the critic.

5.3.2 Training implementation

The major difference between the WGAN model and the LipGAN model is the training process. Firstly,
they used the same initial random seed of numpy.random.seed(10) for the initializing of the initial weights
ωInit.

Similarly, the WGAN model was trained for 20 epochs with a batch size of 128. However, for each
training step, the WGAN model used another approach of synchronizing the generator and critic training.
Namely, it trained the critic every step, and the generator every 5th step, using backpropagation. Similar
to LipGAN, the critic had an equal probability to be given a real face input S together with time-unsynced
audio A′ which yields Laudio, or a faked face Ŝ from the generator together with time-synced audio A which
yields Lface.

Since the critic outputs two embeddings ES and EA, they were concatenated to one single embed-
ding which could be used as the output of the generator to calculate the loss LWGAN-GP as seen in equation
(3.15). Therefore, was the gradient penalty RGP calculated every step using a penalty coefficient of λ = 10.
Additionally, ADAM was used as optimizer for both networks, using an initial learning rate of η = 10−4 and
the decay parameters β1 = 0.5 and β2 = 0.9. The inspiration for these ADAM hyperparameters came from
multiple WGAN-GP Github repositories. All training parameters can be seen summarised in table 5.4.

Table 5.4: Training parameters used for the WGAN model.

WGAN-model training parameters
Random seed for ωInit numpy.random.seed(10)

Epochs 20
Batch size 128

Gradient penalty coefficient λ 10
Initial learning rate η 10−4

ADAM first decay parameter β1 0.5
ADAM second decay parameter β2 0.9

–33–

CHAPTER 5. METHODOLOGY 5.4. EXPERIMENTS

5.3.3 Inference implementation

The inference of the WGAN model was done identically to LipGAN, as can be seen in subsection 5.2.3
Inference implementation.

5.3.4 Code implementation

The code implementation for the WGAN-GP model is similar to the LipGAN model, as explained in
subsection 5.2.4 Code implementation. However, slight modifications had to be made. Namely, the
ContrastiveLoss class was no longer needed and could be removed. Additionally, the critic and gener-
ator loss had to be changed in the training script, and the gradient penalty had to be added. Lastly, the
hyperparameters of the optimizer had to be modified.

5.4 Experiments

Experiments in the scope of this thesis were conducted to obtain quantitative results, qualitative assessments,
and verify convergence of the models. A brief explanation of each conducted experiment is presented in this
section.

1. Firstly, our implementation of LipGAN was analyzed in terms of the loss functions to ensure that the
model converges. Inspection of sample images produced during training was also done to assure that
the generated samples were convincing faces of satisfying perceptual quality.

2. Our implementation of WGAN-GP was also examined under the same criterion. As a complement to
WGAN-GP, a novel model was also implemented and analyzed. This model built on the WGAN-GP
but used the L1 reconstruction loss Lre, defined in (3.23), as a loss function in the generator. In this
work, we call this model L1WGAN-GP. All hyperparameters from the WGAN-GP model remained the
same as in table 5.4.

3. After this, a comparison between the models LipGAN and L1WGAN-GP was done in terms of three
different quantitative metrics and qualitative assessment. This was done by using the different models
to generate data from the GRIDTest dataset, which was data that the models had not previously seen.
The generated data formed a set of samples used as test images while the samples from GRIDTest
served as reference images in the metrics.

4. Lastly a qualitative assessment on how different data sets influence the resulting models was done.
This featured our implementation of LipGAN, trained on GRID, and the original implementation of
LipGAN, trained on LRS2.

The results of these experiments are presented in chapter 7 Results.

–34–

CHAPTER 6. METRICS

CHAPTER 6

Metrics

In this chapter, three quantitative metrics that were used, PSNR, SSIM, and FID-score, are presented. The
metrics were used to score the performance of different models and used images as the primary input. The
metrics’ different properties are presented and evaluated. Lastly, some other considered metrics are discussed.

6.1 PSNR

Peak signal-to-noise ratio (PSNR) is an image processing metric used to measure the difference of power
between an image and corrupting noise. The foundation of the metric is built on the mean squared error
(MSE) between a reference image and a test image [64]. This is defined as

MSE(r, g) =
1

MN

M∑
i=1

N∑
j=1

(
rij − gij

)2

(6.1)

where r is the reference, g is the test image and both images have dimensions M × N . To calculate the
PSNR, a maximum value of an image pixel is required. This may vary depending on how many bits are used
in each pixel. In this thesis, all images are coded with 8 bits and thus the maximum value is, Imax = 255.
The PSNR is defined as

PSNR(r, g) = 10 · log10

(
I2
max

MSE(r, g)

)
. (6.2)

The PSNR is expressed in a logarithmic quantity using the decibel (dB) scale. As the MSE between the
images shrinks the PSNR grows larger, thus a high PSNR is desired. This version of PSNR is valid for
monochromatic images but is easily extended to include all three pixels in a color image by modifying the
MSE to include differences for each of the channels.

PSNR can detect images polluted by noise or other pollutions that affect the values of the pixels
[65]. If the PSNR has a low value then the numerical difference between the pixel values in r and g is large.
This does not however tell much about the image quality itself. Consider the case of a blurry reference and
a higher quality test image, then the PSNR would be low yet the image would be of high quality. PSNR also
suffers from a low correlation with human evaluation but has the benefit of being simple to calculate [66].

–35–

CHAPTER 6. METRICS 6.2. SSIM

6.2 SSIM

Structural similarity index measure (SSIM) is a metric to measure the similarity between two images. It was
introduced by Wang et al. [64] as a metric to determine perceptual image quality that correlates with the
human visual system. This is a distinctive difference from PSNR that focuses more on purely the numerical
difference between images. SSIM takes three factors into account; luminance distortion l(r, g), contrast
distortion c(r, g) and, structure distortion s(r, g). For a reference image r and a test image g these are
defined as

l(r, g) =
2µrµg + C1

µ2
r + µ2

g + C1

c(r, g) =
2σrσg + C2

σ2
r + σ2

g + C2

s(r, g) =
σrg + C3

σrσg + C3

(6.3)

where µ is the expected value, σ is the standard deviation, and σrg denotes the covariance between the
images. Further, C are constants to avoid division by zero. These are defined by

C1 = (K1Imax)2

C2 = (K2Imax)2

C3 = C2/2

(6.4)

where K are small constants and Imax = 255 is the maximum value of a 8-bit pixel.

SSIM gives a more perceptual interpretation of differences in images. It captures the distinction of
spatially close pixels which are important for the structure of the image. The disadvantage of SSIM
compared to PSNR is that it requires more calculations, yet the perceptual performance of SSIM is better.

6.3 FID-score

In general, it is difficult to evaluate the performance of different GAN models in comparison to each other.
Salimans et al. [31] proposed a method to compare GANs that uses a pre-trained image classifier network
to evaluate the generated distribution Pg in terms of quality and diversity. This method is called Inception
Score (IS) and is widely used when comparing GANs [67]. Yet it should be noted that there are some flaws
with this method such as that it only works if the evaluated distribution Pg consists of a class that is known
to the classifier. Another problem is that it does not compare the generated distribution Pg to the desired
distribution Pr.

Heusel et al. [68] introduced a new metric called Fréchet Inception Distance (FID) that remedies the
two mentioned flaws of the Inception score. It builds on the Wasserstein distance, introduced by Fréchet in
1957, that is used to calculate the distance between two Gaussian distributions. To compute this metric an
arbitrary feature function, φ, is required. The authors suggest using the pre-trained Inception-v3 network
for this task. All images are propagated through the network and on the last pooling layer, the mean µ, and
covariance matrices C are calculated. With these components, the FID-score for a reference distribution Pr
and a test distribution Pg can be expressed as,

FID(φ(Pr), φ(Pg)) =
∥∥µr − µg∥∥2

2
+ Tr(Cr + Cg − 2(CrCg)

1/2). (6.5)

–36–

CHAPTER 6. METRICS 6.4. OTHER CONSIDERATIONS

FID performs well in evaluating distributions generated by GANs in terms of robustness, efficiency, and
discriminability [67]. It also poses a more logical choice than the Inception score because it tests both Pg
and Pr. On the other hand, FID lacks consistency due to using an arbitrary feature function, φ. Since there
is no standard set the measurements are poorly compared to those of other works. It is most common to use
the Tensorflow implementation of FID-score when performing tests. In this thesis, Pytorch is used and thus
a Pytorch implementation2 with the Inception-v3 network was used [69].

6.4 Other considerations

Three quantitative metrics have been presented and were used in the thesis. Two of them focus on
image quality and one on network quality. However no metric that measures the actual process of
lip-synchronization is presented. Since most of the GANs focus solely on image generation no established
metric for lip-synchronization exists. To determine the lip-synchronization performance the most reliable
and fair option would be some sort of human evaluation, quantitative or qualitative. A quantitative human
evaluation is the mean opinion score (MOS) where a reference sample and a test sample are evaluated by
humans. These types of evaluations could be used to provide more depth to the analysis of the performance
of the different used structures.

Further, it is possible to use the different loss functions as metrics to evaluate the performance of a
GAN. However, it is not a good idea to use loss functions, that is used in one of the GANs, as a metric. This
is the case since the loss function serves as the objective function and will be minimized by the GAN and
thus it would be an unfair match. Yet, the loss functions can be used to prove concepts, such as convergence,
and to tune hyperparameters.

2https://github.com/mseitzer/pytorch-fid

–37–

https://github.com/mseitzer/pytorch-fid

CHAPTER 7. RESULTS

CHAPTER 7

Results

In this chapter, the results of the experiments from section 5.4 Experiments are discussed. Firstly the
different models and their individual results and convergences are introduced. Secondly, the models LipGAN
and L1WGAN-GP are compared and evaluated using quantitive metrics and qualitative inspection. Lastly,
the impact of different datasets on models is examined.

7.1 LipGAN

Firstly, the LipGAN model, implemented as stated in section 5.2 LipGAN implementation, was trained using
the GRIDSmall and the GRIDFull datasets for 20 epochs. This took approximately 1 day with 105000
training iterations for GRIDSmall and 3 days with 342400 training iterations for GRIDFull, on both systems.

7.1.1 Losses

During training, the different LipGAN losses were sampled every 600th training iteration for both datasets.
The generator loss LG together with the critic loss LD can be seen in figure 7.1.

0 50000 100000 150000 200000 250000 300000 350000
Training Iteration

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

G

G for LipGAN model during training
GRIDSmall
GRIDFull

(a) Generator loss LG

0 50000 100000 150000 200000 250000 300000 350000
Training Iteration

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

D

D for LipGAN model during training
GRIDSmall
GRIDFull

(b) Critic loss LD

Figure 7.1: Losses during training for the LipGAN model.

As can be seen in figure 7.1, the generator loss converges to around 0, with a minimum loss of 6.0 · 10−3

for GRIDSmall and 5.7 · 10−3 for GRIDFull. As for the critic loss, it can be seen to converge around 0.45.

–38–

CHAPTER 7. RESULTS 7.1. LIPGAN

However, some outliers can be seen, which resulted in a search for potential errors in the training samples,
although, none were found. Additionally, the loss Lface with the input of a fake face Ŝ with real audio A,
and the loss Laudio with the input of a real face S but time-unsynced audio A′, were sampled. This was done
even if they did not contribute to the critic loss LD for that specific iteration. These losses can be seen in
figure 7.2.

0 50000 100000 150000 200000 250000 300000 350000
Training Iteration

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

fa
ce

face for LipGAN model during training
GRIDSmall
GRIDFull

(a) Faked face Ŝ, synced audio A, loss Lface.

0 50000 100000 150000 200000 250000 300000 350000
Training Iteration

10 5

10 4

10 3

10 2

10 1

100

lo
g 1

0(
au

di
o)

audio for LipGAN model during training
GRIDSmall
GRIDFull

(b) Real face Ŝ, unsynced audio A′, loss Laudio.

Figure 7.2: Losses during training for the LipGAN model.

As can be seen, both losses seem to converge, although, this process is slower for Laudio than Lface. Impor-
tantly, it shall be noted that there are some outliers for the loss Laudio.

7.1.2 Sample inspection

Besides saving the losses, some generated sample faces Ŝ from the generator were saved during the training
with GRIDFull. Additionally, the ground truth frame S was also saved. This was done once each epoch, and
the speakers were randomly chosen. These samples can be seen in figure 7.3.

Ge
ne

ra
te

d

0 1 2 3 4 5 6 7 8 9

Gr
ou

nd
 Tr

ut
h

0 1 2 3 4 5 6 7 8 9

Ge
ne

ra
te

d

10 11 12 13 14 15 16 17 18 19

Gr
ou

nd
 Tr

ut
h

10 11 12 13 14 15 16 17 18 19

Figure 7.3: 20 random generated faces Ŝ from the generator, together with their corresponding true faces
S, from the training of the LipGAN model using GRIDFull. The number denotes the epoch.

–39–

CHAPTER 7. RESULTS 7.1. LIPGAN

As can be seen, most generated faces are of good quality after the first epoch. However, if one looks closely,
small differences for some select samples can be seen. For example, in the sample for epoch 7, one can see
that the generator produces a face with an open mouth, while the mouth is more closed for the ground truth
face. Further, for sample 9, one can notice that the beard has a more blurry appearance than its ground
truth counterpart. Lastly, SSIM and PSNR were calculated for the generator’s samples, together with the
ground truth counterpart, every 600th training iteration. This can be seen in figure 7.4.

0 50000 100000 150000 200000 250000 300000 350000
Training Iteration

0.2

0.4

0.6

0.8

1.0

SS
IM

SSIM for LipGAN model during training

GRIDSmall
GRIDFull

(a) SSIM

0 50000 100000 150000 200000 250000 300000 350000
Training Iteration

15

20

25

30

35

40

PS
N

R
 [d

B
]

PSNR for LipGAN model during training

GRIDSmall
GRIDFull

(b) PSNR

Figure 7.4: The metrics SSIM and PSNR for the LipGAN model during training. The metrics have been
taken for every 600th training iteration.

As can be seen for the SSIM, it goes from around 0.13 to 0.98 for both datasets. For the PSNR, it can be
seen to start at around 13 dB for both datasets, and end at about 39 dB for GRIDSmall and 40 dB for
GRIDFull.

–40–

CHAPTER 7. RESULTS 7.2. WGAN-GP

7.2 WGAN-GP

Besides the LipGAN model, the WGAN-GP, as stated in section 5.3 WGAN-GP implementation, was im-
plemented and trained on GRIDSmall for 20 epochs. This model took slightly longer to train, with a time
consumption of approximately 1.3 days. Since both models used the same dataset, the number of training
iteration stayed intact, at 105000.

7.2.1 Losses

Similar to the LipGAN model, the different losses were sampled every 600th training iteration. The generator
loss LG and the critic loss LD can be seen in figure 7.5.

0 20000 40000 60000 80000 100000
Training Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

G

GRIDSmall

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epochs

G for WGAN-GP model during training

(a) Generator loss LG

0 20000 40000 60000 80000 100000
Training Iteration

10 4

10 2

100

102

104

106

lo
g 1

0(
D
)

GRIDSmall

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epochs

D for WGAN-GP model during training

(b) Critic loss LD

Figure 7.5: Losses during training for the WGAN-GP model.

As can be seen in figure 7.5, the generator loss LG does not seem to converge, while the critic loss LD seem
to converge quickly. Additionally, the gradient penalty term RGP, as seen in equation (3.14), was sampled
at the same interval. This gradient penalty can be seen in figure 7.6.

0 20000 40000 60000 80000 100000
Training Iteration

10 3

10 1

101

103

105

lo
g 1

0(
GP

)

GRIDSmall

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epochs

GP for WGAN-GP model during training

Figure 7.6: Gradient penalty term RGP for the WGAN-GP model.

As can be seen, the gradient penalty goes quickly down to approximately 0.

–41–

CHAPTER 7. RESULTS 7.2. WGAN-GP

7.2.2 Sample inspection

Lastly, generated sample faces Ŝ from the generator, together with their ground truth counterpart, were also
saved for each epoch. These samples can be seen in figure 7.7.

Ge
ne

ra
te

d

0 1 2 3 4 5 6 7 8 9

Gr
ou

nd
 Tr

ut
h

0 1 2 3 4 5 6 7 8 9

Ge
ne

ra
te

d

10 11 12 13 14 15 16 17 18 19

Gr
ou

nd
 Tr

ut
h

10 11 12 13 14 15 16 17 18 19

Figure 7.7: 20 random generated faces Ŝ from the generator, together with their corresponding true faces
S, from the training of the WGAN-GP model. The epoch for the samples is denoted by the number above
each sample.

Interestingly, these samples have worse perceptual quality and look more like an unrealistic face. Additionally,
it shall be noted that the model struggles to produce faces with the correct colors, especially for the first
3 epochs. Similar to LipGAN, the SSIM and PSNR were also inspected for every 600th generated sample.
These results can be seen in figure 7.8.

0 20000 40000 60000 80000 100000
Training Iteration

0.05

0.10

0.15

0.20

0.25

0.30

SS
IM

GRIDSmall

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epochs

SSIM for WGAN-GP model during training

(a) SSIM

0 20000 40000 60000 80000 100000
Training Iteration

9

10

11

12

13

14

PS
N

R
 [d

B
]

GRIDSmall

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epochs

PSNR for WGAN-GP model during training

(b) PSNR

Figure 7.8: The metrics SSIM and PSNR for the WGAN-GP model during training. The metrics have
been taken for every 600th training iteration.

As can be seen for both metrics, they initially go down, to later go up around epoch 2, and then continue to
rise slowly. Yet, it shall be emphasized that they stop increasing rapidly, for both metrics, at around 0.23

–42–

CHAPTER 7. RESULTS 7.2. WGAN-GP

for SSIM and 13 dB for PSNR.

Further analysis by inference of the model, showcased that the model seems to produce the same
face for each inferences frame. An example of this can be seen in 7.9. This was also experienced on data not
originating from the GRID dataset.

T = 0 s T = 1 s T = 2 s T = 3 s T = 4 s T = 5 s

Figure 7.9: Suspected mode failure when doing inference on WGAN-GP. Each image represents a frame at
time T, on the inference data.

These results suggests mode collapse of the model. Nonetheless, two attempts were made to remedy the
suspected mode collapse by retraining the model. Firstly, a similar training rerun was performed since the
initial weights of the model could be unfavorable. However, this did not remedy the suspected problems.
Secondly, for the other retraining, modifications to the optimizer were made. Namely, by changing the ADAM
decay parameter from β1 = 0.5 to β1 = 0. Unfortunately, did this not remedy the suspected mode collapse.
Therefore was the model not trained using the GRIDFull dataset.

–43–

CHAPTER 7. RESULTS 7.3. L1WGAN-GP

7.3 L1WGAN-GP

As mentioned in section 7.2 WGAN-GP, the WGAN-GP model was suspected to experience mode collapse.
Also, its generator loss did not seem to converge, as seen in figure 7.5a. This motivated the change of the
generator loss, which resulted in the hybrid model L1WGAN-GP, that utilized the L1 reconstruction loss
Lre, as explained in section 5.4 Experiments. This model was trained on the GRIDSmall and the GRIDFull
dataset for 20 epochs, which resulted in 105000 training iterations and 342400 training iterations respectively.

7.3.1 Losses

Similar to all models, the losses for the L1WGAN-GP was sampled during training for every 600th training
iteration. The generator loss LG and the critic loss LD can be seen in figure 7.10.

0 50000 100000 150000 200000 250000 300000 350000
Training Iteration

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

G

G for L1WGAN-GP model during training
GRIDSmall
GRIDFull

(a) Generator loss LG

0 50000 100000 150000 200000 250000 300000 350000
Training Iteration

10 2

100

102

104

106

lo
g 1

0(
D
)

D for L1WGAN-GP model during training
GRIDSmall
GRIDFull

(b) Critic loss LD

Figure 7.10: Losses during training for the WGAN-GP model.

As can be seen in figure 7.10, the generator loss seems to converge to a small value, unlike the generator loss
in the WGAN-GP model. Also, the critic loss seems to converge. Further, the gradient penalty term RGP

was also sampled every 600th training iteration and can be seen in figure 7.11.

0 50000 100000 150000 200000 250000 300000 350000
Training Iteration

10 3

10 1

101

103

105

lo
g 1

0(
GP

)

GP for L1WGAN-GP model during training
GRIDSmall
GRIDFull

Figure 7.11: Gradient penalty term RGP for the L1WGAN-GP model.

As expected, the gradient penalty term can be seen to go quickly down to around 0.

–44–

CHAPTER 7. RESULTS 7.3. L1WGAN-GP

7.3.2 Sample inspection

Lastly, samples for the generated faces Ŝ and their corresponding ground truth part S, was saved once per
epoch during the training. These samples can be seen in figure 7.12.

Ge
ne

ra
te

d

0 1 2 3 4 5 6 7 8 9

Gr
ou

nd
 Tr

ut
h

0 1 2 3 4 5 6 7 8 9

Ge
ne

ra
te

d

10 11 12 13 14 15 16 17 18 19

Gr
ou

nd
 Tr

ut
h

10 11 12 13 14 15 16 17 18 19

Figure 7.12: 20 random generated faces Ŝ from the generator, together with their corresponding true faces
S, from the training of the L1WGAN-GP model using GRIDFull. The epoch for the samples is denoted by
the number above each sample.

These samples have a more realistic look than the corresponding samples from the WGAN-GP model. How-
ever, compared to the LipGAN model, the L1WGAN-GP samples seem slightly blurry, especially for the
early epochs. Luckily, upon inference, the model produced distinct faces for each separate frame, and no sign
of suspected mode collapse could be observed. Lastly, the SSIM and PSNR were also calculated for every
600th generated sample from the generator, which can be seen in figure 7.13.

0 50000 100000 150000 200000 250000 300000 350000
Training Iteration

0.2

0.4

0.6

0.8

1.0

SS
IM

SSIM for L1WGAN-GP model during training

GRIDSmall
GRIDFull

(a) SSIM

0 50000 100000 150000 200000 250000 300000 350000
Training Iteration

15

20

25

30

35

PS
N

R
 [d

B
]

PSNR for L1WGAN-GP model during training

GRIDSmall
GRIDFull

(b) PSNR

Figure 7.13: The metrics SSIM and PSNR for the L1WGAN-GP model during training. The metrics have
been taken for every 600th training iteration.

Looking at figure 7.13, it can be seen that the SSIM goes from approximately 0.13 for both models to 0.97
and 0.98 for GRIDSmall and GRIDFUll respectively. Further, the PSNR can be seen to go from around 13

–45–

CHAPTER 7. RESULTS 7.4. COMPARISON BETWEEN THE MODELS

dB for both datasets, to around 36 dB for GRIDSmall, and 37 dB for GRIDFull.

7.4 Comparison Between the Models

In this section, LipGAN and L1WGAN-GP are compared to each other in terms of three quantitative metrics,
SSIM, PSNR, and FID, which are explained in chapter 6 Metrics. These were evaluated using unseen test
data, in the form of the GRIDTest dataset. Lastly, a qualitative evaluation of the model’s performance on
test data and inference data was done.

7.4.1 SSIM

The SSIM was evaluated for each of the 44589 data points in GRIDTest and the result of this, in the form
of a box plot, can be seen in figure 7.14. Note that the box plot does not include outliers to make the box
more visible.

LipGAN L1WGAN-GP
0.875

0.900

0.925

0.950

0.975

SS
IM

SSIM

Median
Mean

Figure 7.14: SSIM for the models trained on GRIDFull. Outliers have been omitted from the box plot.

As can be seen, LipGAN barely outperformed L1WGAN-GP in terms of both median and mean value. The
difference in SSIM was small and both models achieved values close to the maximum possible value of 1.0.
A summary of the numeric properties of the acquired SSIM scores can be seen in table 7.1, which confirms
the statement above.

Table 7.1: SSIM summary statistics for the models trained on GRIDFull.

Model Mean ↑ Median ↑ Max ↑ Min ↑
LipGAN 0.9348 0.9439 0.9796 0.7542

L1WGAN-GP 0.9296 0.9380 0.9754 0.7052

–46–

CHAPTER 7. RESULTS 7.4. COMPARISON BETWEEN THE MODELS

7.4.2 PSNR

Similar to the SSIM, PSNR was evaluated for all 44589 data points in GRIDTest and the result is presented
as a box plot in figure 7.15.

LipGAN L1WGAN-GP

20

25

30

35

PS
N

R
 [d

B
]

PSNR

Median
Mean

Figure 7.15: PSNR for the models trained using GRIDFull. Outliers have been omitted from the box plot.

In terms of median and mean, LipGAN outperformed L1WGAN-GP. In both cases the spread was large,
ranging around 15 dB. As in the comparison of SSIM, the outliers of the box plot were been omitted. A
summary of the numerical properties of the box plot can be seen in table 7.2, which again confirms the box
plot.

Table 7.2: PSNR summary statistics for the models trained using GRIDFull.

Model Mean [dB] ↑ Median [dB] ↑ Max [dB] ↑ Min [dB] ↑
LipGAN 26.34 26.96 35.35 13.67

L1WGAN-GP 25.32 25.72 34.84 12.81

7.4.3 FID

The FID-score of the 44589 points of reference data in TestGRID and the equal amount of generated test
data for each model was compared. The results of the FID score are presented in table 7.3. Interestingly, the
L1WGAN-GP model outperforms LipGAN, signifying that, for L1WGAN-GP, the generated data distribution
is closer to the reference data distribution.

Table 7.3: FID-score on the models trained using GRIDFull.

Model FID-Score ↓
LipGAN 15.11

L1WGAN-GP 14.49

7.4.4 Qualitative results

Lastly, some qualitative aspects of the two models were examined. This was done by looking at the generated
data produced by using GRIDTrain as input. As can be seen by looking at figure 7.16, the model L1WGAN-
GP produced images that had visual artifacts. These take shape in many different forms, the most usual

–47–

CHAPTER 7. RESULTS 7.4. COMPARISON BETWEEN THE MODELS

originates around the eyes of the target speaker. The occurrence of artifacts in data produced by L1WGAN-
GP was frequent. This problem was not experienced in data produced by LipGAN.

L1
W

GA
N-

GP

Figure 7.16: Example of visible artifacts from images produced by the L1WGAN-GP model with GRID-
Train as input.

Further, upon inspection of data produced during inference, of both models, it was noticed that there was
some discrepancy between the generated face and the background. This can be noticed as a visible box
surrounding the face. This phenomenon was noticed equally much for both models and is displayed in figure
7.17.

(a) Inference sample from LipGAN. (b) Inference sample from L1WGAN-GP.

Figure 7.17: Example of a visual box surrounding the face during inference. This phenomenon occurred
for both models.

–48–

CHAPTER 7. RESULTS 7.5. IMPACT OF DATASET

7.5 Impact of dataset

When a model had completed its training, inference was done, with different types of input data in the form
of images, video, and audio. The results were compared with the original LipGAN pre-trained model that
was trained on the LRS2 dataset. The outcome of inference differs depending on the properties of the used
target data. An example of this is showcased in figure 7.18. As can be seen, the LipGAN model trained
with GRID did not manage to adapt to the color scheme of this specific image. Additionally, the mouth is
misplaced and of incorrect size.

(a) LipGAN trained on GRID. (b) LipGAN trained on LRS2.

Figure 7.18: Inference of LipGAN trained on two different datasets. The model’s performance is affected
by the target data. Image source: [70].

The original LipGAN model performs a good perceptual result whereas our model, trained on GRID, fails to
catch the gray colors of the image. It is evident that the performance of model inference is affected by not
only its properties but also the target data, and if this is similar to the training data.

–49–

CHAPTER 8. DISCUSSION & FURTHER WORK

CHAPTER 8

Discussion & Further Work

In this chapter, the results from chapter 7 Results are discussed; both in terms of what causes the observation,
but also how they can be further explored or mitigated. Secondly, the impact of the dataset used is explored.
This is followed by a discussion about the limitations of the model, working with lip-synchronization, flaws
in metrics for lip-synchronization, and GANs. Lastly, further work, relating or extending this thesis, is
discussed.

8.1 LipGAN

Looking back at the results of the LipGAN model in section 7.1 LipGAN, it can be observed that the model
seems to converge and produce satisfactory samples. However, there were some outliers in the loss Laudio,
which is produced by a real face S with un-synced audio A′ to the critic. As mentioned, there were suspicions
that this could be caused by an anomaly in the training data. For example, that dlib’s HOG+SVM face
detector, used in the pre-processing, could have misidentified a face. However, this seems unlikely since GRID
only contains videos of one speaker, faced forward at face level, with the same plain blue background as seen
in figure 4.1a. Similarly, there could also be errors in the audio pre-processing caused by librosa. However,
samples from batches that resulted in outliers in Laudio, were manually inspected, and no anomalies could be
observed. Finally, these outliers could be observed for both GRIDSmall and GRIDFull, which had different
data batches for the specific iteration since this is done randomly by Pytorch’s data handler. This hints
that there might be some other unknown phenomena that cause these outliers, or that it can be expected for
this specific model and optimizer. Luckily, these outliers did not seem to affect the critic loss LD significantly.

As for the samples of generated faces Ŝ from the training, which can be seen in figure 7.3, it was
noted that they are of convincing quality, even in the early epochs. Also, the SSIM and PSNR seem to
improve steadily during the training, as highlighted by figure 7.4. Yet, for the sample faces Ŝ, it is noticed
that beards tend to be more blurry than their ground truth counterpart, which can highlight that the
model might be less convincing for target data of faces with beards. Additionally, it was noticed that for
epoch 7, the model failed to generate a closed mouth. This can highlight that the model is not perfect
for the mouth-to-sound synchronization, at least in the case of the sample from epoch 7. If this is the
case for the model, then the mouth to sound synchronization can potentially be tweaked by experimenting
with the time window of the sound corresponding to the frame. This time window can be controlled by
the mel-spectrogram width T . Additionally, the frameshift α can also be tweaked to potentially force the

–50–

CHAPTER 8. DISCUSSION & FURTHER WORK 8.2. WGAN & L1WGAN-GP

critic to further score on the mouth to sound synchronization. Lastly, there is also the possibility that the
number of mel-frequency channels M is too small to provide an accurate representation of the sound, and
experiments about this could also be further explored.

8.2 WGAN & L1WGAN-GP

As was shown in section 7.2 WGAN-GP, an attempt to apply a WGAN-GP to the LipGAN architecture
was made, but failed to converge, at least for the generator loss LG. What is interesting, is that the critic
loss LD converged to a small number, which in theory would suggest that the generated distribution Pg and
the data distribution Pr would be close in Wasserstein distance W1 distance. Furthermore, the gradient
penalty RGP is also close to 0, which would suggest that it enforces the 1-Lipschitz constraint. Yet, this
does not seem to result in a good model in practice. However, this might relate to the recent findings that
the W1 distance, using (3.9), is impossible to calculate in practice, as explained in subsection 3.3.2 Remarks
about the W1 approximation. Also, the divergence of the generator loss could be caused by bad parameters,
α, β1, β2, for the ADAM optimizer. Likewise, bad initial weights ωinit were also something that could be
causing the divergence. However, two reruns were made to experiment with this, but none were successful.
Yet, there are endless combinations of these parameters to further try out. Lastly, it shall also be added
that it can be the case that it is impossible or almost impossible in practice to adopt a WGAN setup
for LipGAN’s architecture with its 47 million trainable parameters, and without modifying the generator
loss. Especially for the output of the critic, which consists of two separate embeddings EA and ES . For
our specific approach, we concatenated the two to one single embedding, which we used as the output.
Nonetheless, there might be other ways to handle this which can be explored.

As for the samples from the generator during the training, which can be seen in figure 7.8, they are
of a more unrealistic perceptual quality. Yet, the same can be said about samples presented by Stanczuk
et al. [44], which can be seen in figure 3.4a, and raises the question if this can be expected? The worse
perceptual quality can also be seen for the SSIM and PSNR during the training, which is in the range of
0.05-0.30 and 9-14 dB respectively and can be seen in figure 7.8. This can be compared to the other models
which during just around 5 · 104 training iterations quickly goes from an SSIM of 0.13 to 0.98 for both
models, and a PSNR from 13 dB to 37 dB for LipGAN and to 34 dB for L1WGAN-GP, using GRIDSmall.
Also, the spread and variance of these are lower. However, this might also highlight that a WGAN can
produce more varied samples, which can be desired. Further, it is also noted that the model seems to
experience mode collapse since it produces the same frame for all tested inference data, as seen in figure 7.9.
This was also seen for data that is not from GRID. What is interesting is that this can not be seen during
the training. It can be that this behavior came late in the training, after the last sample. Additionally,
could it also be that our test data have something similar, which the model mode collapses on which it does
not for the training data. However, this seems highly unlikely since suspected mode collapse happened for
all 3 tested WGAN-GP models. Lastly, all of the mentioned problems could further be analyzed by training
it on more data. Unfortunately, due to the time of training GANs, and the fact that we found one remedy
by the L1WGAN-GP model, was this not prioritized.

About the L1WGAN-GP model, it was seen to converge for both losses, LG and LD, as seen in fig-
ure 7.10. Similarly, the gradient penalty RGP, which can be seen in figure 7.11, could also be seen to
converge to something small, as it is designed to do. Further, the samples taken from the generator during
the training seem to have a much more realistic perceptual quality than their WGAN-GP counterpart.
However, they could be seen to be slightly more blurry than their LipGAN counterpart. However, some
visual artifacts could be seen, see figure 7.16 for examples.

In total, the L1WGAN-GP results show that the LipGAN architecture can employ a WGAN-GP de-

–51–

CHAPTER 8. DISCUSSION & FURTHER WORK 8.3. COMPARISON BETWEEN THE MODELS

sign, if the generator loss is changed to an L1 reconstruction loss Lre. What is interesting is if it is possible
to use another generator loss? This was not tested, but would be interesting to further research. Perhaps,
this would remove some blurriness of the samples, and make the samples equal or better than the LipGAN
samples.

8.3 Comparison Between the Models

The quantitative metrics used to compare LipGAN and L1WGAN-GP did not give a decisive advantage to
either model. LipGAN reigned supreme in the two traditional image metrics, SSIM and PSNR, whereas
L1WGAN-GP had a better FID-Score. In all three cases, the results were numerically close to each other,
deciding to determine what model was the best a hard task.

In the qualitative assessment, a large number of artifacts were noticed in the data produced by the
L1WGAN-GP model. These mostly occurred around the eyes of the target face and took shape as discolored
pixels, in many cases matching the surrounding background, see figure 7.16. The artifacts most likely
originate from the fact that the L1WGAN-GP model fails to differentiate the background from certain
areas of the face. It is difficult to determine why these artifacts appear, an educated guess could be that
the generator in L1WGAN-GP only begins updated every fifth iteration. This could result in the model
requiring more training and thus our model in its current state would be undertrained. A model that
requires more training than what is already used, might be an unfeasible solution due to extensive training
time. This of course presumes that the same hardware is used.

Artifacts as they appeared in L1WGAN-GP, are unacceptable for our task since it is of paramount
importance that the model delivers a perceptual convincing output. This fact, in combination with a better
result in two out of three quantitative metrics, renders LipGAN as the best and preferred model. It should
be highlighted that both models solved the task of lip-synchronization adequately good in a subjective
manner.

It is troubling that the quantitative metrics did not give a larger discrepancy between the models
considering the artifacts produced by L1WGAN-GP. A reason for this fact is that the metrics compare
entire pictures and thus a small artifact would not render a large difference in the metrics, even though this
would render the perceptual experience ruined. In general, the three metrics used are ill-suited to measure
the actual perceptual experience of the videos created by the models. Additionally, their sole focus is image
quality. The process of lip-synchronization lacks established metrics and thus it is impossible to measure its
performance quantitatively. It should also be mentioned that there is no consensus in what way to quan-
titatively measure the performance of a GAN. The predominant evaluation of GANs is made qualitatively [67].

A suitable quantitative metric that originates from qualitative assessment, such as mean-opinion-score,
should be considered to determine the perceptual results. Yet, it should be highlighted that these types
of metrics have some flaws of their own. All things mentioned above contribute to making this problem
difficult to measure, which is scientifically troublesome.

8.4 Dataset

When experimenting with the models of LipGAN and L1WGAN-GP, some interesting properties were
found. It turned out that the generalized performance of our models, trained on GRID, was very low. As
seen in figure 7.18, our model does not work at all on a monochromatic image. The failure of the model is
likely occurring due to the dataset’s lack of diversity. The GRID dataset was chosen knowingly of this fea-

–52–

CHAPTER 8. DISCUSSION & FURTHER WORK 8.5. LIMITATIONS

ture since the product that we are aspiring to contribute to most likely would feature lab environment videos.

It is well known in deep learning that the training data have to be of the same distribution as the
data that is supposed to be used for inference. The failure of our model on the Marie Currie image, 7.18,
highlights this feature. Yet, there exist solutions to make a dataset more diverse. This could for example be
image augmentation, which could include adding noise, turning the photos into monochrome, or zooming
in at the mouths. Some of these augmentations could, however, be hard to implement in the current
architecture since the bottom half of the image is cropped. Another possible improvement is to increase the
resolution of the training images. This could render higher quality images but it would come at the cost
of more parameters in the network. Lastly, it shall be mentioned that the Marie Currie example was done
using a model trained on LRS2, which has around 29 hours of data compared to GRID’s 27.5 hours.

8.5 Limitations

In general, the results of the models were satisfying. However, there were also some limitations to the
models and the techniques as a whole. Firstly the pipeline used for creating lip-synchronized videos had a
data-driven approach to the problem. This rendered a powerful structure, though that was slow to train and
required vast amounts of data. This was amplified by the complexity of the pipeline, which was necessary
to produce satisfying results. There were some disadvantages to having a complex model with around 47
million trainable parameters, and the most prominent throughout the thesis was the wall-clock time needed
to train, which made hyperparameter tuning a tedious task. Due to the lack of proper hyperparameter
tuning, it is hard to draw definite conclusions of the models as their results could be improved or worsened
by hyperparameters. A less complex pipeline could include text as audio representation, which could also be
used in a TTS solution in the pipeline.

Another limitation of the project is that it is dependant on third-party Python packages, for exam-
ple for face detection. Since there was little insight on how this works and when it could potentially fail it
could lead to problems. Sometimes, the face detection would not catch the entire face which makes samples
flawed. Additionally, the models could have problems handling several people in one frame since it is hard
to know which person is talking when.

It should also be mentioned that bad generalized performance, in general, is a bad thing for deep
learning models. However, in this case, it might be suitable since the models should work well on one or few
individuals as were intended in the proposed service.

In general, the lack of quantitative measurements for lip-synchronization is the most prominent limi-
tation to this work. It is hard to quantitatively determine what good lip-synchronization is. If there is no
metric, then who decides on what is a good model? This could be matter of opinion. In this thesis, ocular
inspection had to be used to verify that lip-synchronization is sufficiently good. It is also hard to display
lip-synchronization in anything else than video, making it hard to motivate results in a report. Additionally,
the FID-score, which is the prominent metric for GANs, lacks in generalized performance, since the feature
extractor φ is arbitrary, as explained in section 6.3 FID-score. The Inception-v3 is mostly used, but other
feature extractors could also be used. This makes the metric impossible to compare to other results, which
have not passed the same feature extractor. Additionally, there is no set amount of samples or any default
dataset that should be used to calculate the metric, which also renders different results.

–53–

CHAPTER 8. DISCUSSION & FURTHER WORK 8.6. FURTHER WORK

8.6 Further Work

As previously mentioned, there are some further paths to research around the task of lip-synchronization.
Since there is not a tremendous amount of research around it, yet, the possibilities of applications are vast.
Additionally, there also seems to be a big interest around it among machine learning enthusiasts. Therefore,
we have summarized some further points to research. Since working with GANs is a time-consuming endeavor,
each one of these points could be a thesis of its own. Some of the points this thesis opens up are the following:

• Adapt further GAN classes to a lip-synchronization baseline. For example, adapt an LSGAN [38], a
WGAN-LS [45], and a WGAN-div [43] to the LipGAN architecture and see if those have any advantages.
Additionally, do we also feel that it would be interesting to adapt a c-transform WGAN to LipGAN,
since contrary to what Stanczuk et al. [44] states about its performance seen in figure 3.4b, we believe
that a similar result could be beneficial for the specific task of lip-synchronization for a generic face.

• As mentioned about the impact of the dataset in section 8.4 Dataset, an interesting extension would be
to extend our work by training it using image augmentation. Additionally, it would also be interesting
to see which image augmentation is beneficial for the task of lip-synchronization. For example, hav-
ing monochrome augmentation of some training sample would perhaps mitigate the problem seen in
figure 7.18, or it could introduce the opposite problem for target data from GRID. Also, it is believed
that augmentation of turning the face 180◦ would have a bad impact since it will invert the mouth
movements. Furthermore, augmentation could also be done for the sound, e.g by passing it through
some voice synthesizer. In total, it would be interesting to have a conclusion of what augmentation can
advantageous, and which can be disadvantageous.

• A related path to the previous point would be to try out other datasets for our model. Perhaps in
another language to see how the model adapts to other languages or dialects. Additionally, the impact
of the resolution of the data could also be researched, together with the dimension of the input face
H, which perhaps could be a remedy to the observed problem for all models of a box around the face.
Lastly, it could also be researched if it is possible to use less or more data, and which models are more
susceptible to this.

• For our whole intended pipeline, we use text as the initial inputs, which gets passed to a TTS which
then is the input to the model. An interesting approach would be to skip the whole TTS part, and
only input text to our model. Interestingly, the GRID dataset is transcribed, with timings, and could
potentially be used for this. However, this would require some modifications to the pre-processing,
since each word does not correspond to a constant amount of frames, which the mel-spectrograms do.

• One important step in our pipeline is the pre-processing. There, facial detection is crucially used to
obtain just the face which reduces the input data and eases the training. However, this makes our
model very dependent on the facial detection used, and how it crops out the face. Therefore, more
research could be used to use other facial detection or bounding boxes than dlib’s, which is solely used
in this thesis.

• As previously mentioned in section 8.5 Limitations, to our knowledge, there is no established metric for
the task of lip-synchronization. Additionally, there is no established unified metric for GANs either; but
attempts have been made [71]. It would be interesting to research if one of the many GAN metrics is
especially suitable for the task of lip-synchronization. Additionally, a novel metric could be introduced,
perhaps using a similar approach of FID by utilizing a pre-trained network.

• Lastly, the task of lip-synchronization, is related to deep fakes, which can bring negative associations
as mentioned in section 1.4 Ethical Considerations. However, we believe that it has lots of potential
for good purposes, such as personalized text messages, reduce bandwidth in telecommunication, ease

–54–

CHAPTER 8. DISCUSSION & FURTHER WORK 8.6. FURTHER WORK

work in the movie industry, and enable automatic video dubbing which in combination with educational
videos can enable good and accessible education worldwide. Therefore, security approaches to sort out
the malicious uses from the non-malicious uses of deepfakes could be further researched or implemented.
For example, a standard organization, with guidelines and security tools, could be set up. This orga-
nization could provide certain watermarks to certify certain deepfakes with non-malicious intent. This
watermark could be a specific watermark stamp in the video, or maybe some encoded certificate key
in the audio spectrum, preferably outside of the hearing spectrum. Additionally, detailed knowledge
about the deepfake approaches used could be utilized to improve ways to detect deepfakes, for example
by looking for ”blurry boxes” around the facial region.

We hope that this will inspire future scientists and help future research in this field.

–55–

CHAPTER 9. CONCLUSION

CHAPTER 9

Conclusion

To conclude, this thesis has showcased that it is indeed possible to create lip-synchronized videos by
using a data-driven deep learning pipeline that contains GANs, autoencoders, and residual blocks with
skip connections. This was done in the implementation of LipGAN and L1WGAN-GP. Additionally, it is
concluded that our implementation of WGAN-GP did not produce satisfying lip-synchronized videos, due
to suspected mode collapse. Why this is the case is uncertain. It was remedied by changing the generator
loss to the L1-reconstruction loss to form a novel model, L1WGAN-GP.

It was evident that out of the three proposed models, LipGAN outperformed the other models in
two of the three quantitative metrics and qualitative assessment. However, the fact that L1WGAN-GP
had the best FID-score, despite producing visual artifacts, showcased that there was a lack of proper
metrics to evaluate our problem. Additionally, there were no established quantitative metrics to score the
lip-synchronization and thus this was solely done by qualitative inspection.

It can be concluded that our models require vast amounts of data. In our tests, the results with
GRIDFull outperformed the tests carried out with GRIDSmall in terms of quantitative metrics and
qualitative assessment. However, it can not be settled that the amount of data in GRIDFull is in any way
optimal to train the model. It might require even more data or training time.

Lastly, the chosen dataset affects the model’s inference since it had a bad generalized performance.
Thus the dataset chosen to train the model should be chosen with care and consideration. It is of importance
that the training data reflects upon the intended use of the model.

–56–

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[1] S. Suwajanakorn, S. M. Seitz, and I. Kemelmacher-Shlizerman, “Synthesizing Obama: learning lip sync
from audio,” ACM Transactions on Graphics (ToG), vol. 36, no. 4, pp. 1–13, 2017.

[2] R. Kumar, J. Sotelo, K. Kumar, A. de Brebisson, and Y. Bengio, ObamaNet: Photo-realistic lip-sync
from text, 2017. arXiv: 1801.01442 [cs.CV].

[3] X. Yao, O. Fried, K. Fatahalian, and M. Agrawala, Iterative Text-based Editing of Talking-heads Using
Neural Retargeting, 2020. arXiv: 2011.10688 [cs.CV].

[4] H. Zhou, Y. Liu, Z. Liu, P. Luo, and X. Wang, Talking Face Generation by Adversarially Disentangled
Audio-Visual Representation, 2019. arXiv: 1807.07860 [cs.CV].

[5] J. S. Chung, A. Jamaludin, and A. Zisserman, You said that? 2017. arXiv: 1705.02966 [cs.CV].

[6] L. Chen, Z. Li, R. K. Maddox, Z. Duan, and C. Xu, Lip Movements Generation at a Glance, 2018.
arXiv: 1803.10404 [cs.CV].

[7] K. R. Prajwal, R. Mukhopadhyay, P. Jerin, J. Abhishek, V. Namboodiri, and C. V. Jawahar, Towards
Automatic Face-to-Face Translation, Nice, France, 2019. doi: 10.1145/3343031.3351066. [Online].
Available: http://doi.acm.org/10.1145/3343031.3351066.

[8] O. Fried, A. Tewari, M. Zollhöfer, A. Finkelstein, E. Shechtman, D. B. Goldman, K. Genova, Z. Jin,
C. Theobalt, and M. Agrawala, “Text-based editing of talking-head video,” ACM Transactions on
Graphics (TOG), vol. 38, no. 4, pp. 1–14, 2019.

[9] T. M. Mitchell, Machine learning, 1st. McGraw-Hill New York, 1997, isbn: 0070428077.

[10] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd. USA: Prentice Hall Press,
2009, isbn: 0136042597.

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http : / / www .

deeplearningbook.org.

[12] F. Chollet, Deep Learning with Python, 1st. USA: Manning Publications Co., 2017, isbn: 1617294438.

[13] A. L. Maas, A. Y. Hannun, and A. Y. Ng, Rectifier nonlinearities improve neural network acoustic
models, Citeseer, 2013.

[14] A. Cauchy, “Méthode générale pour la résolution des systemes d’équations simultanées,” Comp. Rend.
Sci. Paris, vol. 25, no. 1847, pp. 536–538, 1847.

[15] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,” USSR Computa-
tional Mathematics and Mathematical Physics, vol. 4, no. 5, pp. 1–17, 1964.

[16] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv: 1412.6980 [cs.LG].

–57–

https://arxiv.org/abs/1801.01442
https://arxiv.org/abs/2011.10688
https://arxiv.org/abs/1807.07860
https://arxiv.org/abs/1705.02966
https://arxiv.org/abs/1803.10404
https://doi.org/10.1145/3343031.3351066
http://doi.acm.org/10.1145/3343031.3351066
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1412.6980

BIBLIOGRAPHY BIBLIOGRAPHY

[17] T. Karras, T. Aila, S. Laine, and J. Lehtinen, Progressive growing of gans for improved quality, stability,
and variation, 2018. arXiv: 1710.10196 [cs.NE].

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating
errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[19] Y. LeCun, “Generalization and network design strategies,” Connectionism in perspective, vol. 19,
pp. 143–155, 1989.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR,
vol. abs/1512.03385, 2015. arXiv: 1512.03385. [Online]. Available: http://arxiv.org/abs/1512.
03385.

[21] H. Purwins, B. Li, T. Virtanen, J. Schluter, S.-Y. Chang, and T. Sainath, “Deep learning for audio
signal processing,” IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 2, pp. 206–
219, May 2019, issn: 1941-0484. doi: 10.1109/jstsp.2019.2908700. [Online]. Available: http:

//dx.doi.org/10.1109/JSTSP.2019.2908700.

[22] H. K. Elminir, M. A. El-Soud, and L. Abou El-Maged, “Evaluation of different feature extraction
techniques for continuous speech recognition,” International Journal of Science and Technology, vol. 2,
no. 10, 2012.

[23] P. Mermelstein, “Distance measures for speech recognition, psychological and instrumental,” Pattern
recognition and artificial intelligence, vol. 116, pp. 374–388, 1976.

[24] A. Y. Ng and M. I. Jordan, “On discriminative vs. generative classifiers: A comparison of logistic
regression and naive bayes,” in Advances in neural information processing systems, 2002, pp. 841–848.

[25] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved training of wasserstein
gans,” arXiv preprint arXiv:1704.00028, 2017.

[26] L. Ruthotto and E. Haber, An introduction to deep generative modeling, 2021. arXiv: 2103.05180

[cs.LG].

[27] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, Language models are few-shot
learners, 2020. arXiv: 2005.14165 [cs.CL].

[28] D. P. Kingma and M. Welling, Auto-encoding variational bayes, 2014. arXiv: 1312.6114 [stat.ML].

[29] D. J. Rezende, S. Mohamed, and D. Wierstra, Stochastic backpropagation and approximate inference
in deep generative models, 2014. arXiv: 1401.4082 [stat.ML].

[30] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, Generative adversarial networks, 2014. arXiv: 1406.2661 [stat.ML].

[31] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, Improved techniques
for training gans, 2016. arXiv: 1606.03498 [cs.LG].

[32] J. Nash, “Non-cooperative games,” Annals of mathematics, pp. 286–295, 1951.

[33] V. Nagarajan and J. Z. Kolter, Gradient descent gan optimization is locally stable, 2018. arXiv: 1706.
04156 [cs.LG].

[34] L. Mescheder, A. Geiger, and S. Nowozin, Which training methods for gans do actually converge? 2018.
arXiv: 1801.04406 [cs.LG].

[35] A. Radford, L. Metz, and S. Chintala, Unsupervised representation learning with deep convolutional
generative adversarial networks, 2016. arXiv: 1511.06434 [cs.LG].

–58–

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1109/jstsp.2019.2908700
http://dx.doi.org/10.1109/JSTSP.2019.2908700
http://dx.doi.org/10.1109/JSTSP.2019.2908700
https://arxiv.org/abs/2103.05180
https://arxiv.org/abs/2103.05180
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1706.04156
https://arxiv.org/abs/1706.04156
https://arxiv.org/abs/1801.04406
https://arxiv.org/abs/1511.06434

BIBLIOGRAPHY BIBLIOGRAPHY

[36] M. Wiatrak, S. V. Albrecht, and A. Nystrom, Stabilizing generative adversarial networks: A survey,
2020. arXiv: 1910.00927 [cs.LG].

[37] W. Fedus, M. Rosca, B. Lakshminarayanan, A. M. Dai, S. Mohamed, and I. Goodfellow, Many paths
to equilibrium: Gans do not need to decrease a divergence at every step, 2018. arXiv: 1710.08446

[stat.ML].

[38] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley, Least squares generative adversarial
networks, 2017. arXiv: 1611.04076 [cs.CV].

[39] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein gan, 2017. arXiv: 1701.07875 [stat.ML].

[40] N. Kodali, J. Abernethy, J. Hays, and Z. Kira, On convergence and stability of gans, 2017. arXiv:
1705.07215 [cs.AI].

[41] M. Arjovsky and L. Bottou, Towards principled methods for training generative adversarial networks,
2017. arXiv: 1701.04862 [stat.ML].

[42] C. Villani, Optimal transport: old and new. Springer Science & Business Media, 2008, vol. 338.

[43] J. Wu, Z. Huang, J. Thoma, D. Acharya, and L. V. Gool, Wasserstein divergence for gans, 2018. arXiv:
1712.01026 [cs.CV].

[44] J. Stanczuk, C. Etmann, L. M. Kreusser, and C.-B. Schönlieb, Wasserstein gans work because they fail
(to approximate the wasserstein distance), 2021. arXiv: 2103.01678 [stat.ML].

[45] H. Petzka, A. Fischer, and D. Lukovnicov, On the regularization of wasserstein gans, 2018. arXiv:
1709.08894 [stat.ML].

[46] A. Mallasto, G. Montúfar, and A. Gerolin, How well do wgans estimate the wasserstein metric? 2019.
arXiv: 1910.03875 [cs.LG].

[47] T. Pinetz, D. Soukup, and T. Pock, On the estimation of the wasserstein distance in generative models,
2019. arXiv: 1910.00888 [cs.LG].

[48] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A.
Haldane, J. F. del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W.
Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. doi: 10.1038/s41586-020-2649-2. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2.

[49] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B.
Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A.
Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015- pytorch- an- imperative-

style-high-performance-deep-learning-library.pdf.

[50] D. Luebke, “Cuda: Scalable parallel programming for high-performance scientific computing,” in 2008
5th IEEE international symposium on biomedical imaging: from nano to macro, IEEE, 2008, pp. 836–
838.

[51] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer, Cudnn:
Efficient primitives for deep learning, 2014. arXiv: 1410.0759 [cs.NE].

[52] F. Chollet et al., Keras, https://keras.io, 2015.

[53] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[54] S. Tomar, “Converting video formats with ffmpeg,” Linux Journal, vol. 2006, no. 146, p. 10, 2006.

–59–

https://arxiv.org/abs/1910.00927
https://arxiv.org/abs/1710.08446
https://arxiv.org/abs/1710.08446
https://arxiv.org/abs/1611.04076
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1705.07215
https://arxiv.org/abs/1701.04862
https://arxiv.org/abs/1712.01026
https://arxiv.org/abs/2103.01678
https://arxiv.org/abs/1709.08894
https://arxiv.org/abs/1910.03875
https://arxiv.org/abs/1910.00888
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1410.0759
https://keras.io

BIBLIOGRAPHY BIBLIOGRAPHY

[55] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine Learning Research, vol. 10,
pp. 1755–1758, 2009.

[56] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 2005 IEEE computer
society conference on computer vision and pattern recognition (CVPR’05), Ieee, vol. 1, 2005, pp. 886–
893.

[57] D. E. King, Max-margin object detection, 2015. arXiv: 1502.00046 [cs.CV].

[58] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and O. Nieto, “Librosa: Audio
and music signal analysis in python,” in Proceedings of the 14th python in science conference, Citeseer,
vol. 8, 2015, pp. 18–25.

[59] M. Cooke, J. Barker, S. Cunningham, and X. Shao, “An audio-visual corpus for speech perception
and automatic speech recognition,” The Journal of the Acoustical Society of America, vol. 120, no. 5,
pp. 2421–2424, 2006.

[60] T. Afouras, J. S. Chung, A. Senior, O. Vinyals, and A. Zisserman, “Deep audio-visual speech recogni-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2019, issn: 1939-3539.
doi: 10.1109/tpami.2018.2889052. [Online]. Available: http://dx.doi.org/10.1109/TPAMI.2018.
2889052.

[61] K. Kurach, M. Lucic, X. Zhai, M. Michalski, and S. Gelly, A large-scale study on regularization and
normalization in gans, 2019. arXiv: 1807.04720 [cs.LG].

[62] M. J. Chong and D. Forsyth, Effectively unbiased fid and inception score and where to find them, 2020.
arXiv: 1911.07023 [cs.CV].

[63] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, Are gans created equal? a large-scale
study, 2018. arXiv: 1711.10337 [stat.ML].

[64] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error
visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612,
2004.

[65] A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th international conference on
pattern recognition, IEEE, 2010, pp. 2366–2369.

[66] J. Korhonen and J. You, “Peak signal-to-noise ratio revisited: Is simple beautiful?” In 2012 Fourth
International Workshop on Quality of Multimedia Experience, IEEE, 2012, pp. 37–38.

[67] Q. Xu, G. Huang, Y. Yuan, C. Guo, Y. Sun, F. Wu, and K. Weinberger, An empirical study on evaluation
metrics of generative adversarial networks, 2018. arXiv: 1806.07755 [cs.LG].

[68] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, Gans trained by a two time-scale
update rule converge to a local nash equilibrium, 2018. arXiv: 1706.08500 [cs.LG].

[69] M. Seitzer, pytorch-fid: FID Score for PyTorch, https://github.com/mseitzer/pytorch- fid,
Version 0.1.1, Aug. 2020.

[70] Wikimedia Commons contributors, File:maria sk lodowska-curie 1903.jpg — Wikimedia Commons, the
free media repository, [Online; accessed 3-June-2021], 2020. [Online]. Available: https://commons.
wikimedia.org/w/index.php?title=File:Maria_Sk%C5%82odowska-Curie_1903.jpg&oldid=

437189076.

[71] A. A. Alemi and I. Fischer, Gilbo: One metric to measure them all, 2019. arXiv: 1802.04874 [stat.ML].

–60–

https://arxiv.org/abs/1502.00046
https://doi.org/10.1109/tpami.2018.2889052
http://dx.doi.org/10.1109/TPAMI.2018.2889052
http://dx.doi.org/10.1109/TPAMI.2018.2889052
https://arxiv.org/abs/1807.04720
https://arxiv.org/abs/1911.07023
https://arxiv.org/abs/1711.10337
https://arxiv.org/abs/1806.07755
https://arxiv.org/abs/1706.08500
https://github.com/mseitzer/pytorch-fid
https://commons.wikimedia.org/w/index.php?title=File:Maria_Sk%C5%82odowska-Curie_1903.jpg&oldid=437189076
https://commons.wikimedia.org/w/index.php?title=File:Maria_Sk%C5%82odowska-Curie_1903.jpg&oldid=437189076
https://commons.wikimedia.org/w/index.php?title=File:Maria_Sk%C5%82odowska-Curie_1903.jpg&oldid=437189076
https://arxiv.org/abs/1802.04874

Master’s Theses in Mathematical Sciences 2021:E33
ISSN 1404-6342

LUTFMA-3450-2021

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	Introduction
	Disposition
	Problem Setting
	Previous Work
	Ethical Considerations

	Background
	Machine Learning & Deep Learning
	Artificial Neural Networks
	Perceptron
	Loss functions
	Gradient descent
	Stochastic gradient descent
	Optimizers & Momentum
	Learning

	Convolutional Neural Networks
	Autoencoders
	Skip connections

	Audio representation

	GAN
	Generative Models
	Generative Adversarial Network
	Original implementation
	Training
	Convergence and stability
	Helvetica scenario / Mode collapse
	GAN variations

	Wasserstein Generative Adversarial Network
	Enforcing Lipschitz constraint
	Remarks about the W1 approximation

	LipGAN
	Generator G
	Critic D
	Losses

	Technologies & Datasets
	Software
	Python
	numpy
	Pytorch
	OpenCV
	FFmpeg
	dlib
	librosa

	Hardware
	Datasets

	Methodology
	Data Pre-processing
	LipGAN implementation
	Architectural implementation
	Training implementation
	Inference implementation
	Code implementation

	WGAN-GP implementation
	Architectural implementation
	Training implementation
	Inference implementation
	Code implementation

	Experiments

	Metrics
	PSNR
	SSIM
	FID-score
	Other considerations

	Results
	LipGAN
	Losses
	Sample inspection

	WGAN-GP
	Losses
	Sample inspection

	L1WGAN-GP
	Losses
	Sample inspection

	Comparison Between the Models
	SSIM
	PSNR
	FID
	Qualitative results

	Impact of dataset

	Discussion & Further Work
	LipGAN
	WGAN & L1WGAN-GP
	Comparison Between the Models
	Dataset
	Limitations
	Further Work

	Conclusion

