
MASTER’S THESIS 2021

Establishing Feedback in
Continuous Delivery – Benefits
and Approaches
Emanuel Eriksson, Keiwan Mosaddegh

ISSN 1650-2884
LU-CS-EX: 2021-02

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2021-02

Establishing Feedback in Continuous
Delivery – Benefits and Approaches

Emanuel Eriksson, Keiwan Mosaddegh

Establishing Feedback in Continuous
Delivery – Benefits and Approaches

Emanuel Eriksson
mat14ee1@student.lu.se

Keiwan Mosaddegh
ke2476mo-s@student.lu.se

February 15, 2021

Master’s thesis work carried out at Verisure Innovation AB.

Supervisors: Jon Nessmar, jon.nessmar@verisure.com
Lars Bendix, lars.bendix@cs.lth.se

Examiner: Emelie Engström, emelie.engstrom@cs.lth.se

mailto:mat14ee1@student.lu.se
mailto:ke2476mo-s@student.lu.se
mailto:jon.nessmar@verisure.com
mailto:lars.bendix@cs.lth.se
mailto:emelie.engstrom@cs.lth.se

Abstract

It is generally understood that feedback is the oxygen of continuous software
development systems. When software velocity is high, continuous feedback can
ensure that quality is maintained without sacrificing throughput. However, the
precise impact and value of feedback in modern development paradigms like
CI/CD is not thoroughly explored. Distinctions between di�erent types of feed-
back, as well as descriptions of how a feedback loop is to be established, are
incomplete in literature.

Based on literature analysis and data gathered from a company transition-
ing to CD, we have attempted to categorize and evaluate the urgency and utility
of di�erent types of feedback within CD – specifically distinguishing between
process and product feedback. We also explored the value of feedback by ana-
lyzing feedback-related problems at the company. To address a subset of these
problems, a number of approaches to feedback design in practice were evaluated.

Overall, our results show that any generalizable feedback system, even a rudi-
mentary one, is an extreme necessity to achieve sustainable Continuous Delivery.
This is especially true when multiple teams cooperate, as one improvised ad hoc
solution per team is likely to hinder comprehension across teams. In practice,
this system should be centralized but tailorable after specific team needs.

Keywords: Continuous Delivery, Continuous Integration, Feedback, Feedback System,
Continuous Testing, DevOps, Software Engineering

2

Acknowledgements

First of all, we would like to thank our academic supervisor Lars Bendix for his invaluable
assistance, not to mention his extraordinary patience with us, throughout the course of this
thesis. His knowledge, guidance, and Danish sense of humor all served us well in the past
months. Most importantly, his method of using ridiculous metaphors and his mysterious
hints will not be easily forgotten.

We would also like to defy explicit instructions and – one last time – thank our friends
at Verisure for letting us take so much of their invaluable time. Thanks to their support and
expertise, completing this thesis went from dream to reality. Jon, Mattias and Olof really did
their absolute best to make us feel at home and welcome, and also treated us with the utmost
professionalism. Thank you for making us feel like colleagues, and good luck in your future
endeavors!

3

4

Contents

1 Introduction 7
1.1 Problem Statement . 8
1.2 Research Questions . 8
1.3 Thesis Report Disposition . 9

2 Background & Context 11
2.1 Theory . 11

2.1.1 Modern Software Development Processes 11
2.1.2 Information and Feedback in CD 13

2.2 Verisure & CD . 14
2.2.1 Verisure . 14
2.2.2 Current Practices . 14
2.2.3 Verisure’s Transition to CD . 15
2.2.4 Context for Thesis . 15

2.3 Methodology . 16
2.3.1 Problem Analysis Phase . 17
2.3.2 Design Phase . 20

3 Problem Analysis 23
3.1 Literature Study 1 . 23

3.1.1 The Pipeline Model . 23
3.1.2 Process and Product Feedback . 24
3.1.3 Stakeholder Interests . 24
3.1.4 Feedback Problem Domains . 25

3.2 Interviews 1 . 26
3.2.1 Synchronized Releases . 27
3.2.2 Context and Architecture Variations 27
3.2.3 Ownership and DevOps . 27
3.2.4 Testing . 28
3.2.5 Manual Feedback . 28

5

CONTENTS

3.2.6 Feedback Systems . 29
3.2.7 Traceability . 29

3.3 Problem Analysis Results . 29
3.3.1 Results RQ1a . 30
3.3.2 Results RQ1 . 34
3.3.3 Results RQ2 . 35
3.3.4 Post-analysis . 36

4 Design 37
4.1 Re-scoping . 37
4.2 Literature Study 2 . 39

4.2.1 Software Analytics . 39
4.2.2 Test Activities Based on Stakeholder Interests 40
4.2.3 Design Composition . 41

4.3 Interviews 2 . 42
4.3.1 Centralized versus Distributed Design 43
4.3.2 Design Robustness . 43
4.3.3 Interests, Features, Metrics and Metadata 44

4.4 Design Results . 45
4.4.1 RQ3 Results . 46
4.4.2 Design Example . 47

5 Discussion & Related Work 49
5.1 Methodology Discussion . 49
5.2 Validation . 51
5.3 General Discussion . 52
5.4 Related Work . 53

5.4.1 Test Activities in the Continuous Integration and Delivery Pipeline 53
5.4.2 Software Analytics in Continuous Delivery: A Case Study on Suc-

cess Factors . 55
5.4.3 Continuous Testing and Solutions for Testing Problems in Contin-

uous Delivery: A Systematic Literature Review 57
5.4.4 Metric-Driven Analysis and Feedback Systems for Enabling Empir-

ically Guided Software Development 58
5.5 Future Work . 60

6 Conclusion 63

References 65

6

Chapter 1

Introduction

Continuous Delivery (CD) is a software development methodology used by practitioners
with the aim to increase the speed and frequency in which software is released, all while
maintaining or even increasing its reliability [6]. It allows developers to write code, commit
changes, receive feedback, and reach a production-ready state, asynchronously and indepen-
dently of other stakeholders and teams.

However, an increase in software development speed also requires other aspects of the
system, such as feedback, to achieve su�ciently high quality and speed. This is important
in order to fulfill the information needs of a faster moving work environment. Nonetheless,
the exact function and value of feedback in paradigms like Continuous Delivery has not been
thoroughly explored yet. As a consequence, some companies transitioning towards CD risk
underrating the impacts of mismanaged feedback.

Verisure Innovation AB (Verisure) is a provider of home security solutions. All Verisure
products and services are developed at their Innovation Center in Malmö, where around 400
employees work. Previously, the company consisted of approximately 20 applications that
each month were assembled together into a monolith-like infrastructure, which was there-
after deployed to production. Today, Verisure have expanded in scope to over 120 applica-
tions. However, their work processes have not evolved accordingly, but have rather remained
stagnant throughout the years. Some of these practices are considered hindering or obsolete
by employees. Especially the release processes at Verisure have with time become disrep-
utable, as the assembly phase at the end of each month has grown into an inconvenient,
overwhelming, and error-prone event.

Verisure has realized and acknowledged the issues of their current synchronized releases,
and have initiated the journey towards adopting the software development discipline Con-
tinuous Delivery (CD). They are currently investigating what aspects of CD to prioritize, in
order to achieve a long-term sustainable solution.

7

1. Introduction

1.1 Problem Statement
With Continuous Delivery in development at Verisure, the question regarding feedback in
CD becomes pertinent. It is generally understood that feedback plays some important role in
software development, but how one should proceed from this conjecture is usually unclear.
This is especially the case in fledgling paradigms, as the actual impact and value of feedback
in modern development systems such as CI/CD is not thoroughly explored. Without the
underlying layers of motivation for what value and impact feedback brings, an adoption
roadmap with the appropriate implementation steps becomes significantly more di�cult to
construct.

Distinctions between di�erent types of feedback, as well as descriptions of how a feed-
back loop is to be established, are fragmented and incoherent in literature. If di�erent types
of feedback were documented, companies could analyze the applicability of these types to
their context, and scrutinize their own information systems for deficiencies. The current sit-
uation makes it di�cult for companies such as Verisure to utilize past experiences and lessons
learned from the success stories of the industry, forcing companies to have to reinvent the
wheel when trekking down the path of Continuous Delivery. This in turn stagnates advance-
ments within this domain in the literature, as the compounding e�ect of building upon one’s
past experiences does not occur. Some companies do harbor success stories, but feedback
insights that lead to triumph rarely make their way into academia. This last statement ap-
plies to the value of feedback, the lack of distinctions, and the absence of well-documented
feedback approaches.

Together, these three overarching problem domains form the point of entry into this
thesis:

• The precise value and purpose of feedback in CD is not known.

• There are no clearly usable distinctions between di�erent types of feedback.

• Practical approaches for feedback in CD are inadequate and fragmented.

1.2 Research Questions
Around these problem domains, three main research questions were formed. The goal of this
master thesis was to investigate and discuss these questions:

• RQ1: What is the purpose and value of feedback in CD?

– RQ1a: How are Verisure’s feedback systems and practices insu�cient in a CD
context?

• RQ2: What are some factors that are relevant when categorizing feedback in CD?

– RQ2a: What di�erentiates process and product feedback within CD?

• RQ3: How could feedback design be approached for CD?

8

1.3 Thesis Report Disposition

The process in which we attempt to answer these RQs involves two phases; the problem
analysis phase, and the design phase. The problem analysis phase set out to explore and
answer RQ1 and RQ2, using data from academia and industry. This information was gathered
through literature studies and interviews with the various stakeholders within Verisure. Once
collected the data was analyzed and turned into results for the first two research questions.
From that, the design phase tackled RQ3, utilizing some results from the previous phase.
In this phase, data was collected using a second round of literature studies and interviews
focused on design approaches. Finally, data was analyzed and compounded into a set of
results for RQ3.

1.3 Thesis Report Disposition
The next chapter of this paper provides a more in-depth look into the background and
context of this thesis; it gives acquaintance with central theory, and the steps taken in the
methodology. Next, the problem analysis chapter describes what data was gathered for prob-
lem analysis, how analysis of that data was done, and what the results were. In the design
chapter, the results of the problem analysis phase are utilized together with more data from
academia and interviews, to answer RQ3. This is followed by a discussion of threats of valid-
ity, related works, and future work. Lastly, the conclusions to the research questions stated
in the problem formulation are presented.

9

1. Introduction

10

Chapter 2

Background & Context

In this chapter we aim to provide a better understanding of the background and context of
the report, including related information about the case company, central theory, and what
method was used. This is important to establish in order to become familiar with the case
company in which the steps were taken and the results stem from. Furthermore, this clarifies
the central theory which the report is based on, and makes sure a common perception of
the definition of terminology and concepts are communicated clearly. First, central theory
is presented, followed by a description of the case company Verisure, and their relation to
Continuous Delivery. Lastly, the report methodology is presented and motivated.

2.1 Theory
The motivation behind the Theory section is to become familiar with the underlying theory
which the thesis work is based on. More importantly, this section helps understand the in-
terpretation of what the terminology means specifically in the context of this thesis work,
and – not to mention – to see that the reader’s understanding of the theory is aligned with
how we interpret it. Concepts such as Continuous Delivery, Feedback, Monitoring, and Soft-
ware Analytics will be covered. We are aware that there are many di�erent opinions on the
definitions of some of the mentioned concepts, and we will therefore provide a motivating
description about how we interpret them in the context of this thesis. First, modern software
development processes will be presented, including descriptions of Continuous Integration,
Continuous Delivery, and DevOps. Finally, in Information and Feedback in CD, concepts
such as Continuous Feedback and Continuous Monitoring will be explained.

2.1.1 Modern Software Development Processes
Software development is a constantly evolving cooperation between people, tools and pro-
cesses, with the end goal of delivering a cohesive and functioning product to users. In the

11

2. Background & Context

grand scheme of things, the field is very young and immature – there are often few well-
established best practices that have stood the test of time. The advantage of this, however,
is that the way software is created can be continually improved. Software engineering is not
held back by tradition or convention, and often is not limited by aspects like material costs
and transportation like other industries are. The consequence of these characteristics is that
unlike other fields that deliver products, software development is free to experiment with
new strategies and optimize at a comparatively incredible pace.

In the recent decades, software paradigms have quickly shifted from the traditional wa-
terfall model, to agile principles, and finally towards the “continuous” craze of the past years.
This transition can be explained in a multitude of ways, but for the purposes of this thesis,
the most interesting factor to consider is the speed of changes propagating through the prod-
uct delivery process. Common to all processes is the sequential set of procedures that turn
raw materials into a complete product, often known as an assembly line or pipeline. In the
context of software, the velocity of this pipeline has steadily increased, reducing development
cycles from years, to months, to weeks. Software products, updates and changes now reach
customers faster than ever before, with some systems having cycles as short as minutes or
hours.

The first part of the continuous puzzle is often called Continuous Integration (CI). This
model has many interpretations, but for the context of this thesis, CI is a system of coop-
eration where individual developers commit their code changes to a version control system
that contains the code base of the entire team [3]. In this first half of the pipeline, small
changes are integrated, built and tested by the tool infrastructure, preferably automatically.
Another characteristic of CI is the fact that developers are essentially free to integrate their
code whenever they want to. CI has quickly propagated throughout the software industry, as
its benefits are broad – most are not within the context of this thesis.

The speed of these pipelines is usually bottlenecked by the slowest or the least frequently
performed step. Even if the majority of the CI software pipeline is fast – development, build-
ing artifacts, and testing – releasing to customers at a slower pace will impact the velocity
of the entire system, and the quality of the product. This is especially true in cases where
multiple teams are contributing to a complex system of cooperating parts. If teams merge
their changes together in a synchronized manner at longer intervals, much time is spent on
ensuring those changes combine peacefully. The fact that this is troublesome is somewhat
counter-intuitive – if all changes need to be tested together eventually, why not dedicate
time before a scheduled release to ensure that the product works? The issue is not the idea
of quality assurance, it is the method.

In a company where developers are bottlenecked by a slow release process, they often
contribute their changes fast and move on to implementing new changes. This means that
if issues occur before release, significant time has passed. Developers then have to context
switch back to the world of weeks ago to try and address any problems, and when changes
from many weeks of work are combined late, issues are plentiful. This delayed feedback can
complicate an already intricate development process. Essentially, short development cycles
can deliver great value to customers and developers alike, but are di�cult to maintain in
practice. The entire process of short iterations can be bogged down and jeopardized if one
part of the pipeline slows down the others.

The natural step forward is to extend the continuous mindset of CI even further – if
developers can integrate their code with their own team freely, why do not teams integrate

12

2.1 Theory

their changes with other teams freely as well? As long as quality is ensured, a single line change
from a developer could technically travel from their computer, through the pipeline, all the
way to customers in an asynchronous manner. This second part of the continuous puzzle
is called Continuous Delivery/Deployment, and is the coveted and highly desired destination
of many software companies today [1]. In the context of this thesis, the focus will be on
Continuous Delivery (CD). The distinction between delivery and deployment is miniscule, as
deployment implies acceptable changes can reach customers without any human intervention
at all. Continuous Delivery, however, involves that a quality assured change needs one manual
stamp of approval before it finally leaves the pipeline.

Reaching CD in the context of a single team at a start-up company is comparatively
straight-forward, due to the simple nature of the code base. If the entire product is con-
tained in one version control repository, extending CI to CD is just a matter of implement-
ing the appropriate deployment infrastructure. At a mid-to-large-sized company, however,
sustainable CD is much harder to achieve. A complex code architecture managed by many
teams is exponentially more complicated, as sub-components need to be tested together be-
fore releasing to production, meaning that a straight line towards deployment is sometimes
impossible. Certain architectural approaches exist to mitigate the e�ects of this complexity
– simulated system environments being one. Another strategy that usually combines well
with CD is a microservice architecture. Microservices are modular, isolated subcomponents
that are loosely tied to other parts of the system, meaning they can be updated, changed or
even removed without impacting the rest of the code. Many software companies combine
CD and microservices, allowing for the independent deployment of each service.

Continuous Delivery is not only a technical challenge – it is also a challenge of human
cooperation. The tight tolerances of CD require stringent engineering and streamlined col-
laboration between teams and roles. These characteristics are key elements of the summation
of practices and philosophies known as DevOps. DevOps looks at the problems of this the-
sis from another perspective, focusing on the human collaboration first, with CD and other
things coming as a consequence. Essentially, the goal of DevOps is to further collaboration
and unity between developers and operations personnel [2]. The purpose of this is to make
the development, deployment and release processes coherent with each other. In DevOps,
developers take responsibility for their code changes all the way to production, and opera-
tions personnel continuously support and facilitate incoming changes from multiple teams.
Exploring the relationship between DevOps and CD is not within the scope of this thesis.
However, the characteristics of DevOps are not to be overlooked when attempting to deep-
dive into the nuances of CD.

2.1.2 Information and Feedback in CD
Central aspects of both CD and DevOps are information transmission and the existence of
feedback loops. Just like the speed of artifacts is substantially faster in CD than in other
development processes, the speed of information needs to be just as fast. A direct conse-
quence of CD are the numerous tools that together make up the infrastructure, managing
version control, builds, testing and deployment. These tools constantly produce informa-
tion; collecting, managing and utilizing that information is often discussed as an important
aspect of CD. Information also comes from the people utilizing the tools. A natural method
of managing this information is pointing it backwards in the pipeline, a concept that is often

13

2. Background & Context

called feedback. In general terms, feedback loops ensure that the system reacts to changes,
and transmit some information about those changes to relevant stakeholders. In the context
of CD, this is sometimes called Continuous Feedback [8]. Exploring the exact value and e�ect
of feedback in CD is the central purpose of this thesis.

Other terms exist that cover the transfer of information in CD. One is called Software
Analytics, and deals with the gathering and analysis of data and metrics [19]. Software Ana-
lytics enables companies to gather general insights throughout a software product’s life-cycle,
using data analysis. Another term, Continuous Monitoring, utilizes similar methods to detect
issues and perform risk assessment and management [17]. Both terms are highly relevant to
CD, as managing and utilizing information is extremely important in high-velocity systems.

2.2 Verisure & CD
In this section we aim to provide a description about the case company of this thesis, and
how their context relates to the one of our work. It is important to become familiar with
the case company as it helps better understand the environment and circumstances in which
the research steps were taken and the results stem from. The contents of the section are an
introduction about Verisure, a presentation about their current practices and future plans,
and lastly an motivation for why Verisure fit well within the context of our thesis.

2.2.1 Verisure
The aim of this subsection is to attain an initial familiarization with the case company
Verisure. This is done by presenting some signifying characteristics about the company, and
their work.

Verisure Innovation AB (Verisure) is a medium-to-large sized home security solutions
company. Verisure o�er sets of products and services, which together compose kits of com-
plete alarm systems, to detect intrusion, fire, water leakage, etc. All of Verisure’s products,
services, and support systems are developed in-house, at their Innovation Center located in
Malmö and Linköping. Approximately 400 employees work (directly or indirectly) with the
development of the company’s products and services.

2.2.2 Current Practices
This subsection presents the current software development practices of Verisure, with the
aim of further building upon the context of this thesis. Having knowledge of the past and
current situation of Verisure’s software development, facilitates understanding their prob-
lems, decisions, and motivations going forward.

Previously, the company developed and maintained approximately 20 applications that
each month were assembled together into a monolith-like infrastructure, which was there-
after deployed to production. Today, Verisure have expanded in scope to over 120 applica-
tions. However, their work processes have not evolved accordingly, but have rather remained
stagnant throughout the years. Some of these practices are considered hindering or obsolete
by employees. Especially the release processes at Verisure have with time become disrep-

14

2.2 Verisure & CD

utable, as the assembly phase at the end of each month has grown into an inconvenient,
overwhelming, and error-prone event.

During each monthly release cycle, changes from di�erent areas, teams, and projects
throughout the organization, line up within the release pipeline, ready to be assembled as
the cycle reaches its end. The hopes of the assembly phase is to seamlessly and e�ortlessly
merge the changes from the more than 120 applications, without encountering conflicts of
any kind. This is rarely the case, and due to the magnitude of the changeset, the troubleshoot-
ing is not an easy nor convenient task.

Verisure has realized and acknowledged the issues of their current synchronized releases,
and have initiated the journey towards adopting the software development discipline Con-
tinuous Delivery (CD). They are currently investigating what aspects of CD to prioritize, in
order to achieve a long-term sustainable solution.

2.2.3 Verisure’s Transition to CD
In this subsection Verisure’s transition towards Continuous Delivery is presented. This is
done to further develop the context of this thesis, by elaborating on the domain within the
company that best relates to the context of our work.

Verisure have recently initiated a transition towards Continuous Delivery, and are still
in the early stages of this journey. Up until now change management has been in focus, with
a couple of initial meetings, discussions, and workshops conducted, with the aims of clearly
communicating the paradigm shift, and receiving feedback about potential concerns that
di�erent stakeholders may have. There is currently no CD pipeline within the company, and
no such development has been initiated nor planned so far.

The transition towards Continuous Delivery is brought forward by an assigned team (the
CD project team). The members of the CD project team have great experience and compe-
tence within fields such as configuration management, release management, build chain ar-
chitecture, and it operations architecture. However, none of the members have any particular
prior practical experience within the domain of CD.

2.2.4 Context for Thesis
The aim of this subsection is to closely relate Verisure and the context of the company, to the
context of the thesis. This is important to establish, as it explains how certain aspects and
challenges arising out of Verisure’s current context and upcoming goals, make them a viable
case company for our work.

With Verisure transitioning to Continuous Delivery, the topic of Continuous Feedback
becomes evident. It is generally understood that feedback plays an important role in CD, but
how one should proceed from this conjecture is usually unclear. This is particularly so, as the
actual impact and value of feedback in modern development paradigms such as CI/CD is not
thoroughly explored. Without fully understanding the impact and value of feedback in CD,
it reasonably becomes significantly more di�cult to figure out how to approach the topic of
feedback, what problems to address, and what solutions to implement.

This scenario is consistent with that of Verisure. Verisure realize that feedback is an es-
sential piece of Continuous Delivery, but lack the understanding of the actual value it can

15

2. Background & Context

bring, and what aspects contribute to that value. Without an understanding of such deci-
sive information, it becomes significantly more di�cult to delve into the distinct subtopics
of Continuous Feedback in practice. What di�erent means of categorizing feedback could
apply in CD, and should they be treated di�erently? Should di�erent types of feedback be
directed to di�erent types of stakeholders? Should the way they are – and when they are de-
livered – vary? These are all questions that become a lot harder to answer when the overarch-
ing questions remain unanswered, and leaves Verisure unsure how to approach the feedback
situation.

As these areas of research in literature are scarce and fragmented, it becomes di�cult for
companies such as Verisure, to get help from past experiences and lessons learned from the
success stories from the industry. This forces companies to reinvent the wheel when trekking
down the path of Continuous Delivery. This in turn stagnates advancements within this
domain in the literature, as the compounding e�ect of building upon one’s past experiences
does not occur.

This is why we consider Verisure to be a relevant and interesting case company for our
research. As Verisure has just entered the phase where the lack of research on feedback in CD
becomes apparent, it is possible to explore and investigate their questions and problems as
they arise. By examining feedback problems related to CD, at a company who are currently
battling against those very problems, we believe we have a greater opportunity to truly un-
derstand and address those problems.

To assist Verisure with their journey, this thesis aims to explore three research questions
in the context of Verisure. The assumption is that investigating these questions together with
Verisure will address the general academic problems surrounding feedback, but also resolve
or improve the situation at the company.

• RQ1: What is the purpose and value of feedback in CD?

– RQ1a: How are Verisure’s feedback systems and practices insu�cient in a CD
context?

• RQ2: What are some factors that are relevant when categorizing feedback in CD?

– RQ2a: What di�erentiates process and product feedback within CD?

• RQ3: How could feedback design be approached for CD?

2.3 Methodology
This section explains what steps were taken in the methodology, with motivations based on
the problems and research questions of the thesis. It is important to understand the reasoning
behind the steps that were taken, in order to discern how the objectives of the thesis were
approached. This section might also be of interest for reproducibility or validation purposes.
First, the general structuring of the thesis is briefly described and connected to the problems
to be explored. Then, a more thorough explanation of each step with more motivations is
discussed.

Overall, the thesis was divided into two phases – a problem analysis phase and a design
phase. This division is a consequence of the natural ordering of the research questions, as

16

2.3 Methodology

the exploratory and investigative results of RQ1 and RQ2 were needed to tackle RQ3. To
approach the design of feedback solutions with confidence, the purpose of feedback needed
to be probed first. The problem analysis phase also served as a great opportunity to gather
insights into the procedures of the case company, clearly grounding the thesis in an industry
context.

The goal of the problem analysis phase was centered around exploring RQ1 and RQ2,
with valuable insights regarding RQ3 coming as a byproduct. To study the value and types
of feedback in CD, a literature study was performed. Further, RQ1a was directly approached
using a set of interviews at the case company. RQ2a was explored using the initial literature
study, and validated during the interviews. The following design phase was entirely dedicated
to exploring RQ3, but required the results of the previous phase to be adequately re-scoped.
The design phase was performed in an iterative manner, combining a solution-oriented lit-
erature study and interviews with a design process. A visual representation of the complete
process of the method can be seen in figure 2.1.

Figure 2.1: A flowchart overview of the thesis work methodology.

2.3.1 Problem Analysis Phase
The overarching goal of the problem analysis phase was to fully answer RQ1 and RQ2. By
answering the research questions, parts of the purpose behind the thesis would be fulfilled,
and the understanding and insights required to enter the design phase from a better position
to answer RQ3, would be achieved. In order to successfully answer the former research ques-
tions, a series of steps consisting of data gathering activities had to be performed. This was
necessary in order to (1) get a deeper understanding of the current state of research within
Continuous Delivery, feedback, and the relation between the two; and to (2) become famil-
iar with the case company, their current feedback systems and practices, and what problems

17

2. Background & Context

exist regarding CD related feedback within the company. This data was gathered through a
literature study, and interviews. Lastly, to be able to form concluding insights and attempt
to answer RQ1 and RQ2, the data collected from the literature study and interviews were
then related and analyzed.

Literature Study 1
The reason behind the literature study was to explore RQ1, RQ2, and RQ2a from an aca-
demic perspective. The context of the research questions involve understanding the value
and purpose of feedback in a CD setting (RQ1), investigating what di�erent types of feed-
back categorizations that apply well to CD (RQ2), and where and how product and process
feedback fit within CD (RQ2a). RQ2a also includes the actual part of defining the meaning
behind product and process in the context of this thesis, as a common definition could not be
identified in literature. Part of the outcomes of the literature study were utilized as prepara-
tion for the following interview session, as it provided a deeper understanding of the topic
of the interview, as well as acted as the backbone of the interview guide.

With the objective of the literature study in place, an approach to find interesting and
relevant literature was planned and executed. The idea behind the chosen approach was to
combine independently and collectively performed exercises, in order to significantly utilize
the collective competence and judgement when identifying valuable resources.

First, collectively, keywords and search terms that characterize the problem domain were
defined and listed. Next, the exact same set of keyword searches were made independently
by the two of us, through Google Scholar. The motivation for choosing this search engine was
to ensure the quality and trustworthiness of the collected references. Continuing indepen-
dently, the articles of the search results were then filtered by if they seemed interesting and
relevant for the work, determined by the title. The independently filtered lists of articles
were then combined into one, common, longer list. At this point, yet another filtering pro-
cess followed. Independently, the articles of the combined list were filtered by their abstract,
and resulted in two separate lists of interesting and relevant references. The union and the
intersection of the two lists were determined, where their intersection functioned as highly
relevant references to be studied, and their union functioned as references to study in case
their topics increased in relevancy, or the focus of the thesis shifted. In the case of the lit-
erature study of the problem analysis phase, the resources within the intersection were of
particular interest, as they were perceived as su�cient in order to attain the required under-
standing about the problem domain and industry examples. The intersected articles were
then studied, analyzed, and discussed, collectively. Rather than studying every article com-
pletely, only parts relevant to problem collection were analyzed. Most articles, even the ones
closest to the problem domain, did not intersect with the thesis context entirely. As such,
there was no need to study them extensively.

From the articles, a number of patterns were discovered. These patterns each related to
a problem domain, and formed the basis for the interview guide.

Interviews 1
The reason behind the interviews were to primarily gather data regarding RQ1a, RQ2, and
RQ2a. The focus of RQ1a is to understand how the feedback systems and practices of the case

18

2.3 Methodology

company are insu�cient in a CD setting. In order to answer this and the previously intro-
duced RQs (RQ2, RQ2a), the interview supporting results of the conducted literature study
were utilized to prime the interview structure and topics, so that the desired information
could be better extracted from the interview candidates.

For the selection of interview candidates, the aim was to identify employees at Verisure
who collectively and rightfully represent stakeholders that show a first-hand feedback inter-
est about the events and processes of the CD pipeline. To e�ectively identify these individu-
als, help was provided from the CD project team, who proposed a selection of relevant teams
and key individuals within them. Interviews were booked with software developers, scrum
masters, release controllers, and first line supporters, from 5 di�erent teams.

The overall focus of the interviews was identifying and synthesizing problems related to
feedback. The stakeholders were asked to relate their thoughts on terms like essential, valuable,
timely, and practical, to better understand what feedback meant in the context of their role.

Semi-structured in-depth interviews were conducted in order to collect in-depth data
describing problems and desires at Verisure. An overly open-ended approach would result in
incohesive and superficial discussions, and surveys were deemed too strict to be of use. Time-
constrained semi-structured interviews seemed like the natural approach to finding this bal-
ance. The initial time estimate for the interviews was 60 minutes, and this was trialed during
the first interview. Throughout the rest of the interviews, the one hour benchmark appeared
to allow just enough time for adequate data collection without an overflow of irrelevant in-
formation. None of the conducted interviews strayed noticeably from this benchmark, and
at no point was more time required to properly explore the discussed subjects.

Furthermore, the first interview also helped establish a coherent order of the interview
questions, and an e�ective elaboration-inviting phrasing of these questions. Also, the divi-
sion of responsibilities between the interviewers was naturally formed from the first inter-
view, where one primarily acted as the interviewer, while the other acted as the secretary;
taking notes, occasionally adding questions when necessary.

Due to the time constraints of the thesis work, the amount of conducted interviews was
limited to 7. However, 7 interviews were su�cient to adequately collect information to an-
swer the related research questions.

Lastly, in order to extract valuable information from the conducted interviews all in-
terviews were transcribed, coded and important insights and patterns were identified and
compiled.

Problem Analysis Results
The overarching goal of the problem analysis phase was to fully answer RQ1 and RQ2, includ-
ing their respective subquestions. With all the requested data collected from the literature
study and interviews, an attempt to reach the goal of the problem analysis phase could be per-
formed. RQ1a was best answered by utilizing the case company specific information collected
through the interviews. RQ1 as a whole partly relied on the answer of its subquestion, and
partly relied on the findings of the literature study, in order to be considered fully answered.
RQ2 and RQ2a were mainly answered by analyzing the findings of the literature study, but
certain interview answers helped validate or further investigate the formed assumptions.

Thorough analysis of these problems was followed by a validation stage together with
Verisure. The thesis advisor at the company, together with other representatives, gave their

19

2. Background & Context

input on what problem descriptions seemed accurate to them. Finally, a revised version of
the problem analysis results was delivered to all parties.

2.3.2 Design Phase
The design phase had the overarching goal of exploring RQ3, deep-diving into the realization
of feedback in the company context. This presented an opportunity to shift tone from the
focus on problems to the focus on solutions. However, doing this required correctly taking
the results of RQ1 and RQ2 into account. This was achieved, in part, by performing an initial
re-scoping. To incorporate company input continuously, a literature study, set of interviews
and design process was performed iteratively. Finally, the resulting design was validated with
the company, and the results were analyzed in relation to RQ3.

Re-scoping
The purpose of the re-scoping was two-fold; the primary goal was to identify a useful and
interesting subset of problems from the problem analysis phase to focus the remaining thesis
resources on. The second goal was to coherently transition the results of RQ1 and RQ2 into
the exploration of RQ3. To find the appropriate level of depth, the design phase size and
scope was limited. By utilizing a problem dependency chart and supervisor feedback, an
intersection of problems from the problem analysis phase was identified. The intersection
was perceived to cover problems that were both critical to CD, but also not already being
investigated by the case company. Thus, the return on investment of the selected problems
was high.

This intersection, which became the scope of the design phase going forward, also fulfilled
the second goal of the re-scoping – the transition from RQ1 and RQ2 into the exploration of
RQ3 was well-established.

Literature Study 2
The purpose of Literature Study 2 was to gather data from a feedback solutions perspective, to
answer RQ3. In practice, the method for this process was similar to the method of Literature
Study 1.

The greatest di�erence from the first academic study was the set of keywords used. For
the second study, keywords came from the re-scoping, as well as from the exploratory litera-
ture study itself. Once an initial set of keywords was used, more keywords were gathered. An-
other di�erence was the fact that two academic databases were used, LUBSearch and Google
Scholar. The filtering process was otherwise identical to Literature Study 1.

Interviews 2
Once data focused on solutions and implementations were gathered, it needed to be validated
and reconciled with the context of Verisure. Also, more data specific to Verisure was needed
– how should feedback be approached in their context, to be valuable to them, specifically?
To do this, a set of interviews were conducted with key members of the CD transition team at
Verisure. As the nature of the interviews was more explorative, free-form interviews of about

20

2.3 Methodology

1 hour were chosen as the method. A total of four interviews were conducted; two concerned
the general implementation approach, and two were focused on specific aspects of the de-
sign. As the design was iteratively improved, the interviews were distributed throughout the
design phase.

Design Process
In order to be able to answer RQ3, data collected during the design phase was utilized to
create a proposed design solution. The approach to the design process primarily consisted of
a series of iterations of design with subsequent validation. The newly acquired insights from
each validation step was then used to reiterate on the design. The design reiteration was
either solely based on the previous validation, or encouraged further literature studies and
interviews, to form a required ground for the new approach. The designs were continuously
validated against the feedback type findings of RQ2, in addition to interviews with relevant
stakeholders at the case company.

Design Result and Validation
To gather input, feedback, and validate the contributions of the design phase, a one-hour
meeting with Configuration Management and CD enthusiasts and practitioners from the
industry was conducted. The meeting participants primarily communicated opinions to val-
idate and expand on RQ3, but did also share their thoughts on the answers to the two former
RQs.

21

2. Background & Context

22

Chapter 3

Problem Analysis

In this chapter, the first of the problems and research questions are approached (RQ1 and
RQ2). They are approached by utilizing a literature study to gather useful information on
feedback from academia, and then performing interviews. Finally, the two data sets are rec-
onciled with each other, to identify where Verisure are lacking in regards to CD feedback.
Doing so led to some interesting results concerning RQ1, by giving us an understanding of
the value of feedback in CD. Also, the viability of using certain factors (process/product,
stakeholders, urgency) as feedback distinguishers was investigated. First, useful data from
the literature study is discussed. Then, the data gathered through interviews is analyzed and
discussed. Finally, the two sets of data are compiled into a final set of results.

3.1 Literature Study 1
In this section, key pieces of useful information from academia that influenced the thesis
are discussed. This data led to some preliminary results regarding feedback types (RQ2),
and was also needed to create the company interview guide. What important aspects of
feedback are missing at Verisure? It contains a description of typical CD pipelines, and some
initial feedback loops within. The definitions of product and process feedback are explored,
as well as the distinction between them. Stakeholder interests are discussed as a feedback
distinguisher. Finally, typical feedback problem domains are discussed.

3.1.1 The Pipeline Model
The vast majority of software products at Verisure are developed continuously according to
CI principles, but released or deployed on a monthly schedule. Understanding what conse-
quences this fact would have on feedback, and data collection, was di�cult – there was no
clear point of reference for what an ideal CD environment looked like. To address this issue,
a model for a general CD pipeline was procured, based on communication with Verisure and

23

3. Problem Analysis

industry literature (Figure 3.1). This model describes what subcomponents a complete CD
system should contain, what their responsibility is, and how they fit together.

The pipeline could be divided by the role responsible for each part, developer, tester
or operations manager. In practice however, too much overlap exists for this distinction
to be useful when modeling pipelines. Instead, the pipeline is divided by subcomponent
purpose. This proved to be very useful in identifying what teams to base our interviews
around, because some parts of the model pipeline exist as data sources, without necessarily
existing in a complete CD system.

Figure 3.1: A simple representation of the composition of a CD
pipeline

3.1.2 Process and Product Feedback
The term feedback encompasses many di�erent aspects of communication, a trend that was
noticed in the literature. According to Krancher, et al. feedback is information about actions
returned to the source of the actions [8]. To Krancher, et al. the focus lies on the transmission
of information backwards. Webster’s New World Dictionary calls feedback "a process in
which the factors that produce a result are themselves modified, corrected, strengthened,
etc. by that result" [11]. For the purposes of this study, we used the following definition:

Feedback is the delivery of information to those who need it, with the purpose of
enabling them to perform informed and appropriate actions.

This definition was used and validated throughout the later interviews. At first, it was not
clear if all types of feedback are critical within CD. To mitigate this, we distinguish between
what we call product and process feedback. Product feedback is insight into how “one spe-
cific change” moves through its life cycle. A change in this context can be a single commit to
a version control repository, or an artifact being bundled into a complete application. Exam-
ples of product feedback is a developer learning that a test failed, or an operations employee
learning that an issue exists in production. Both relate to one specific change or changeset.

Process feedback is an overview of many changes over time. Examples of this are graphs of
build times during the past sprint, or subjective employee feedback about “the process” itself.
This type of information is generally more interesting to stakeholders with oversight, such
as managers. This distinction between product and process feedback was necessary because
it allowed us to categorize the feedback needs we collected.

3.1.3 Stakeholder Interests
Scaling continuous practices to fit the size of the software system, and cover the needs of
all possible roles within that system is not an obvious task according to Rogers and Owen
[12]. The di�culties behind such scaling are primarily related to the domain of test activities,
and one of the most pressing questions within that domain is what test activities that best

24

3.1 Literature Study 1

serve the interests of the stakeholders within/around the continuous integration and delivery
pipeline. By identifying the di�erent stakeholder interests, and then satisfying them with an
adequate test activity, the needs of the stakeholders can be met. However, it is not particu-
larly the test activities themselves that help support the needs of the stakeholders, but rather
the information that can be extracted from the di�erent quality gates throughout the CD
pipeline; i.e. the feedback about the test activities status.

The reason why categorizing feedback based on stakeholder needs is desirable, is because
of its versatility. Feedback based on the stakeholder need ensures that (1) all stakeholders
revolving the CD pipeline are included and taken into account when designing feedback
solutions, and (2) that the information behind the feedback, and the manner in which it is
received, is adjusted to fit each specific stakeholder need.

Mårtensson et al. have designed the Test Activity Stakeholders (TAS) model – a model
which shows how it is possible to design the continuous integration and delivery pipeline to
include test activities that satisfy all of the di�erent stakeholder interests in the organiza-
tion [9]. The authors have helped narrow down the di�erent needs expressed by stakeholders
throughout 25 interviews, into four comprehensive categories. The reason for making an ab-
straction into stakeholder needs, rather than categorizing actual stakeholder roles, is because
it was identified that di�erent stakeholder roles might have similar and overlapping feedback
interests. The four identified stakeholder interests were:

1. Check quality and correctness of software changes

2. Secure stability and integrity in the system during development

3. Measure project progress

4. Verify compliance with requirements or user scenarios

The need for (1) was primarily communicated by developers; (2) came from a variety of
stakeholders, but primarily test and QA-related roles; (3) was mainly expressed by project
managers; and (4) arose from a set of manager roles, e.g. product owner, project manager,
technical manager, etc.

3.1.4 Feedback Problem Domains
The primary focus of this subsection was identifying what type of feedback problems plague
complete CD systems, and defining concrete problem domains. Academia has discussed the
topic of problems in CD thoroughly, and most research briefly touches on poor feedback as
one of them [14] [15] [7]. Data originating from the study was compared to the CD model
in Figure 1, and the following problem sources were identified as typical. Once the domains
were identified, they were used to build a proper foundation for the interviews. This was done
by structuring part of the interview guide based on the domains, with the direct objective
being exploring RQ1a.

In-component Problems
This sub-class of problems relates directly to a single continuous subcomponent, its outputs,
and its inputs. For example, someone working within the development subcomponent who

25

3. Problem Analysis

lacks feedback from others working within the same subcomponent, or from the develop-
ment tool directly. Essentially, the feedback is produced within the same subcomponent, and
needs to be delivered back to that subcomponent.

Cross-component Problems
If feedback needs to move between two di�erent subcomponents, e.g., from testing to devel-
opment, then it is part of the cross-component problem domain. There are many combina-
tions of subcomponents, but not all are relevant to the thesis. Focus was predominantly kept
on those problems where a concrete stakeholder needed or produced feedback, not a tool.

Organization and Architecture
From the literature, organizational and architectural matters appeared to be a common source
of feedback problems. Organizational matters could be questions of legal or access right is-
sues, social feedback barriers, or a lack of a well-defined feedback system. Architectural mat-
ters are tied to things like development scale or project size, and the number of dependencies
to other teams complicating interactions. These examples, as well as others, were commonly
seen as a source of slow or ine�cient feedback.

Testing
Another typical problem domain was testing activities. This domain contains all problems
related to test quality and execution, as well as issues stemming from testing environments
not mirroring production. Lack of automated testing or ambiguous test results, flaky tests,
GUI or hardware tests were identified as common issues hampering feedback.

Feedback Execution
This domain relates all issues to the actual execution of feedback, encompassing aspects like
timeliness, quality, method of delivery and others. Tools are also an interesting aspect, as
well as manual feedback, which appears to be a common source of issues. Feedback distil-
lation also belongs in this category, and over or under-abundance of feedback often causes
communication issues.

Traceability
Traceability is broadly discussed in the literature, but is approached from many di�erent
angles. The specific feedback issue often noticed in literature was the tracing of a software
problem to a specific change or commit. This information was identified as a key element of
the feedback loop often missing in company settings.

3.2 Interviews 1
In this section, the data from the interviews is analyzed. This is done so that it can be com-
pared to the academic perspectives on the value of feedback. Essentially, a di� between the

26

3.2 Interviews 1

situation at Verisure and academia was performed. To analyze the interviews, patterns in the
data from the interviews were identified.

3.2.1 Synchronized Releases
When asked about feedback-related problems, the majority of interview objects brought
up synchronized releases as the most explicit source of troubles. The e�ects of monthly,
company-wide deployments to production were clearly felt – especially the consequences of
delayed feedback. One interviewee commented: “When release day comes, you have to re-
member what we even are releasing, which can be quite di�cult. Especially when something
happens in production, like any issues, you have to think about what this even is – what did
we do four weeks ago?”. Another developer said: “... When the release is out to customers
and is being used, we have already switched focus to entirely new things. It is then costly to
switch back when needed. Not only because a long time has passed, but also because you have
switched focus and are peering forward at new things.”. Another pattern that was commonly
discussed was the intensity of feedback being extreme surrounding releases, since issues were
most plentiful then. Despite this, asynchronous releases were not always seen as the most
natural solution. Some developers were accustomed to their current environment and did
not see the need for change.

3.2.2 Context and Architecture Variations
An overall observation from the interviews was the varied context of each interviewee. When
probed about their working environment, the interview objects described somewhat similar
processes, but very di�erent code architectures. This is due to the broad scope of the com-
pany as a whole, as creating software and hardware products that interlink requires archi-
tectures of di�erent types. Some developers, especially those working on internal tools and
platforms, described a flexible microservice environment. Other developers worked closely
to the hardware alarm system, and therefore had dependencies to monolithic legacy systems.
The developers creating the website and mobile application had one foot in each world, with
parts of the code already moved towards microservices, parts sitting firmly in monoliths.
When discussing the e�ects of monoliths at the company, one interviewee commented: “And
it is slightly problematic, things being this way. Partly because nobody is really aware of ev-
erything that goes in [the monolith], partly because no single person knows what exactly goes
on in there. Releasing from it is quite slow, basically. Testing is sluggish, and so on. That is
why we need these windows of code freeze, so we can test and do other things.”. Essentially,
the interviewee motivated the need for synchronized releases with the existence of monoliths.

3.2.3 Ownership and DevOps
Another pattern from the interviews related to code ownership and the cooperation between
departments. Specifically, some managers that presided over that cooperation felt it was poor,
and that the steps taken to improve it were unsatisfactory. One of these people said: “ In the
beginning, the release belonged to the operations department. The development teams de-
veloped their code until code freeze. Then, they threw the code over to ITops, ‘here you go,

27

3. Problem Analysis

go ahead and deploy, we are starting the next sprint’. Afterwards, they did not care, and
when issues occurred around system release, they said ‘leave us alone, we are planning our
next sprint’. They did not feel the problems were their responsibility.”. Another intervie-
wee discussed their view on how this cooperation could be improved, saying “ownership and
responsibility is the key here – giving development teams control over [deploys], and also
giving them responsibility over fixing any problems that appear. Instead of the “handover”
mentality that exists today. . . . This puts some demands on the developers, to be respon-
sive towards customers, instead of being sheltered like today.”. These comments formed two
opposing patterns. From the operations perspective, employees felt that developers needed
to take responsibility for their changes all the way though release. Developers, on the other
hand, felt that the deployment process took too long and hindered their further work by be-
ing scheduled to a set date. They also argued that the operations department did not want to
relinquish control over the releases. One developer, working in an isolated context from the
rest of the company, described how their team had adopted DevOps principles by including
two operations personnel as part of their team. They said: “We have two ITops resources,
two people that is, doing our releases. As long as our code does not really impact the rest
of the company system, we can basically release whenever we want. And yes, that is much,
much better. The context of even two weeks ago is much easier to recall than four weeks.”

3.2.4 Testing
Some interesting comments were given surrounding the topic of manual testing, and the
propagation of automated testing. In general, manual tests were seen as slow, but not always
problematic. One developer commented: “If I am finished with something, somebody will
start [testing] it immediately at best. Usually, however, it takes longer, a couple of days.
Rarely, I will finish something at the start of a two-week sprint, and get it [tested] on the
last day of the sprint.” When asked if this was a problem, few developers really complained,
as they were accustomed to the process. The overall attitude was that somebody else would
quality assure code, sometime later – testing and deployment was not seen as part of the
developers responsibility. This attitude was heavily dependent on context, however. One
specific developer who worked in a microservice context skipped the testing process entirely,
so their code could reach deployment as fast as possible. When developers were asked about
automated tests, the most common answer was one of hesitant skepticism. Some believed
their tests would be di�cult or unnecessary to automate, specifically mentioning testing of
the monolithic codebase. Another developer said “yes, we could automate as an initial step,
but there is a lot of political resistance towards that. Personally, I believe all boring menial
tasks should be automated.”. Once again, the extent of and opinion on automatic testing was
largely dependent on working context.s

3.2.5 Manual Feedback
Another problem domain which the interviews covered was the one of manual feedback.
The general perception of manual feedback varied amongst the interviewees. Some had a
more modern mindset in regards to software development methodologies, understood the
value of continuous and fast feedback, and based their evaluations and answers on it. They
acknowledged that manual feedback did not fit in a context where e�cient and rational

28

3.3 Problem Analysis Results

software development happens, and that the fact that one would have to wait for days to see
the results of one’s actions was detrimental to the speed and the quality of the development
progress. “Receiving feedback right as you have made a change would have been great. That
would have been perfect, and would have made work so so much easier. Not just because it
is all still fresh in my mind, but also because I would receive relevant feedback immediately.
It would help a lot.”

However, others claimed that they did not see any problems with manual feedback in
their current way of working – “it fits well with our current processes”, a developer said.
“The feedback loop is not that long, after all. We close our sprint, and then it is ended. If
[an issue] arrives after that, sure one would have wanted it earlier, but then it is considered a
new issue for the next sprint.” Also, the previously addressed issue of context switching was
considered insignificant: “It is a part of the job, I would say. Of course it would have been
more beneficial to receive [the feedback] right away through automation, but I have never
worked that way before, and I am used to [manual feedback] taking its time.”

3.2.6 Feedback Systems
Each interviewee was asked about the documentation surrounding feedback strategies, and
whether feedback was performed in a systematic manner. Within teams, feedback was per-
formed in an impromptu manner, utilizing direct communication to close team members.
“When it comes to the team we have di�erent roles, and very open channels of communi-
cations. That is our solution, but it is manual work.”, one interview object said. The only
systematic approach to feedback between di�erent teams was the use of Jira, the issue track-
ing tool. Otherwise, most feedback was transferred using tools like Microsoft Teams, and never
in a systematic, well-documented manner. To facilitate cooperation and communication be-
tween teams, many employees found themselves in positions of “feedback relays”. Their job
was to receive feedback from one team, parse it, and transfer it to the appropriate recipient.
As the final destination was often unknown, interviewees described having to spend time
looking for the correct recipient. One person said “We are trying to set up this kind of pro-
cesses, that given one type of issue, we do the following, and another type, we do something
else. Unfortunately, we are behind on the documentation.”

3.2.7 Traceability
A problem identified by most interviewees was the lack of traceability in the development
system, especially between issues and commits. The interview subjects discussed how di�cult
it was to connect events in the pipeline, and how tracing an problem in production back to the
developer who caused it was often impossible. They described how this a�ected feedback,
by making it hard to find the correct recipient of information. Some mentioned Jira as a
potential source of traceability, but Jira was perceived as confusing and misused.

3.3 Problem Analysis Results
The aim of the Problem Analysis Results section is to explore potential answers to RQ1
and RQ2, by compiling relevant fragments of results identified throughout the conducted

29

3. Problem Analysis

literature study and interviews. By attempting to answer the first two RQs of this thesis,
we not only reach interesting conclusions about them, but also provide the basis of which
further exploration on RQ3 can be done. As the answer to RQ1 is heavily dependent on the
answer to its subquestion, this section starts o� by describing the results on which RQ1a is
based upon, and how they are compiled to answer the RQ. Next RQ1 is answered by utilizing
the results of RQ1a. Lastly, RQ2 is answered. The Problem Analysis section is ultimately
concluded in a post-analysis, which briefly summarizes the problem results, and reveals the
current thesis problem maturity.

3.3.1 Results RQ1a
This subsection presents the results of RQ1a – “How are Verisure’s feedback systems and
practices insu�cient in a CD context?” The results are categorized after the patterns per-
ceived in the interviews. To compile these categories, the results of the interviews discussing
the situation at Verisure were compared to the results of the literature study. Each category
includes a general discussion of why the observed practices contradict the principles of CD,
and lists specific sub-problems associated with that category.

Synchronized Releases
The impact synchronized monthly releases have on feedback are broad – some developers
wait a month for feedback from production. They then have to context switch back to the
world of a month ago to try and figure out what caused issues and why, a costly and irritating
process. As changes move to production from all over the company, there is often an infor-
mation overload when everyone needs to receive feedback at once. These issues and others
are partly why CD is being implemented in the first place. However, we found that some
stakeholders are very accustomed to this process and have designed much of their workflow
around it. Essentially, this fact is likely to cause problems down the line as employees struggle
to adjust to asynchronous continuous releases. Most of Verisure’s current feedback systems
are entirely designed around the monthly release, as the rest of this document shows.

• The philosophy of synchronized releases is the polar opposite of CD, with slow feed-
back being a major consequence. Long stretches of little to no feedback are mitigated
with intense bursts of confusing information during or near to release days.

• Company culture is almost completely built around synchronized releases, and some
stakeholders view fast product feedback as a superfluous luxury. Once CD has been
implemented, feedback stops being a luxury and starts being a requirement – a reality
that will be di�cult to adjust to.

Architecture Problems
Verisure currently develops and operates a varied suite of software products, each with its
own architecture. The development environments have varying maturities, possibilities and
needs. This fact a�ects both their attitude towards feedback and their transition to CD
overall. There is likely no “one size fits all” approach to a continuous system, as the products
di�erent production environments deliver are variously critical. Alternatively, an opt in

30

3.3 Problem Analysis Results

system of CD could be implemented, with strict requirements on the teams wishing to deploy
independently.

• There is likely no “one size fits all” approach to a Verisure continuous system. Varied
maturity means varied possibilities and needs – both CD itself and CD-level feedback
are hard to define and implement.

• Monoliths do not coexist graciously with continuous practices. When test suites of
monoliths become too big, the possibilities of running them continuously become
non-existent, as they require too much time and resources. An example of this is the
Verisure API tests, which can currently only be run 1-2 times per day. This means that
many changes are made in between each test, and the issue/commit traceability is lost.
Without continuously run tests, continuous feedback is hindered, which is important
in a CD context.

• None of Verisure’s software products currently qualify for true CD, as they lack the
loosely coupled, isolated architecture needed for proper continuous development.
Even PF, which operates in and around microservices, has dependencies to monolithic
codebases.

Ownership, Responsibility, and DevOps
Lacking ownership is a sentiment that permeates programming and other areas of develop-
ment, which might be a contributing factor to teams not feeling responsible for the quality
of their code. Without being responsible for quality, teams will not strive to produce done-
done code changes, and thus will not mind not getting the feedback necessary to do so. This
will not be su�cient in a future CD context.

• Teams feel they lack ownership over their deployments. They argue that they are
encouraged to adopt automated testing, microservices, etc., but are not allowed to
take further steps into autonomy.

• IT Operations feel teams do not take responsibility for their contributions. This issue
is related to the one discussed above, but from another perspective. The same motiva-
tions apply.

• The overall cohesion between Dev and Ops is low and clearly falting, resulting in poor
communication over all. Poor communication results in poor feedback; something
that is insu�cient in a CD context.

• Contributions by Dev are being “thrown over the wall” with the attitude that they
will be quality assured, and that potential faults and bugs will be taken care of further
down the line. This is further linked to the above Dev/Ops relationship, and the same
motivation for feedback applies here.

• Developers lack an understanding of what IT Operations need from them in order
to go through the release process with confidence. In other words, there is a lack of
feedback on the quality of the deliverables provided by the developers. In a CD context,
such feedback ought to be established.

31

3. Problem Analysis

• Teams are responsible for services in which other teams can make changes to without
notifying the responsible team. This makes it di�cult for the responsible team to
discern what has changed and needs to be tested as a new release approaches. Such
feedback is needed in a CD context.

Testing
Testing in continuous practices should be reliable, comprehensive, fast, of high quality, and
continuous. Without these properties, information and feedback flows are negatively af-
fected, and will not be su�cient enough to perform well in a CD context. The following
identified problems in Verisure’s current context all relate to deficiencies in information and
feedback flows in a CD context.

• A future-proof testing strategy exists, but it has not propagated through the company
yet. While this might just be a matter of time, some parts of the company will have
a di�cult time adjusting to or implementing parts of the new strategy. More e�ort
needs to be put into ensuring that the company actually follows a coherent testing
strategy, so that cooperating teams have similar understandings of what is considered
“done-done”.

• There is an overreliance on manual testing. Manual tests are slow, inconsistent, and
prone to human error. In a CD context, information and feedback flows need to be
continuous. Manual testing does not fit those requirements.

• The existing automatic tests are slow, ine�cient and do not play a significant role in
testing. If feedback is oxygen, automatic tests are the lungs of a continuous delivery
system. They are currently being trialed to some extent at Verisure, but there is no
well-defined strategy of how their adoption should be hastened.

• The inconsistency between the system environment and production has been per-
ceived as a problem, as the system testing becomes an unreliable measurement of how
well the system will perform in production. In other words, some things end up work-
ing in the system environment, but not in production. However, this problem can
rather be seen as a symptom of poor architecture. If tests are rigorous enough, and
components loosely coupled, there is no need for massive integration tests.

• There is a lack of confidence that utilized external services are quality assured/tested.
If team 1 (t1) uses another team 2’s (t2) service and something fails, t1 can not exclude
the probability that the problem does not lie within t2’s service.

Manual Feedback
Literature agrees that manual feedback is a major problem in continuous practices. Manual
feedback has the detrimental characteristic of clogging otherwise well-established, contin-
uous, process flows and systems, acting as a bottleneck from receiving timely and practical
feedback. The following points address identified problems that would hinder the e�ciency
of a future CD context.

32

3.3 Problem Analysis Results

• Manual feedback is slow, not sustainable nor scaleable. This is consistently identified
as a source of problems within CD pipelines, especially for product feedback.

• There are individuals and roles whose responsibility is to act as information proxies.
The purpose behind the responsibility is to interpret information from one source,
convert it for, and then explain it to another person. Another responsibility is to act
as a router, as in determining who is the appropriate receiver for the information.

– As there are no defined systems for these information flows, the work has to be
done manually. Manual work is boring, and therefore error prone.

– Additionally, the lack of defined systems results in a lack of communication pro-
tocols, which means that the proxies/routers often receive irrelevant and/insu�cient
information. This leads to latency, as a lot of back-and-forth communication is
necessary to collect the necessary information.

– A lot of back-and-forth communication also occurs when the proxy/router for-
wards the information, as what is perceived as the appropriate receiver not al-
ways is the case. Sometimes the perceived appropriate receiver helps guide the
proxy/router right, other times they do not.

• Di�culties in evaluating the importance of manual feedback through information
channels, such as Teams. There are channels where employees are to post whenever
something critical happens, but there is nothing ensuring that the problem behind
the manual message of an employee actually meets the criteria of what is considered
accepted posts of that channel. As some, channel responsible employees, turn on noti-
fications in order to quickly act on the posts, there can be a lot of “false alarms”, which
might motivate them to instead “silent” the channel.

Lack of Well-Defined Feedback System
The lack of well-defined feedback systems and information flows ties in to manual feedback,
but is critical enough to be important on its own. In a small startup context, with smaller
teams, and less dependencies, impromptu feedback in a spontaneous manner is su�cient.
However, in larger companies, especially where many teams need to coordinate e�orts, a
rigorous framework for feedback and communication overall is required. Much e�ort is spent
on identifying who needs to receive information, and what exactly to deliver to them. Once
that person is found, they often hear back with clarifications, leading to information pinging
back and forth repeatedly. The problems identified below a�ect the quality of information
and feedback flows, and are decisive in their ability to function in a future CD context.

• There is a lack of a proper feedback system. Sometimes developers want to know when
a build succeeds, and sometimes when a build fails, however receiving both when only
interested in one is annoying, and is considered to be spam by the developer. Striking
this balance is di�cult, but important to achieve a sustainable continuous system.

• There is too much trust and dependency on key individuals in the current information
flows. As no proper feedback systems are defined, but rather consist of soft informa-
tion points, there is a great reliance on said individuals’ expertise and communication

33

3. Problem Analysis

for the system to function. As the reliance is on individuals, and not on systems, there
is a high risk involved as individuals might change roles, quit, or become unavailable
due to other reasons.

• Due to the lack of clear feedback channels, communication is comparatively slow and
ine�cient. Time is wasted on repeated queries to incorrect individuals, especially,
when it is unclear who to contact or what to do when something occurs.

Traceability
There is a lack of traceability. When a problem arises, it is di�cult to trace it back to the
responsible code, commit, or even issue. Without such information, taking a deliberate step
towards resolving the issue becomes di�cult, and results in poor feedback flows, without a
clear message nor receiver of information. This in turn leads to confusion and di�use decision
making, which stalls advancements in development. This is inadequate in a CD context.

• Di�cult to establish what went wrong in production, why that happened, and who
is responsible for the error. This relates to the problem above, but emphasizes on the
importance of proper feedback flows from production. However, the same motivations
also apply here.

• Metadata does not follow artifacts inside the pipeline. Easily accessible and necessary
information does not exist “close” to each artifact, but requires e�ort or communica-
tion to find.

3.3.2 Results RQ1
This subsection will use the results of RQ1a to discuss RQ1 as a whole. To reiterate and
remind, RQ1 is “What is the purpose and value of feedback in CD?” First, the results of the
Verisure-focused sub-question will be summarized, in the context of the broader question.
Then, the final results concerning RQ1 will be discussed.

The results of RQ1a clearly show that Verisure’s current feedback systems do not support
a broad-scale CD environment. This is best summarized as feedback being somewhat under-
valued and misunderstood, across the board. Some stakeholders at the company understand
the role of feedback, but applying it in practice has proved di�cult. The feedback systems
that exist are built around the current velocity of the pipeline, and to some extent falter even
today. If the company wishes to transition into sustainable CD, attention needs to be put on
how feedback is approached within the pipeline, and how it is relayed between cooperating
teams.

Analyzing the insu�ciencies of a specific company’s feedback approach gave us great
insight into the overall importance of feedback in continuous software development. By ex-
ploring what problems can occur due to poor feedback, and how the entire development
process can slow down, vital lessons were learned. These lessons allowed us to reach conclu-
sions regarding RQ1.

CD requires a robust infrastructure of tools to even achieve software development. But
a similar level of robustness is required when dealing with how information is transferred,
too. This is especially true when the velocity of the pipeline is high, and artifacts flow from

34

3.3 Problem Analysis Results

coders to customers every single day. Essentially, the e�ect of feedback in CD is akin to the
purpose of oxygen within the human body. Limbs that receive less oxygen perform poorly,
and sicken quickly. If the brain loses oxygen, the entire body shuts down. The same is true
in the context of software. The purpose of feedback in CD is to deliver necessary and useful
information to the correct stakeholders, at the appropriate time. Using this information,
they can independently make decisions and contribute changes that do not jeopardize the
continuous nature of CD. The value of feedback is to support the entire continuous software
life-cycle, and to enable the cooperation of teams at a high velocity. Feedback gives indepen-
dent teams knowledge about their own domain. Equally importantly, desirable feedback also
provides necessary insights into the domains of the nearby teams, especially the ones that are
a�ected by the original team’s changes.

3.3.3 Results RQ2
This subsection aims to compile an answer to RQ2 (What are some factors that are relevant
when categorizing feedback in CD?) and RQ2a (What di�erentiates process and product
feedback within CD?), by presenting the di�erent CD relevant feedback types derived from
the results of the literature study and interviews. First, factors that are identified as relevant
when categorizing feedback in CD are listed. Next, there is a brief elaboration on each factor,
followed by a motivation to why it is considered relevant in CD.

Some factors that are relevant when categorizing feedback in CD are:

• Stakeholder interests

• Urgency

• Product & Process

Categorizing feedback based on stakeholder interests is relevant to CD, as it ensures infor-
mation needs vital to each stakeholder closely related to or dependent on feedback from the
CD pipeline are supported. Stakeholder interests as a means of categorizing feedback is per-
haps not only applicable in the context of CD, however its benefits become clear as the speed
of processes, artifacts, and their subsequent feedback increases. As the development speed
increases the need of a stakeholder to be able to conveniently follow along and stay updated
with a specific change, or the overall software development progress, becomes clear. If this
has not been properly considered at this point, the ability to support those needs become
significantly more di�cult.

Another factor relevant to CD is urgency. Feedback is categorized based on how urgent
the reception of the information is. This becomes relevant for CD, as when the amount of
information flowing increases enormously, all information will not be considered suitable
or necessary to immediately notify the potential recipient about. By recognizing this, it is
possible to only treat the information that a recipient actually wants to be aware of as soon
as it occurs, in that manner. This type of information is usually information that plays a
decisive part in the recipient’s ability to make decisions on the next step forward.

The final factor for categorization of feedback that is relevant to CD, is the distinction
between product and process feedback. A more in-depth characterization of product and
process feedback is given in subsection 3.1.2. In summary, product feedback gives insight

35

3. Problem Analysis

into the status of one specific change through its life cycle, while process feedback provides
insights in what many changes can reveal over time. This becomes relevant in CD, as the two
areas of the categorization can be managed in di�erent ways, since they support di�erent
interests.

3.3.4 Post-analysis
In conclusion, the problem analysis results adequately explore RQ1 and RQ2. The purpose of
feedback in CD is to deliver necessary and useful information to the correct stakeholders, at
the appropriate time. The value of feedback is to support the entire continuous software life-
cycle, and to enable the cooperation of teams at a high velocity. Factors that can be used when
categorizing feedback in CD are stakeholder interests, urgency, and product and process.

After exploring the value and purpose of feedback, and some factors that are relevant
when categorizing feedback in CD, it is then reasonable to use that knowledge and start
exploring how feedback design solutions should be approached for CD. This is how the re-
search questions of this thesis are connected. RQ1 and RQ2 provide an understanding of the
purpose of feedback in CD, what value feedback in CD should bring, and an understanding
of di�erent ways to categorize that feedback. The next step becomes evident. How should
feedback design be approached for CD? That is what RQ3 is all about.

36

Chapter 4

Design

In this chapter, the approach to RQ3 is discussed, and the results of the research are shown
and validated. To answer RQ3 appropriately, a re-scoping of the problem domain was per-
formed together with Verisure, to identify a cohesive transition from the prior RQs into
RQ3, as the focus of the remaining thesis resources. New data was collected from both lit-
erature and Verisure, this time focused on solutions and designs. That data was analyzed
into a results, which were iteratively validated using the results of RQ1, RQ2, and Verisure.
Specifics of the actual value of feedback in CD are used to explore how feedback loops are
to be established/approached in CD. The contents of the chapter are a re-scoping, followed
by data collection from literature and Verisure. Finally, the results of the design phase are
discussed in relation to RQ3.

4.1 Re-scoping
To focus the remaining resources of the thesis on a coherent and realistic subset of practices
at Verisure to explore a feedback approach for, a rescoping was necessary. In this section, the
process of re-scoping our problem domain leading into RQ3 is discussed. At this point in
the thesis, with RQ1 and RQ2 addressed, it was time to investigate new problem domains. A
natural continuation on the previously covered problems would be to focus on solutions going
forward. Specifically, given the results of RQ1a, a useful area of discussion could be what
feedback in CD should look like, to actually fulfill the value described by RQ1. However,
the topic of feedback loops in practice has not yet been thoroughly explored by academia.
Therefore, a strict set of best practices or a complete solution is di�cult to derive.

To approach this problem domain, we decided to explore how CD feedback design should
be approached, using the results from the previous phase to bolster our conclusions going
forward. Essentially, what does a system that provides valuable and useful feedback look
like? How should it be approached to cover the di�erent types of feedback discussed in
RQ2? These questions formed the basis of the resulting RQ3:

37

4. Design

RQ3: How could feedback design be approached for CD?

After this question was formed, the connection to the previous problem analysis phase was
further developed for the context of Verisure. Given the set of workplace practices identified
by RQ1a, exploring approaches to solutions that resolved or improved some of the issues of
RQ1a seemed an appropriate way of tackling RQ3. Addressing all of the subproblems in
RQ1a, however, was deemed both impractical and challenging. To reduce the range of the
design phase, a re-scoping was performed together with Verisure. The goal of the re-scoping
was to identify a coherent and realistic subset of practices at Verisure to design for.

The first way that this was done was by exploring the connections between the problem
domains of RQ1a. If dependencies were identified, multiple problems could be improved
by addressing one root cause. Examining what characteristics that connect problem domains
proved to be a valuable exercise. The results of the exercise can be seen as a dependency graph
in figure 4.1.

Figure 4.1: A problem domain dependency graph, connecting the
di�erent problem domains of RQ1a.

From the dependency graph, two potential directions seemed promising. The first direc-
tion focused on testing as a problem domain, specifically the propagation of automatic tests
and a company-wide testing strategy. The second direction connected the lack of a CD feed-
back system with the overreliance on manual feedback. These problems were seen as closely
related, and could potentially be resolved with one design – a system of automatic feedback.

The two directions were both appreciated by Verisure. The most valuable input they
provided at this stage was the matter of return on investment. The most value we could
provide to them was to explore those problems that no one else at the company was looking at.
With this input in mind, we evaluated to what extent the Testing domain was under control.
This was done through a brief interview with the chief of Testing at the company. From that

38

4.2 Literature Study 2

interview, we concluded that a future-proof testing strategy does exist at the company, but it
has not propagated thoroughly yet. This strategy contained the elements we were looking for,
and directly addressed most of the subproblems of the Testing domain. Therefore, the scope
of the design phase was limited to the following problem domains: the lack of a feedback
system, and the overreliance on manual feedback. By exploring this concrete domain, RQ3
could be approached in a concise manner.

4.2 Literature Study 2
In this section, pieces of literature relating to RQ3 are presented and discussed. Specifically,
possible approaches toward feedback design for CD, as well as example feedback systems that
exist in literature are discussed. Together, they comprise some initial results to RQ3, but
lack grounding in the context of Verisure. First Software Analytics is presented, followed
by a continuation on the topic of stakeholder interests. Lastly, insights regarding design
composition are presented.

4.2.1 Software Analytics
Insights about Software Analytics are considered extremely relevant to answer RQ3, as the
lessons learned from previous implementations of such projects, appear to be applicable for
approaching feedback design in CD. While performing our second literature study, we came
across Software Analytics [5] [19], a term which we found shared many characteristics with
what we had labelled as “Feedback System”. By utilizing our newly discovered keyword, we
were able to explore topics related to feedback in CD, that were previously inaccessible due
to the limitations of our search terms. The new set of topics also included implementations
of Software Analytics projects, and even more importantly the key take-aways from those
experiences.

What is Software Analytics?
Software Analytics aims to obtain insightful and actionable information from software arti-
facts that help practitioners accomplish tasks related to software development, systems, and
users. By supporting practitioners who perform tasks related to software development, pro-
ductivity is improved. Software quality is improved by providing reliability, security, and
performance related information to those who perform systems related tasks. Lastly, the
user experience is improved through information about user perspectives. There is a broad
range of stakeholders who benefit from Software Analysis. Developers, testers, program and
software managers, designers, as well as usability, service, and support engineers.

Implementing Software Analytics?
At a first glance, software analytics can seem like a simple, prosperous practice, without
any apparent negative implications. However, actually adopting and implementing software
analytics in reality involves some significant challenges. Existentially critical parts, such as
ensuring that the information is perceived as insightful and actionable, or determining what

39

4. Design

problems the practitioners actually care about, are often overlooked or di�cult to get right.
This often results in a lot of resources being wasted on a project without the target audience’s
needs properly considered and ultimately satisfied. However, there are some things that can
be taken into consideration when implementing software analytics projects, that help make
it become successful.

The reason behind the software analytics project, and what is aimed to achieve through
it, should be clearly propagated and communicated to everyone involved in or a�ected by
the project. This naturally includes the ones part of the project, but not to mention the ones
using the resulting system. This is important in order to quickly become aware of poten-
tial inconsistencies or misalignments between what is being developed, and what is actually
needed. The procedure of picking data, making observations on it, and returning evaluation
results, loses its value when there is no defined recipient of the end results. It is therefore
extremely important to first explore what key problems there are to solve, then find the ap-
propriate data to observe, and lastly solve the problems by turning that data into valuable
and useful information. This is the blueprint for making sure that the resulting solutions
really have a beneficial impact on the practitioner’s ability to complete their tasks.

It is not always easy for researchers to extract the underlying key problems practitioners
experience in their work. To overcome this issue, and ensure that the right problems are
worked on, it is recommended to establish feedback loops between the two parties early on,
and aim for many iterations. By iterating on the perception of a communicated problem,
and receiving feedback on a proposed solution, it is more likely to eventually unveil the key
problem, and doing so with less resources wasted on the wrong issues. Additionally, a trust
between researchers and practitioners can be built as a consequence of the feedback loop, as
empathy and genuine interest for the practitioners’ needs are shown from the start.

As the data for continuous delivery software analytics projects come from many di�erent
systems and tools with varying terminology and quality, it can be vital to establish a data stan-
dardization early on in the project. This is to ensure that there is a common understanding
of how the information extracted from one source, is referred to in the context of another.
This is not always a simple task, and also here it is recommended to initiate collaborative
work between the researcher and practitioner to figure this out.

A final take-away from the lessons learned about the practical implementations of soft-
ware analytics projects is to utilize visualizations whenever applicable. Visualizations help
guide the audience to more easily understand the value of data, and how that data should be
interpreted and related to. This helps practitioners more easily gain a perception of the over-
all status of their work, and likewise grasp when something needs to be dealt with. Another
benefit of visualizations is that it makes the interpretation of data competence agnostic. No
matter what role or experience the practitioner has, they should be able to understand the
message behind the data, as the data is transformed into information.

4.2.2 Test Activities Based on Stakeholder Interests
In section 3.1, information about di�erent stakeholders and their respective interests and
needs from the Continuous Integration and Delivery pipeline is described. With this under-
standing in place, it naturally becomes interesting to understand how a CD pipeline should
be designed in order to support the identified interests and needs.

The first step in doing so is to understand where to find, or how to generate the data

40

4.2 Literature Study 2

necessary to support the stakeholder needs. As the CD pipeline consists of a series of di�erent
test activities at di�erent stages of the pipeline, they can be utilized in order to achieve this.
It is obviously not the test activities themselves that are of particular interest for supporting
stakeholder needs. What is interesting however, is what the test activities can reveal about
the progress of the CD pipeline, and the artifacts within. By extracting relevant data from the
test activities, this data can, when properly utilized, be converted into valuable information
that can be used as feedback to support stakeholder needs.

According to Mårtensson et al., the CD pipeline can be described in three main phases
[9]. Each stakeholder need is then met in one or more of those phases, depending on how
relevant or urgent they are in that phase. The three phases are (1) early in the pipeline, (2)
later in the pipeline, and (3) release pipeline. (1) represents the phase where development on
the team branch is made. When the development is delivered from the team branch to the
main branch, a transition to (2) is made. This is where test activities are executed to see if
functions and subsystems work together. In (3) the main branch is delivered to the release
branch. This phase introduces new stakeholders, who are primarily interested in verifying
compliance with requirements or user scenarios.

As mentioned in section 3.1, the four main stakeholder interests in the CD pipeline are
to

1. Check quality and correctness of software changes

2. stability and integrity in the system during development

3. Measure project progress

4. Verify compliance with requirements or user scenarios

Checking quality and correctness of software changes is an interest primarily expressed by
developers. This is something they want to know as early on in the pipeline as possible, and
thus occurs in phase 1 and 2 of the CD pipeline. The feedback from the main branch mainly
regards if the changes also work together with the rest of the system. The interest to secure
stability and integrity in the system during development comes mainly from test manager
related roles. This interest is supported by information collected from system tests, and is
relevant both in the team and main branch. Project managers and similar roles primarily need
to be able to measure project progress. This information is gathered from unit/component
tests and system tests in the main branch, but also towards the end of the pipeline. Finally,
the need to verify compliance with requirements or user scenarios is supported by tests and
checks conducted on the release branch. This information is primarily requested by technical
managers.

4.2.3 Design Composition
As to the composition of an actual design solution, few detailed descriptions exist in aca-
demic literature. In the examples that do exist, authors often comment on the general ap-
plicability of their results; even if the design performs well in one context, it is unclear if
it will in others [16]. From the descriptions, interesting or useful patterns can be extracted.
This subsection aims to discuss two specific design examples that we believed are relevant to

41

4. Design

RQ3. Overall, the focus will be on general design patterns and approaches, rather than on
the technical specifics of each implementation.

The first example composition came from research done at ING Nederland (ING NL)
by Vassallo, et al. [18]. Throughout a number of research papers, the authors evaluated the
CD system of a large financial organization with pre-conditions similar to Verisure. As part
of the CD infrastructure, ING NL developed a continuous monitoring layer sitting on top
of the pipeline. The purpose of this layer was, in name, to enable what they call Continuous
Monitoring. However, we identified that the actual contribution of this layer was to enable
many of the functionalities and features we identified as important within this thesis. Specif-
ically, the authors describe the technical composition of the design. The layer sits on top of
the development pipeline, and consists of three central functionalities: instantiating or con-
trolling the CD pipeline, collecting measurements from the pipeline, and analyzing those
measurements.

The above mentioned functionalities are achieved by utilizing an event bus. Essentially,
occurrences in the pipeline that are of interest are transmitted as events across the layer and
into a database. These occurrences are events that necessitate product feedback, for example,
build failures, crashes or test results. Within the database, analysis is performed to produce
the equivalent of process feedback. Using a layer that collects data into a central point of
storage and analysis is an interesting concept, and proved a key point of discussion for RQ3.
Each tool in the pipeline produces unprocessed information of very di�erent formats and
types, a complicated reality that is verified by Huijgens, et al.[5]. The use of events instead of
raw data simplifies data storage and analysis considerably. In practice, the monitoring layer
and the CD system as a whole were applauded at ING NL.

The second example comes from initial trials of the Ei�el framework performed at Axis
Communications. In their thesis, authors Hramyka and Winqvist study the e�ects of adopt-
ing Ei�el in a CI/CD system with the goal of improving traceability [4]. The purpose of the
Ei�el framework does not align with the domain of this thesis, as our focus is feedback, not
traceability. However, the conceptual structuring that Ei�el provides could be applied to the
context of RQ3, especially in regards to the design composition.

The Ei�el framework and accompanying protocol work in a similar fashion to the mon-
itoring layer of ING NL. However, Ei�el takes the event approach even further, by applying
the event label to a much broader number of occurrences. By logging a record of essen-
tially everything note-worthy that happens within pipelines, Ei�el provides traceability by
connecting events into dependency trees. When the events have clear connections to other
events, the journey of an artifact can be easily followed through the entire development pro-
cess. This idea could be applied to feedback, if each feedback-worthy event was connected
to other events. Overall, Ei�el provided us with more confirmation that a centralized solu-
tion has worked. Also, Ei�el cemented the concept of events as a better way of information
management than storing raw data.

4.3 Interviews 2
In this section, the data collected from literature is reconciled and “trialed” with Verisure,
to identify to what extent it was applicable in their context. The Verisure-specific infor-
mation was collected through 4 separate free-form interviews and discussion meetings, with

42

4.3 Interviews 2

team members from the Continuous Delivery project team at Verisure. Topics regarding
architectural approaches were discussed, as well as feedback system features, metrics, and
requirements. First, the outcomes from discussions revolving centralized versus distributed
design approaches are presented. Next, the insights gained about how to approach design ro-
bustness is covered. Last, the interests, potential features, and useful metrics gathered from
the interviews are described.

4.3.1 Centralized versus Distributed Design
A central point of discussion throughout the interviews was how a feedback system should
be structured, on the broadest level. Two approaches were discussed, a distributed and a
centralized one, each with distinct advantages and drawbacks. Also, a choice between the
two directions had direct consequences on the feasibility of certain functionality.

The first approach, a distributed one, seemed very reasonable given the current shape of
the pipeline. One stakeholder described how each tool in the pipeline already had support for
some feedback delivery, and most had some data storage functionality. A distributed solu-
tion would entail each tool storing what data it can, and providing feedback from its specific
domain. To tie the system together, some data from each tool could be piped into a visualiza-
tion front-end of some sort. The focus of this front-end would be to enable observability, not
necessarily feedback or analysis, in the opinion of the interviewee. The subject felt that this
concept would not be too di�erent in scope from what exists today at the company, and that
it would allow each team to display the information that was relevant to them. The ability
to tailor the design was expressed as important.

Landing on the other end of the spectrum, a more centralized design solution was also
talked about. One interviewee discussed the fact that while most tools do have some data
storage capabilities, this was not true for all tools. Also, some tools only had short-term
data storage in a proprietary format. A possibility that was explored was the storage of data
within tools, but also inside a central database of some sort. This would allow for analysis and
long-term storage to be performed on the data, and also expand on the capabilities of some
tools. However, this compromise would entail storing the same data in two places, which
was seen as wasteful. A single, central storage and analysis design would cost more to set up,
but would enable more intelligent functionality. Stakeholders at Verisure agreed that this
direction would open more doors, but once again, only on the condition that the solution
was flexible. Some key metrics should be standardized across teams, but the customization
after team and stakeholder interests was still necessary. One interviewee commented, “The
general aspects having to do with CI/CD are one thing, generic metrics from running services
for example, but then the DevOps teams have to create their domain-specific dashboards
themselves”.

4.3.2 Design Robustness
A parallel discussion to the question of centralization concerned the robustness of the design.
This question was connected to the previous topic, and was brought up in the context of a
timeframe. Should a robust, large-scale design be created from the start, or should the goal
be a less functional but easier solution? The advantage of a lean and iterative design is that
Verisure can get it working relatively fast, and improve it along the way. This idea was valued

43

4. Design

by the company, as was expressed as “not having to reinvent the wheel”. Aside from a lower
cost of implementation, a stripped-down version of the system could be used to convince
sceptics of its value, and the value of feedback overall.

In contrast, implementing more robustness from the start would lead to a more future-
proof solution. Although costlier, a proper infrastructure was discussed as more in line with
the results of RQ1 and RQ2. That is, more of the core functionality could be trialed and
validated by the company, and feedback would not be a risk factor in their journey into CD.
However, even if this approach was appreciated, Verisure felt that it was di�cult to know
what exact tools should be utilized from the start – even if given a list of desired functionality.
The specifics of the design would be di�cult to implement before more was known about
the final CD infrastructure.

4.3.3 Interests, Features, Metrics and Metadata
During the discussions and interviews, a couple of interests, features and metrics were brought
up and suggested. The interests and features included elements that the interviewees consid-
ered valuable to use and benefit from in a feedback design. The metrics included things which
the interviewees had interest in tracking and executing on. Altogether, the listed points are
aspects the interviewees perceived as central interests and needs in a feedback system.

Interests and Features
• The ability to monitor the overall software development progress of one or multiple

team(s).

An interviewee meant that the best way to monitor is by representing the informa-
tion in the shape of graphs and other visualizations. “Without visualizations...”,
the interviewee said. “It would be impossible to comprehend anything”. He fur-
ther expressed that a good idea could be to have several levels of information ab-
straction. For some, just a switch of a color from green (functioning) to red (not
functioning) is su�cient to get what they want out of the monitoring. Others
might want to take it one step further, and get the detailed information necessary
to track down what caused the color switch.

• The ability to establish thresholds based on di�erent conditions and complexity. These
thresholds are triggers when the set conditions are met, and indicate this for example
through notifications or dashboards.

One interviewee found it to be interesting to further look into how much the setup
of conditions to track could be predefined and turned into templates. The idea
behind this thought was to eliminate as much as possible of the overhead that
comes with such a feature, for the teams.

• The ability to receive notifications about events that are of interest.

It was communicated that it was crucial to have the ability to customize this on an
individual level.

44

4.4 Design Results

The following interests and needs were also expressed as significant by the interviewees.
However, there is an absence of an explicit example to support the claim.

• The ability to visualize and monitor the progress of an artifact as it proceeds through
the CD pipeline.

• The ability to track what needs and issues that are fulfilled and solved in a deploy.

Metrics and Metadata
It was expressed that some general guidelines to metrics and metadata were that in order for
them to be of interest they should fall into one of the following two categories.

• It should be actionable, meaning that its primary purpose is to prompt the practitioner
to take action.

• Its presence should primarily bring a sense of control to the practitioner, and secon-
darily be of use when investigating seemingly related issues or similar.

The majority, if not all, of the expressed examples are considered to belong to the second cat-
egory. This outcome is not entirely unexpected, as the discussion about metrics and metadata
arose in connection with topics about monitoring, dashboards, and thresholds, where data
of category two is more common. Some items of the following list could perhaps in some
cases be seen as primarily actionable (and thus belong to category one), but that is generally
not the case in the context of feedback systems.

• The runtimes of builds, tests, and deploys

• The environment in which an application has been deployed to

• The person responsible for a specific deploy

• The amount of changes done in a commit

• Infrastructure metadata, such as OS versions, etc.

An example of a metric or metadata that belongs to category one could be the status of a test
activity. When a test activity fails, there likely exists a responsible stakeholder who would
like to take action as a result of it.

4.4 Design Results
The purpose behind this section is to answer RQ3: How could feedback design be approached
for CD? In this section, the process of transforming data from literature and interviews into
an actual design solution that deals with RQ3 is briefly presented. Also, the initial iterative
validation of the solution is discussed, using the results of RQ1 and RQ2. Finally, the resulting
solution is discussed, as well as its reception and final validation at the company.

45

4. Design

4.4.1 RQ3 Results
This subsection aims to compile an answer to RQ3, by utilizing information from the liter-
ature study and interviews of the design phase, that is relevant in order to understand how
feedback design could be approached for CD.

Software Analytics, and more importantly the experience acquired from implementing
it, is considered highly important for answering RQ3, as it presents a set of preparatory and
central steps to consider when implementing software analytics solutions in CD. Due to the
similarities between Software Analytics and Feedback System, the lessons learned from pre-
vious Software Analytics projects can successfully be applied in a Feedback System setting,
to help better understand how to approach feedback design in CD. Ensure that all parties
involved in, or a�ected by, the project clearly understand the aims of the feedback design
project. This is important in order to quickly become aware of potential inconsistencies
or misalignments, to make sure that the problems being worked on actually solve real, ex-
pressed, and observed problems. Feedback is key, and no exceptions are made especially
when implementing a feedback system. Aim to as early as possible establish a feedback loop
between the researchers of the project, and the practitioners whose interests and needs the
researchers attempt to support. The iterative process of understanding the problems, and
receiving feedback on solutions, leads to a higher quality end result, less resources spent on
the wrong things, and a healthy relationship between the two parties.

The reason why subsection 4.2.2 is important to answer RQ3, is because it helps unveil
what stakeholder interests exist around the CD pipeline, and how the desired information to
support those interests can be generated through di�erent test activities within the pipeline.
By taking the stakeholder interests into consideration in the beginning and end of the Feed-
back System cycle, it can be ensured that the interests stay consistently in focus throughout
the cycle. This stakeholder interests centered model can be considered when approaching
feedback design for CD.

Another clear result concerning RQ3 was that a centralized design is better at support-
ing the required functionality of an automatic feedback system. This topic was thoroughly
discussed in the interviews of the design phase, as it was an appropriate starting point. From
the interviews, we concluded that a distributed solution would be very similar to the cur-
rent feedback approach at Verisure. However, that solution is clearly not su�cient in a CD
context, as shown by RQ1a. Therefore, a better approach is to design around a central data
management system of some sort. That system is not only more future-proof, but also easily
scalable. The specific functionality discussed in this subsection is much easier to implement
and realize with a centralized approach. Also, this approach is somewhat tool agnostic. This
characteristic is vital, as tools can change, especially as the actual CD solution is improved
and optimized. A centralized approach does not limit a feedback systems functionality after
the chosen tools, either. It also achieves a great mix of standardized, but tailorable – which
was valued as crucially important by Verisure.

Some conclusions can also be reached in regards to design robustness. As this discussion
is connected to the question of centralized versus distributed, it is natural to explore how
a centralized design should be approached. It is clear that robustness is more appropriate,
given the importance of feedback in CD. As the conclusion of RQ1 directly shows the value
of feedback, going with the lean route risks missing the target, and thereby jeopardizing
the CD project as a whole. Some lessons can be learned from the lean design approach,

46

4.4 Design Results

however. For example, building an initial skeleton system and then expanding it with input
from stakeholders is an appropriate procedure that also goes hand in hand with the insights
from Software Analytics discussed above. Essentially, our results show that some compromise
between robustness and leanness is the best approach when designing a feedback system in
CD.

Finally, some results concerning the technical implementation were also reached. Over-
all, the concept of a monitoring layer above the pipeline, inspired by ING NL, is a great
visualization tool, and helps explain how a feedback system fits into CD as a whole. Also
from ING NL and from Ei�el, the concept of events is also a great means of managing both
data collection, storage and analysis. As these functionalities from the basis of a feedback
system design, utilizing events may be a relevant way to achieve them in practice.

Overall, our results show that feedback design should be approached with stakeholder in-
terests in mind first. A system that does not deliver useful information is unlikely to succeed.
The field of Software Analytics can be used for inspiration, especially the lesson of establish-
ing an early feedback loop between a system’s users and designers. The concept of events,
together with a monitoring layer serves as a great combination to achieve any feedback sys-
tem in practice. Finally, a centralized, robust design is more aligned with the previous results
of this thesis.

4.4.2 Design Example
In this subsection an initial applicability of the results of RQ3 is explored. This is done as a
first step into investigating how well the design results function in practice. To achieve this,
a feedback design example sketch has been created, with the intent of preserving relevance
to the context of Verisure. The relevancy is preserved by incorporating the components and
guidelines of the RQ3 results, that are deemed to fit well in a Verisure context. This also
includes the specific interests, features and metrics which the interviewees communicated as
important. In the following points we want to address our thoughts and motivations behind
some of the components in the design example of figure 4.2. This is done to briefly refer the
pieces of the feedback design back to the results of RQ3.

• The design example aims to support stakeholder interest. This is done by having the
interests in mind, both in the beginning to extract the right data from the pipeline, but
also to filter and categorize the information that is provided to the suite of feedback
features and services.

– This design follows the guidelines about setting and communicating clear goals
for the feedback design to achieve. The stakeholder interests act as the funda-
mental needs to support in this example.

• The RQ3 results state that the agile relationship between researcher and practitioner
is an essential practice to ensure that proper solutions to the right problems are de-
veloped. The proper solution includes both the appropriate data source, but also the
practitioner’s preferred way of receiving the feedback. This researcher-practitioner re-
lationship is stripped in this example due to limitations in time and resources. The
RQ3 results from subsection 4.3.3 serve as the foundation to the features and services
in the example.

47

4. Design

Figure 4.2: An example feedback design solution for Verisure, pri-
marily based on the results of RQ3.

• Furthermore, the recommended architectural guidelines are taken into account, by
incorporating a monitoring layer for data collecting, and a centralized solution of data
storing.

48

Chapter 5

Discussion & Related Work

This chapter’s aim is to discuss and evaluate the results of the thesis work. This is necessary
in order to understand not only how the results relate to the objectives of the thesis itself,
but also to discuss external related work, and various threats to validity. This is done by
discussion about the chosen methodology, and how it could be done di�erently in upcoming
projects. Furthermore threats to validity are presented and discussed, followed by discussion
about if the RQs were considered justly answered, and the generalizability of said answers.
Finally, related and future work is presented.

5.1 Methodology Discussion
In this section we want to present and discuss what parts of the methodology we think turned
out to have been chosen wisely, and what parts that turned out to not work perfectly. Also,
we aim to motivate what we would like to do di�erently on our next project, and why we
believe that is.

To fit the designated time for interviews during the problem analysis phase, we decided to
leave the number of interviews at 7. In the context of the thesis, and the research questions
we aimed to answer with the collected interview data, 7 was deemed su�cient to provide
us with an adequate understanding about Verisure’s problems and insu�ciencies regarding
feedback systems and practices. Hence, 7 interviews was considered a good choice, as we
achieved the goal of the interviews within the appointed time frame.

However during the interviews, new interesting stakeholder roles and interview candi-
date names were brought up and suggested as potential interview objects. As the interview
trajectory slightly adjusted with each conducted interview, the relevancy of the newly dis-
covered roles and candidates were potentially higher than the ones already booked. Conse-
quently, there were some potentially interesting interviews that never took place as a result of
the time constraint of the thesis work, that could have provided us with significant and novel
insights. Considering this limitation in the current method, there are things we would have

49

5. Discussion & Related Work

done di�erently. A possible alteration to the method would be to book only half the avail-
able interview sessions in advance, and then assess potential additions of interview candidates
before booking the other half. This would have allowed us to adjust the set of interviewees
according to what roles we deemed relevant and valuable, after having some prior interview
experience, and a better idea of what we wanted to gain from the interviews. However, it is
yet unsure if that additional booking time would have fit the designated time frame, as the
bookings had to be done almost a week in advance.

Changes could have also been made to the original selection of interviewees, as the man-
agerial role felt slightly overrepresented, and some candidates seemed to be a little bit de-
tached from the topics of discussion, and could in some cases be considered secondary sources.
If given the opportunity to redo the interviews, perhaps a more even distribution between
CD related and dependent roles could have been requested. More importantly, it would have
been interesting to include the views and opinions of test-related roles for the problem anal-
ysis as well – a set of roles which was completely excluded and deprioritized in the case of the
thesis. The reason for the exclusion of test-related roles was primarily due to the lack of them
in the supposedly most CD mature teams at the company. In retrospect, we realize that this
was not a valid enough motivation, as the level of CD maturity between the teams at Verisure
had little to no impact on the interview results. The interview results instead appeared to
be a�ected by the sole individual’s attitude towards CD. Consequently, we believe that there
definitely could have been some interesting opinions and perspectives from test-related roles,
which could have either expanded or altered our current results associated with the testing
domain.

For the design phase, the choice of performing free-form interviews was made to achieve
a more exploratory approach. This objective turned out to be successful, and resulted in four
very di�erent interview sessions, all with their unique value to the design process. On the
other hand, four very di�erent interview sessions also meant four very disconnected interview
sessions. Without any strong link between the interview topics, it is di�cult to measure the
progression of the work done. As the interviews were done in an iterative manner, with
changes done to the design process in between, it would have been interesting to see how
those changes were reflected in the interview results; something that was not possible due
to the lack of recurring questions or thoughts. By choosing semi-structured interviews, the
desired structure could be achieved, while still preserving the exploratory nature of the free-
form interviews. The free-form interviews did work as intended though, and doubled-down
on the variety and diversity of the topics discussed. However, the value gained by utilizing
this interview form was saturated relatively quickly during the course of an interview. Topics
of discussion could easily become irrelevant as there was no explicit scope to stay within,
and after roughly 20-30 minutes of an intensive free-form discussion, the meeting could be
considered over, as the session lacked a predefined goal to reference to. With that said, yes –
the free-form interviews did work as intended, and yes – they did provide value. However,
we believe the sessions could have had more potential to leverage.

The interviews during the design phase were conducted with three members of the Con-
tinuous Delivery project team, with roles as configuration managers, build chain managers,
and IT operations architects. Even though the roles hold some relevance to the objectives of
the design phase, it could be interesting to involve more practitioner-related roles, to include
their perspectives when approaching feedback design.

50

5.2 Validation

5.2 Validation

This section discusses any threats to validity, and is based on the previous discussions. One
large threat is the fact that no actual CD pipelines were studied directly, and no experiments
were performed in an actual CD context. However, conclusions and results concerning our
research questions can still be reached. For example, the value of feedback can still be under-
stood – but some factors do impact validity.

The greatest threat to the validity of the thesis results, is the fact that no actual complete
CD environments were studied in person. The consequences of this fact are di�cult to gauge,
but not all research questions are equally bound to the existence of a fully operational CD sys-
tem. Also, the problems initially perceived, and therefore actual formulation of the research
questions, take the situation of Verisure into account. The process of investigating RQ1 is
not directly threatened by the lack of a true CD environment, as the value of feedback was
explored by studying the negative e�ects of current poor feedback practices. It is reasonable
to assume that these problems are only likely to compound on each other if the velocity of
the studied pipelines were to be increased, as they will when CD is reached. Also, RQ1 has
a foundation of academic sources, referencing complete CD systems. Therefore, our results
are still valuable. RQ2 is more academic in nature, and therefore also not directly a�ected.
The results of RQ3 are also thoroughly grounded in actual CD environments studied in liter-
ature. The data collection of the design phase served as an opportunity to gather more data
specific to Verisure’s needs, and do not impact the validity of the overall results other than
strengthening them. However, It would be very interesting to compare all the conclusions of
this thesis to ones originating from an actual CD pipeline.

Another threat is the fact that none of the conclusions or sub-conclusions were tested
using experiments. Most interactions with Verisure were used for data collection and assis-
tance, and for discussions of our results. Given the exploratory nature of the problems and
research questions, the need for practical experiments is not vital. Performing them could
be used to strengthen the validity of our results, however. The exploratory essence of the
research questions is in itself a threat to the validity of the thesis. By formulating more strict
and concrete questions, and investigating best practices for example, would lead to di�erent
results.

Finally, the overall scope of the covered problems is a factor to consider. Together, the
research questions cover a plethora of topics, each containing a thesis full of data in them-
selves. The breadth of our thesis could have been limited slightly, to properly explore a subset
of problems in a more complete manner.

In defence of the results, a brief validation session was performed with industry experts
in the field of CI/CD and Configuration management. During this discussion, preliminary
results for RQ1 and RQ3 were presented and evaluated. Overall, the conclusions of RQ1 and
RQ3 were supported. Special attention was given to the importance of feedback to high-
velocity environments, and the use of a centralized solution to support feedback delivery. The
utilization of a monitoring layer and events was also validated as both realistic and helpful.

51

5. Discussion & Related Work

5.3 General Discussion

This section includes a general discussion of the results, in connection with the original prob-
lems and research questions. Specifically, the results of the broader RQ1 will be compared to
the more specific RQ2 and RQ3. To what extent do we feel that we have reached our goals?
RQ1 definitely, as it is more about exploration. RQ2 is slightly inconclusive, as we did not
find evidence that one specific factor was more useful than the others, but still interesting.
RQ2 is heavily influenced by the context of Verisure. Are our findings applicable in other
cases, too?

The first point of discussion is the extent to which we believe we have reached the goals
of the thesis. In general, we believe that the majority of the goals were reached, and that most
of the initially perceived problems were addressed, or at least, touched on. When it comes to
RQ1 and the originating problem, the goal of the thesis was to expand our knowledge and
to satisfy our curiosity concerning the value of feedback. This was definitely achieved, and
both the results and the method of reaching them in the context of Verisure are di�cult to
invalidate. As RQ1 was the broadest of the questions, the entirety of the thesis contributed
to our understanding of feedback in CD. In regards to RQ2, results were useful, but slightly
inconclusive. A number of factors were presented, but the chosen question did not allow
for direct comparisons between them. Perhaps more insights could have been gained if a
valuation of feedback factors was performed. As to RQ3, the results of the research question
definitely reached the goals. However, RQ3 was intentionally limited to an initial exploration
of the subject of feedback in practice. If taken one step forward would be to continue on the
path of RQ3 and actually design and trial a feedback system in a CD environment. This topic
is further elaborated on in the Future Work section.

The second and final topic of discussion is the general applicability of the results. Overall,
the results are clearly generalizable to contexts similar to Verisure. On a broader level, the
results still apply, perhaps more than might be expected from a thesis performed on only one
company. Due to the fact that the company did not have a complete CD pipeline to study, the
research and subsequent results were primarily based on literature of companies of similar
size and characteristics as Verisure. This makes the results very applicable to companies
in similar situations, especially the results of RQ1a. RQ1 as a whole is likely true in other
contexts, because the value of feedback is probably the same in other companies of the same
size. RQ2 is also generalizable, but other contexts might uncover other, more relevant factors.
Specifically, the distinction between product and process feedback is likely to be found in
other contexts.

Finally, the results of RQ3 are of varied applicability. The results concerning stakeholder
interests and software analytics are very generalizable, as they are sourced in academic liter-
ature and likely apply to other contexts. When it comes to the results that originated from
discussions with Verisure, general applicability is very di�cult to estimate. Other compa-
nies might have other experiences and desires that contradict our conclusions. For example,
another company might find a distributed solution to work better.

52

5.4 Related Work

5.4 Related Work
The overall goal of this section is to describe and compare research related to the one of
the thesis, and to present where the contributions of the research fits within the domain.
Furthermore, it is described how the thesis work di�erentiates itself from past work, and
points out the limitations and essential topics that the related work does not cover. This is
done by presenting four related works within the context, summarizing and evaluating.

5.4.1 Test Activities in the Continuous Integration
and Delivery Pipeline

Mårtensson et al. identified what stakeholder interests exist in the continuous integration
and delivery pipeline, and how each interest can be supported by test activities [9]. We found
this paper to be relevant to our work, as we also wanted to map the di�erent interests and
needs revolving the CD pipeline, and how a feedback system should be designed to best
support the identified interests and needs.

Summary
As the need for more frequent and more reliable code changes increase in software develop-
ment, so does the number of companies that adopt concepts and practices such as continuous
integration and continuous delivery. However, scaling such practices to fit the size of the
software system, and cover the needs of all possible roles within that system is, according to
literature, not an obvious task. According to previous findings of the authors of the paper, the
majority of the issues that come with scaling continuous practices are related to the domain
of test activities. In order to get a better understanding of issues of such nature, the authors
conducted a workshop regarding test activities, where the participants conveyed an interest
in knowing what test activities that best serve the interests of the stakeholders within/around
the continuous integration and delivery pipeline. Consequently, the research question of the
paper is the following: How can the continuous integration and delivery pipeline be designed
in order to support all existing stakeholder interests?

In the paper, the authors have contributed with the Test Activity Stakeholders (TAS)
model – a model which shows how it is possible to design the continuous integration and de-
livery pipeline to include test activities that satisfy all of the di�erent stakeholder interests
in the organization. The authors have helped narrow down the di�erent needs expressed by
stakeholders throughout 25 interviews, into four comprehensive categories: “Check changes,”
“Secure stability,” “Measure progress,” and “Verify compliance.” For each of these interests,
di�erent combinations of three test activity properties have been formed, which then have
been positioned at di�erent stages of the pipeline, in order to best satisfy each interest.
Furthermore, researchers and practitioners might find great value in the interview results
alone, as they provide information about how the case study companies meet di�erent needs
through di�erent types of test activities.

The authors’ contributions are based on a total of 44 interviews, distributed between
three interview rounds, all with their unique objective. The interviewees were participants
from four di�erent case study companies, in di�erent industries, but who all develop large-

53

5. Discussion & Related Work

scale software-intensive embedded systems. The first interview round helped identify the
di�erent stakeholders and stakeholder interests. The second round was then used to identify
the test activities that best best support each stakeholder interest. The third and final set of
interviews was used to validate the TAS model. Furthermore, their contributions are sup-
ported by their previous work within the domain, where some of which have served as the
motivation for pursuing this specific paper.

The authors conclude, backed by the contribution validation, that the contributed TAS
model is valuable to practitioners of continuous practices. The TAS model demonstrates how
continuous integration and delivery pipelines can be designed in order to best satisfy all of
the di�erent stakeholder interests in the organization.

Comparison and Discussion

First of all, we consider the research work of Mårtensson et al. to be extremely well done,
making us deem the claims of the study as valid. The care and delicacy taken are clearly re-
flected throughout each step of the research method, where an emphasis on solidifying and
substantiating claims have been made. For example, a literature review was conducted fol-
lowing the guidelines from Kitchenham, with the purpose of understanding what previously
published literature reveal about the topic. This was done on 140 papers, all reviewed by
the same researcher. Next the results of the literature review was reviewed by two other re-
searchers, to secure quality and correctness. The same care permeated the interviews as well.
Background material and the interview questions were sent out to all interviewees at least
one day before the interview, to allow time for reflection. Each response during the interview
was read back to the interviewee to ensure accuracy, and a validation step on the analysis of
the interview results was conducted afterwards.

Both the research problem and contributions are considered to be of significance. The
research problem originates from a need that Mårtensson et al. identified from their previous
research, and further investigated it by conducting a workshop on that matter, with partici-
pants from 10 companies. The outcome of the workshop, which was turned into the research
questions of the paper, resonates well with a problem we encountered during our thesis work.
Our work also required us to identify existing stakeholders in CD at our case company, and
attempt to ensure that all their main needs and interests were supported by our proposed
solutions. We thus found the contributions from Mårtensson et al. to not only be interesting
when answering what type of test activity that best serves each existing stakeholder interest,
but not to mention how the test activity data can be transformed into valuable and useful
information, and thus act as e�ective stakeholder feedback. Knowing what information to
provide is great, but without e�ectively presenting that information to the right recipient,
and thus not helping the recipient to respond with the appropriate next action, the value of
collecting that information does not reach its fullest potential. By studying a day in the life
of each stakeholder, identify what is relevant to them, and what information they prioritize,
one can learn how to filter through the generated test activity, and how, when, and where to
show that information, to further support the stakeholder in his or her work.

54

5.4 Related Work

5.4.2 Software Analytics in Continuous Delivery: A
Case Study on Success Factors

Huijgens et al. determined a total of 36 factors that either help or hinder the implementation
of software analytics projects [5]. Since Verisure themselves currently are in the early stages of
a transition towards Continuous Delivery, we deemed this work to be extremely relevant, as
it gained us access to the experiences acquired by companies implementing what Verisure are
currently attempting to implement. Having a list of recommendations and safety measures to
utilize, could help Verisure realize what potential pitfalls to avoid, and what well-functioning
aspects to double down on. This in turn could result in Verisure saving a lot of invaluable
time and resources.

Summary
Research activities of financial organizations have traditionally leaned towards financial-,
risk- and economic-oriented aspects. However, as technology advances, and its use cases and
applications are discovered in more and more fields, new opportunities begin to arise where
they previously did not exist. The same applies to the field of finance, where more and more
research is done regarding technological issues, one of which is analytics. The authors of this
paper believe that the focus on analytics will grow, and especially put emphasis on software
analytics – the practice where analysis, software data, and systematic reasoning is used to help
software engineers and managers make better decisions. Furthermore, the authors mean that
despite there being plenty of research regarding the subject, how to implement it in practice,
and especially within a continuous delivery setting, is yet to be explored – something that
the authors aim to accomplish in this paper. The case company of this paper is ING – a
Netherlands-based bank, which has in recent years implemented software analytics to a large
number of teams operating within the context of continuous delivery.

With this paper, the authors wish to help future implementations of software analytics
in continuous delivery settings, by understanding what have either helped or hindered the
implementation of software analytics at the case company. There were a total of 36 factors
identified, of which 16 helped, and 20 hindered, such a project.

The contributions of this paper are primarily based on 15 semi-structured interviews that
the authors conducted with stakeholders of various roles within the case company. The inter-
views focused on the stakeholders’ experience with the software analytics project, and covered
the following five topics: goals of the analytics project; getting data; analyzing data; visual-
ization; and collaboration with researchers. The interviewees communicated their opinions
on statements within each topic by providing a score on the Likert-scale, and by answering
open-ended follow-up questions to elaborate on the score of choice. The interviews were
then coded, and translated into a total of 36 factors that were perceived to either help or
hinder such a project. Furthermore, to become familiar with the architecture and features of
the case company’s software analytics project itself, the authors also studied the system and
its artifacts within.

The authors conclude that even though the findings of the study were strictly related to
stakeholders’ experience within the case company’s software analytics project, and that the
outcome might simply not be generalizable to other environments, there are still some results
that apply to the implementation of software analytics within a continuous delivery setting:

55

5. Discussion & Related Work

define and communicate the aims of the software analytics project upfront; standardize data
at an early stage of the project; build e�cient visualization, that are actionable and accessible;
and utilize an empirical approach when starting the project.

Comparison and Discussion

The research problems of the paper are considered to be significant, and explore areas within
software analytics which are yet to be comprehensively studied. The choice to delve into the
less researched area of software analytics implementation in practice has been long awaited,
and we believe that the findings – no matter how limited to the context of the case company –
will benefit many when starting their own software analytics project. The authors even took
it one step further, and studied software analytics in the context of the most state-of-the-art
software delivery practices. This helps close an evidently wide gap in literature, and allow
companies attempting to implement such a project to learn from the experiences of others
in peer reviewed and acknowledged resources. Considering this, the research problems are
believed to be significant. One could argue that the case study is not su�ciently extensive, as
the contributions are based on the experiences of a single company’s project. This is evidently
a threat to validity, and the authors have treated the case with care in the paper. Regardless,
there are still 3-4 take-aways which the authors believe could be applicable in any context,
and – what we believe is even more important – the authors have paved the way for new
research to be based on their work. This might accelerate the pace in which research on
software analytics implementation in practice grows.

The paper aids practitioners initiating a software analytics project to realize what poten-
tial pitfalls to avoid, and what well-functioning aspects to double down on. Just as in the
case of our master thesis work, the case study has been done in a continuous delivery setting.
However, we have only been able to implement and study such a software analytics system
in theory, as the case company of our thesis work currently does not have a continuous de-
livery pipeline in place. We therefore rely on the experiences of others in order to learn what
works and what does not. Therefore, getting to digest work such as the one of the authors
is critical to our success, and take-aways such as setting common, transparent goals upfront,
and how to e�ectively visualize and deliver information to stakeholders, become invaluable
to our own design solutions.

However, we find our study to have a relatively bigger focus on developers, and a single
stakeholder’s ability to become aware of how well he or she performs within the continuous
delivery pipeline. This type of feedback – the feedback that is based on data points of a
single event – is what we call product feedback, and is an area which does not appear to be the
priority of the software analytics project of the case company of the paper. Instead, focus is
on what we call process feedback – feedback regarding many events over time. Consequently,
the software analytics project of this paper seems to primarily support stakeholder needs at
a team or manager level, and has left us room to build upon the authors’ work to explore
how the software analytics project experience might di�er with more consideration towards
product feedback. In order to reach the state where this comparison can be done, our case
company first has to finish the implementation of their continuous delivery pipeline, adopt
the design solution of our thesis report, and then invite us for a contemplative revisit.

56

5.4 Related Work

5.4.3 Continuous Testing and Solutions for Testing
Problems in Continuous Delivery: A Systematic
Literature Review

This subsection aims to summarize and evaluate an academic research paper related to the
field of Continuous Delivery. In the paper, the authors Mascheroni and Irrazábal present
a systematic literature review of the term Continuous Testing and explore how the term has
evolved in literature [10]. They also discuss academias opinion on what testing stages exist
within continuous software development, as well as the extent to which any related problems
and solutions are documented. The other goal of this subsection is to explore the relevance
of the paper to this thesis.

Summary
Mascheroni and Irrazábal have performed a systematic literature review exploring the con-
cepts Continuous Testing and CD testing practices in general have evolved in academic litera-
ture. The authors claim that the field of Continuous Delivery and other related practices are
on the forefront of modern software development in an industry context, but are not thor-
oughly explored by academics yet. Specifically, they identify the lack of clearly established
best practices, together with lacking specifics regarding the importance of CD subcompo-
nents and how to implement them. To mitigate this, the authors explore four research ques-
tions. Two are related to the term Continuous Testing – what definitions and open issues
exist – and two relate to testing stages in CD and what problems and solutions are discussed.

To answer these questions, the authors applied a thorough and systematic approach to
analyze existing literature. Articles from six sources such as ACM Digital Library using search
terms related to continuous practices. After narrowing down 655 articles to 56 using inclu-
sion and exclusion criteria, data related to each research question was extracted from each
article. Finally, the extracted data was analyzed using a number of di�erent techniques, and
summarized.

To understand how the answers they were searching for may have changed over time, the
authors applied a temporal view of the papers. Their results supported their initial sentiment
– Continuous Delivery and its related fields are more prevalent in the recent five years. A
majority of the articles were of the category solution proposal.

In regards to Continuous Testing, the authors describe a definition of the term that con-
verges with time: “CT is the process of running any type of automated test case as quickly as
possible in order to provide rapid feedback to the developer and detecting critical issues be-
fore going to production.” They discuss how this definition has changed with time to expand
more and more types of automatic testing, and ascribe that to the evolution of technological
possibilities. They also document a number of open issues with CT, notably flaky tests and
continuous monitoring.

The results pertaining to the other two research questions thoroughly document and
discuss six di�erent types of testing stages prevalent in CD contexts, from peer review to
exploratory manual testing. Mascheroni and Irrazábal briefly discuss the role of each testing
stage within a CD pipeline, and show how some types of testing have emerged over time
as a consequence of CD establishing itself. The authors also present the most common and

57

5. Discussion & Related Work

challenging testing related issues in CD, and group them by similarity. These issues were
things like time-consuming testing and automated flaky and ambiguous tests. For each test issue,
the authors discuss to what extent solutions are prevalent in the studied literature.

Comparison and Discussion
The validity of the results is clear – the authors have approached their problem from multiple
directions and done their work thoroughly. It is also apparent that their research is of some
significance, as Continuous Testing is most likely going to be an integral part of the domain of
continuous software practices.

There exist connections between Mascheroni and Irrazábals paper and our thesis. This
subsection aims to explore to what extent their research is relevant to the problems and
conclusions of our thesis. In general, both documents investigate related problem domains.
However, Mascheroni and Irrazábals paper focuses on testing within CD instead of feedback.
There are dependencies between testing and feedback, as this document has discussed, but
the subjects do not entirely overlap.

One interesting comparison that can be made between the results of Mascheroni and
Irrazábal and our paper concerns the definition of Continuous Testing. According to the
authors, that definition has become more and more well-formulated with time. Discussing
the applicability of the term Continuous Feedback is not within the scope of this thesis, as
it has not yet been accepted as a general term. However, given the similarities between the
two domains, it is likely that Continuous Feedback will become more and more used and
well-defined, just like Continuous Testing. Another reasonable inference is the expansion of
the term Continuous Feedback to include more and more automation. This was observed by
Mascheroni and Irrazábal in regards to testing, and has already occured with feedback in CD.

5.4.4 Metric-Driven Analysis and Feedback Systems
for Enabling Empirically Guided Software De-
velopment

The purpose of this subsection is to present and discuss a research paper related to the ques-
tions asked by this thesis. The paper in question, Metric-Driven Analysis and Feedback Systems
for Enabling Empirically Guided Software Development, describes the requirements of a feedback
system [13]. The authors also show how those requirements are used in practice. As the scope
of RQ3 of our thesis covers very similar questions, the paper is highly relevant to the thesis.

Summary
In their paper titled Metric-Driven Analysis and Feedback Systems for Enabling Empirically
Guided Software Development, authors Selby, et al., present a feedback framework that uti-
lizes metrics and other data from development environments to support the creation of high-
quality software. The purpose of the paper is to motivate what advantages such a framework
provides, and also to describe how their solution uses empirically guided inputs from users to
optimize a number of processes. Finally, the authors describe how their framework has been

58

5.4 Related Work

put into practice through an actual feedback and analysis system prototype called Amadeus,
giving some validation to their hypotheses.

The purpose of Amadeus is to fulfill a number of high-level requirements centered around
what they call empirically based software development and evaluation. These requirements
originate from a number of observations taken from software development processes, insights
that shine light on the value of information transfer. Other than identifying feedback as
valuable, the authors also claim that complete code comprehension is often low in teams,
leading to an uneven distribution of e�orts during problem solving. They reason that if done
empirically, problem-prone parts of the code base could be easily identified and addressed. To
achieve this, they recommend integrating measurements and processes in an active manner.
As such, the requirements of their framework, and thereby their system Amadeus, focus on
the following aspects: enabling measurement that leads to empirical feedback, supporting
empirically based maintenance processes, and allowing for an expandable number of analysis
techniques.

Other than fulfilling these requirements, Amadeus also has a number of key character-
istics that make it applicable to large-scale software environments. Overall, any feedback
system should be scalable to support an expanding code architecture and scope. It also needs
to be flexible, to support varying needs of users. Finally, it also needs to incorporate time as a
factor into its design – when did something occur within the system? This can be achieved by
utilizing event-based programming. The authors also describe two vital analysis techniques
of the system. The first, classification analysis, uses the history of a software project to predict
and classify components that are likely to cause errors in the future – so called high-payo�
components. The second technique, interconnectivity analysis, enables architecture compre-
hension of systems, by exploring the traceability of dependencies between subcomponents.
The authors argue that these two techniques are highly useful, but also note that the system
should support the addition of other techniques.

In conclusion, the authors argue that feedback systems play a vital role in supporting
software creation, and posit that their framework and accompanying implementation fulfill
some of those needs. They also claim that their results imply that even a basic feedback and
analysis system is better than no system.

Comparison and Discussion
The research performed by the authors is significant, but it is di�cult to verify the validity
of the results. In part this is due to the time gap – software development has moved on
and the actual technical implementation is impossible to experiment with. The authors do
not describe their system working in the context of any specific software product, making it
di�cult to know whether their design proved useful or not.

To analyze the relevancy of this paper to our thesis, the context of their research must
be compared to our context. The first aspect to consider is that the year of publication –
1991 – makes this paper considerably dated in the context of software research. Nonetheless,
many of the conclusions presented by Selby, et al. are mirrored by our own results. This is
especially true when considering that the authors repeatedly press on the value of feedback.
Likewise, there are similarities within the described characteristics of a feedback system. Both
the results of the paper and our thesis conclude that flexibility and scalability are important.
Selby, et al. also implemented an event-based approach similar to the one discussed in the

59

5. Discussion & Related Work

design phase of this thesis.
Another important distinction between our thesis and Selby, et al. is the fact that their

research was not done in the context of Continuous Delivery. This directly impacts the rel-
evancy of the paper, as this thesis sits firmly within the ramification of CD – high software
velocity. How this context impacts the comparability of their results to ours is di�cult to
estimate. One potential consequence is that the primary purpose of their system seems to
be to localize and predict hidden faults and error sources. To Selby, et al., basic feedback
information is only secondary, probably due to the relative slowness of the software of their
times. The fact that our thesis focuses on CD environments could explain the fact that our
results value feedback from basic test results just as highly as fault identification.

Overall, the fact that Selby, et al. reached similar conclusions to us while studying di�er-
ent software systems in a by-gone era suggests that feedback has always played an important
role within software development. However, drawing stronger comparisons is di�cult, due
to the di�erence in context between our domains.

5.5 Future Work
During our work we discovered many interesting things that we did not have time and re-
sources to follow up on – or that were not completely within the scope. In this subsection we
would like to present some of the derived things as future work. The following suggestions
help provide an understanding of what we would deem interesting to continue on and ex-
plore further. Furthermore, they also function as a source of inspiration for anyone interested
in extending our research, or make our results stronger and more general.

It would be interesting to take the results of RQ2 and RQ3, and explore how well they
apply in the case of a company that has come further on their transition towards Continuous
Delivery, and perhaps already have established both a CD pipeline, and an equivalent to the
Feedback System of this thesis. In the case of RQ2, it could be interesting to see how well
the primarily theoretical results of this thesis compare what factors actual CD practitioners
consider relevant when categorizing feedback in CD. If no distinct factors have been mind-
fully established at the case company, perhaps it is interesting to see if the contributions of
RQ2 bring any new value, or if they become redundant. The same applies to RQ2a, where
there is still a considerable amount of research left to be made. In this thesis, product and
process feedback were defined and introduced in an attempt to bring order to the other-
wise perceivably disorganized and chaotic topic of feedback types. What has been taken here
is no more than an initial superficial step into the research, which leaves many options for
what direction to continue on. For RQ3 it could be interesting to trial the resulting feedback
design approaches when implementing a Feedback System at a team working in CD. How
well do they work in practice? What approaches are essential for a successful project? What
approaches are less important, or optional? In other words, use the results of RQ3 and trial
their applicability in practice.

The results of RQ3 currently lack any information about how the di�erent approaches
relate to or compare against each other. A future work could be to attempt to examine the
di�erent approaches, and prioritize them based on their contribution value. How could the
currently unordered results of RQ3 be used when constructing a roadmap, a set of guidelines,
or a step-by-step instructions guide? Another thing that could be interesting to take further

60

5.5 Future Work

is primarily based on the findings of the work by Mårtensson et al. [9]. It may be of interest
to investigate how the information utilized to support di�erent stakeholder needs, is best
provided and presented to each respective stakeholder. By exploring this, we not only know
what the interests and needs of the stakeholders are, where the necessary data can be collected
from, but also how to best convert that data into proper, timely, and e�ective feedback, which
can best support the stakeholder’s decision making.

61

5. Discussion & Related Work

62

Chapter 6

Conclusion

In summary, this thesis had the overarching goal of exploring the value of feedback in Con-
tinuous Delivery. To achieve this goal, the questions of feedback categories and approaches
in practice were also investigated. To collect both academic and industry-based data, inter-
views and literature studies were utilized. To collect academic data relevant to the questions,
two literature studies were performed. Two sets of interviews at a company transitioning to
CD were also carried out, to base the research in an industry context.

Our results show that feedback plays a key role in supporting high-velocity software de-
velopment systems, by giving individual teams vital knowledge about their domain. This
knowledge helps team members make correct decisions independently and in a timely fash-
ion, maintaining the high artifact throughput central to CD without sacrificing quality. Feed-
back also gives insight into the domains of cooperating teams – the importance of which
cannot be understated in a mid-to-large size company. If code from two teams is eventually
integrated, sharing vital information across team borders ensures a continuous deployment
process, from change commit to customer delivery.

The results also illuminated four factors that categorize feedback in CD – stakeholder
interests, urgency, product and process. Each factor has its distinct purpose, and all can
be used when understanding and implementing feedback. Stakeholder interests categorize
feedback after the roles present within a team. This ensures no person’s needs are overlooked
or undervalued. Urgency is useful as a factor when studying how fast feedback needs to be.
Some information needs to arrive as fast as possible to maintain continuous development.
Other information is not as time sensitive, but no less valuable. Finally, process and product
allows feedback to be categorized after the size of the change, in relation to the contribution’s
destination. Our results show that some overlap exists between these factors, as urgency and
stakeholder interests connect to product and process feedback.

When approaching the design of feedback in practice, a centralized and automatic feed-
back system is the best approach for a mid-to-large sized company. The complexity of this
system scales with development size and speed, but even a rudimentary system is better than
each team developing their own ad hoc feedback solutions. Complete ad hoc solutions often

63

6. Conclusion

make information comprehension across teams very di�cult, and are di�cult to document
and scale. In practice, feedback can be implemented using a monitoring layer above the devel-
opment pipeline, and can utilize events instead of raw information for storage and analysis.
Finally, feedback design should be approached with stakeholder interests in mind, and should
focus on usability and practicality to remain relevant in the long term.

64

References

[1] Lianping Chen. Continuous delivery: Huge benefits, but challenges too. IEEE Software,
32(2):50–54, 2015.

[2] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. Devops. IEEE
Software, 33(3):94–100, 2016.

[3] Martin Fowler and Matthew Foemmel. Continuous integration, 2006.

[4] Alena Hramyka and Martin Winqvist. Traceability in continuous integration pipelines
using the ei�el protocol. 2019.

[5] Hennie Huijgens, Davide Spadini, Dick Stevens, Niels Visser, and Arie Van Deursen.
Software analytics in continuous delivery: a case study on success factors. In Proceed-
ings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, pages 1–10, 2018.

[6] Jez Humble and David Farley. Continuous delivery: reliable software releases through build,
test, and deployment automation. Pearson Education, 2010.

[7] Jan Ole Johanssen, Anja Kleebaum, Bernd Bruegge, and Barbara Paech. How do prac-
titioners capture and utilize user feedback during continuous software engineering?
In 2019 IEEE 27th International Requirements Engineering Conference (RE), pages 153–164.
IEEE, 2019.

[8] Oliver Krancher, Pascal Luther, and Marc Jost. Key a�ordances of platform-as-a-service:
self-organization and continuous feedback. Journal of Management Information Systems,
35(3):776–812, 2018.

[9] Torvald Mårtensson, Daniel Ståhl, and Jan Bosch. Test activities in the continuous in-
tegration and delivery pipeline. Journal of Software: Evolution and Process, 31(4):e2153,
2019.

65

REFERENCES

[10] Maximiliano A Mascheroni and Emanuel Irrazábal. Continuous testing and solutions
for testing problems in continuous delivery: A systematic literature review. Computación
y Sistemas, 22(3):1009–1038, 2018.

[11] Victoria Neufeldt et al. Webster’s new world dictionary. Simon and Schuster, 2002.

[12] R Owen Rogers. Scaling continuous integration. In International Conference on Extreme
Programming and Agile Processes in Software Engineering, pages 68–76. Springer, 2004.

[13] Richard W Selby, Adam A Porter, Doug C Schmidt, and Jim Berney. Metric-driven
analysis and feedback systems for enabling empirically guided software development.
In Proceedings of the 13th international conference on Software engineering, pages 288–298,
1991.

[14] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continuous integration, de-
livery and deployment: a systematic review on approaches, tools, challenges and prac-
tices. IEEE Access, 5:3909–3943, 2017.

[15] Mojtaba Shahin, Mansooreh Zahedi, Muhammad Ali Babar, and Liming Zhu. An em-
pirical study of architecting for continuous delivery and deployment. Empirical Software
Engineering, 24(3):1061–1108, 2019.

[16] Emad Shihab, Ahmed E Hassan, Bram Adams, and Zhen Ming Jiang. An industrial study
on the risk of software changes. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, pages 1–11, 2012.

[17] André van Hoorn, Matthias Rohr, Wilhelm Hasselbring, Jan Waller, Jens Ehlers, Sören
Frey, and Dennis Kieselhorst. Continuous monitoring of software services: Design and
application of the kieker framework. 2009.

[18] Carmine Vassallo, Fiorella Zampetti, Daniele Romano, Moritz Beller, Annibale
Panichella, Massimiliano Di Penta, and Andy Zaidman. Continuous delivery practices
in a large financial organization. In 2016 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pages 519–528. IEEE, 2016.

[19] Dongmei Zhang, Shi Han, Yingnong Dang, Jian-Guang Lou, Haidong Zhang, and Tao
Xie. Software analytics in practice. IEEE software, 30(5):30–37, 2013.

66

Appendices

67

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2021-01-29

EXAMENSARBETE Establishing Feedback in Continuous Delivery – Benefits and Approaches
STUDENTER Emanuel Eriksson, Keiwan Mosaddegh
HANDLEDARE Lars Bendix (LTH)
EXAMINATOR Emelie Engström (LTH)

Closing the Feedback Loop in
Continuous Delivery

POPULAR SCIENCE PAPER Emanuel Eriksson, Keiwan Mosaddegh

High-velocity software systems like Continuous Delivery put strict requirements on
the surrounding development infrastructure. This thesis work explores the purpose
and value of feedback within CD, focusing on the benefits of robust feedback delivery
systems and approaches to practical implementations.

The goal of many modern software development
paradigms is to reduce the length of development
cycles until terms like ”cycles” or ”iterations” lose
their meaning. Instead of planning and micro-
managing the release of a product at a set monthly
or weekly time, software systems like Continuous
Delivery enable programmers to push their con-
tributions directly to end users, essentially at any
time. To support this, a robust technical infras-
tructure of tools and inter-connected systems al-
lows for code to be built, tested and deployed au-
tomatically without sacrificing quality.
However, the relatively extreme speed of these

systems leads to both many competitive advan-
tages and greater risks. To mitigate these risks,
practitioners often point to feedback from tools
and people alike as an important part of the CD
puzzle. When software velocity is high, continu-
ous feedback can ensure that quality is maintained
without sacrificing throughput. However, the pre-
cise impact and value of feedback in modern devel-
opment paradigms like CI/CD is not thoroughly
explored. Distinctions between different types of
feedback, as well as descriptions of how a feedback
loop is to be established, are incomplete in liter-
ature. Why exactly is feedback so valuable, and
how should it be approached in practice?

Based on literature analysis and data gathered
from a company transitioning to CD, we have at-
tempted to categorize and evaluate the urgency
and utility of different types of feedback within
CD – specifically distinguishing between process
and product feedback. We also explored the value
of feedback by analyzing feedback-related prob-
lems at the company. To address a subset of these
problems, a number of approaches to feedback de-
sign in practice were evaluated.
Overall, our results show that any generalizable

feedback system, even a rudimentary one, is an
extreme necessity to achieve sustainable Contin-
uous Delivery. This is especially true when mul-
tiple teams cooperate, as one improvised ad hoc
solution per team is likely to hinder comprehen-
sion across teams. In practice, this system should
be centralized but tailorable after specific team
needs.

	Introduction
	Problem Statement
	Research Questions
	Thesis Report Disposition

	Background & Context
	Theory
	Modern Software Development Processes
	Information and Feedback in CD

	Verisure & CD
	Verisure
	Current Practices
	Verisure's Transition to CD
	Context for Thesis

	Methodology
	Problem Analysis Phase
	Design Phase

	Problem Analysis
	Literature Study 1
	The Pipeline Model
	Process and Product Feedback
	Stakeholder Interests
	Feedback Problem Domains

	Interviews 1
	Synchronized Releases
	Context and Architecture Variations
	Ownership and DevOps
	Testing
	Manual Feedback
	Feedback Systems
	Traceability

	Problem Analysis Results
	Results RQ1a
	Results RQ1
	Results RQ2
	Post-analysis

	Design
	Re-scoping
	Literature Study 2
	Software Analytics
	Test Activities Based on Stakeholder Interests
	Design Composition

	Interviews 2
	Centralized versus Distributed Design
	Design Robustness
	Interests, Features, Metrics and Metadata

	Design Results
	RQ3 Results
	Design Example

	Discussion & Related Work
	Methodology Discussion
	Validation
	General Discussion
	Related Work
	Test Activities in the Continuous Integration and Delivery Pipeline
	Software Analytics in Continuous Delivery: A Case Study on Success Factors
	Continuous Testing and Solutions for Testing Problems in Continuous Delivery: A Systematic Literature Review
	Metric-Driven Analysis and Feedback Systems for Enabling Empirically Guided Software Development

	Future Work

	Conclusion
	References

