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Abstract

Regression testing is performed to minimize the risk of changes breaking ex-
isting functionality in software. To reduce the time of testing, Regression Test
Selection (RTS) strategies aim to select a subset of only the a�ected tests. How-
ever, in projects with frequent changes it is sometimes necessary to sacrifice some
coverage for even shorter time of testing to receive feedback for every change.
The objective of this thesis is to explore how machine learning can be applied as
an automated RTS strategy for GUI testing. In this report, we design and eval-
uate multiple models using historical data from a project consisting of 60,777
data points, including 3,808 code changes and 35 unique test cases. We evaluate
how e�ective di�erent variables in the data are at indicating if a test will fail,
and how well the model scales with the size of the project. We found that our
best model is able to outperform our best heuristic, and can be used to select a
trade o� between coverage and time. When highly favoring coverage, it is able to
reduce testing times by 52% while ensuring that 91% of failing tests are predicted.

Keywords: Regression Testing, Regression Test Selection, Machine Learning, Test Au-
tomation, Selective Testing, GUI Testing
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Chapter 1

Introduction

Today regression testing has become an essential part of any software project for maintaining
quality. Regression testing is an activity performed in order to ensure that changes in software
do not break existing functionality. As software projects continue to grow there has been an
increasing need to optimize this process by selecting a subset of tests that only test the parts
of a system that are most likely a�ected by the change. This is referred to as Regression Test
Selection (RTS) and can be achieved using a wide variety of strategies.

This thesis work was conducted at Axis Communications mobile applications depart-
ment where graphical user interfaces (GUIs) are a main target for automated regression test-
ing. Axis would like to improve upon their automated GUI testing process by providing
faster and more accurate test results during development. A dynamic test selection strategy
would achieve this by aiming to select only the most relevant test cases for each change. Ad-
ditionally most of the changes do not introduce any regressions at all. In this case it would
save a great deal of development time when the test suite is not being run unnecessarily, since
there is some overhead time associated with building the application for GUI-testing.

In this report we investigate how to improve the capturing of failures while limiting the
time of testing during development by applying machine learning (ML) on historical test data
for GUI tests. Machine learning for RTS is a rather new research topic but has shown positive
results in newly published sources [8, 9]. In conforming with the agile development process
at Axis, we focus on minimising time-consuming human intervention of finding mappings
between GUI tests and program code. We do this by designing a system that automatically
finds these mappings by using historical code changes and test case outcomes. As finding
these mappings manually is a time consuming task, we perform a high-level analysis and use
machine learning to automate the task of finding correlations between changes and GUI test
outcomes. To measure the e�ectiveness of our solution we benchmark against other history-
based heuristics.

Our contributions to RTS research revolve around GUI testing, however the findings
could potentially be extended to any type of abstract testing. We present and evaluate fac-
tors that influence outcomes of tests that are too general and broad in their coverage to be
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1. Introduction

mapped to specific functions in the source code of an application. We describe our method for
creating our solution and present results of an empirical evaluation on various history-based
heuristics for automated GUI test selection. Additionally, we evaluate how the e�ective-
ness of algorithms based on machine learning for GUI test selection scales with the available
change history and test data for an industry application.

8



Chapter 2

Background and Related Work

The aim of the following chapter is to provide the reader with necessary background informa-
tion to understand the theoretical aspects of the presented solution. We begin by describing
the problem and research questions, followed by a presentation of related work. Then follows
an overview of machine learning and the algorithms that we have selected.

2.1 Problem Description

production change

development change

development changeminimal
test

merge with production

retest allretest all retest all
production change

minimal
test

Figure 2.1: General example of the GUI testing strategy at Axis Mo-
bile Apps.

The automated regression testing techniques used by Axis Mobile Apps for their GUI
testing are minimal testing and retest all. The former is used as changes are continuously sub-
mitted for review towards their feature development branches, and the latter for deploying a
finished feature to production, as depicted in Figure 2.1. The changes made on the develop-
ment branches have to pass a few quality checks before being accepted. However, running the
entire test suite on each change on a development branch would take too long. Axis has there-
fore opted to only test the most critical functionality when submitting feature-development
changes. This ensures that the critical functionality still functions after every code change,
but it could possibly miss other functionality. A more substantial testing is then performed
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2. Background and Related Work

prior to merging a feature into the production branch, after which it should be ready for re-
lease. Hence Axis has chosen to run fewer tests during development to improve the developer
experience.

Axis would like a more intelligent selection of GUI tests during development. A selection
strategy that recommends test cases to run based on the code change and prior test outcomes.
Due to time constraints during development, a safe RTS strategy that ensures that all a�ected
tests are run is not ideal. Instead, Axis wants to be able to sacrifice coverage for time during
development, since they are able to use the retest all strategy at a later stage. At the same
time, they want to ensure that the coverage is as precise as possible.

One aspect that enables machine learning is that Axis uses a distributed version control
system (DVCS) [2] to organize their project. A DVCS tracks all changes made to a project
and has the ability to recreate old instances. From an old instance it is then possible to
generate historical data by running tests and seeing what the most recent change was. Using
the test results as labels then provides the opportunity of using supervised machine learning,
explained further in Section 2.4.

The amount of available data is limited by how long the GUI tests have been used in
the project and the size of the test suite. A known limitation of machine learning is that
it requires a significant amount of data for training, even more so in the sub field of deep
learning [12]. This puts limitations on which types of algorithms that can be used.

2.2 Research Questions
This thesis aims to investigate machine learning as an approach to RTS. We evaluate several
algorithms and their selection performance for the GUI test suite of a mobile application.

In this report we also study how various information based on software changes and
historical test case data a�ect the test outcome prediction capability of machine learning
algorithms. Our intention is to find factors that can positively influence test outcome pre-
dictions, in addition to being general enough to be used for other projects that aim to apply
machine learning for RTS.

Machine learning performs poorly if there is not enough data to use for training the
algorithm. It is therefore of interest to investigate if a software application has enough data on
change history and tests to be able to use machine learning to make satisfactory predictions.

Consequently, we formulate the following set of research questions that we will focus on
answering in this thesis:

RQ1 Selection performance - How well do di�erent machine learning algorithms perform
at predicting tests that will fail based on information from code changes and test his-
tory, compared to available heuristics?

RQ2 Feature importance - What kind of information from code changes and test history is
important for determining whether a test will fail?

RQ3 Scalability - How does the performance of machine learning algorithms for RTS on
GUIs scale with the amount of available code changes and test cases?
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2.3 Previous Work in History-Based RTS

2.3 Previous Work in History-Based RTS
Prior research has been made into using machine learning for RTS. Machalica et al. devel-
oped a gradient boosted decision tree classifier trained on a large data set of historical test
outcomes [9]. Their model managed to reduce the total testing time by 50% while capturing
95% of test failures. This paper was one of our main sources of inspiration for this project.
In addition to trying other machine learning algorithms, we also wanted to build upon their
work by researching more factors that could influence the prediction of a test failure.

Lundsten developed a predictive test selection system, called EALRTS, that instead of
relying on historical code defects introduced artificially generated mutations in the code to
achieve similar results [8]. Using a Random Forest algorithm, EALRTS managed to reduce the
number of tests selected by 60.3% while finding 95% of all failed tests. Since we had access to
real data with code defects, this approach was not as crucial for us to take. However, we were
interested in introducing artificial code defects to balance training data since our data was
over-represented by passing tests. Introducing artificial data connected to test failures might
have improved the prediction performance of our algorithms, but eventually we abandoned
the idea due to time constraints.

One history-based approach consisting of creating links between source entities and tests
was explored by Mahmoud and Hellgren [10]. It would construct a database of such links
by analyzing test results. Then, when a change was submitted the system would query the
database for each edited source entity, receiving a partial test suite to run. The regression
testing was done for an android solution, using a test suite of over 68,000 tests. They were
able to achieve up to a 99% reduction while ensuring a large portion of the failures were
selected.

Another approach to history-based test selection was developed by Ekelund [4]. He cre-
ated the Di�erence Engine, a software that produces a weighted correlation between code
packages and test cases, after analyzing historical test data. These correlation values would
then be used in conjunction with new changes to one or several code packages to select a
subset of the test suite. On average the di�erence engine would recommend only 5% of the
total test suite while its median and mean recall was 100% and 80% respectively. A major
di�erence in this project compared to ours was the amount of available data. The project
Ekelund based his work on had 1265 unique tests, for a large code base. He states that the
database on changes was over 100 gigabytes, which is an average of 81 megabytes of infor-
mation per test. In contrast, our project had 35 tests and only 4 megabytes of information
per test. Additionally, the amount of correlation between tests and packages influences the
performance. However, it is di�cult to compare this aspect of Ekelund’s project to ours.

2.4 Machine Learning
As early as in 1959, machine learning was defined by Arthur Samuel as a "field of study that
gives computers the ability to learn without being explicitly programmed." [19]. In recent
years it has become a hot topic of research, in large part due to the digital revolution which
has enabled the computation and storing of vast amounts of data. In this section we describe
di�erent types of learning and algorithms that we used.
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2. Background and Related Work

2.4.1 Supervised and Unsupervised Learning
Supervised learning is a branch within machine learning that deals with algorithms that map
inputs to outputs, where the output is manually labeled [12]. Data is usually divided into two
sets, one for training and one for testing the algorithm. The algorithms learn by training
a model on input data and labeled output data, thereby tuning themselves to predict the
output given the inputs. The model is then tested on a hold-out data set where it tries to
predict the output.

Supervised learning can either be described as a regression or a classification problem.
Regression problems involve problems where input variables are used to estimate a continuous
output. An example of a regression problem is the task of predicting house values. Classifica-
tion problems involve problems where input variables are used to predict a discrete output. In
a multi-class classification problem, the goal is to predict one of several categories. If there
are only two classes, it is called a binary classification problem. This is the type of problem
that we are trying to solve in this thesis using algorithms to predict the classes ignore test and
select test.

Unsupervised learning is a branch of machine learning that in contrast to supervised learn-
ing uses unlabeled data to find patterns [12]. It is commonly used as a means of clustering
data, when the clusters (or labels) are not known in advance. Clustering algorithms use in-
formation from the data to categorize data points into how similar they are to each other.

2.4.2 Tree-Based Algorithms

Has the test failed within
the past week?

Has there been more than
5 developers involved with

the code change?

yes

Ignore test

no

yes no

Ignore testSelect test

Figure 2.2: Abstraction of two splits in a decision tree, with leaf
nodes representing the predicted classes.

The supervised machine learning algorithms we have chosen for this thesis are mainly
tree-based algorithms. In contrast to many other machine learning algorithms, they do not
require normalization of inputs and do not have their prediction performance a�ected by
variables that bring no valuable information. They are also easy to interpret and therefore
facilitate analysis of feature importance which we focus on with our research question RQ2.

The simple form of tree-based algorithm is a decision tree. A decision tree is built up
by many nodes, where each node acts as a split on the data, dividing the data into two new
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2.4 Machine Learning

data sets on some criterion of a feature. The algorithm evaluates which splits are the most
e�ective and places them closer to the root. The leaf nodes represent the predicted classes,
as depicted in Figure 2.2. Essentially the tree divides the data into di�erent classifications
depending on many di�erent features.

Random forest is another tree-based algorithm which consists of multiple decision trees,
each trained on a random sample from the data set. Because it is composed of multiple
di�erent models, it is referred to as an ensemble algorithm. More specifically, it is a bagging
algorithm. This means that each model makes its own prediction and votes for the class that
it predicted. The majority vote becomes the output of the algorithm.

An alternative ensemble approach to bagging algorithms are boosting algorithms. They
also consist of multiple models, with the di�erence that they are sequentially executed and
attempt to correct the previous model’s prediction error. One of the most popular boosting
tree algorithms is eXtreme Gradient Boosting (XGBoost).

2.4.3 Support Vector Machines

x2

x1

Hyperplane

Class 2

Class 1

Figure 2.3: Example of a hyperplane dividing two classes in a two-
dimensional space.

Support vector machines are supervised learning models that can be used for both clas-
sification and regression problems. The basic principle of a Support Vector Machine is to
find a hyperplane that best divides the data into di�erent regions, as the example shown in
Figure 2.3. It does so by attempting to maximize the distance between the hyperplane and
the closest point in the data. Support Vector Machines have been proven to work well with
high-dimensional data [15], and was therefore a choice of algorithm to consider, due to the
many features that we generated from our data.
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Chapter 3

Methodology

Problem Understanding Data Understanding

Data Preparation

Modeling

Evaluation

Figure 3.1: The iterative workflow during the thesis.

This chapter describes tasks performed during the thesis work. These phases are part
of a process related to both research and design, shown in Figure 3.1, which is inspired by
the CRISP-DM framework for data science [3]. The process is iterative and starts with the
problem understanding phase.

3.1 Problem Understanding
In the problem understanding phase the focus is to explore the stakeholder requirements
and how they can be translated into a machine learning context. This phase involves study-
ing, planning and holding discussions with stakeholders about requirements and di�erent
approaches to take. This phase is constantly revisited due to the iterative nature of our work.

3.1.1 Literature Search
We initially performed a literature search to position ourselves within the field of regression
testing and machine learning. We began by querying the web for articles related to machine
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3. Methodology

learning applied to RTS, using tools such as LUBsearch, Google Search and Google Scholar.
We used variants of the keywords regression test selection, machine learning, predictive test
selection and regression testing. From the initial search we then filtered for relevant articles
and continued by searching for additional references within them. For certain articles [9,
13] we looked for metrics related to change impact in order to support our decisions for
data collection and feature design. As a result we defined features that are presented in
Section 3.2.2. Additionally, from some of the articles we found we used future work proposals
as inspiration to what we could contribute with.

We soon realised that not much research had been done with applied machine learning
for RTS. Therefore we expanded our search to include sources discussing other strategies for
RTS, which we presented in Section 2.3. At this point we had already spent most of our time
on a solution based on historical data. Hence we excluded most sources that dealt with other
strategies that were not based on historical data, since they would have required a substantial
turn in direction for us. In addition, we found that many of the methods proposed were either
too specific for certain use cases or were based on stronger dependencies between code and
tests than what we were able to get from the software application that we were designing our
solution for.

A majority of the information search involved understanding concepts of applied ma-
chine learning. Since many topics are new and experimental, some of the information could
only be found in non-peer-reviewed articles. In these cases we compared di�erent articles
and made experiments of our own to verify their correctness.

3.1.2 Discussions With Engineers
Weekly meetings were held with our supervisors; the department test lead and a developer
with machine learning expertise. During these meetings we discussed our findings, obstacles
we faced and approaches that we could take. We maintained a backlog of tasks that we
updated after each meeting, based on input from all parties. Important design decisions are
presented in the subsequent sections of this chapter.

An unstructured interview was held with an expert engineer at Axis within data man-
agement. He had been involved in a similar project at another department, where a machine
learning strategy for test selection was attempted. We discussed di�erent circumstances at
our departments and how we could benefit from what they had learnt about applying RTS.
Topics such as how to treat unbalanced data and introducing synthetic data were also dis-
cussed. The discussions resulted in the Locality Strategy, used as a heuristic to evaluate our
solution. The strategy is further explained in Section 3.5.1 and discussed in Section 5.4.

3.2 Data Understanding
In the data understanding phase we focused on collecting data and verifying data quality.
Initially during the thesis work there was no data to begin with. Therefore it was important to
define, early on, what kind of data that needed to be collected and how it was to be acquired.
It was also important to collect everything we could possibly need, so that the collection
process did not have to be repeated multiple times. While we did not have to collect all
of the data more than once, there were several instances where we had to recollect some of
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3.2 Data Understanding

it due to ambiguous results and compatibility issues with older versions. In the following
subsections we describe how we decided what type of data to collect and how to collect it.

3.2.1 Analyzing the Integration Chain
For this activity our focus was to explore what type of data that could be extracted from the
continuous integration process at Axis relating to code changes and test outcomes. First, we
analyzed what information that could be obtained from a code change by using the DVCS of
the project. Second, we studied the build automation tool to understand how it saved data
for a completed test run. Finally, we analysed the test code to see what information could be
extracted from it.

We introduced a set of features that could be obtained from the data and that could be
used for training a prediction model. Since we required our model to handle previously un-
seen code changes, we needed the data that the model was being trained on to be generalized
well enough so that the model could infer if a new code change and a specified test have the
conditions for failing a test. Data can be generalized by abstracting it from its highly detailed
state into features. These features are presented and further explained in Section 3.2.2.

By using these features in a prediction model we could evaluate their impact on the pre-
diction result using various methods presented in Section 3.5.3. Analyzing the results of these
methods helped with answering RQ2 about which information that a�ects the outcome of a
test after a code change.

3.2.2 Defining features
Through analyzing the available data that could be mined from one of Axis’s repositories,
consulting with engineers at Axis and searching for examples in literature, we compiled a
list of features that we hypothesized as relevant for predicting the outcome of a test from a
code change. They were features that either relate to a code change, a test or a relationship
between a code change and a test (cross features).

Features on a Code Change Level

• Number of rows added/removed: A code change including more lines of code introduces
more areas where an error can occur.

• Number of rows in included files: As the lines of code increases in a file, so does the amount
of variables and functions. Increasing the complexity of the file and the amount of
places where an error can occur.

• Number of files changed: A code change including more files encompasses more areas of
the source code, and in turn more places where an error can occur.

• File extensions: Some file types are more prone to breakages than others [13].

• Author who made the change: Code quality can di�er between authors, and some authors
work in areas of the code that could be more prone to bugs than others.
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3. Methodology

• Number of files modified by multiple authors: Files modified by 3 or more developers have
a higher risk of breakage as opposed to files modified by 2 developers [13].

• Amount of revisions to included files (over di�erent periods): Files modified more frequently
often cause breakages [13].

• File is included or excluded from change: Changes where the same files are changed should
a�ect similar tests.

• Number of changed files in di�erent directories: Some directories a�ect test code more than
others.

Features on a Test Level
• Historical failure rate: Historical failure rate for a test is a good indicator for its proba-

bility of failing again [9].

• Historical run time: A test that has a longer run time generally has a higher complexity,
and in turn more steps where it could be prone to failures.

• Time since updated: When new features are introduced, so are new tests that verify their
functionality. Since these features are new, development tends to focus on them.

• Test group based on failure occurrences: Tests that usually fail together indicate that they
test a common area. A grouping of tests based on their tendency to fail together could
be helpful in that it uses information about other tests to infer the result of a test.

Cross Features
• String similarity between paths of included files and test path: Files that have words in ei-

ther their path that are similar to words in the path of a test should indicate some
connection [9]. For example, if a test has the path app/test/testNavigation.kt
then a file that has the path app/src/navigation/Navigation.kt should have a
stronger similarity than a file with the path app/src/support/Feedback.kt.

We aggregated all of the aforementioned features into a full list of features used as input
to the algorithms that can be found in Table A.1.

3.2.3 Data Collection
Data collection consisted of two parts, collecting the data for a test run and collecting the
information of a software change. This was possible because of the use of a DVCS, which
enabled us to reconstruct old states of the project. From the reconstructed state a build
automation tool could then be used in conjunction with the DVCS to gather the information
we needed.

First, the information from the test run was collected by scraping result files generated
by the build automation tool after running all the tests. In the output file we found the test
name, package, arguments passed, result of the test and the run time. One issue encountered
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3.3 Data Preparation

was that sometimes tests would fail independently to the code change. A test that is non-
deterministic, giving both a pass and a fail as a result when run multiple times, is called a flaky
test. To deal with flakiness we opted to rerun all tests that failed up to a total of five times.
To further ensure that the results were due to the code change and not other factors, we also
opted to rerun changes that included any failures the next day. In this way any temporary
issues such as network problems could be excluded.

Second, we used the DVCS tool to collect data about the software code change. The
data included an identifier for the change, information on which the previous change was,
date of change, historical file changes and information on contributors. In addition to the
mentioned data the DVCS could also be used to estimate when the most recent change was
made to each test, which was used to calculate the age of the tests relative to the change.

By far the most time consuming task when collecting the data was validating that it was
correctly labeled. When reconstructing old states of a project there was a risk that old work-
ing code might not work in a more recent environment. To combat this we continuously
monitored the results from the test runs to spot any indication of non-change test breakage
issues. Some issues included altering the testing environment, the old project state not be-
ing compatible with newer versions of the android operating system on the emulators and
the scraping tools we developed needed to be updated for old refactorizations of the project.
When such a situation occurred we solved the issue and reran the test runs that had been
a�ected.

3.3 Data Preparation
Data preparation and feature extraction are important aspects of data science. In this section
we discuss the several steps we took to process the collected raw data into features. These
steps resulted in the features that can be found in Section 3.2.2.

3.3.1 Cleaning Data
As discussed in Chapter 3.2.3, if a test failed we reran it multiple times. We also reran whole
test suites for changes that resulted in failed tests. Consequently this meant that we had
duplicated data. Most of the information was deterministic and did not change from run
to run, so there was no need to chose which duplicate to discard. The exceptions were the
test result and runtime. If a test had passed for a change in any run, we labeled it as passed
and took the average runtime for all of its passes for that change. Otherwise it was labeled a
failure and we took the average of its failed runs.

When running the tests we always ran all the test cases available at that project state.
However, this was not the case during development where only the minimal test suite would
run. Therefore test failures could occur that were not fixed in the successive change. When
this happened successive changes would include a failure without having caused it, which
in turn would be erroneous data for the machine learning algorithm. Since we could not
determine if it was a fail or pass we could not correct the data. Instead we solved it by
removing any data points that failed both in the current change and the previous one.

After cleaning, the final data set contained 60,777 data points. These data points be-
longed to a total of 3,808 software changes, containing a total of 35 unique tests. In total 644
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data points were labeled as failures, and conversely 60,133 data points were labeled as passes.
All the results presented in Chapter 4 are based on this data set.

3.3.2 Creating Features
Many features did not need any more processing other than simple calculations, for example
counting the number of files with a given extension. However other features required more
sophisticated methods to be transformed into a state that could be used in a machine learning
model. In this section we describe the techniques we used to implement features. The high
level descriptions of the generated features here are found in Section 3.2.2.

Aggregating Number Series
For every file included in a change we had several metrics recorded, these were the number
of contributors involved in the revisions of the file, revisions of the file, lines of code added,
lines of code removed, and lines of code in the file. Since each change could include many files
this meant that we got a series of numbers for each of those metrics. However we needed to
represent these with a single value instead of a list of values. So for each such numeric series
we aggregated it in several ways. We computed the sum, max, min, mean and variance of the
series and used those values as features.

One-Hot Encoding

ChangeID Author TestGroup … TestFailure

413 john_doe 1  0

614 mary_sue 2  1

984 foo_bar 3  0

ChangeID Author_john_doe Author_mary_sue Author_foo_bar … TestGroup_1 TestGroup_2 TestGroup_3 TestFailure

413 1 0 0  1 0 0 0

614 0 1 0  0 1 0 1

984 0 0 1  0 0 1 0

Figure 3.2: Categorical features before (top) and after (bottom) one-
hot encoding.

Because some of the machine learning algorithms we use do not work with non-numerical
values as features, we needed to convert text-based features to numerical values. A common
method of doing this is to one-hot encode categorical variables [17]. Viewing our features in
a tabular format, where rows represent a change and a test outcome and columns represent
features, categorical features are transformed as shown in Figure 3.2.
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Figure 3.3: How the one-hot encoded file features (upper left) would
be reduced down to 3 features (lower right) for an example project
structure. The marked files and folders are items, and the percentage
of files changed in those items are used as features for the model.

Encoding Changed Files
Initially we tried one-hot encoding all the files into features. However since the project
includes many files it was not a sustainable solution since it produced well over 3000 features.
To reduce the features needed to represent the files we instead represented it as the percentage
of files edited inside an item, where an item could be either a single file or a folder.

An example project structure and how it can be reduced is shown in Figure 3.3. The
method we used for reducing utilized that each file in the project could only be part of one
item-feature, meaning if two items shared a common folder, that folder would not be an item.
It would start by using all files as items, and then iteratively reduce the number of items until
su�ciently few were left. At each reduction it would select the item that would reduce the
total number of items the least, if there was a tie it would select the one at the lowest depth
in the file tree. This ensured that the item-features always are of as similar size as possible.

Clustering Tests Into Groups
To create the test grouping feature from Section 3.2.2 we experimented with unsupervised
learning. We chose to use the K-means algorithm to cluster test cases into groups based on
their tendency to fail together, due to its simplicity and ability to scale with data. As features
to the K-means algorithm we one-hot encoded all changes as described in Section 3.3.2. This
meant that after one-hot encoding we had a categorical feature representing every change, as
shown in Figure 3.4. Due to the high amount of changes, and thus dimensions, we decided to
reduce the amount of features. This is because high dimensional data poses several challenges
to clustering [20]. For this we used feature extraction with Multiple Correspondence Analysis
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ChangeID TestID … TestFailure

413 test_case_1  0

413 test_case_2  1

413 test_case_3  1

614 test_case_1 1

614 test_case_2 0

614 test_case_3 0

TestID ChangeID_413 ChangeID_ 614 ...

test_case_1 0 1

test_case_2 1 0

test_case_3 1 0

Figure 3.4: Categorical features before (top) and after (bottom) one-
hot encoding.

(MCA). MCA can be used to reduce the dimension of categorical features so that a high
percentage of the original variation in the features can be explained in fewer dimensions [16].
When applying MCA we made sure that a number of features were extracted such that 99.9%
of the variance in the original features was maintained.

When using the K-means algorithm, one has to specify the number of clusters beforehand.
We ran the K-means algorithm for K = 2 up to K = 35 clusters. To select the optimal
number of clusters we used the silhouette scores and the elbow method. A higher silhouette
score indicates a greater separation between clusters [11]. The elbow method can be used to
find an optimal K by analyzing the Sum of Square Errors (SSE) and selecting a K close to
the "elbow" of the curve [23]. Using SSE and silhouette scores plotted in Figure 3.5, as well
as manually analyzing if the clustering was reasonable, we selected K=17. This meant that we
had 17 di�erent groups that each of the 35 test cases were assigned to.

Similarity Between Test Name and Changed Files
To create a similarity score between a software change and a test case we used cosine similar-
ity [21]. Cosine similarity is a measure of the similarity between text documents. It constructs
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Figure 3.5: SSE and Silhouette scores plotted for each number of
clusters K. The optimal cluster is chosen in regards to a high silhou-
ette score as well as the elbow point of the SSE graph.

a similarity score by turning the documents into vectors and then evaluating how much the
angle di�ers between the vectors. The documents are transformed into vectors by represent-
ing the count of each unique word on separate axes. We transformed the software change and
test case into text documents by evaluating words present in the file paths and test name, then
applied cosine similarity to get a score.

One disadvantage with cosine similarity is that every axis is orthogonal. While it is good
for dissimilar words, synonyms and otherwise related words are treated equally distinct from
each other. However, this is much more common in normal texts since you want to vary
the language. In programming the language is less varied since it relies a lot on naming and
keywords.

3.3.3 Feature Scaling

Feature scaling is an important step for support vector machines. Since the algorithm works
with distances, a feature with a larger value would have a larger impact on the prediction.
Therefore the features need to be scaled so that their values are in similar ranges. Feature
scaling can be done with either normalization or standardization, depending on the dis-
tribution of feature values. Standardization is performed when the data is assumed to be
normally distributed. This was not the case when we analyzed our data, so we decided upon
using normalization. This meant that we transformed every feature to a range of [0, 1]. The
transformation was done using equation 3.1.

x′t =
xt − xmin

xmax − xmin
(3.1)

Where xt is a specific value of x, xmin is the minimum value of all x, xmax is the maximum
value of all x, and x′t is the normalized value of xt .
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3.4 Modeling
In this chapter we describe how we select our models and how they are trained and tested
on the available data. We used Decision Tree, Random Forest, XGBoost and Support Vector
Machine during modeling, which are described in Section 2.4.

3.4.1 Hyperparameter Tuning
The machine learning algorithms we used utilize di�erent types of parameters whose val-
ues control the learning process. These are called hyperparameters. As opposed to model
parameters which are estimated from the data itself during training, hyperparameters are
set manually before model training. To get an optimal performance from the model, hyper-
parameters are tuned to suit the problem. This is commonly achieved by trying di�erent
combinations of hyperparameters and measuring the model’s prediction performance when
using them to find the best hyperparameters suited to the problem.

The search for hyperparameters can be done in several ways. An exhaustive grid search
uses all combinations of specified parameters to train a model and find the best combination.
We used exhaustive grid search for algorithms that were fast to train and had few hyperpa-
rameters, since an exhaustive search will find the most optimal parameter combination from
the specified values. For models that have many parameter combinations we used a ran-
domized form of grid search, due to polynomial time complexity with an increasing number
of hyperparameters to tune. Randomized grid search has the benefit of randomly sampling
from the parameter combinations instead of trying every combination. For more accurate
results we use K-fold cross validation with K=5 and K=3 for grid search and randomized grid
search respectively. The process and benefits of K-fold cross validation are further explained
in Section 3.4.2.

The grid search uses a scoring criteria to select the best hyperparameters. As scoring
criteria for the grid search and the randomized grid search, we used the equation 3.2 for
balanced accuracy score.

Balanced accuracy =
t p

tp+ f n +
tn

tn+ f p

2
(3.2)

Balanced accuracy was chosen as scoring criteria since it takes into account both posi-
tive and negative predictions and resulted in the highest trade o� curve over recall and time
reduction, explained in Section 3.5.2.

3.4.2 Cross Validation
When we evaluate a machine learning model, we need to make sure that the model is tested
on previously unseen data as to simulate how it performs in a real setting. A common practise
in the field of machine learning is to reserve a fraction of the data for testing, and train on
the rest. This is referred to as a train-test split. A model becomes biased towards samples
that it has been trained on, which means that it will score higher if it is evaluated on the
same samples. Splitting the data set into training and testing can also reveal if the model is
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overfitting. If the model scores higher on the training set than the testing set, it means that
the model is not able to generalize well to unseen data, and is overfitting on the training data.

Splitting the data into one train and one test set is usually not enough. Especially if the
data size is small or the distribution of classes are skewed. It might be the case that most of
the valuable data, in our case data on test failures, happens to be in the test set which the
model cannot use to learn. The opposite is also possible, failure samples in the test set may
be so few that the measured performance will be influenced by chance, rather than showing
the models actual performance.

Data

Training Validation

Training Validation Training

Training Validation Training

Training Validation

Validation Training

Training

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Figure 3.6: Example of 5-fold cross validation [1]

To mitigate this problem we evaluate our models using K-fold cross validation. With K-
fold cross validation the data is divided into K splits where K-1 splits are used for training
and 1 split for validation. A new model is trained K times until each split has been used for
validation. We use 5-fold cross validation, as shown in Figure 3.6, which means 4 splits are
used for training and 1 split for validation. We evaluate the performance by averaging over
the validation score of each fold. Using cross validation we can also measure the consistency
of the model. If performance varies greatly between folds, it could indicate that the algorithm
has not learned from the data and is only guessing.

When splitting the data into either train and test or train and validation sets, we need
to make sure that information from one does not leak into the other. If every data point in
the data set consists of unique values this will not become a problem since the point can only
be included in one of the splits. However, in our data set there are data points that partially
contain duplicate information. Since the data set contains both test features and change
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features, there are data points that may have duplicate change information or duplicate test
information, but not both. The model is expected to know about the tests when making a
prediction, but it will most likely not have seen the exact same code change before. Therefore
we want to make sure that this is represented in the evaluation by only letting a change be
present in either the training or testing split. This is demonstrated in Figure 3.7. Instead of
simply splitting the data we assign each change an identifier, a random number between 0
and 1, and then we perform the split on the identifier.

While the data contains changes from both production and development branches, we
only let the validation subset contain data from the development branches. We use both
types of branches for training since we want the model to learn as much as possible from code
changes. However, since the model is only going to be used for the development branches,
we chose to mimic this scenario with the validation data by only using development branch
changes for validation.

Additionally, to further simulate a real scenario when evaluating our models, we omit
changes made by testers from the validation data. We took this measure since we are only
interested in how the models perform when a developer makes a change. When the testers
make a change it is usually to create or modify GUI tests and therefore they will make sure
that all tests are passing before they submit the change. However, we keep changes made by
both testers and developers in the training data since otherwise a system needs to be in place
for keeping the model up to date with new employees and whether they are testers or not.
Also, an added benefit is that it will give the model more data to learn from. As a result, our
splits will not be divided perfectly into the fractions depicted in Figure 3.6, which is discussed
later in Section 5.6.

ChangeID Change
feature 1

Change
feature 2

Test
feature 1

Test
feature 2

Split identifier

1 555 222 4 6 0.4

1 555 222 5 6 0.4

1 555 222 6 7 0.4

2 666 777 6 4 0.7

2 666 777 5 7 0.7

Figure 3.7: Example data of two code changes. The split between
training and testing data is made using the split identifier, such that
rows marked in the figure with the same split identifiers are all put in
the same set. This is so that information about a unique code change
is not used for both training and validation, thus more accurately
simulating unseen data in the validation set.

3.5 Evaluation
In this section we show how we evaluate our machine learning models and what measures we
took to get a correct evaluation. We describe the di�erent ways that we measure our models,
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how we calculate feature importance and how we evaluate the scaling capability of models.

3.5.1 Heuristics
We defined several strategies as baselines to measure how well the machine learning models
were performing. The ones compared were the following:

• Department current strategy

• Random selection strategy

• Locality strategy

• High risk test strategy

Department current strategy works by running a single test case that tests the most basic
functionality. The test case can be summed up as a test that only navigates through the
application’s di�erent views. If the mobile applications department at Axis is going to switch
to a strategy based on machine learning, it needs to perform better than the current strategy.
The current strategy therefore acts as a baseline in this thesis work.

Random selection strategy is a simple strategy with a probability p to select a test and a
probability 1 − p to ignore it. We chose to include this strategy as it serves as an easy to
implement, bare minimum and general solution. It has also been shown to outperform other
test selection methods [5].

Locality strategy is based on the assumption that if a change causes a test to fail, the proba-
bility that the same test will fail again in the near future is high. The locality strategy works by
computing for each test case in a change, how many seconds ago since the test had previously
failed. The test case is then selected only if it has failed within a specified time period.

Finally, High risk test strategy works by calculating the historical failure rate for all tests
and picking the ones with the highest failure rate and only running those.

3.5.2 Selection Metrics
Since it was most important for us to implement a test selection strategy that would miss
as few test failures as possible, while at the same time reducing the execution time of the
selected suite, we chose metrics based on these conditions that we evaluated our strategies
on.

Every sample falls into one of the four following categories.

True Positives (t p), samples that were selected when they should be selected.

True Negatives (tn), samples that were ignored when they should be ignored.

False Positives ( f p), samples that were selected when they should have been ignored.

False Negatives ( f n), samples that were ignored when they should have been selected.
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Recall, defined with equation 3.3, is a measure of how well the strategy includes the rel-
evant samples. Relevant samples in our problem are the samples causing a test failure, while
the non-relevant samples are those that did not contain any failures. Therefore, in order to
make sure that as few test failures as possible are missed, we want to maximize True Positives
while minimizing False Negatives, which is the case when the model has a high recall.

Recall =
t p

tp + f n
(3.3)

Selectivity, defined with equation 3.4, is a measure of how well the model correctly ignores
non-relevant samples. Since non-relevant samples are the ones without any failures, it is of
importance to the overall reduction of the model to have a high selectivity. Together recall and
selectivity are part of the definition for balanced accuracy in equation 3.2.

Selectivity =
tn

tn + f p
(3.4)

Selection reduction, defined with equation 3.5, is the proportion of all the samples that
the strategy points out as non-relevant, and therefore will not be selected. This metric is
important as it gives a measure of by what magnitude that the size of the selected test suite
can be reduced.

Selection reduction =
tn + f n

all samples
(3.5)

Time reduction, defined with equation 3.6, is a variant of selection reduction that takes
into account the average run time of every test.

Time reduction = 1 −
∑s∈D′

s ts∑a∈D
a ta

(3.6)

t, the average run time of a test.

D, the set of all samples.

D′, the set of all selected samples.

A specification from Axis was that the trade o� between coverage and time could be
determined on a case by case basis. This specification essentially translates to a trade o�
between recall and time reduction. As such, we created multiple instances of all selection
strategies for di�erent values on recall and time reduction.

Trade o�s between these two metrics were achieved in di�erent ways depending on the
strategy. In the case of the machine learning models, the trade o� was tweaked by varying
the class weight parameter to favor one class over the other. For the locality strategy, the
trade o� was achieved by varying the time interval for if a test had previously failed. The
recall-time-reduction trade o� for the high risk strategy was achieved by varying the amount
of tests that were selected by descending order of historical failure rate.
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3.5.3 Feature Importance
There are many approaches to evaluate feature importance and they each have their benefits
and limitations. We used a combination of di�erent approaches since we wanted the selected
features to be as general as possible so that they can be used for other projects. The methods
we used to evaluate feature importance were permutation importance, wrapper methods and
embedded methods.

Permutation importance
Permutation importance is a widely used method for testing the importance of a feature.
The basic intuition is to train a machine learning model using all features, permute a feature
in the test set and measure the di�erence that the model produces in the prediction perfor-
mance before and after permuting. Permuting a feature simply means to shu�e the order of
all the values of that feature. This makes the feature useless in the sense that it does not add
anything to the model’s prediction capability. If the prediction performance on the hold-out
test set decreases after permuting a feature, it is an indication that the permuted feature was
important for the prediction capability of the model. It should be noted that di�erent algo-
rithms use features di�erently, which means that features may exhibit di�erent permutation
importance scores across di�erent algorithms. For this reason, we evaluated the permutation
importance of all features on multiple machine learning algorithms to see if we could find a
pattern or generalize the result.

It is also important to note that permutation importance only takes into account the
independent contribution of a feature. It may be the case that a feature is important only
in the presence of another feature, therefore it cannot be guaranteed that features with high
permutation importance are the only important features. For this reason we use permutation
importance in combination with other feature selection methods such as wrapper methods.
An advantage of using wrapper methods over permutation importance is that they take fea-
ture dependence into account [14].

Wrapper methods
There are three types of wrapper methods; forward selection, backward elimination and bi-
directional elimination. Forward selection starts by using each feature individually to train
one model each. The feature that resulted in the best prediction is kept and the process
is repeated again with the remaining features. Backward elimination works in the same way
with the di�erence that the first stage includes all features and they are eliminated one by one.
Bi-directional elimination is a combination of both methods. Due to computation time and
framework limitations, we only evaluated forward selection on our best performing model.
The results are presented in Section 4.2.

Embedded methods
Embedded feature importance methods come from algorithms that have their own built-
in feature selection methods. We used the embedded feature importance methods available
from the frameworks for the tree-based algorithms that we used. In the case of Decision Tree
and Random Forest the importance method used was Gini Importance, also called Mean
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Decrease Impurity (MDI). MDI is measured by summing the number of splits that include
the feature, in proportion to the number of samples that it splits [7]. In ensemble methods,
the MDI importance for a feature is calculated across all trees. For XGBoost we used the
average gain of splits which uses the feature, as this was the most similar to MDI out of the
alternatives.

3.5.4 Scalability
To answer RQ3 about how well the models scale with available data we performed two types
of evaluations. Both evaluations were performed on three models, XGBoost, Decision Tree, and
Random Forest to investigate any scalability di�erences between the models.

The first evaluation we performed was to limit the available data points in the data set.
We evaluated the data set at 50 di�erent evenly spaced sizes, going from 2% up to 100% of
the data. For each such specified size we randomly took a subset of changes matching the
size and filtered the data set to only contain those. Then for each such filtered data set we
evaluated the model with a 5-fold cross validation as described in Section 3.4.2. This process
was repeated five times for each size for a more accurate answer. Between each iteration the
split identifier in the data set was reset to new random value for each change.

Next, we evaluated how the amount of tests in the test suite a�ected the model. We
evaluated all possible sizes of test suites, from only one test up to all tests being included. For
each size of test suite a random subset of the tests were selected and after filtering the data
set to only contain those tests the model was evaluated. This process was repeated 20 times
for each size, each time picking a new random subset of tests to include in the filtered data
set.
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Chapter 4

Results

This chapter includes all the results and findings from the thesis work.

4.1 Selection Performance
To measure selection performance, we evaluate each strategy using the metrics described in
Section 3.5.2. Reduction or time reduction is plotted as a function of recall. The strategy with
the best selection performance is the one that has the majority of its points above the other
curves, as this indicates that it has the highest values achievable in regards to both metrics.

The results of evaluating each heuristic on the data set is presented in Figure 4.1. The
departments current strategy does not include any levels of granularity, thus it is represented
as a single point. The random selection strategy was not simulated. Instead it is theoretical
recall and reduction when using p as a probability to select a test, where p is selected from
the range p ∈ [0, 1]. Because we have a probability p of selecting a test, that means p of the
test failures will be selected, giving us a recall of p. Conversely since p tests are selected, 1− p
are ignored, meaning reduction will be 1 − p. This gives us the line equation 4.1.

reductionrandom = 1 − recallrandom (4.1)

The locality strategy uses a di�erent time window for the previous fail for each point,
going from as low as possible to the highest possible. Finally the high risk test strategy is
evaluated at each point by adding a test case to the selection strategy, starting with the test
case that has the highest failure rate and continuing in order of decreasing failure rate.

From the Figure 4.1 we can clearly see that the Locality Strategy outperforms the other
strategies by a large margin when reduction is more than 60%. When reduction is less than
60% the Locality Strategy and the High Risk Test Strategy have similar results.
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Figure 4.1: Trade o� between recall and reduction for heuristics.

4.1.1 Machine Learning and Baselines
The best performing heuristic from Figure 4.1 and department current strategy were selected
as baselines to be compared with each of the machine learning algorithms. Every algorithm
is trained with 5-fold cross validation using the best hyperparameters that were found from
Table A.1, and the resulting scores are averaged over each fold. To obtain di�erent trade o�s
between recall and time reduction, each model is retrained using varying amounts of class
weights. Weighting towards a class means that the algorithm will favor that class during
training. The results are then plotted against each other as seen in Figure 4.2.

Method Recall Time reduction Changes without tests Overhead (415 changes)
XGBoost 52.9% 96.9% 71.2% 6 h
Current 2.93% 94.7% 0% 21 h

Table 4.1: Comparison between XGBoost and department current
strategy for similar time reductions (similar testing time). XGBoost
recommends to run 0 tests in 71% of changes, which reduces the to-
tal overhead time of 415 changes to 6h instead of 21h when always
running tests.

The overhead is the time that is required to run GUI tests, excluding the run time of the
individual test cases. Through experimental results obtained from a test engineer at Axis, the
overhead for an individual change was 3 minutes when running the GUI test on a physical
device, and 6 minutes when using an emulator. In Table 4.1 we compare the overhead using
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Figure 4.2: Trade o� between recall and time reduction for all ML
strategies against the best heuristic. The filled area under the locality
strategy indicates situations where it outperforms other strategies.

XGBoost, the strategy with the best selection performance, with department current strategy.
We tested the XGBoost algorithm on 415 changes and computed total overhead on these
changes for both strategies. In 71% of changes XGBoost recommends to not select any tests,
therefore there is no overhead for these changes. Department current strategy will always run
a test for each change, which means that there will be an overhead associated with every
change.

4.2 Feature Importance
This section presents the results from the di�erent methods of evaluating feature importance,
as described in Section 3.5.3. The models used here were trained using the same data and
hyperparameters as used in Section 4.1, with balanced class weights.

The embedded feature importance results presented here are based on Decision Tree,
Random Forest and XGBoost respectively. Gini importance was used as feature importance
criteria for Decision Tree and Random Forest, while gain was used for XGBoost. The 20
highest scoring features using gini importance for Decision Tree and Random Forest are
plotted in Figures 4.4 and 4.5 respectively. The gain importance score for XGBoost for the
20 highest scoring features are plotted in Figure 4.6.

Results of the permutation importance method using Decision Tree, Random Forest and
XGBoost are presented in Figures 4.7, 4.8 and 4.9 respectively. Every feature in the test set was
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Figure 4.3: Magnified image over trade o� between recall and time
reduction for all ML strategies against the best heuristic. The filled
area under the locality strategy indicates situations where it outper-
forms other strategies.

permuted 5 times between predictions. The mean importance for each feature was calculated
as the drop in balanced accuracy score averaged over the 5 iterations. The mean importance
for the 20 highest scoring features are plotted in the figures with the standard error between
the 5 iterations.

Using forward selection as wrapper method with the XGBoost model on all features from
Table A.1, starting with 1 feature selected and ending at 35 features selected, the highest
scoring feature combination was found when 17 features were used. They can be summed up
to the following:

• 12 author features (out of 29 total)

• Ext_png: Files with PNG file format extension.

• File_authors_604800_var: Variance of number of authors per file in the last 7
days.

• File_authors_1209600_var : Variance of number of authors per file in the last 14
days.

• File_authors_7776000_var: Variance of number of authors per file in the last 90
days.

• Path_44: Change ratio of files in one of the directories.
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Figure 4.4: Decision tree gini feature importance.
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Figure 4.5: Random forest gini feature importance.
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Figure 4.6: XGBoost feature importance based on gain.
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Figure 4.7: Permutation importance for Decision Tree averaged over
5 attempts. The error bar represents standard error.
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Figure 4.8: Permutation importance for Random Forest averaged
over 5 attempts. The error bar represents standard error.
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Figure 4.9: Permutation importance for XGBoost averaged over 5
attempts. The error bar represents standard error.

4.3 Scalability
The results from the scalability evaluations are presented here. For each model, described in
Section 2.4, it was evaluated how the amount of changes and how the amount of test cases
in the training and validation set a�ect the performance of the model. For each evaluation
creating training and validation subsets and retraining a new model. The results from varying
the amount of changes can be found in Figures 4.10, 4.11 and 4.12, while the results from
varying the amount of test cases can be found in Figures 4.13, 4.14, and 4.15. The figures are
all structured in the same way, presenting two graphs, one with recall and one with reduction.
The graphs show the median, mean with a standard deviation, and a rolling mean.

Additionally there is a graph that shows how recall, selectivity, and balanced accuracy are
a�ected by the number of changes available in the data set. The evaluations were performed
on the XGBoost model and the results are presented in Figure 4.16.

Lastly in Figure 4.17 we see how long it takes in seconds to train each model. In this figure
we have included all the models we have evaluated.
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Figure 4.10: The graph on the left shows how the recall of an XG-
Boost model is a�ected when increasing the amount of changes avail-
able in the data set. On the right we have a similar graph for reduc-
tion. The error bar represents standard error.
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Figure 4.11: The graph on the left shows how the recall of a Ran-
dom Forest model is a�ected when increasing the amount of changes
available in the data set. On the right we have a similar graph for
reduction. The error bar represents standard error.
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Figure 4.12: The graph on the left shows how the recall of a Deci-
sion Tree model is a�ected when increasing the amount of changes
available in the data set. On the right we have a similar graph for
reduction. The error bar represents standard error.
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Figure 4.13: The graph on the left shows how the recall of an XG-
Boost model is a�ected when increasing the amount of tests avail-
able in the test suite. On the right we have a similar graph for re-
duction. The error bar represents standard error.
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Figure 4.14: The graph on the left shows how the recall of a Ran-
dom Forest model is a�ected when increasing the amount of tests
available in the test suite. On the right we have a similar graph for
reduction. The error bar represents standard error.
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Figure 4.15: The graph on the left shows how the recall of a Decision
Tree model is a�ected when increasing the amount of tests available
in the test suite. On the right we have a similar graph for reduction.
The error bar represents standard error.
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Figure 4.16: The graph shows how the Balanced Accuracy, based on
Recall and Selectivity, of an XGBoost model is a�ected when varying
the amount of changes available in the data set. The mean is plotted
with an error bar representing a standard error. The equations can
be found in Section 3.5.
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Figure 4.17: Time required to train the models based on size of train-
ing data set. It was measured by taking the di�erence in time from
before and after training.
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Chapter 5

Discussion

This chapter discusses the result from the previous chapter with the aim of answering the
research questions of the thesis.

5.1 Selection Performance
In Figure 4.2 we see that the ML algorithms perform significantly better than the baseline in
the more balanced trade o� regions. The di�erences seem to diminish between the strategies
the more unbalanced the trade o� between recall and time reduction becomes. The best
performing algorithm was XGBoost, which had most of its points above the other curves in
Figure 4.2, closely followed by Random Forest, Decision Tree, Support Vector Machine and
finally, the Locality Strategy. However, other aspects that are worth taking into consideration
when choosing one of these algorithms are training time and complexity.

Training time could be a�ected by the choice of hyperparameters. For example, one hy-
perparameter was the number of trees to build in the forest, and we performed a randomized
grid search over 100 to 5000 trees which is shown in Figure A.1 as n_estimators. Over
the 100 iterations that the grid search performed, we can see in Figure A.2 that it found the
most optimal number of trees to be 4511. A choice of a significantly lower number of trees
might have reduced performance slightly but improved the training time by a large amount.
However, for our purposes the training time was of less importance since we, as stated in
RQ1, were interested the selection performance of machine learning algorithms.

An advantage of the tree-based algorithms over SVM, as mentioned in Section 2.4.2, was
that they did not require normalization of features. In addition, they do not require one-
hot encoding of categorical features. The reduced implementation complexity of tree-based
algorithms, in combination with their better performance and linear training times shown
in Figure 4.17, indicate that they are better suited for this type of problem than SVM.

Further, we see in Figure 4.3 that while retaining the time reduction of department current
strategy (94.7%), the recall can be increased from 3% to 40% using locality strategy or 60% using
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XGBoost. In other words, without increasing the current time of GUI testing, a much higher
recall can be achieved using either of the two new strategies.

5.2 Feature Importance
The top 3 features found using permutation importance with XGBoost, which was the best
performing algorithm, are features solely based on test history data. This is also the case using
the embedded method and permutation importance methods with Random Forest shown in
Figure 4.5 and Figure 4.8 respectively. In the permutation importance graphs, most of the
remaining permuted features either cause a standard deviation that overpowers the perfor-
mance score or cause an insignificant performance score to be considered as independently
important. Therefore it can be said that test related features are independently good at pre-
dicting test failures.

The embedded methods for decision tree, shown in Figure 4.4, and random forest, shown
in Figure 4.5 are both based on gini importance. A drawback of gini importance, also known
as Mean Decrease in Impurity (MDI), is that it favors variables that have many unique val-
ues [7]. We see in both graphs that TimeSincePrevFail, FailureRate and TestAge are the
features that stand out the most. FailureRate can at most have 35 unique values, since there
are 35 di�erent test cases. Therefore the gini importance for FailureRate is not due to a high
number of unique values. As TestAge is the relative time between a change and a modified
test, this feature has many unique values due to most changes having unique timestamps.
This is also reflected in Table A.1 showing unique values for all features, where TestAge has
40780 unique values. TimeSincePrevFail also has a high number of unique values at 12017.
The high number of unique values could be a reason why TestAge and TimeSincePrevFail re-
ceive high gini importance scores. However, they are also one of the most important features
using the permutation importance methods for tree-based algorithms, which can be verified
with Figures 4.8 and 4.9. Therefore we can conclude that TestAge and TimeSincePrevFail are
not only favored due to having many unique values, they also a�ect prediction performance
negatively when they are permuted, and thus are important features. Other features with
high gini or gain importance were number of authors, number of revisions, lines of code and
project structure (path).

We also saw in Section 4.2 that forward selection found individual authors to be impor-
tant features. The author feature was not very prominent when using the embedded and
permutation importance methods. This implies that authors are not important features on
their own, but are dependent features that are important together, which is exactly the rela-
tionship that wrapper methods are known to capture [14].

Machalica et al. found that their best performing model used file extensions, number of
changes made to modified files, historical failure rates for tests, project name and minimal
distance as features [9], of which we included the first three. Using permutation importance
and embedded feature performance methods of tree-based algorithms we have also found
that these features are important for predicting test failures. In addition, we also found that
authors, test age, lines of code and project structure showed high potential as being important
features for test selection.

44



5.3 Scalability

5.3 Scalability

From Figures 4.10, 4.11, and 4.12, we can clearly see an improvement in recall as the amount
of training data is increased. However, reduction is simultaneously decreasing. Notably in
Figure 4.10, the reduction is reduced from about 99% to 94%. From Section 3.3.1 we know that
the amount of failures in the complete data set are approximately 1%, hence a change in recall
can at most a�ect the reduction as much. This means that the 5% decrease in reduction is not
only caused by the increase in recall, and the model is not improving in both aspects. To see
if the model is improving overall we must look at another measure. In Figure 4.16 we see how
the balanced accuracy varies with the amount of training data. Balanced Accuracy is a good
measure of overall performance since it depends on both Recall and Selectivity, which refer
to how well the model is correctly labeling data for the classes select and ignore respectively.
Importantly, recall and selectivity are relative to the class sizes rather than absolute, which
makes balanced accuracy unbiased towards either. In the figure we can see that the balanced
accuracy is indeed improving, because recall is increasing much faster than the selectivity is
decreasing.

In Figures 4.13, 4.14, and 4.15 we evaluated how performance varies with the amount of
test cases available in the data set. Here all figures show similar increase in recall. Interest-
ingly, for the Decision Tree model, there seems to be an increase in reduction as well. We are
uncertain as to why this is the case, however given this result, the Decision Tree model scales
best with additional test cases.

One interesting scenario is when a new test case is added. Since all the ML-strategies and
most heuristics rely on historical data of the individual test cases, their selection performance
will most likely vary when a new test is introduced. This could be evaluated by introducing a
test case to the test set but not the training set, and then evaluate the model’s performance.
Additionally, the test case could be introduced gradually to the training set to see how the
performance evolves as the data for the test case increases. Unfortunately there was no time
to perform such an evaluation. One advantage the machine learning models have over the
heuristics are the software change features, which could be used to predict failures for new
test cases.

In Figure 4.17 we find an estimate for how long it takes to build a model given the amount
of changes in the training set. Here we can see the advantage XGBoost and Decision Tree have
over Random Forest and SVM. However it is important to note that the time complexity of
Random Forest could be due to the number of estimators it depends on, as was explained in
Section 5.1.

We found that there were diminishing returns when introducing additional data, for
both new changes and new test cases, shown in Figures 4.10 and 4.13. One could possibly
achieve further improvements to the rate of which the model learns by instead introducing
data from new environments. In our context, a new environment could be using another
programming language or another project. A reason as to why this could help is because it
would expand the domain of data points. However, it could also be the case that there is
no transfer learning between projects, meaning that the learning from one project does not
apply to another. Therefore we think it could be interesting to further research the a�ect of
using several projects, and the transfer-learning potential.
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5.4 Alternative Solutions

As mentioned in Section 3.1.2 we discussed other solutions with an expert engineer at Axis
who had been involved in another internal project where machine learning was used for RTS.
However, the machine learning solution they designed was outperformed by another strategy
that simply involved running tests that had failed in the past couple of months. We thought
it would be interesting to see how the latter strategy of the two would perform against our
solution, hence we designed the Locality strategy. However, instead of only selecting tests that
had failed in the past couple of months, we experimented with di�erent time intervals. As
can be seen in Figure 4.1, the Locality Strategy has been the best performing heuristic in our
evaluation. Using only test history data it is almost able to keep up with the ML algorithms
in terms of selection performance.

The second best performing heuristic was the high risk test strategy. From Figure 4.1 we
can see that its performance is similar to Locality strategy when recall is favored, however it
performs worse when reduction is favored. Complexity wise, the High risk test strategy is easier
to implement since it only requires the failure rate of all test cases to make its selection.

The benefits of the Random selection strategy are that it is very easy to implement and
requires no historical data. The drawback is however that its selection performance is very
poor. Even so, it manages to outperform department current strategy based on time reduction
and recall.

An alternative method that we did not evaluate is static analysis as a method for RTS.
Static analysis of the program code can be performed to find and select test cases that are
relevant to the changed source code. Due to how GUIs are programmed in visual environ-
ments, they are not well-typed and are subject to frequent changes. This makes it di�cult to
use them when performing static analysis [22].

As mentioned in Section 3.5.2, a requirement from Axis was that the trade o� between
coverage and testing time should be easily adjustable depending on the use case. If testing
times are hindering the development, they want to be able to sacrifice some amount of test
coverage for time, and vice versa. This is another reason why traditional static test selection
strategies are not as suitable. Strategies such as these can only be performed at di�erent gran-
ularity levels broadly divided into file or function level analysis [6]. In contrast, we have seen
that the binary machine learning classifiers that we have used are able to adjust continuous
weights to favor a certain class over another, ultimately allowing for finer adjustment of the
trade o� between coverage and time. In the case of the classes being defined as select test
and ignore test, higher recall or higher reduction can be achieved by weighing the algorithm
towards one of these classes. A trade o� between coverage and time is therefore adjustable
to a higher degree with a binary classifier than a static code analysis.

Despite the di�culty of performing static analysis of GUIs, it has been used to create high
level graphical representations of code through reverse engineering. This enables reasoning
between user interaction and the system at a higher level of abstraction, and makes it possible
to define new GUI test cases from the graphical representations. [18] However, in the case of
Axis where several GUI test cases have already been defined, they would have to be manually
mapped to such graphical representations in order to bridge the gap between source code and
test cases, which would require manual intervention every time a new test case is introduced.
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5.5 Limitations
The machine learning implementations in this thesis are limited to the ones provided by the
scikit-learn and XGBoost frameworks for Python, due to their wide support and ease of use.
All of the code except for the data collection, written in the Bash command language, was
written using Python version 3.7. Python was chosen since both of us had experience using it
and since it has wide support within the machine learning and data science community.

One of the early problems we faced was to collect and process the historical data. Since
there was no available data prior to the thesis work, we had to start from the beginning. The
process of collecting data was time consuming and limited us in exploring other aspects that
could improve the system.

5.6 Validity Threats
As explained in Section 3.4.2 we imposed several conditions on the training and tests sets to
simulate a scenario where the models would be used. This resulted in varying ratios between
their sizes. If the test set size is too small, the variance in the result will be high. If the training
set size is too small, the model may not learn enough.

Since a requirement was that a change could only be present in either the training or test
set, the variance in failures between changes could a�ect the distribution of the classes in
the two sets. The variation in amount of failures per change was quite large, this was due to
almost all changes having no failures and a small amount of changes containing almost all
failures. Depending on how the split is made on changes, the result will be a�ected. This
is reflected by the variance in the Figures 4.10, 4.11, and 4.12. However, the same split on
changes is used for all strategies so that they can be compared. This means that the lines in
Figure 4.2 may be shifted either in x-direction or y-direction if a new split was decided, but
they will remain in proportion to one another. In other words, the variance in the result from
splitting the changes di�erently should a�ect all methods equally.

5.7 Ethical Considerations
While the data that we collected comes from sources that are available to access for all Axis
employees, there are cases where it can be used for unethical purposes. For instance, we gather
data on which author who has made a certain change. In conjunction with other metrics that
we collected, such as lines of code and test failure data, the data can theoretically be used to
analyze authors’ working patterns. Therefore we made the authors in this report anonymous
by changing their names to numbers in the data. In future works we also recommend that if
authors are used as features, names should be made anonymous, so that the data cannot be
used to make claims about specific authors.
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5.8 Future Work
We originally collected data for di�erences between changes down to source code level. Our
intention was to use this data for string comparison with the source code for individual
test cases. Similarly to how we did with our cross feature described in Section 3.2.2, one
could compare similar words in the source code with the test case code to create additional
cross features that could potentially further improve the learning of the machine learning
algorithms.

As mentioned in the end of Section 5.3, another interesting prospect is to include the his-
torical data of multiple software projects to train the same algorithm, which is called transfer
learning. With general features like the ones we used, it should be possible to have a model
that can learn from many di�erent projects. We have seen how machine learning prediction
performance scales with more data, and if the data is more varied it can also help to reduce
the chance of overfitting.

From the results in Section 4.2 we saw that test related features were highly relevant for
the prediction performance of the ML-algorithms. Therefore we are interested in investigat-
ing other test related features that could improve the prediction performance. For GUI tests
one could investigate features explaining what type of GUI elements and navigation types
that are used. For instance lists, drawers or buttons, and clicks, scrolls or swipes.
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Chapter 6

Conclusion

Throughout this report we have studied how machine learning can be used as an RTS strat-
egy. We have shown how to design a system that uses historical data on code changes and test
outcomes to predict if a test should be run or not. We have shown how to prepare the data so
that it can be processed by di�erent algorithms, and how the algorithms can be trained and
evaluated. We have concluded that although more primitive solutions can achieve promis-
ing results, using machine learning yields even better performance. We found that it could
significantly reduce waiting time for developers when using regression testing during devel-
opment, while at the same time ensuring that as many regressions as possible are caught. We
found that when favoring test coverage we were able to achieve 91% recall and 52% time re-
duction. Conversely, when maintaining the same time reduction as the current strategy of
the department, the recall was increased from 2% to 53%, with no tests being selected in 71.2%
of changes.

We have shown how machine learning can be used to find information that is impor-
tant for determining whether a test will fail. Using di�erent feature importance methods
we showed that test age, authors, revisions, failure rates, time since previous failure, file ex-
tensions, lines of code and changed directories are all features that have an e�ect on test
outcomes.

Finally, we conclude that tree-based machine learning models scale well with the type of
data used. We found that the initial growth in performance has been passed and saw dimin-
ishing returns when introducing additional data. This indicates that the amount of data is
su�cient, and for further improvements one should explore additional feature engineering
or introducing data from new environments. Furthermore we found that the most e�cient
algorithm, in terms of performance versus training time was XGBoost.
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Appendix A

Design

A.1 Features

Table A.1: All features, as they are fed as inputs to the ML-
algorithms, including number of distinct values.

# Feature Unique values Description
1 Author_1 2 Author of the change (true/false)
2 Author_10 2
3 Author_11 2
4 Author_12 1
5 Author_13 2
6 Author_14 2
7 Author_15 2
8 Author_16 2
9 Author_17 2
10 Author_18 2
11 Author_19 2
12 Author_2 2
13 Author_20 2
14 Author_21 2
15 Author_22 2
16 Author_23 2
17 Author_24 2
18 Author_25 2
19 Author_26 2
20 Author_27 2
21 Author_28 2
22 Author_29 2
23 Author_3 2
24 Author_4 2
25 Author_5 2

Continued on next page
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A. Design

Table A.1 – continued from previous page
# Feature Unique values Description

26 Author_6 2
27 Author_7 2
28 Author_8 2
29 Author_9 2
30 AvgRuntime 35 Average run time of the test
31 Contributors_max 21 Max # contributors for a changed file
32 Contributors_mean 422
33 Contributors_min 17
34 Contributors_sum 201
35 Contributors_var 803
36 Ext_2 1 # changed files with file extension
37 Ext_Gemfile 2
38 Ext_aar 2
39 Ext_apk 2
40 Ext_eap 6
41 Ext_env 2
42 Ext_gitignore 2
43 Ext_gradle 3
44 Ext_java 37
45 Ext_json 6
46 Ext_kt 95
47 Ext_lock 2
48 Ext_md 2
49 Ext_orig 2
50 Ext_out 1
51 Ext_png 13
52 Ext_properties 3
53 Ext_py 2
54 Ext_txt 5
55 Ext_xml 43
56 FailureRate 24 The test’s historical failure rate
57 File_authors_1209600_max 6 Max # authors per file in the last 1209600 sec
58 File_authors_1209600_mean 165
59 File_authors_1209600_min 5
60 File_authors_1209600_var 227
61 File_authors_2592000_max 8
62 File_authors_2592000_mean 244
63 File_authors_2592000_min 7
64 File_authors_2592000_var 410
65 File_authors_604800_max 6
66 File_authors_604800_mean 110
67 File_authors_604800_min 5
68 File_authors_604800_var 134
69 File_authors_7776000_max 10
70 File_authors_7776000_mean 306
71 File_authors_7776000_min 10
72 File_authors_7776000_var 580
73 File_changes_1209600_max 20 Max # changes per file in the last 1209600 sec
74 File_changes_1209600_mean 358
75 File_changes_1209600_min 12
76 File_changes_1209600_var 693
77 File_changes_2592000_max 29
78 File_changes_2592000_mean 487

Continued on next page
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A.1 Features

Table A.1 – continued from previous page
# Feature Unique values Description

79 File_changes_2592000_min 20
80 File_changes_2592000_var 912
81 File_changes_604800_max 15
82 File_changes_604800_mean 258
83 File_changes_604800_min 12
84 File_changes_604800_var 462
85 File_changes_7776000_max 62
86 File_changes_7776000_mean 647
87 File_changes_7776000_min 38
88 File_changes_7776000_var 1210
89 Files 117 # files in the change
90 FilesWithMoreThan1Authors 66 # files with more than 1 author
91 FilesWithMoreThan2Authors 31
92 FilesWithMoreThan3Authors 12
93 FilesWithMoreThan4Authors 5
94 FilesWithMoreThan5Authors 4
95 GroupLabelKMeans_0 2 If the test belongs to test group 0
96 GroupLabelKMeans_1 2
97 GroupLabelKMeans_10 2
98 GroupLabelKMeans_11 2
99 GroupLabelKMeans_12 2
100 GroupLabelKMeans_13 2
101 GroupLabelKMeans_14 2
102 GroupLabelKMeans_15 2
103 GroupLabelKMeans_16 2
104 GroupLabelKMeans_2 2
105 GroupLabelKMeans_3 2
106 GroupLabelKMeans_4 2
107 GroupLabelKMeans_5 2
108 GroupLabelKMeans_6 2
109 GroupLabelKMeans_7 2
110 GroupLabelKMeans_8 2
111 GroupLabelKMeans_9 2
112 Loc_added_max 208 LOC added for file with max LOC added
113 Loc_added_mean 972
114 Loc_added_min 64
115 Loc_added_sum 516
116 Loc_added_var 1555
117 Loc_max 516 # LOC in changed file with max LOC
118 Loc_mean 1642
119 Loc_min 271
120 Loc_removed_max 144
121 Loc_removed_mean 690
122 Loc_removed_min 37
123 Loc_removed_sum 353
124 Loc_removed_var 1095
125 Loc_sum 1432
126 Loc_var 1897
127 Path_0 2 # changed files in directory
128 Path_1 8
129 Path_10 2
130 Path_11 2
131 Path_12 2

Continued on next page
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A. Design

Table A.1 – continued from previous page
# Feature Unique values Description

132 Path_13 2
133 Path_14 2
134 Path_15 1
135 Path_16 1
136 Path_17 1
137 Path_18 2
138 Path_19 1
139 Path_2 2
140 Path_20 2
141 Path_21 2
142 Path_22 2
143 Path_23 2
144 Path_24 2
145 Path_25 2
146 Path_26 2
147 Path_27 1
148 Path_28 2
149 Path_29 2
150 Path_3 2
151 Path_30 2
152 Path_31 2
153 Path_32 2
154 Path_33 2
155 Path_34 2
156 Path_35 2
157 Path_36 2
158 Path_37 2
159 Path_38 3
160 Path_39 2
161 Path_4 2
162 Path_40 5
163 Path_41 2
164 Path_42 40
165 Path_43 6
166 Path_44 13
167 Path_45 8
168 Path_46 7
169 Path_47 9
170 Path_48 9
171 Path_49 9
172 Path_5 2
173 Path_50 2
174 Path_51 29
175 Path_52 11
176 Path_53 1
177 Path_54 35
178 Path_55 19
179 Path_56 8
180 Path_57 4
181 Path_58 2
182 Path_59 2
183 Path_6 2
184 Path_60 14

Continued on next page
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A.1 Features

Table A.1 – continued from previous page
# Feature Unique values Description

185 Path_61 5
186 Path_62 4
187 Path_63 5
188 Path_64 5
189 Path_65 7
190 Path_66 2
191 Path_67 21
192 Path_68 9
193 Path_69 6
194 Path_7 1
195 Path_70 49
196 Path_71 59
197 Path_8 2
198 Path_9 2
199 Revisions_max 290 # revisions in file with max revisions
200 Revisions_mean 1024
201 Revisions_min 92
202 Revisions_sum 626
203 Revisions_var 1350
204 TestAge 40780 Test age relative to change
205 TestAndChangeWordsSimilarity 4181 Cosine similarity score
206 TestDate 22 Time of test modification
207 TimeSincePrevFail 12017 Time since test previously failed
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A. Design

A.2 Hyperparameters

1 decision_tree_parameters = {
2 ’criterion ’:[’gini ’,’entropy ’],
3 ’max_depth ’

:[2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,15 ,20 ,30 ,40 ,50 ,70 ,90] ,
4 ’min_samples_leaf ’:[1 ,2 ,3 ,4 ,5]
5 }
6

7 random_forest_parameters = {
8 ’criterion ’:[’gini ’,’entropy ’],
9 ’n_estimators ’: list(range (100 , 5000)),

10 ’min_samples_split ’: list(range (1, 11)),
11 ’min_samples_leaf ’: list(range (1, 11)),
12 ’bootstrap ’: [True , False],
13 ’max_depth ’: list(range (2 ,15))
14 }
15

16 xgboost_parameters = {
17 " learning_rate " : stats. uniform (0.05 , 0.30) ,
18 ’min_child_weight ’: stats. uniform (1 ,10) ,
19 ’gamma ’: stats. uniform (0.5 , 5),
20 ’subsample ’: stats. uniform (0.6 , 1.0) ,
21 ’colsample_bytree ’: stats. uniform (0.3 , 0.7) ,
22 ’max_depth ’: list(range (3, 20))
23 }
24

25 svm_parameters = {
26 ’C’: stats. loguniform (1, 1000) ,
27 ’gamma ’: stats. loguniform (0.0001 , 1),
28 ’kernel ’: [’rbf ’]
29 }
30

31

Figure A.1: Specified hyperparameters for the grid search.
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A.2 Hyperparameters

1 decision_tree_parameters = {
2 ’criterion ’: ’gini ’,
3 ’max_depth ’: 9,
4 ’min_samples_leaf ’: 5
5 }
6

7 random_forest_parameters = {
8 ’n_estimators ’: 4511 ,
9 ’min_samples_split ’: 4,

10 ’min_samples_leaf ’: 5,
11 ’max_depth ’: 7,
12 ’criterion ’: ’entropy ’,
13 ’bootstrap ’: False
14 }
15

16 xgboost_parameters = {
17 ’colsample_bytree ’: 0.35388593688015507 ,
18 ’gamma ’: 1.9487572645688402 ,
19 ’learning_rate ’: 0.09836638617620133 ,
20 ’max_depth ’: 4,
21 ’min_child_weight ’: 7.2435404813379325 ,
22 ’subsample ’: 0.895633685837714
23 }
24

25 svm_parameters = {
26 ’C’: 3.9721107273819114 ,
27 ’gamma ’: 0.011400863701127315 ,
28 ’kernel ’: ’rbf ’
29 }
30

31

Figure A.2: Selected hyperparameters by the grid search.
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Appendix B

Test Case History

476 462 448 434 420 406 392 378 364 350 336 322 308 294 280 266 252 238 224 210 196 182 168 154 140 126 112 98 84 70 56 42 28 14 0
Days back relative to latest change

TestID_29
TestID_32
TestID_28
TestID_35
TestID_34
TestID_33
TestID_31
TestID_30
TestID_14

TestID_1
TestID_24
TestID_27
TestID_25
TestID_23
TestID_26
TestID_18

TestID_4
TestID_11
TestID_16

TestID_3
TestID_2
TestID_5

TestID_19
TestID_17

TestID_6
TestID_13
TestID_15
TestID_10
TestID_12
TestID_20

TestID_8
TestID_9
TestID_7

TestID_22
TestID_21

Timeline for all tests

Figure B.1: Timeline graph showing when tests have failed. On the
y-axis we have di�erent test IDs and on the x-axis we have how many
days ago the change was published. The dots represent when a break
happened. The lines show when that particular test have been active.
Where the dashed line is before the test was in production, and the
solid line afterwards.
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Maskininlärning för testurval

POPULÄRVETENSKAPLIG SAMMANFATTNING Saam Mirghorbani, Viktor Claesson

Intelligenta urval av tester kan göras med hjälp av maskininlärning. För projekt där
historisk data för kodändringar och testresultat finns att tillgå, finns det potential för
att använda precisa metoder för testurval. Dessa kan justeras till att föredra mindre
eller större urval beroende på hur snabb återkoppling som önskas av utvecklaren.

I en värld där allt fler komplexa system utveck-
las sätts stora krav på kvalitetssäkring. När allt
fler ändringar sker i stora system växer behovet
av snabbare och mer träffsäker testning. För att
möta behovet krävs automatiska och allt mer in-
telligenta metoder för testurval som kan anpassas
efter både tids- och säkerhetskrav.

Har testet fallerat inom den
senaste veckan?

Har mer än fem utvecklare
varit involverade i

kodändringen?

ja

Uteslut testet

nej

ja nej

Uteslut testetVälj testet

Figur 1: Exempel på ett beslutsträd för testurval.

Trädbaserade algoritmer visar sig vara effektiva
på att göra testurval. I sin enklaste form består

dessa av olika påståenden som tillsammans kokar
ner till ett beslut om att antingen välja eller utes-
luta ett test från körningen.

Mer sofistikerade algoritmer består av flera en-
kla träd, likt exemplet i figuren, som tillsammans
stärker varandra och ger upphov till mer korrekta
beslut. Genom att applicera dessa algoritmer med
noga utvald information från datan kan man göra
en avvägning mellan att fånga fler fel och att ko-
rta testtiden utefter behov. I ett fall där träffsäk-
erhet prioriterades valdes 91% fallerande tester,
samtidigt som den totala testtiden kunde halveras.

Genom att applicera vårt system kan man intro-
ducera regressionstestning för varje ändring även
i projekt där testningsprocessen tar lång tid. En
fördel med detta är att man då kan hitta fler
fel tidigare under utvecklingsprocessen. I slutän-
dan leder detta till att längre felsökningar blir allt
färre, då problem kan handskas med så fort de
uppstår.
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