
Cactus -
The Cal Actor Clojure Language

Marcus Begic, Gabriel Borglund

BACHELOR’S THESIS | LUND UNIVERSITY

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2021-06

Acknowledgements
We would like to thank Sven Robertz, who was kind enough to find the time to
examine this project, even though it is uncommon to write a bachelor’s thesis
at LTH.

We would also like to thank our supervisor Jörn not only for teaching us
about CAL, Clojure, CSP, language design and more, but also for spending
hours in his office teaching us about the systems of global economies, corpora-
tions and life in general.

As a last note, thank you to Kirsty Shearer and Alisdair Milliken for their
graphical support.

Gabriel Borglund & Marcus Begic, 2021-03-18

1

Abstract
This thesis explores the possibility and practicality of creating an actor based
programming language on top of Clojure. It also gives an insight into the iter-
ations that the language went through to achieve it’s current form. We discuss
various design choices and limitations of the language, and suggest improve-
ments. Further some measurements were made to see how well an implementa-
tion of The Smith-Waterman algorithm scaled on different machines with dif-
ferent number of cores. We find that increased parallelization of the algorithm
grants improved performance and that in general the language’s performance
scales with more parallelization.

2

Contents
1 Introduction 5

1.1 Division of Work . 6

2 Background and Related Works 7
2.1 Cores and SMT . 7
2.2 Kahns Simple Language for Parallel Programming 7
2.3 CAL Actor Language . 7
2.4 Communicating Sequential Processes 9
2.5 Lisp . 9
2.6 Clojure . 9
2.7 The Smith-Waterman Algorithm 10
2.8 Striped Smith-Waterman . 11
2.9 The Theoretical Cap of the Number of Smith-Waterman Cells

Run In Parallel . 13

3 Implementation 14
3.1 Using core.async . 14
3.2 DataFlowChannel . 14
3.3 Designing The Cactus Macros . 15

3.3.1 Iteration One . 15
3.3.2 Iteration Two . 17
3.3.3 Iteration Three . 20
3.3.4 Parking DataFlowChannel 22

4 Research Component 26
4.0.1 Research Questions . 26
4.0.2 Hypothesis . 26

4.1 Methodology . 27
4.1.1 128 x 1024 Smith-Waterman 27
4.1.2 1024 x 1024 Smith-Waterman 27
4.1.3 Tighter Interval of Threads 28

4.2 Results . 29
4.2.1 128 x 4096 Smith-Waterman 29
4.2.2 1024 x 1024 Smith Waterman 31
4.2.3 Running the Algorithm With Different Thread Pool Sizes 32

5 Discussion and Future Work 33
5.1 Thoughts on the Language . 33
5.2 128 x 4096 Smith Waterman . 33
5.3 1024 x 1024 Smith Waterman . 35
5.4 128 x 4096 With Variable Thread Count 35
5.5 Future Work . 36

6 Conclusion 36

3

7 Appendix 38
7.1 Language Description . 38

7.1.1 Basic Structure of an Actor 38
7.1.2 Defining Actor State . 38
7.1.3 Defining Actor Guards . 38
7.1.4 Defining Actions . 38
7.1.5 Execution of Networks . 39
7.1.6 Defining a Network Entity 40

7.2 Simple Adder Actor, Cactus and CAL Comparison 41
7.3 Iteration One . 42

7.3.1 The SW-cell . 42
7.3.2 The Network . 43

7.4 Iteration Two . 43
7.4.1 The SW-cell . 43
7.4.2 The Network . 44

7.5 Iteration Three . 45
7.5.1 The SW-cell . 45
7.5.2 The Network . 46

7.6 SW-cell in CAL and in Cactus comparison 48
7.7 DataFlowChannel . 49

4

1 Introduction
The first computers where theorized in the beginning of the 19th century with
designs such as the Babbage engine [7]. Babbage never built his machine, but he
lay the groundwork for later iterations of computing machines. Alan Turing later
theorized about computers which could calculate everything that is computable.
These ideas led to the core concepts of modern computers. In the early 1950s
IBM built the first computer to turn a profit. The IBM 650, which utilized
vacuum tubes for its internal workings. However at approximately the same time
the TRADIC was introduced. It was the first computer to use transistors instead
of vacuum tubes. This transistor idea, was the start of the computer architecture
that we still see today. In 1965 one of the founders of Intel, Gordon More
observed that the number of transistors on an integrated circuit had roughly
doubled every two years. This observation is referred to as Moore’s law, but
it is to be understood not as a law but as a general projection of where things
have been going for the last 70 years. Today however we are beginning to see
the end of Moore’s law[9]. The size of the transistors in a normal mobile phone
are beginning to get close to the limit imposed by physics, where quantum
tunneling is set to be a problem. To solve the constant need for speed, another
way of gaining performance has been the utilization of parallelization. The idea
is not new but it has become more and more utilized in modern systems as
the economic and physical limits have started to impose restrictions on the size
of transistors. Today it is not uncommon to see an eight core processor in a
mobile phone. The problem with parallelization is however the need to not only
parallelize the hardware, but also the software.

The current mainstream way of writing parallel processes is utilizing threads.
However this mode of parallelization has also proven to be cumbersome. This
is something discussed in by Edward Lee in [6], where he reasons about the
hardships of using threads as a means of parallelization. He argues that the
current way of trying to ’prune’ parallel programs written using threads is a
fundamentally bad idea, as the programming model still is prone to failure even
after deploying rigorous code testing and coding practices.

However the article is not all doom and gloom as he argues for the fact that
it is not concurrent programs that are intrinsically bad, it is simply the current
model that needs refining.

Luckily threads are not the only model for achieving parallelization.
A different approach is the dataflow model, which is a model where separate

computational units send and receive tokens, to and from each other. No state
is shared state between these units, thus they can run in parallel. With more
units, more parallelization is achieved and thus more efficiency. Kahn[?] and
Hoare[4] showed that dataflow can provide both computational efficiency via
parallelization and formal reasoning about programs.

One such dataflow-language is the CAL Actor Language. Developed in the
early 2000’s at University of California by Jörn Janneck and Johan Eker, it has
since been been applied to various fields and even been adopted by the MPEG
group as a standard.[5] These perks made us want to create our own implemen-

5

tation, of a dataflow language, a domain specific language whose performance
scales with more parallelization. We reasoned that by extending the Clojure
syntax using macros it would be quite efficient to create our language without
writing our own compiler. Thus, we created Cactus, a Cal based actor language
embedded in Clojure. We then explore whether Cactus’ efficiency scales with
the number of available processing elements. This exploration took form in the
two questions: Is there a correlation between the number of threads in the un-
derlying thread pool and performance? and: How does the width of the stripe
in the Smith-Waterman algorithm affect the performance of the algorithm?

In this report the iterative process of designing Cactus is described in chrono-
logical order. A number of experiments are designed and conducted to measure
some parts of the performance of the language. These tests where conducted
to see if the goal of creating a language that would scale with more computing
cores, was reached. The results are then shown in the results section. Lastly
the features of the language are described, and some examples of how they are
used are shown.

1.1 Division of Work
There was no set division of work from the beginning. We worked a lot using pair
programming. This to make sure that we both were on the same track. After
the first crude version using core.async channels, was done, Marcus began
work on creating the specialized dataflow channels and the buffers. Gabriel in
the meantime, started writing the macros for the cactus language.

Since the dataflow channels were done earlier than the macros (which had
to be revised a couple of times), Marcus also started writing the report during
this time. For the final weeks of the project both Marcus and Gabriel focused
on writing the report and carrying out the testing of the performance of cactus
on different computer setups.

6

2 Background and Related Works
The idea that speed can be achieved via parallelization is not a new idéa, as it
dates back to the 50’s with the theorizing of supercomputers which were later
implemented in the 60’s and 70’s. The industry has grown massively, as almost
all sold microprocessors inside personal computers and phones are multi-core
processors. It is also a fact that all servers and data centers in the world today
run different kinds of computations in parallel.

The ever-present problem when working with parallel computation are tim-
ing issues, which materialize in the form of race conditions and deadlocks. Many
attempts have been made to try to solve these problems.

The idea of dataflow, where programs are data-driven. I.e. that the time
of execution of operations in a program, are directed by the availability of data
instead of a preset order of instructions, is not a new idea either. It is a form
of computation that was pioneered by Jack Dennis at MIT[10]

2.1 Cores and SMT
We often refer to cores in the report. However we use the term quite losely
as to refer to actual physical cores, but also to refer to cores that have enabled
simultaneous multithreading (SMT). That is when the number of cores is refered
to as 8, then in the intel processors there would only be 4 physical cores, and 2
SMTs for each core. This seemed to be the better way of handling the number
of cores since the performance was more in line with this definition than with
the actual number of physical cores.

2.2 Kahns Simple Language for Parallel Programming
In 1974, Kahn published a paper which described the semantics of a simple
language for parallel programming [?]. The syntax for this language was quite
close to ALGOL, but it featured ways to declare channels on which processes
could communicate by sending certain types of data. This approach bore some
similarity with an actor based language in that the processes were triggered by
the availability of data. In that article, Kahn formalize the language by thinking
of the program as a set of functions over their respective channel histories. He
then proceeded to prove some interesting properties about his program, more
concretely he could prove the output of a simple program and he argued that
the same way of formalization could be applied to larger programs (he also give
examples on how that has been done).

2.3 CAL Actor Language
Dataflow is a group of programming languages and models where the compu-
tation occurs in condensed units. Units output data to other units, forming
programs[10].

7

Belonging to this group is the CAL Actor Language. In CAL, actors form
the basic computational units[5]. Actors have ports where they receive data in
the form of tokens. These can be sent from other actors or networks. They can
also place tokens on their output ports. Internally, actors carry none or more
guards, these are conditions to which the tokens are held before computation
can proceed.

Actors may contain one or more sequential computations called actions each
of which may require an input pattern. If the input pattern is met for a certain
action, the actor fires the action. This means that it consumes tokens from its
input ports, performs the computation defined by the action and outputs any
tokens it produces on its output ports. If more tokens arrive that don’t fulfill
any pattern, they are buffered in FIFO queues in the input ports. Additionally,
an actor can contain an internal state which can be changed inside of the action
body.

A collection of connected actors, is called a network, connected networks,
actors and networks or basically any combination of the two that takes an input
and produces an output, are called entities. For example the actor below in
Listing: 1 shows an adder actor, that waits for input on the two channels A
and B. It then outputs the result on the channel C. However to run this adder
it has to run in a network of other actors. The most simple example would be
two actors that simply outputs one token, and connect these two to each input
port on the adder actor. This cluster of actors is now what we call a network.
Sometimes we don’t care about weather a producer of tokens is an actor or a
network. We then call that producer an entity. Consider a printing actor that
receives tokens on its input channel and prints them to the console. It does
not matter for the functionality of the printing actor weather it is a network or
an actor that is sending it tokens. It simply matters that it is connected to an
entity.
actor Add () A, B =⇒ C :

action [a], [b] =⇒ [a + b] end
end

Listing 1: A simple adder actor in CAL

8

2.4 Communicating Sequential Processes
In 1978 Tony Hoare published his paper on Communicating Sequential Pro-
cesses (CSP) [4]. CSP is a formal language that describes communicating asyn-
chronous processes were each process runs on it’s own processor. These processes
encapsulate some data structures or data and do not share any state with other
processes, all communication occurs via message-passing on non-buffered chan-
nels were inputs/outputs are explicitly declared. Internally, each process still
executes sequentially. Hoare uses Djikstra’s guarded commands that check if a
condition is fulfilled which dictates if a message can be passed or received, es-
sentially creating a blocking queue. Hoare’s model inspired many programming
languages such as Go and occam and became the foundation for core.async.
core.async uses CSP based channels between go processes and the guarded
commands to determine if an process can receive a message, while letting the
go macro expand to a thread confined process that can sequentially execute
Clojure code.

2.5 Lisp
Lisp is a functional programming language notably featuring macros. Calling
functions in lisp is done through using paranthesis. For example making an
addition the function + is called as follows: (+ 1 2). This expression will of
course evaluate to 3. This follows the basic syntax where the first element
of the expression (Which is actually just a list), is the name of the function
being called, and the rest of the elements are treated as input arguments. This
report also heavily depends on macros, however there are great resources online
explaining this better than we could ever do in this report. Hence we refer the
reader to these. One example is [3].

2.6 Clojure
Being a dialect of LISP, Clojures’ source code is a data structure in Clojure.
This powerful property allows us to extend the language at compile time using
macros. Macros are passed Clojure expressions and can do arbitrary computa-
tion at compile-time. The result of which are what any call to the macro runs,
at run-time. Macros are defined with the keyword: defmacro)

Clojure’s core.async library contains the go function. go defines a process
which is executed asynchronously. Clojure runs on the JVM and one can access
all of Java’s languages features including threads. core.async instantiates a
ThreadPool, processes are dispatched to the ThreadPool and executed. go
processes can receive and output values through channels, the operators <!
(take!) and >! (put!) are used to take and put values on the channels.
If there is nothing to take on the channel, core.async will park the process.
Parking releases the thread occupied by the process and waits until either a value
is put on the channel or a value is taken before execution might be continued.

9

2.7 The Smith-Waterman Algorithm
As a driving application and foundation for this project the Striped Smith-
Waterman algorithm is used. First written in Clojure using the core.async
library, and then implemented in Cactus.

Proposed in 1981, the Smith-Waterman algorithm is an important solution
to deciding if two sequences of nucleotides are related[8]. Seeing the sequence
of nucleotides as strings of characters, the question boils down to finding align-
ments of local regions in the two strings. These locally aligned regions might be
related parts of the DNA.

When comparing two strings A and B, the algorithm can either match char-
acters by selecting one identical character from each string, it can mismatch
by select two different characters and it can shift, selecting one character from
one string and leaving the other. Each operation contributes with a score or a
penalty. The question becomes to find the maximum local score from a sequence
of these operations. The match/mismatch operations score for the characters a
and b in string A and B, is given by the scoring function s(a, b), usually this
value is positive for a match and negative for a mismatch. Shifting for either
string will reduce the score by the gap penalty W . The gap penalty may be
defined as a function or as a constant. In this project for simplicity sake, the
gap penalty is always constant, and the match function simply gives a positive
constant score for two identical characters and a negative constant otherwise.

The algorithm determines a scoring matrix were the strings compose the axis
of the matrix. Each cell Hi,j contains the maximum score for the algorithm until
that point, and can be reached from three neighbouring cells Hi−1,j−1, Hi−1,j

and Hi,j−1 by applying the different operations to them. Approaching Hi,j

from the diagonal or north-west direction translates to matching a character
from each string, the value for this operation would then be the value of the
previous cell + s(a, b). Approaching from the left or from the cell above is
selecting a character from one respective string and shifting on the other. Here
the value would be that of the previous cell - the gap penalty W . In the Smith-
Waterman the maximum of these values is selected for the cell[8]. Thus the
value in the cell Hi,j , is given by:

Hi,j = max

Hi−1,j−i + s(ai, bj)
Hi−1,j − W
Hi,j−1 − W
0

Hi−1,j−1

+s(ai, bj)

Hi,j−1

−W

Hi−1,j

−W

Hi,j

(1)

10

Crucially, a given cell Hi,j will not need to calculate all possible paths to
itself, with memoization of the neighbouring cell’s maximum score, a time com-
plexity of O(mn) is achieved. After the matrix is composed, the cell with the
total max score is found and local sequence alignment string is composed by
backtracking from this index in the matrix.

2.8 Striped Smith-Waterman
As any cell in the scoring matrix only depends on it’s neighbouring cells, ways to
parallalize the algorithm have emerged, one such parallelization is the Striped
Smith-Waterman algorithm. Published in 2000, Torbjørn Rognes and Erling
Seeberg managed to see a six-fold increase in database searches using Striped
Smith-Waterman [2]. Later, Marco Mattavelli et al. published an implementa-
tion written in CAL [1].

The matrix is vertically split into stripes and each row is computed in par-
allel. In CAL and Cactus, actors are computing the values in the stripe.

The implementation of the striped Smith-Waterman in Cactus looked some-
thing like:

11

stripe-cell 0 stripe-cell n

SW-cell 0 SW-cell n

fan-out-cell 0 fan-out-cell n

collector 0 collector n end-cell

controller

Figure 1: The layout of the actors in the implementation of the Smith-Waterman
algorithm. The controller actor sends out sub-strings of length n. One character
at a time is then peeled of in the stripe-cells, that then gets sent to the SW-
cell. The controller also sends a character that gets sent to fan-out-cell that
propagates the character to the rest of the fan-out-cells and to the SW-cells.
The peeled characters then get sent to the SW-cells that does the computation,
and the value of that computation gets sent to the collector-cells. The collector
cells append the score of its corresponding SW-cell to the results vector in such
a way that when the vector enters the end-cell, the length is n. The end-cell
counts the number of vectors it has recieved, and when it has gotten the correct
number of vectors, that is: (/ (length A) n)

Where the controller would write a timestamp to a results file. Then it would
continue by sending substrings of B to stripe cell 0. These substrings would be
of the length width, which in the figure above is denoted as n. A character from
these substrings would then get peeled of by each stripe cell. Given The width
2 and the B string ABCD, the controller would send the string AB to stripe-
cell 0. Stripe-cell 0 would then send the character A to SW-cell 0. This would
happen (count A), times. The stripe-cell 0 would then also propagate the rest
of the substring, B to stripe-cell 1. Stripe-cell 1 would then send the character
B to SW-cell 1 (count A) times. The controller would in the meantime send
the next substring to stripe-cell 0, which in this case would be CD, and this

12

substring would also get peeled and propagated through the row of stripe-cells
like the first string. The characters in the second substring would of course also
get sent to the SW-cells. This part of the network makes sure that SW-cell i,
receives the characters at index ((* j width) i), where j is 0 to the number
of substrings created when dividing B into strings of length width. Given the
previous example, and the A string EFGH, SW-cell 0 would then receive, A,
four times (one time for each character in A. That is (count A) times), and C,
four times, while SW-cell 1 would receive B, four times, and D, four times.

But to calculate a value the SW-cells also needs a character from A. This is
where the fan-out-cells comes in. Fan-out cell 0 gets sent each character of A
subsequently, and would then propagate that character to the next fan-out-cell.
Each fan-out-cell also then sends that character to it’s corresponding SW-cell.

This would then mean that each SW-cell has received each character of A
exactly once and it’s designated characters from B (count A) times, and has
almost all the pieces of information needed to calculate the scores, except for
one, that is the score from its’ west neighbour.

Each SW-cell needs three inputs on its’ input channels to start the calcu-
lation of a score. A character from A, a character from B, and a score from
the cell to the west of itself. SW-cell 0 is instantiated with a number of tokens
on its west port. Those tokens are (count A) number of 0’s. This then makes
sure that SW-cell 0 can fire its’ action (count A) times. When SW-cell 0 has
calculated its’ first value, this is then sent to SW-cell 1. Which in turn could
then send its’ value to SW-cell 2, and so forth. But each SW-cell also sends its’
output value to the collector cell.

The collector cells, are the cells that collect the scores calculated by the
SW-cells. These cells receive one value from its’ corresponding SW-cell, and
it also receives a vector of values from its’ western neighbour. Collector 0 is
also instantiated with (* (/ (count B) width) (count A)) number of empty
vectors so that it can fire that number of times. Each collector then takes the
value it receives from its’ SW-cell and appends that to the vector it receives
from its’ western neighbour, meaning that collector n then outputs a vector of
length width to the end cell.

The job of the end cell is then simply to count the number of such vectors
it has received, and to print to the same results file that the controller printed
to, a timestamp when it has received (* A-len (/ B-len width)) such vec-
tors. This would of course mean that all of the values in the matrix have been
calculated, and the algorithm has finished running.

2.9 The Theoretical Cap of the Number of Smith-Waterman
Cells Run In Parallel

Since every cell in the stripe in the Smith-Waterman algorithm is dependent on
the value calculated by its western neighbour, cell n has to wait for cell (n -
1) to fire before it can fire. To understand why at most n cells can fire at once,
one can imagine firings in discrete steps. In the first step, only the first cell can
fire. The second step leads to the firing of the first cell (if there are more rows

13

to be processed that is), but also the firing of the second cell since there now
can be a token available on its western port.

The third firing executes the first, second and third cell and so on. This
means that at time n, when n steps have executed, all of the actors can fire
at once. However, no actor could fire again in that moment, since they are all
dependent on the value sent by their western neighbour.

The exception is of course the first cell which will dictate the speed at which
firing can be done. However, since all of cells are dependent of its western
neighbour, the maximum number of cell firings that can happen at one moment
is n, i.e. that all cells in the stripe fire simultaneously.

3 Implementation
In this section we describe the iterative process of implementing the language.
We reason about design decisions and chronologically explain the implementa-
tion of the channels connecting the actors and the macros that compose the
actors.

3.1 Using core.async

We use core.async as an underlying mechanism for handling concurrency in
Cactus. core.async is Clojure’s standard library for asynchronous program-
ming. We chose it not only because functional suitability but also because it
has the biggest support and avoids depending on libraries from third parties. It
also had a very useful internal state machine to handle the parking and starting
of processes. However, we had to modify aspects of it to suit Cactus.

3.2 DataFlowChannel
Standard core.async lacks support for peeking into channels and one cannot
see the number of elements that are in the buffer. This was the first reason for
modification of the language. Calling (chan) in core.async would usually in-
stantiate the library type (deftype ManyToManyChannel) a ManyToManyChannel
has capabilities to handle multiple writer writing to multiple readers while han-
dling all the call-backs to the go process’ state machine. This is wrapped around
a Java LinkedList that holds the elements placed in the buffer. The initial ap-
proach was to add a peek function to the ManyToManyChannel type. However,
since peeking requires peeking into the LinkedList buffer, the operation becomes
O(n), while take! and put! are O(1) operations. So, a different data structure
was required entirely. We removed ManyToManyChannel and all the calls to it
were changed to calls to a new (deftype DataFlowChannel). This new struc-
ture did not require handling multiple readers and writers, since any buffer in
CAL can only be read by one actor and written to by one actor. As an internal
data structure in the DataFlowChannel, we created a circular buffer built on
Java’s ArrayList. A circular buffer gave us O(1) takes and offers to the queue

14

and the underlying ArrayList gave O(1) peeking. However, in the current im-
plementation of Cactus the maximum size of the buffer is undetermined, so the
circular buffer needed to grow to an arbitrarily large size. Thus, we modified
the buffer to grow the ArrayList instead of over-writing old elements. When
the buffer is full, another ArrayList twice as big is instantiated and current
elements are copied over. This operation costs O(n) and is not thread safe. So
a mutex was used, locking the DataFlowChannel when resizing occurs.

We removed all call-backs to the go process’ state machine, this means that
internally any call to put! or take! no longer parked the process. Actors would
instead busy-wait and just loop to their guards constantly. In CAL the minimum
a guard needs to know from its buffer is the existence of an element at a certain
depth. Thus, in the DataFlowChannel we implemented the function (size? n
chan) for internal use, this function takes an integer and a DataFlowChannel
as parameters and will return true if there exists an element at that depth. This
became the underlying logic the guards use.

3.3 Designing The Cactus Macros
3.3.1 Iteration One

The first implementation, before we had the modified dataflowchannels and
just used the regular core.async channels, looked something like:
(defn sw-cell [a b an w v aln-v name]

(go
(loop [nw 0 n 0 i 0];;Set initial staet
(let [new-a (<! a) new-b (<! b) new-w (<! w)] ;;Wait for ports
(let [

new-nw new-w
new-n (cell-action nw n new-w new-a new-b)
] ;;Assign new local state and execute body

(>! v new-n);;Set output
(>! aln-v new-n)
(if (= i (dec an))
(do

(recur 0 0 0)
)

(do
(recur new-nw new-n (inc i))
)

)
;;Recur

)
)

)
)

)

Listing 2: The listing shows the first iteration of the Smith-Waterman-cell. This
iteration was really just a go process wrapped in a function definition.

15

that is, a function that took initial values and core.async channels as its
input parameters. The actor would try to consume tokens from the channels.
Since the take (<! channel) call would park, the actors would not loop in-
definitely but rather would wait for tokens to appear on the channels. This
worked for the Smith-Waterman implementation but had the drawback of not
allowing multiple actions inside of an actor. This is a feature not needed for the
SW-implementation but it is a powerful feature of CAL that would be nice to
have in Cactus. This first implementation also featured a very crude version of
state, but since the state was implemented as an update of the loop variables
in the recur call, changes could not be made in the action body of the actor,
but rather, only at the end of an action firing. This has the obvious drawback
of not allowing mid firing state changes. That feature could be implemented
with nested lets, where each let would update the previous values, and then at
the final recur the innermost nested let variables would be the ones sent to the
recur call.

In the case of many variable updates this would however turn in to a mess
of nested lets, hence that approach was abandoned in later implementations.
The final nail in the coffin was the fact that guards where not possible in this
implementation.

To see the payload of a token it would have to be consumed. Therefore the
concept of guards, where checking the payloads before consuming the tokens is
the goal, was not possible.

16

3.3.2 Iteration Two

The next iteration of the Smith-Waterman-cell was a major update.
(defactor sw-cell [a-length] [a-chan b-chan west] ==> [value aligner-value]
(defstate [nw 0 n 0 i 0])
(defaction a-chan [a] b-chan [b] west [new-west] ==>
(let [new-nw new-west

new-n (cell-action @nw @n new-west a b)
]
(>>! value new-n)
(>>! aligner-value new-n)
(if (= @i (dec a-length))
(do
(-- nw 0)
(-- n 0)
(-- i 0)
)

(do
(-- nw new-nw)
(-- n new-n)
(-- i (inc @i))
)

)
)

)
)

Listing 3: This is the second iteration of the SW-cell. This time around more
syntactic sugar has been added. The functionality is however basically the same.
The notable exception is the mutable state

At this point a lot of changes to the previous design were implemented, and
macros were used to add some nice syntactic sugar. This design does not make
a lot of sense outside the context of a defined network, therefore an example
network is shown below:

17

(defn -main [& args]
(println "started")
(def A "ABCD")
(def B "ABCDEFGH")
(def width 4)

(println "B␣length␣" (count B))
(println "A␣length␣" (count A))

(entities
(actor controller (controller-actor A B width))
(actor stripe (stripe-actor (count A)))

(actor fanout (fanout-actor))

(actor sw0 (sw-cell (count A)))
(actor sw1 (sw-cell (count A)))
(actor sw2 (sw-cell (count A)))
(actor sw3 (sw-cell-printing (count A) (* (/ (count B) width) (count A))))

(actor aligner (align-actor A B width))

(network
(con (controller :chan-contr-fan-a) (fanout :in-chan))
(con (controller :chan-stripe) (stripe :b-chan))

(con (stripe :chan-0) (sw0 :b-chan))
(con (stripe :chan-1) (sw1 :b-chan))
(con (stripe :chan-2) (sw2 :b-chan))
(con (stripe :chan-3) (sw3 :b-chan))

(con (fanout :chan-0) (sw0 :a-chan))
(con (fanout :chan-1) (sw1 :a-chan))
(con (fanout :chan-2) (sw2 :a-chan))
(con (fanout :chan-3) (sw3 :a-chan))

(con (sw0 :value) (sw1 :west))
(con (sw1 :value) (sw2 :west))
(con (sw2 :value) (sw3 :west))
(con (sw3 :value) (sw0 :west)

{:initial-tokens (vec (repeat (count A) 0))}
)

(con (sw0 :aligner-value) (aligner :chan-0))
(con (sw1 :aligner-value) (aligner :chan-1))
(con (sw2 :aligner-value) (aligner :chan-2))
(con (sw3 :aligner-value) (aligner :chan-3))
)

)
(while true)
)

Listing 4: This shows the entire network from controller to aligner

18

The defactor macro was implemented as a macro that expanded to a func-
tion definition. The first vector in the definition of a new actor expanded to the
function parameter vector in that particular function definition. However a last
argument is always added by the network macro. That argument is something
called the connections-map.

The connections-map gets compiled inside of the network block in the entities
clause, where each con is parsed and added to the connections map. The connec-
tions map was just a normal key-value map. When for example: (con (stripe
:chan0) (sw0 :bchan)), was parsed, the entry :sw0 :aligner-value chan-0
:aligner :chan-0 chan-0 was added to the final connections map. There
were also two special keys inside of the connections-map. The first was the
:number-of-channels key that kept a tally of the numbers of channels needed
to create the entire defined network. There was also an :arguments key that
held a map of it’s own. This map contained the name of the channel that took
the arguments and the actual vector of values sent as arguments. To give an
example, if the following statement was the first in the network definition:
(con (sw3 :value) (sw0 :west)
{:initial-tokens (vec (repeat (count A) 0))}
),

the connections-map would get expanded to:
{:sw3 {:value channel-0},
:sw0 {:west channel-0},
:number-of-channels 1,
:channel-arguments {:channel-0 {:initial-tokens
(vec (repeat (count A) 0))}
}
}.

Since the connections inside the connections-map were just Clojure symbols,
the channels had to actually get instantiated and bound to the correct variables.
This happened in the entities macro.

The entities macro expanded the network in a series of steps. The first was
parsing the last s-expression and creating the connections-map. After that was
done, the second step was parsing the actual actor calls.

These are all of the s-expressions that are above the network definition, sort
of like constructors if the reader is so inclined.

These got expanded to function calls, that called the expanded defactor
functions, with the arguments sent to them in the installation expression, and
the entire connections-map as was appended to the arguments vector as its last
argument.

However these were not called directly but rather were compiled into s-
expressions that were then sent to another function that further expanded the
s-expressions by wrapping them with let expressions. This is where the channels
finally are actually instantiated and bound to the correct channel names. To
give an example:

19

(entities
(actor feeder (has-initial-tokens))
(actor printer (print-actor))

(network
(con (feeder :out) (printer :in-0) {:initial-tokens [1 2 3]})
)

)

Listing 5: A listing showing the entities expression containing a feeding actor
and a printing actor. These two are then connected in the network clause.

Would create the connections-map: {:feeder {:out channel-0}, :printer
{:in-0 channel-0}, :number-of-channels 1, :channel-arguments {:channel-0
{:initial-tokens [1 2 3]}}}, and the entities macro would get expanded to:
(let [channel-0 (chan [1 2 3])]

(has-initial-tokens {:feeder {:out channel-0},
:printer {:in-0 channel-0},
:number-of-channels 1,
:channel-arguments {:channel-0

{:initial-tokens [1 2 3]}}}
)

)

Listing 6: Showing the the macro-expanded version of an actor that has initial
tokens on its output channel: channel-0.

which then would be the actual final s-expression that would get executed
at run-time.

This solution also yielded a working implementation of the Smith-Waterman
algorithm. It did however have the major drawback of not supporting the in-
stantiating and connecting of actors programatically. The programmer had to
write out every single actor and bind it to a variable, only to then connect every
actor to the other correct actors channel by channel. There were some trials
involving creating symbols programatically, where the programmer would bind
actors to variables in for loops, but this never really went anywhere. The pro-
grammer would for example have to concatenate a string and a loop variable to
create unique variable-names that each actor would then get bound to, but this
solution proved very clunky and the programmatic creation of connections did
not work at all.

3.3.3 Iteration Three

The previous approach was to limit the programmer as much as possible, letting
them just use the special commands implemented i Cactus. This yielded code
that was very homogeneous, and structured, but limited the programmer a lot.
The final implementation took a more open approach.

This version changed the entire entities macro. It was given a new name:
exec-network, and instead of having reserved keywords for creating actor calls

20

that got sent the connections-map. The only restriction on the programmer was
that the final s-expression in exec-network would return a list of connections.
To give an example a network could look something like:
(exec-network

(let [has-init (has-init-tokens)
buffer (buf)
]

(list
(con (has-init chan-stripe) (buffer in)

{:initial-tokens [1 2 3]}
)

)

)
)

Listing 7: Showing the updated exec-network expression that replaced the en-
tities expression.

This was made possible by two main ideas. The first: make the only restric-
tion on the network be that the last s-expression inside exec-network returned
a list of connections, and make the defentity (previously defactor), return an
anonymous function that took, as it’s only argument, a connections-map. This
made it easy to create actors in a two step process, where first the actor would
get called with its initial arguments. Then a second call would happen where
the connections-map got sent as the only argument.

This design choice made it possible to make instantiating calls in for loops,
and then connect the actors in for loops using the con keyword.

If you for example needed 100 incrementor-cells (an actor that would simply
receive an integer i on the in channel and send i + 1 on its out channel) in
your network, you would create a for loop in the first let expression in the exec-
network expression:
(let [cells (for [i (range 100)] (incrementor-cell))]).

You could then inside of the let expression connect each incrementor-cell to
its neighbour in a separate for loop:
(let [cells (for [i (range 100)] (incrementor-cell))]

(for [i (range (dec (count cells)))]
(con ((nth cells i nil) out) ((nth cells i nil) in))
)

)

Listing 8: Listing showing the connecting of actors inside of a for loop.

If you now would send in the token 0 at the in port of the chain 100 would
get sent out from the last cell in the chain.

The relative flexibility of this implementation over the last one was obvious.
Scaling a network was now only a matter of changing one variable, instead of
manually adding more connections one-by-one.

21

3.3.4 Parking DataFlowChannel

After we got the ability to programatically create actors, we started experiment-
ing with larger numbers of actors and the programs would sometimes deadlock.
After some analysis we realized that this occurred when we had more than 8 ac-
tors, which had yet been tested in the Striped version of Smith-Waterman. This
occurred because the actors were busy waiting. An actor started by checking
it’s guards by calling the (size? n chan) function on the DataFlowChannel
and depending on if the pattern matched or not, executed the actions, looped
back to the guards and repeated. Since go processes were dispatched to a Java
FixedThreadPool, any processes that was busy waiting would occupy a thread
for the duration of it’s lifetime. The number of threads core.async was origi-
nally 8 which was why it worked with the Striped Smith-Waterman which used
exactly 8 actors. To see if the size of the ThreadPool was the problem, we
started by modifying the number of Threads in the ThreadPool and saw that
having more actors became possible. However, simply increasing the PoolSize
lead to two major design flaws.

1. The maximum number of actors that can run in a Cactus program depends
on the OS, resources and hardware.

2. The PoolSize became dependent on the amount of actors in the program.

Due to 1. the same cactus program could behave differently on different
machines or OS’. If one machine could support 12000 threads and instantiates
12000 actors, a less powerful machine might not be able to run the program
at all. One of the most beneficial aspects of a dataflow language is that the
computation can be seamlessly distributed over hardware, since actors compute
asynchronously. This becomes difficult if the mechanism would be hardware
dependent or dependent on free memory. Further, in CAL, creating a large
number of actors is often required. For example an FIR filter written in CAL
is often written with > 2000 actors running simultaneously. Theoretically, the
limiting factor for the max PoolSize should be the OS, per user Thread limit,
but what we found was that some machines with a thread limit of 65000 would
still deadlock with a PoolSize of above 1024.

Having a PoolSize dependent on the amount of actors as in case 2. would
introduce further complications. Any program written in Cactus would require
a global state, then before instantiation of the actors it would need to calculate
how many actors will exist, and then set the PoolSize to this. In some programs
this might not be known before run time. Just setting the PoolSize arbitrarily
large would solve this issue but that would mean that a small Cactus program
with few actors would start a lot of threads no matter what, while not only
being inefficient this would again mean hardware dependency as in 1. Instead
we resolved this by further modifying core.async and reintroduced a parking
operation.

22

In the original any call to the macro go would expand to a state machine
function and every call in the go block to any parking operators <! and >!
((take! chan) and (put! chan)), would park the process until their condi-
tions were met. take! would park if there was no value in the buffer to take,
and would run the process again when a token was put on it’s channel.

put! would park if the channel was full, and run again if a token was
removed from its channel.

In the state machine, all calls to parking operators were numbered 1..n which
became the states that the go process could be in. The state machine function
itself is a essentially a function inside a mutable Java AtomicReferenceArray
where each index contained some information. One index would contain the
current state the go process was in, and one would contain any return value
a call to <! or >! might have. The state machine would call whichever of
the parking functions was in it’s current state index, these were calls to the
(DataFlowChannel) were the take! and put! functions were implemented.
If eg. a call in the go process was trying to take! a value from the channel,
the DataFlowChannel would check if there was an element in the buffer, if the
buffer was empty (and the process would park) the call to <! would return
nil. If there was a value in the buffer the <! call would return that value. The
state machine would check the return value, if it was not nil and there was a
token in the channel to remove, it would place it at the return value index in
the Array and update the current state index. Lastly it would recur and re-run
with the new updated state. When it would recur, it passed the updated Array
and replaced the call to take! with the return value at it’s return value index
and proceed from the new current state from its’ current state index (That
is, proceeds execution from whatever came after the call to take!). Since the
recursive call would happen internally, the executing thread would never have
been released. Otherwise, if the return value would be nil the state machine
would simply exit. This would park the process and release the thread allowing
it to go back into the ThreadPool and execute other processes.

One last requirement of the state machine, was for the process to start again
if their conditions are met. We wanted the parked take! call in the previous
example, to start executing again once a value was put! on it’s channel. The
way this was resolved was by including call-backs to the parking function calls.
The call to take! would include a call-back function when it was called in
the DataFlowChannel, if the DataFlowChannel would see that the there was
no token on the channel to dequeue, it would save the call-back. The call-back
function itself was wrapped around the state machine as it was when thetake!
call happened. As the process was parked, a put! call from a different process on
the DataFlowChannel would look if there were any saved call-backs and if there
were, it would dispatch the call-back to the thread pool. The dispatched call-
back would then be picked up by any free thread in the pool and get executed,
this re-runs the state machine in the call-back (the state machine of the take!
call). This time however, there would be a token on the channel for the take!
call to dequeue and instead of returning nil, the take! would return the value
and the process would continue executing.

23

Once we understood this, we modified the library further to accommodate
the DataFlowChannel functions that actors required. Guards in Cactus would
first check if there are n tokens available on the channel with the predicate
(size? n chan) call. If the call returned true, the actor would peek at the
token ith tokens with (peek! i) and bind them to local variables. After
binding the variables and executing the action, it would then consume the tokens
from the channel by calling take! on it. By design, the only time (peek! i)
would run in any Cactus program is when (size? n chan) has returned true,
and then it would peek at most at the first n elements. If the guards would be
true, take! would consume only the first n tokens. This would mean that the
only function that needed parking was size? as the other dequeing functions
would always be able to execute when size? returned true. We created a
call-back for every call to size and a size function in CircularArrayBuffer
that returns the number of elements. Calling (size? n chan) on a channel
then simply calls the size function on the CircularArrayBuffer, and checks
if the return value would be >= n. If it was, it would return true. The state
machine would update and recur, holding onto the thread. However, if there
were fewer than n elements in the CircularArrayBuffer, the DataFlowChannel
would save the call-back function from the size? call and return nil. The nil
returning would cause the state machine to not recur and the process would
park. Much as in starting the process again would be up to a connected actor
calling put! on the other end of the channel. (put! e) appends element e to
the CircularArrayBuffer, would checks if there are any saved call-backs in the
DataFlowChannel and if there are it would dispatch them to the ThreadPool.
It would then always return true to it’s own state machine, since we have
unbounded channel sizes and put! itself would never park an actor. Once a
free Thread would receive the dispatched call-back, the actor parked at size?
would return it’s size? call and if there would now be enough tokens it would
maintain the Thread and proceed to peek! etc. If of course it would not park
again.

We realized that by just adding a some logic in put!, we could remove
plenty expensive dispatched call-backs to parked actors on the other end of the
channel. Take, for example, one putting actor and one receiving actor that are
connected via chan1. The receiving actor was parked in it’s process at (size?
10 chan1) waiting for 10 tokens to arrive on chan1 while the putting actor
would put values on the channel and dispatch call-backs to the receiver every
time. For every token 1...9, the putting actor would dispatch the call-back,
a Thread would be used from the ThreadPool and the parked receiving actor
would start executing again, it would then see that (size? 10 chan1) has not
yet been fulfilled and it would, again park. This would happen until the 10th

put! call caused the receiving actor to proceed. By only dispatching a call-back
on the 10th put! we would remove 9 unnecessary runs of the call-back function
that each would cost and briefly require a free Thread. We accomplished this
by including n in a (size? n chan)’s call-back and adding a function in the
call-back that would return it. Before put! would dispatch the call-back, it
would check the call-back’s n and if the new size of the CircularArrayBuffer

24

was still too small, we would know that the receiver could not proceed anyways
and we could just skip the dispatch of the call back entirely.

With this parking DataFlowChannel we removed general busy waiting of
actors. If a Cactus program could run was no longer hardware or resource
dependent and a Cactus programmer could theoretically create as many actors
as their memory would allow for, but we discovered one caveat. The only
parking function was size? and an actor written in Cactus would only call
size? if it’s guards required input tokens in order to fire, however, in both
CAL and Cactus, it is entirely possible to write actors that don’t require any
input tokens to fire. For example the controller in the Striped Smith-Waterman
algorithm. This actors would never park and even though it only fires once, it
would busy wait and hold a Thread from the ThreadPool. With free running
source actors like this, whose guards don’t depend on any input at all, Cactus
faces the same issues as before. 4 controllers running with a PoolSize of 4
would hold all Threads and any remaining actors would unfortunately not run.
This is something that absolutely needs to be fixed for Cactus to become a
viable programming language.

25

4 Research Component
The main focus of this report was not the research component, but rather the ex-
ploration of the possibility of creating an actor centered DSL on top of Clojure.
Given this there was still an interesting aspect to measuring the relative perfor-
mance between different numbers of active threads and actors in an algorithm
implemented in the language.

Since the goal of the programming model is to achieve parallelization in a
manageable way, the performance has to scale with the number of processing
elements available to the program.

In this thesis, an implementation of the striped Smith-Waterman algorithm
was used as the basis for evaluating the performance of the language under
different circumstances.

4.0.1 Research Questions

The hope for this project was to see some type of performance gain when run-
ning more processes in parallel. The thought was that the scaling would likely
not be linear, but rather there would probably be an apex to the performance
curve where the performance would be maximal given the hardware and appli-
cation. That is, increasing the number of threads or processes running would
not always lead to better performance, but at some point rather the opposite,
due to overhead when switching between threads or processes.

It would be desirable that the apex moves to a higher number of threads
when having more processing cores.

To evaluate whether or not the language scaled in the desired way, these
questions were asked:

• Is there a correlation between the number of threads in the underlying
thread pool and performance (controlled for number of cores on the pro-
cessor running the program)?

• How does the width of the stripe in the Smith-Waterman algorithm affect
the performance of the algorithm and is there a difference when the number
of threads in the thread pool is changed?

4.0.2 Hypothesis

Since performance gains should be made when more computation is run in
parallel, the speed of the execution should increase when the width of the Smith-
Waterman stripe increases. However, since there are only a couple of processor
cores available, and a set number of threads available in the thread pool, the
performance increase should plateau when a certain number of threads are run
in parallel. Since running one thread on each core would theoretically lead to
no context switching (there will probably be some other programs running on
other threads on the processor, but these should have little impact when testing
between a wide range of threads.) the hypothesis is that the best performance

26

should be had when running a number of threads that corresponds to the number
of cores available on the processor.

If one Smith-Waterman actor cell runs on one thread, we hypothesize that
the maximum performance would be achieved when the number of actors cor-
respond to the number of cores in the processor (or in the case of some sort of
SMT enabled processor, the number of virtual cores) and the number of threads
match that number of cores. This should give the theoretical maximum perfor-
mance since no overhead is used up for context switching, but the computation
is still runs in parallel.

4.1 Methodology
4.1.1 128 x 1024 Smith-Waterman

To determine if there was a correlation between the number of actors and
threads in the thread pool and performance, several tests were executed. The
Smith-Waterman algorithm was used as a testing application since it was pretty
straight-forward to implement and easy to scale. The striped version specifi-
cally, was used since it can make use of parallelization in a nice way, were the
number of parallelized cells can be easily adjusted.

To test the hypothesis the algorithm was run on two strings A and B. A
was of length 128 characters, and B was of length 4096.

The characters in the strings were randomly generated. The algorithm was
executed over the strings using a variable amount of computing SW-cells and
threads in the thread pool.

The algorithm ran 10 times for each configuration and the mean time for
each configuration was then calculated. The configurations were, 4, 8, 16, 32,
64, 128, 256, 512, 1024 and 2048 threads in the thread pool (or until memory
ran out, meaning no more threads could be created).

For each number of threads in the pool, each of the following widths were
tested, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and 4096. We recorded the
time starting from the controller-actor first firing until the end-cell got the final
token (See 1 for the layout of the actors, and the appended source code to see
the implementation details).

The mean time of the 10 runs for each configuration was then computed for
each hardware setup. The hardware used was a: MacBook Air 2014 Intel i5-
4260U with 8GB of ram and 2 cores, a MacBook Air 2020 M1 with 8GB of ram
and 8 cores, a ThinkPad X1 carbon Intel i7-8565U with 8GB of ram and 8 cores
and an Intel NUC i7-10710U with 12 cores and 31.1GB of ram. The MacBooks
ran macOS 11, the ThinkPad ran arch-linux with kernel(5.10.0-arch-1), and the
NUC ran Kubuntu 20.04.

4.1.2 1024 x 1024 Smith-Waterman

To see if the limiting factor to the performance of the Smith-Waterman algo-
rithm, was the number of SW-cells running in parallel, a new test was executed.

27

Since the maximum number of actors running in parallel is theoretically
capped by the number of actors in the diagonal (See: The Theoretical Cap of
the Number of Smith-Waterman Cells Run In Parallel) of the matrix constituted
by the A and B string, a new test was executed to see if more performance could
be gained by changing the length of the strings.

The test was run with the striped Smith-Waterman on two strings of length
1024x1024 and a couple of different configurations were tried. The configura-
tions were 8, 16, 32, 64 and 128 threads in the thread pool. With 2, 4, 8, 16,
32, 64, 128, 256, 512 and 1024 actors in the stripe.

The test was then run 5 times for each configuration, and the mean times of
all the runs was calculated. This test was not run on all of the configurations,
but rather just on the Intel MacBook Air, and the Intel NUC.

4.1.3 Tighter Interval of Threads

There was also a last test conducted to pinpoint the number of threads best
suited for this application. The striped Smith-Waterman algorithm ran 10 times,
on two strings A and B of size 128 x 4096. The configurations were slightly
different from the previous test using this string size, as this time the thread
count varied with incremental steps of one, from 3 to 32 strings using 4 8 16
32 64 128, 512, 1024, 2048 and 4096 actors in the stripe. Each configuration
was run 10 times, and the mean times of all the runs for each configuration was
calculated.

28

4.2 Results
4.2.1 128 x 4096 Smith-Waterman

The results of running the test scripts on the 128 x 4096 strings, are shown in
the figures below:

29

30

4.2.2 1024 x 1024 Smith Waterman

31

4.2.3 Running the Algorithm With Different Thread Pool Sizes

The results of running the algorithm with incremental steps of one in the thread
pool size is shown in the figure below:

32

5 Discussion and Future Work
5.1 Thoughts on the Language
The goal of the Cactus language was to create a DSL that allowed a CAL style
actor language to be implemented in Clojure, and that language to be able to
support a driver application. In this case that driver application was the striped
Smith-Waterman algorithm. Another goal was to also see some improvetment
when running the algorithm using more processing cores.

The goal set, to allow for the Smith-Waterman algorithm to be run in the
language, and scale with more processing entities, was met. The fact that the
algorithm was chosen from the start as a target application, was a good driving
force for features that needed to be implemented in the language.

It was also a good indication of weather the language was heading in the
right direction, for instance during the second iteration of the macros, the lan-
guage was syntactically quite sweet as a lot of sugar had been added, but the
language was also quite limited, as the features where written in a way where
the programmer had to use specific keywords, and not just normal Clojure.

The target application then served as a guide when the language became
clunky to use, and also clunky to develop.

This led to the third iteration, which was more flexible for the programmer
and made the algorithm easier to implement and scale.

5.2 128 x 4096 Smith Waterman
The first test running the Smith-Waterman with a variable amount of threads
in the thread pool resulted in some interesting finds. An obvious thing, that was
quite expected, was the fact that for nearly all configurations, using a thread
pool that only had 4 threads was the slowest of all runs run. This is of course
because of the lower amount of parallelization. Another quite obvious find was
that there was a "bounce back", where the performance seemed to go down
instead of up when adding more threads. This is likely because of the added
overhead, and gave proof of the fact that simply adding more threads to the
thread pool was not the right way to scale Cactus.

Both of the Mac runs seem to suffer when adding too many threads (that
is more than the NUC and the ThinkPad). There was no telling if this was
because of the operating system itself or if it was just a coincidence.

The MacBook running the two core Intel i5 was the least well suited for
running the SW-algorithm. It was the slowest at finishing the task, which was
to be expected with a lower core count. There also seemed to be more penalty for
increasing the thread count on the macs compared to the other two computers.
As the Intel powered mac performed almost as bad running on 1024 threads
as running the program with just 4 threads. Looking at the M1 powered Mac
the penalty seemed to be even greater as the test with 1024 threads was even
slower than the 4 threads run. However even though the M1 run with 1024
threads was the slowest on the M1, the M1 still beat the Intel i5 Mac with every

33

configuration (as did the 12 core Intel NUC). This was quite in line with the
theory, given more parallelization, more speed is expected up until the breaking
point where adding more threads would instead make the performance suffer
because of overhead. However when more processing cores are available, more
threads can be used.

Something else that was noteworthy was the fact that the language seemed
very well suited for a large amount of actors. There seemed to be little slowdown
in execution speed when using more actors, even though the number of threads
stayed the same. This observation lead to the question of where the actual limit
resides.

However there seemed to be some spread among the configurations regarding
the performance of a large amount of actors. The M1 Mac seemed to get slightly
faster or at least stay as fast as the width was increased for all thread counts that
were lower than 64. This could be a coincidence as the performance gains were
minor. However significant slowdowns were not observed even for the widest
stripes.

The ThinkPad and the NUC seemed to be performing slightly worse or
equally as good when the width was increased. However these performance
losses were also minor, and could possibly be contributed to random chance.
Once again significant slowdowns were not observed.

The Intel powered MacBook Air seemed to struggle a bit with a higher actor
count than the other machines. The slowdown seems to start when having more
than 24 actors, and progressively get worse as more actors were added. The same
behaviour could be observed in the 1024 x 1024 test. A possibility is that the
other machines would suffer the same loss when adding more actors, and that
the number at which the performance loss start, is simply higher when having
more computing cores.

For nearly all configurations the speed of execution plateaued somewhere
around the width of 16 to 128.

When running the striped Smith-Waterman algorithm, the goal was to get
the algorithm to run a diagonal along the stripe in the matrix. This was because
that way no SW-cell would need to stall to wait for data from the cell to the
west of it. To achieve this, a warm up period is needed. Imagine that all cells
fire or test their guards synchronously, given a width of the stripe n, the west
most cell needs to fire n times for the east most cell to actually start computing.
This is of course because the values needs to propagate from the west most cell
to the east most cell before the east most cell can start computing its’ values.
This realization raised the concern that there could be some capping of the
performance because of the length of A, and thus the length of that diagonal
strip that could fire concurrently.

Running the algorithm with a stripe width of 4096, that is the full length of
the B string, could possibly cap the performance, since the maximum number
of cells that could fire at once would only be 128 (or something close to that).
If that was to be true, that would mean that there was no point in having a
wider stripe than the length of A (and of course the length of B). To see if that
new hypothesis was true, more tests were run using different string lengths.

34

It was however, noteworthy, that the performance seemed to stay roughly
the same when having too wide of a stripe (up to a different point for different
configurations).

This fact is probably not affected by the weight of each computation in each
cell, since the actor tests its’ guard and only fires if the guard is true, the weight
of the computation in a cell that does not fire would not impact the performance
of a program. That is of course as previously discussed, if the cells have input
channels that need to be checked for tokens.

However this hypothesis was not tested, and would be an interesting topic
of future work.

To further test the performance of the language, and to see if the new hy-
pothesis that the length of A was limiting the performance, a new set of tests
were performed.

5.3 1024 x 1024 Smith Waterman
Running the same algorithm on a different sized string seemed to have little to
no impact on where the apex of performance lied. The NUC had its best result
when running the 1024 x 1024 string with 64 threads in the thread pool and
with a stripe width of 256. This roughly corresponds to the result of the run on
the 128 x 4096 string, where the apex was at 16 threads and a width of 128.

The Mac performed slightly differently, where the apex for the 1024 x 1024
strings was at 16 threads and 8 actors in the stripe, compared to the previous
run where the apex was at 32 threads and 16 actors in width.

To be noted is that the Mac run generally performed worse when making
the stripe wider than approximately 24. This compared to the NUC where the
performance generally stayed the same when adding more actors to the stripe.

This find, points to the fact that the size of A and thus the length of the
diagonal stripe that should be running once the algorithm has been executing
for some time, would not be a bottleneck in performance, and it rather seems
like the best performance for the MacBook was to be had at around 23 to 26 in
width, with a thread pool of size 16, as booth of the runs suggested this.

Meanwhile the Intel NUC seemed to fair better with more actors, and the
best performance seemed to be had around 26 to over 212 actors in width with
a thread pool somewhere in the range of 16 to 512 threads.

To further test the hypothesis that the number of threads should roughly
correspond to the number of cores available to the program, a last test was
performed on the Intel NUC. That test was running the same algorithm on the
128 x 4096 strings, but for each run incrementing the number of threads in the
thread pool by one each run.

5.4 128 x 4096 With Variable Thread Count
The test was in line with the previous tests and it showed once again that
the scaling of the algorithm in Cactus was not a problem. The best result for
running the algorithm on the Intel NUC was to be found at 21 threads and 128

35

actors in the stripe. This was once again in line with what the previous tests
had shown. When Summing the times of execution for each thread, 18 threads
seemed to be the best number of threads for fast execution. However the penalty
for adding too many threads was again low, while not having enough threads
led to major performance losses. Running the program with 18 threads was
more than twice as fast as running it with just 4 threads. This further solidified
the fact that Cactus scaled quite well, and that having a thread count that is
somewhat close or slightly higher than the number of cores is beneficial.

5.5 Future Work
The Cactus language is at this point very much a proof of concept. The goal of
creating a programming language well suited for parallel computing has been
met. There are however some things that the language has yet to implement.
Most notable is the ability to scale a program over multiple machines. The actor
model is quite well suited for distributed computation, be that distribution over
multiple cores on one machine, or multiple machines entirely. The possibility for
Cactus to scale over multiple machines seems promising but was not explored
in this thesis.

The current implementation of sub networks inside of Cactus networks is
clunky, as the output from the nested network has to be explicitly declared as a
network output. It would be nice if outputs from one network to the next could
be as seamless, as just connecting two normal actors. There was however not
enough time left to figure out a better solution.

As described in 3.3.1, actors that do not depend on any input to fire, or free
running sources, will indefinitely busy wait. Since the controller actor does fit
this criteria, we realized that the performance of Striped Smith-Waterman had
been negatively impacted. Even though it only fires once, controller would busy
wait and hold a Thread for the duration of the program. This e.g. prevented us
from running Smith-Waterman with less than 3 Threads as well as negatively
effecting performance across every test. A future solution for this specific case
would be simple: make the controller’s guards dependent on a single token on
it’s channel, instantiate an input channel with exactly one token, consume it
and fire. However, a more general solution would require further modifications
to the language.

6 Conclusion
All in all, we have created a usable data-flow language written in Clojure. Fur-
ther we implemented a data-flow version of the Smith Waterman algorithm as
an application topic and used it to display our language’s scaling with more
parallelization. This language is quite ’tinkerable’ meaning that any entity re-
searching data-flow languages could fork Cactus and try out design changes and
different approaches without having to deal with re-writing a compiler etc.

36

References
[1] Simone Casale Brunet, Endri Bezati, and Marco Mattavelli. High level

synthesis of smith-waterman dataflow implementations. pages 1173–1177,
03 2017.

[2] Michael Farrar. Striped smith–waterman speeds database searches six times
over other simd implementations. Bioinformatics, 23:156—-161„ 2007.

[3] Daniel Higginbotham. Writing macros | clojure for the brave and true,
2017.

[4] C.A.R Hoare. Communicating sequential processes. Technical report, The
Queens University, Belfast, Northen Ireland, August 1978.

[5] Johan Eker Jörn W. Janneck. Cal language report specification of the
cal actor language. Technical Report UCB/ERL M03/48, University of
California at Berkeley, Berkeley, California, December 2003.

[6] Edward A. Lee. The problem with threads. Technical Report UCB/EECS-
2006-1, EECS Department, University of California, Berkeley, Jan 2006.
The published version of this paper is in IEEE Computer 39(5):33-42, May
2006.

[7] Computer History Museum. The babbage engine. 2021.

[8] T. F. SMITH and M. S. WATERMAN. Identification of common molecular
subsequences. Journal of Molecular Biology, 147:195—-197, 1981.

[9] T. N. Theis and H. . P. Wong. The end of moore’s law: A new beginning
for information technology. Computing in Science Engineering, 19(2):41–
50, 2017.

[10] Wikipedia. Dataflow. 2020.

37

7 Appendix
7.1 Language Description
7.1.1 Basic Structure of an Actor

There are two types of entities in Cactus, actors and networks. They share
some similarities in terms of functionality and syntax. Lets take a look at a
basic actor:
(defentity relay-once [] [in] ==> [out]
(defstate [fired false])
(defaction in [a] ==> (guard @fired)

(>>! out a)
(-- fired true)

)
)

This is a very basic actor that simply relays a token exactly once. If it re-
ceives more then one, only the first gets relayed. This actor takes zero arguments
at instantiation, however an unlimited number of arguments could be required
if they were declared inside the first vector in the defentity expression. The
entity requires one channel to be connected on the in-port and one channel to
be connected on the out-port.

7.1.2 Defining Actor State

The state is defined as a vector of variable names and values inside the defstate
expression, which has to be placed right after the vector of output channels. To
use the variables defined in the state, the variable names have to be prepended
with an @, like in the defined guard.

7.1.3 Defining Actor Guards

The guard s-expression takes exactly one expression as its argument, which has
to be a predicate. It may contain the arguments, tokens from channels or state
variables. The guard is checked when there are enough tokens on the input
channel for one firing. If the guard is true, the action will fire. If the guard is
false, it will not.

7.1.4 Defining Actions

An entity can contain multiple actions. Each action has to specify a number of
channels, and a variable vector corresponding to each channel. Given the actor
above, the actor will wait until there is one or more tokens on the in-channel.
If there is at least one token, and the actor has not yet fired, the actor will fire.
If the bindings vector would contain two variables, the actor would wait for two
available tokens before firing. In the same fashion if there were more channels
specified as input-channels, say in-0 and in-1 and both of those had bindings

38

vectors which contained say two variables. Then the actor would wait for two
tokens to be available on each channel before firing.

The defaction s-expression has to begin with the specification of input
channels and bindings vectors and an optional guard. After that the pro-
grammer is free to add whatever normal Clojure code they want. There are
however some keywords that don’t make sense outside of the scope of an action.
Those are (– ...) and (»! ...), where the first one indicates an update
to a state variable and follows the syntax: (– state-variable new-value).
Note that when updating the state variable no @ is required before the variable
name. The second one is the output statement, and is used as follows: (»!
output-channel value).

7.1.5 Execution of Networks

To execute a program written in cactus, one uses the the exec-network key-
word. An example of a very simple network would be:

(exec-network
(let [c0 (has-init-tokens)

c1 (relay "hej")
p0 (printer "")
]

(list
(con (c0 out) (c1 in) {:initial-tokens ["hej␣d"]})
(con (c1 out) (p0 in))
)

)
)

Which is a network where one actor that simply has initial tokens is con-
nected to a relay, that relays the tokens to a printing actor. The connection
between c0 and c1 contains a token which has the string "hej då" as value. That
token is sent to the printer via the relay, and the printer prints out the value.

To use the exec-network one creates instances of entities by calling their
names. For instance to create the printer actor, we bind the return of (printer
"") to the variable p0. Since the printer actor takes one argument, namely the
prefix to whatever string it receives as a token on its input port, one such string
is supplied. In this case it is the empty string.

When the entities have been instantiated, the programmer is asked to simply
return a list of connections via the con keyword. Each con takes two or three
arguments. The first is the sending entity and the port on which the sender
will place a token. In this case, the first entity is an actor called has-init-tokens
and it connects the out port on the has-init-tokens called c0, to the in port on
the relay actor called c1. This connection is also given a third argument, which
is an arguments-map, containing the key :initial-tokens, which will, as the
name suggest, be the initial tokens on the channel. There is one more keyword

39

that can be used inside of network entities, and that keyword is endpoint, but
more on that later.

7.1.6 Defining a Network Entity

There are two entities described above. One is an actor, and the other is a
network. To define a network to be used inside of another network one uses the
keyword: defnetwork. This expression takes, similarly to defaction, a number
of input channels and corresponding bindings vectors. These will make sure the
network waits for the correct number of tokens before executing the network
defined inside the expression.

An example of a defnetwork could be:
(defentity nw1 [] [in] ==> [output]
(defnetwork in [x] ==>

(let [feed (feed-one x)
end (endport output)
pr (printer "")
]

(list
(con (feed out) (rel in))
(con (rel out) (end out))
)

)
)

)

This network could then be used just like a normal actor inside of a exec-network
expression. There is however two key difference between running a network in-
side of an entity and simply running it in an exec-network expression, and
that is the ability to listen for tokens on the input ports, and the ability to put
tokens on an output port. Handling inputs works exactly the same as for a
normal actor. However to output on a output port one does not use the normal
(»! ...) form. Instead an endport has to be declared. In the example
above an endport is created for the output port ’output’. The name of the port
is given at instatiation and then to send a token on the output channel a token
is sent from rel out to end out, which in tern will make the token appear on the
output channel. This is also the general case. To output on a output channel,
one instantiates an endport with the name of the output channel as its only
argument, and then tokens are sent to that instance of the endport on port
’out’.

40

7.2 Simple Adder Actor, Cactus and CAL Comparison

actor Add () A, B =⇒ C :

action [a], [b] =⇒ [a + b] end
end

(defentity Add [] [A, B] ==> [C]
(defaction A [a] B [b] ==>
(>>! C (+ a b))
)

)

41

7.3 Iteration One
7.3.1 The SW-cell

(def match 8)
(def mismatch -3)
(def penalty -2)

(defn score [a b]
(if (= a "") 0
(if (= b "") 0
(if (= a b) match mismatch)

)
)

)

(defn cell-action [nw n w a b]
(max
(+ nw (score a b))
(+ w penalty)
(+ n penalty)
0)

)

(defn sw-cell [a b w v aln-v name]
(go
(loop [nw 0 n 0 i 0];;Set initial state
(let [new-a (<! a) new-b (<! b) new-w (<! w)] ;;Wait for ports
(let [

new-nw new-w
new-n (cell-action nw n new-w new-a new-b)
] ;;Assign new local state and execute body

(>! v new-n);;Set output
(>! aln-v new-n)
;(println (str i name ": " new−n "\n\n"))
(recur new-nw new-n (inc i)) ;;Recur

)
)

)
)

)

42

7.3.2 The Network

(defn -main [& args]
(print-actor chan-4-print)

(sw-cell chan-con-1 chan-con-b1 chan-con-1-zero chan-1-2 chan-aln-1 "0")
(sw-cell chan-con-2 chan-con-b2 chan-1-2 chan-2-3 chan-aln-2 "1")
(sw-cell chan-con-3 chan-con-b3 chan-2-3 chan-3-4 chan-aln-3 "2")
(sw-cell chan-con-4 chan-con-b4 chan-3-4 chan-stop chan-aln-4 "3")

(aligner chan-aln-1 chan-aln-2 chan-aln-3 chan-aln-4 chan-4-print)

(fan-out-actor chan-con-b chan-con-b1 chan-con-b2 chan-con-b3 chan-con-b4)

(>!! chan-str-1 "abb")
(>!! chan-str-2 "aaa")

(<!! (controller chan-str-1 chan-str-2 chan-con-1 chan-con-2 chan-con-3 chan-con-4 chan-con-b chan-con-1-zero))

)

7.4 Iteration Two
7.4.1 The SW-cell

(defactor sw-cell [a-length] [a-chan b-chan west] ==> [value aligner-value]
(defstate [nw 0 n 0 i 0])
(defaction a-chan [a] b-chan [b] west [new-west] ==>
(let [new-nw new-west

new-n (cell-action @nw @n new-west a b)
]
(>>! value new-n)
(>>! aligner-value new-n)
(if (= @i (dec a-length))
(do
(-- nw 0)
(-- n 0)
(-- i 0)
)

(do
(-- nw new-nw)
(-- n new-n)
(-- i (inc @i))
)

)
)

)
)

43

7.4.2 The Network

(defn -main [& args]
(println "started")
(def A "JLSNDFLSEPFSKDFJESADLFJASIJDFLCMSKSDFPSJEKFSPDJL")
(def B "HEJA")
(def width 4)

(println "B-length:" (count B))
(println "A-length:" (count A))

(entities
(actor controller (controller-actor A B width))
(actor stripe (stripe-actor (count A)))

(actor fanout (fanout-actor))

(actor sw0 (sw-cell (count A)))
(actor sw1 (sw-cell (count A)))
(actor sw2 (sw-cell (count A)))
(actor sw3 (sw-cell-printing (count A) (* (/ (count B) width) (count A))))

(actor aligner (align-actor A B width))

(network

(con (controller :chan-contr-fan-a) (fanout :in-chan))
(con (controller :chan-stripe) (stripe :b-chan))

(con (stripe :chan-0) (sw0 :b-chan))
(con (stripe :chan-1) (sw1 :b-chan))
(con (stripe :chan-2) (sw2 :b-chan))
(con (stripe :chan-3) (sw3 :b-chan))

(con (fanout :chan-0) (sw0 :a-chan))
(con (fanout :chan-1) (sw1 :a-chan))
(con (fanout :chan-2) (sw2 :a-chan))
(con (fanout :chan-3) (sw3 :a-chan))

(con (sw0 :value) (sw1 :west))
(con (sw1 :value) (sw2 :west))
(con (sw2 :value) (sw3 :west))
(con (sw3 :value) (sw0 :west) {:initial-tokens (vec (repeat (count A) 0))})

(con (sw0 :aligner-value) (aligner :chan-0))
(con (sw1 :aligner-value) (aligner :chan-1))
(con (sw2 :aligner-value) (aligner :chan-2))
(con (sw3 :aligner-value) (aligner :chan-3))

)
)

(while true)

)

44

7.5 Iteration Three
7.5.1 The SW-cell

(defentity sw-cell [a-length] [a-chan b-chan west] ==> [value aligner-value]
(defstate [nw 0 n 0 i 0])
(defaction a-chan [a] b-chan [b] west [new-west] ==>
(let [new-nw new-west

new-n (cell-action @nw @n new-west a b)
]
(>>! value new-n)
(>>! aligner-value new-n)
(if (= @i (dec a-length))
(do
(-- nw 0)
(-- n 0)
(-- i 0)
)

(do
(-- nw new-nw)
(-- n new-n)
(-- i (inc @i))
)

)
)

)
)

45

7.5.2 The Network

(exec-network
(let [controller (controller-actor A B width)

sp-cells (for [i (range width)] (stripe-cell (count A)))
fo-cells (for [i (range width)] (fanout-cell))
sw-cells (for [i (range width)] (sw-cell (count A)))
col-cells (for [i (range width)] (collector-cell))
end (finnish-line width (count A) (count B))
init (has-init-tokens)

buffer (buf)
b1000 (buf)
]

(concat

(list
(con (controller chan-stripe) ((nth sp-cells 0) vec))
(con (controller chan-contr-fan-a) ((nth fo-cells 0) in))
)

(for [i (range (dec width))]
(con ((nth sp-cells i) vec-out) ((nth sp-cells (inc i)) vec))
)

(list
(con ((nth sp-cells (dec width)) vec-out) (b1000 in))
)

(for [i (range (dec width))]
(con ((nth fo-cells i) next-fo) ((nth fo-cells (inc i)) in))
)

(list
(con ((nth fo-cells (dec width)) next-fo) (buffer in))
)

;connectig the fo cells to the sw cells
(for [i (range width)]
(con ((nth fo-cells i) sw-out) ((nth sw-cells i) a-chan))
)

;Connecting the sp cells to the sw cells
(for [i (range width)]
(con ((nth sp-cells i) char) ((nth sw-cells i) b-chan))
)

;Connectig the sw cells to eachother

46

(list
(con ((nth sw-cells (dec width)) value) ((nth sw-cells 0) west) {:initial-tokens (vec (repeat (count A) 0))})
)

(for [i (range (dec width))]
(con ((nth sw-cells i) value) ((nth sw-cells (inc i)) west))
)

(for [i (range width)]
(con ((nth sw-cells i) aligner-value) ((nth col-cells i) score))
)

(list
(con (init out) ((nth col-cells 0) vector) {:initial-tokens (vec (repeat (* (/ (count B) width) (count A)) []))})
)

(for [i (range (dec width))]
(con ((nth col-cells i) out) ((nth col-cells (inc i)) vector))
)

(list
(con ((nth col-cells (dec width)) out) (end in))
)

)
)
)

47

7.6 SW-cell in CAL and in Cactus comparison

actor SWC (i, j, match, mismatch, gap) A, B, W, NW, N =⇒ V :

action [a], [b], [w], [nw], [n] =⇒ [v]
var

v1 = nw + if a = b then match else mismatch,
v2 = w + gap,
v3 = n + gap,
v = max(max(v1, 0), max(v2, v3))

end
end

(defentity sw-cell [a-length] [a-chan b-chan west] ==> [value aligner-value]
(defstate [nw 0 n 0 i 0])
(defaction a-chan [a] b-chan [b] west [new-west] ==>
(let [new-nw new-west

new-n (cell-action @nw @n new-west a b)
]
(>>! value new-n)
(>>! aligner-value new-n)
(if (= @i (dec a-length))
(do
(-- nw 0)
(-- n 0)
(-- i 0)
)

(do
(-- nw new-nw)
(-- n new-n)
(-- i (inc @i))
)

)
)

)
)

48

7.7 DataFlowChannel

(deftype DataFlowChannel [^ringbuffer buf, ^Lock mutex, ^LinkedList sizes]
cactus.impl/ReadPort
(peek!
[this i handler]
(.lock mutex)
(let [val (box (.peep buf i))]
(.unlock mutex)
val))

(size
[this n handler]
(.lock mutex)
(if (<= n (.len buf))
(do
(.unlock mutex)
(box true))

(do
(.add sizes handler)
(.unlock mutex)
nil)))

impl/ReadPort

(take!
[this handler]
(do
(.lock mutex)
(let [val (box (.plop! buf))]
(.unlock mutex)
val)))

cactus.impl/WritePort

(put!
[this e handler]
(.lock mutex)
(.offer! buf e)
(let [iter (.iterator sizes)]
(loop [sizers []]
(if (.hasNext iter)
(let [elem (.next iter)]
(if (<= (cactus.impl/size-depth elem) (.len buf))
(do
(let [func (cactus.impl/fun elem)]
(dispatch/run (fn [] (func true)))
(.remove iter)
(recur (conj sizers func)))))))))

(.unlock mutex)
(box true))

49

	Tom sida

