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Abstract

The project was aimed at numerically assessing exoplanetary systems to distinguish their

capabilities of hosting additional planets. The shortcomings of the radial velocity method

sometimes causes hindrance in the detection of terrestrial planets. Although modern spec-

trometers have evolved and improved drastically, the process of distinguishing signals from

smaller planets is still difficult and cumbersome. Besides the technical difficulties, the ge-

ometry of the system is also of paramount importance in the detection process. For these

reasons, we resort to other means to evaluate the potential for the existence of additional

planets, especially in systems with large gaps between their known planets.

Computer simulations allow us to study such systems in great detail. We input parameters

of a hypothetical planet (Earth-mass in our case) for a given range of orbits and eccen-

tricities where we expect to find our planet, along with the other known bodies, in the

simulation program, based on the orbital dynamics, the program returns an easy-to-read

stability map of the system. We restrict ourselves to the habitable zones of the systems

for the range of orbits. The simulations were run using the N -body integration software

package REBOUND. The WHFast integrator combined with the chaos indicator, the mean

exponential growth factor of nearby orbits (MEGNO), ran the simulations over a specified

time period and returned the MEGNO values which were used to plot the so-called stabil-

ity maps.

We looked at a total of 15 systems out of which two were found to be almost completely

stable for the given initial conditions while four were found to be completely or close to

being completely unstable. The rest of the eight systems had regions of both stability and

instability that at times were due to rather interesting phenomena, co-orbital arrangements

or suspected mean-motion orbital resonance for example. We looked more closely at HD

219828, HD 37605, HIP 67851 and Teegarden’s Star. HD 219828 had a large gap between

the two known planets, but due to the highly elliptical orbit of its known outer planet,

which engulfed the orbital range of the hypothetical planet, it was found to be incapable

of hosting an additional planet. HD 37605 was suspected to demonstrate mean-motion

orbital resonance after the introduction of the hypothetical planet, though the studies

did not confirm the hypothesis. HIP 67851 and Teegarden’s Star were both suspected to



show co-orbital configurations in the presence of the hypothetical planet. The hypothetical

planet in HIP 67851 was found to be a quasi satellite of its known outer planet, while Tee-

garden’s Star c was found to be in a Trojan co-orbital arrangement with the speculative

planet. The situation of Teegarden’s Star b with respect to the introduced planet could

not be assessed with certainty. One possibility is that it is in a horseshoe orbit with the

introduced planet.
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Populärvetenskaplig beskrivning

The existence of extrasolar planets has been long suspected but it was only relatively re-

cently that scientists employed methods to actually detect them. Although these methods

have helped us detect thousands of planets, there are still hundreds of thousands of an-

ticipated planets which we are unable to detect; it is believed that, on average, every star

has more than one planet orbiting it. Since they do not produce much light, like the stars

and galaxies do, it is difficult to observe them directly. Computer simulations give us a

chance at predicting the possible existence of additional unknown planets in previously

known planetary systems.

The process begins by shortlisting interesting planetary systems. Three body (a star and

two planets) systems are preferred since there are multiple planetary and stellar parame-

ters to consider; this makes the process less complicated and easily approachable. Ideally,

you would want to know the host star’s mass and the planets’ masses and their distances

from the star. Small mass planets with large gaps between them are more likely to ac-

commodate another planet. To make the study more interesting, I will be calculating the

habitable zones of all the host stars and further reduce the list of targets based on whether

the habitable zone lies in the gap between the planets and look for the possible existence of

an terrestrial, Earth-mass planet (capable of supporting life) in that region. The habitable

zone is the area around a star where temperatures are not too high or too low for liquid

water to exist on a planet’s surface.

Assuming there is an undetected planet in the habitable zone between the two known

planets, a hypothetical planet is inserted there and the simulation is run to create a sta-

bility map for the system. The simulation is adept at detecting chaos in the system over a

relatively shorter lifetime. The map produced demonstrates regions of stability and insta-

bility for the given range of the habitable zone. It is colour coded for the benefit of the user.

It is suspected that every star in our galaxy has at least one planet orbiting it. How-

ever, due to our technological limitations, we are unable to observe all of them yet. By

studying the exoplanets and the exoplanetary systems, we can learn how they are formed,

the multiplicity of planets in them, their mechanical properties etc. Computer simulations



can help us narrow down our search for interesting planets, especially if the purpose of the

search is to look for potential habitable bodies. By knowing where to look, we can divert

our energies and resources towards the more attractive and rewarding systems. The search

for life is a motivation driving many experts of the time and field.
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Chapter 1

Introduction

The purpose of this thesis is to assess the potential for the existence of Earth-mass planets

in the habitable zones of exoplanetary systems that the radial velocity surveys might have

missed during their search - planets outside the solar system are referred to as exoplanets;

a definition of the habitable zone is the region around a star where liquid water can exist

on a planet. The radial velocity method is good at detecting relatively large planets that

lie on shorter orbits, i.e. in close proximity to their host star. Thus, it is not an ideal tool

to detect smaller planets, especially those orbiting the star on larger orbits.

Specific three-body (a star and two planets) systems that have large gaps between the

two known planets and whose habitable zones overlap with the gaps will be short-listed.

After inserting a hypothetical, Earth-mass planet in the habitable zone of a system, its

orbital dynamics will be studied and analyzed in order to evaluate its stability. A planetary

system with just one planet is stable indefinitely but the introduction of more planets in

a system can cause the system to destabilize due to the gravitational perturbations of the

planets on each other. It should be noted that this is not always the case. Systems with

more than one planet can exist harmoniously over relevant time scales, such as the Solar

System.

The studies will be done by running computer simulations of the planetary motion of

the two known planets and the hypothetical planet inserted in the habitable zone around

their host star. The simulations survey the stability of the system for the range of orbits
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1.1. DETECTION TECHNIQUES CHAPTER 1. INTRODUCTION

(habitable zone) and the given range of eccentricities (0-0.5) of the inserted planet over a

specified period producing the so-called stability maps. The stability maps of a few candi-

date systems will be analysed in detail to narrow down the ones worthy of more detailed

investigations.

1.1 Detection Techniques

Exoplanets, generally, are not easy to detect because of their relatively small size and also

because they do not radiate significantly on their own like stars. Most easily detected

planets are gas giants on short orbits. Gas giants are planets that are mostly composed

of gas, such as hydrogen and helium, with a small rocky core. These planets are usually

large in size so when they pass in front of the star a significant fraction of the light from

the star is blocked. Their pull on the host star is also greater which can be detected by the

shift in the star’s electromagnetic spectrum due to the Doppler effect. These properties

make them more readily noticed and easily measured - these phenomena will be discussed

in detail below.

Over the years, various detection techniques have been invented, some of which rely on

indirect methods to reveal and identify planets. Unlike a direct observation of an object via

a telescope, indirect methods are those that rely on signatures or indications that imply the

existence of a planet based upon indirect observations. The two most popular of them are

Doppler spectroscopy (also known as the radial-velocity method) and transit photometry

(commonly known as the transit method). We briefly discuss the two methods below.

The radial velocity method relies on the fact that the star is not completely stationary

when a planet is orbiting it. The gravitational pull of the planet on the star makes the

star orbit around a common center-of-mass of the star-planet system. This causes a shift

in the normal light spectrum of the star when observed from the Earth known as the

Doppler effect. It is the shift in the frequency/wavelength of a wave with respect to an

observer, i.e. when the star is moving away from the Earth the spectrum is shifted to-

wards redder (longer) wavelengths and when it is moving towards the Earth the spectrum

is shifted towards bluer (shorter) wavelengths. The stellar velocity amplitude K is defined
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1.1. DETECTION TECHNIQUES CHAPTER 1. INTRODUCTION

as Cumming:

K =
28.4 m/s√

1− e2

(
MP sin i

MJ

)(
P

1 yr

)−1/3 (
M?

M�

)
, (1.1)

where MP and P is the mass and the period of the planet orbiting the star respectively, MJ

is the mass of Jupiter, i is the inclination of the orbital plane, M? is the stellar mass and

M� is the solar mass. Fig. 1.1 (taken from: The European Space Agency (2019)) below

illustrates the mechanism. This method provides us with the semi-major axis and the

minimum mass of the planet, assuming the planet is on a circular orbit.

Figure 1.1: Illustration of the radial velocity method. The star and the planet orbit a com-
mon center of mass. Notice how the stellar spectrum shifts towards shorter wavelengths as
the star moves towards the observer while shifts towards longer wavelengths on the jour-
ney away. Image taken from: The European Space Agency (2019); https://www.esa.int/
ESA_Multimedia/Images/2019/02/Detecting_exoplanets_with_radial_velocity

Although the radial velocity method is one of the most popular methods for finding plan-

ets, it has some limitations. If the planetary system under observation does not lie on the

7



1.1. DETECTION TECHNIQUES CHAPTER 1. INTRODUCTION

same plane (edge-on) as our line-of-sight, then we would not measure the full velocity of

the star, hence a smaller mass of the planet is calculated. Unless the inclination of the

orbital plane of the planet with respect to our line-of-sight is known, the measured mass

is believed to be less than or equal to the true mass of the planet. While there are second

and third generation spectrographs in use today that are much more precise than their

previous generations, there are still limitations that make it difficult to detect Earth-mass

planets, especially those that are on orbits far out from the star. For example, if there

are two giant planets orbiting a star and there exists a smaller planet on an orbit in the

gap between them, there is a chance that the smaller planet escapes detection. Eq. 1.1

quantifies the velocity amplitude signal which, as observed, becomes increasingly weak as

MP becomes smaller.

The transit method is another indirect way of confirming the existence of a planet around

a star. This is based on the passage of the planet in front of the star that results in a drop

in the brightness of the star. Fig. 1.2 (taken from: NASA Ames (2012)) illustrates the

mechanism of the method. Since this drop is periodic and consistent, it yields the period

and the radius of the planet. Combined with the knowledge of the mass from the radial

velocity method one can find the mass density of the planet that can be used to analyse

the physical structure of the planet, for example whether it is a gas giant like Jupiter or a

rocky ball like the Earth.

Figure 1.2: Illustration of the transit method mechanism. Notice how the stellar
brightness drops as the planet passes in front of the star. Image taken from: NASA
Ames (2012); https://www.nasa.gov/mission_pages/kepler/multimedia/images/

transit-light-curve.html
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1.1. DETECTION TECHNIQUES CHAPTER 1. INTRODUCTION

However as for all methods, there are limitations to the transit method too. In order to

observe the transit, the orbital plane must be edge-on to our line-of-sight. For example,

if there are two planets orbiting a star with a large gap between them, it is possible that

the transit survey missed a planet between those two because the planet in the gap did

not align with our line-of-sight; even a slight inclination of the orbital plane with respect

to our line-of-sight could completely hide a planet in that orbit. This calls for additional

investigation via other means to confirm the existence of planets in any system. Besides

that, this method also has other weaknesses, one of which is the likelihood of false positives

in binary systems (two-star systems orbiting around their common center-of-mass). If the

star is a binary and the companion is a low mass star, such as a white or a brown dwarf,

then the eclipse would still pick it up as a planet. For this reason, the radial velocity

method is necessary for the confirmation of a planet.
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Chapter 2

Background

In this section, we will explore the mathematical relations and the physical phenomena

that will help us examine the stability of the three-planet systems. Computer simulations

will be run on our narrowed down systems of interest to study their mechanical dynamics

after the insertion of a hypothetical planet in the system. The evolution of the planet’s

trajectories will be studied for the given initial conditions (see Rein and Tamayo (2016)).

2.1 Mass-Radius Relation

Mass and radius are the two fundamental properties of most heavenly bodies. The two

detection techniques discussed in the previous section provide either the mass (via radial

velocity method) or the radius (via the transit method) of a planet, depending on the

technique used. So if a planet is detected using only one of the methods it will only be

possible to measure one of the properties. Since most planets detected up to date are from

transit surveys and we require the mass of planets for the sake of dynamical studies that are

to be conducted in this project, we require a mass-radius relation to estimate the masses of

the planets only detected via the transit method. According to Chen and Kipping (2017),

for planets of radii roughly between 1 and 10 R⊕ (Earth radii), the mass-radius relationship

is:

R ≈M0.59, (2.1)

where R is the radius and M is the mass of the planet expressed in Earth radii and masses.
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2.2. ORBITAL ELEMENTS AND RESONANCE CHAPTER 2. BACKGROUND

2.2 Orbital Elements and Resonance

Orbits can be distinctively defined by parameters called orbital elements. There are six

conventional elements, collectively known as the Keplerian elements. Fig. 2.1 represents

the elements graphically:

• Semi-major axis (a) - average of the sum of the pericenter (closest point from the

central body on an elliptical orbit) and apocenter (furthest point from the central

body on an elliptical orbit).

• Eccentricity (e) - amount of deviation of a conic section from being circular.

• Inclination (i) - angle between the orbital plane and the plane of reference.

• Longitude of ascending node (Ω) - angle measured from the vernal point (�) in

the reference plane to the ascending node that gives a horizontal definition to the

ascending node (point where the orbit passes upward through the reference plane).

• Argument of periapsis (ω) - angle between the ascending node and the periapsis. It

describes the orientation of the ellipse in the orbital plane.

• True anomaly (ν) - position of the orbiting body on the orbit at a certain time. It is

marked from the line connecting the center of mass and the periapsis.

• Mean anomaly (M) - just like the true anomaly, mean anomaly tracks the angular

position of the object on an orbit but unlike the true anomaly, this angle keeps

increasing linearly with time. This is not one of the six conventional elements but it

is sometimes used instead of the true anomaly.
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2.2. ORBITAL ELEMENTS AND RESONANCE CHAPTER 2. BACKGROUND

Figure 2.1: The yellow plane describes the orbital plane while the grey plane describes the
reference plane. Their intersection is known as the line of nodes. It connects the center
of mass with the ascending and descending nodes. Image taken from: Wikipedia (2021)
(https://en.wikipedia.org/wiki/Orbital_elements).

The orbit of a planet around a star is invariant if it is the only body in orbit around the

star. However, if there is more than one planet in a system, the planets pull on each other

such that their orbits undergo changes. These changes are the greatest when the ratio of

the planets’ periods is an integer. This phenomenon is known as the mean-motion orbital

resonance. It can either work to stabilize or destabilize a system in the long run, depending

on the system’s geometry. In most cases, two bodies closely approaching each other tend

to destabilize the system. However, if the bodies never approach each other closely enough,

then the resonance could work in the system’s favour to stabilize it, for example, the 2:3

resonance of Neptune and Pluto in our Solar System. More specifically, if one of the bodies

transfers a net angular momentum to the other body on their closest meeting, then the

orbits would change over time in a self-correcting manner.
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2.3. HILL SPHERE CHAPTER 2. BACKGROUND

2.3 Hill Sphere

Celestial bodies define a sphere of influence around themselves where the gravitational pull

of a body dominates. An object is gravitationally bound to a body when it falls within

that sphere of influence, for example, the Moon orbiting the Earth. The sphere of influence

is also commonly known as the Hill sphere, which is defined for a planet by the mass of

the star as well as the mass, semi-major axis, and eccentricity of the planet. The single

body hill sphere rH is defined as (Murray and Dermott, 2000),

rH ≈ a(1− e)
(
m

3M?

)1/3

, (2.2)

where a is the semi-major axis and m is the mass of the planet, and M? is the mass of the

central star. A more general form of it is called the mutual Hill sphere RH - defined for

two planets and the star in a system. The origin of the sphere in this context can be taken

to be the center of mass of the two bodies. The following equation states the mutual Hill

sphere relation as stated in Pu and Wu (2015):

RH =
a1 + a2

2

(
m1 +m2

3M?

)1/3

. (2.3)

As a general rule, greater spacing between planets in a system means greater stability.

According to Pu and Wu (2015), a simple method to quantify this notion is by defining

planet spacing as a unitless number K:

K =
a2 − a1

RH

. (2.4)

For numerical simulations run over a billion years, the probability for a system to remain

stable begins to approach 1 for K > 10 (Pu and Wu, 2015).

2.4 Orbital Stability and Chaos

As of today, planets are believed to be formed in a disc of gas around the star known as the

protoplanetary disc. Some of the dust and gas condenses into protoplanets and then into

planets. The remaining dust and gas is eventually cleared by the stellar radiation pressure,

clearing the planets’ orbits.
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2.5. REBOUND WITH THE MEGNO INDICATOR CHAPTER 2. BACKGROUND

After the formation of planets, the long-term stability of a system depends on a number of

factors, such as the packing of the planets, orbital parameters as well as the mean-motion

orbital resonance (see Petit et al.). For systems with more than two planets, there is no

exact solution to the equations of motion. The level of complexity increases with the in-

creasing number of bodies in a system, which makes it increasingly hard to analytically

understand the origin of dynamical instability (Pu and Wu, 2015). This calls for the need

to study orbital mechanics computationally. Computer simulations help us survey systems

by running simulations over them for varying initial conditions.

Chaos plays an important role in the evolution of a planetary system. Although there

is no universally accepted definition of chaos, in the context of this paper, we will use it

as is defined in Murray and Dermott (2000): if the final dynamical state of an object is

sensitively dependent on its initial conditions then it is said to exhibit chaotic motion. For

example, the exponential divergence of two planetary orbits, or their intersection based on

the planets’ initial conditions.

2.5 REBOUND with the MEGNO Indicator

REBOUND (Rein and Liu) is an N -body integrator software package that can be installed

and operated in Python. We use the WHFast integrator under REBOUND. The WHFast

integrator is a symplectic integrator that conserves energy and angular momentum bet-

ter than the non-symplectic class of integrators. Stellar and planetary parameters of the

known planets and the star, as well as the initial conditions of the hypothetical, inserted

planet are fed to the code. The code then runs simulations by analysing and computing

pair-wise interactions between all the bodies in the system over a specified integration time

period for a given time-step.

Although REBOUND is capable of running direct N -body integrations by using an ap-

propriate integrator, we will also use the mean exponential growth factor of nearby orbits

(MEGNO) (Rein and Tamayo, 2016) algorithm under REBOUND in combination with the

WHFast integrator (Rein and Tamayo, 2015) for our case. MEGNO is a chaos indicator

capable of detecting chaos in a system over a rather shorter computational time period as
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2.6. HABITABLE ZONE CHAPTER 2. BACKGROUND

compared to a direct N -body integration that would not employ MEGNO or any other

chaos indicator in order to evaluate a system’s stability. It is defined by,

Y (γ(t)) =
2

t

∫ t

0

δ̇(γ(t′))

δ(γ(t′))
t′dt′, (2.5)

where δ(γ(t)) is an arc of an orbit, δ̇(γ(t)) is its time derivative - the rate at which the

arc distance is covered, and t is the total integration time elapsed up to the end of each

timestep (see Cincotta et al. (2003)).

For chaotic orbits, the algorithm provides linearly increasing numerical values with time

for a given set of initial conditions; values ranging from about 2 to infinity. Values about

2 are considered the most stable and those greater than 3 are, generally, considered un-

stable (Cincotta et al., 2003). For the ease of use and making the plots easy to read, the

numerical MEGNO values are translated into a colour scheme, such that the regions of

stability/instability are easily identifiable on a plot.

2.6 Habitable Zone

The habitable zone (HZ) is the range of orbits around a star where liquid water can be

sustained on a planetary body in that region. Distances of the HZs from stars will vary

depending on the type of star. As a general rule, cooler stars will have their HZs closer to

them, while hotter stars will have their HZs much farther out.

The HZs not only depend on the stellar flux but also on the planet receiving the flux.

Several planetary parameters dictate the HZ boundaries, such as the mass of the planet,

the kind and the quantity of gases composing the planet’s atmosphere etc. However, the

mass of the planet should be sufficient in order to be able to sustain an adequate atmo-

sphere which helps in maintaining the long-term presence of liquid water on the surface.

Primarily, it is the job of the greenhouse gases to support a fairly constant temperature

and pressure to sustain liquid water, but an increase or decrease in the amount of such

gases will result in either evaporation or freezing of the water, respectively.

Besides the absorption of the stellar energy, a planet might also reflect some of the ra-
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2.6. HABITABLE ZONE CHAPTER 2. BACKGROUND

diation received from the star due to its surface properties. This is known as the albedo -

fraction of the incoming stellar flux reflected back into the space.

We will follow Kopparapu et al. (b) to calculate the HZ boundaries. The effective stellar

flux (Seff) incident on a planet for stars with effective temperatures (Teff) in the range

2600-7200 K is:

Seff = Seff� + aT? + bT 2
? + cT 3

? + dT 4
? , (2.6)

where Seff� is the solar flux, T? = Teff − 5780 K, and a, b, c, d are pre-defined coefficients.

Seff can be translated into units of distance by:

d =

(
L/L�
Seff

)0.5

AU, (2.7)

where L/L� is the fraction of the stellar luminosity relative to the solar luminosity. d in

Eq. 2.6 is a parameter while in Eq. 2.7 it defines distance. Stellar luminosity relative to

solar luminosity can be calculated using the Stefan-Boltzmann equation:

L =

(
R?

R�

)2 (
T?
T�

)4

L�, (2.8)

where R? is the stellar radius.
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Chapter 3

Method

The goal here is to shortlist relevant systems downloaded from the NAS (2021), calculate

their HZs, place the Earth-mass planet in the HZs of the systems and simulate the orbital

dynamics to check whether the system is stable or demonstrates chaos.

3.1 Shortlisting Interesting Systems

We start by downloading the data of two-planet systems from the NAS (2021) (https:

//exoplanetarchive.ipac.caltech.edu) as a csv file. The file was read in Python en-

vironment using the pandas library. All the sorting and reduction of data was done using

DataFrame. Since only the systems whose semi-major axes were provided in the archive

were relevant, all the other systems missing semi-major axes values were eliminated. I also

dropped all those systems whose stellar mass, effective temperature or stellar radius were

not provided. I further reduced the list of targets by removing systems whose planets’

masses were not given in the archive and their radii were greater than or equal to 10 R⊕.

This was done because over approximately 10 R⊕ the mass-radius relation (Eq. 2.1) no

longer holds. The radius remains fairly constant for a range of masses above 200 M⊕ (see

Chen and Kipping (2017)). For the remaining systems, missing planetary masses were

estimated using Eq. 2.1. I also removed the systems whose time of conjunction or epoch of

periastron were not provided because these orbital parameters were going to be needed as

initial conditions to integrate the systems. We will be studying coplanar systems therefore

we do not consider inclination.
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3.2. ESTIMATING THE HABITABLE ZONES CHAPTER 3. METHOD

Planetary and stellar masses were converted from Earth mass and solar mass units to

kilograms, and the mutual Hill radii of the systems and their corresponding K-values were

calculated using Eqs. 2.3 and 2.4 respectively. I removed all those entries whose K-values

were less than 10 as the probability of a system that it will remain stable begins to approach

1 for K > 10. Some of the stellar luminosities were provided in the planetary archive. Miss-

ing stellar luminosities in other systems were estimated by the Stefan-Boltsmann equation

(Eq. 2.8). Lastly, I plotted the Hertzsprung–Russell (HR) diagram for the remaining

systems (Fig. 4.1). The final list of systems was compiled in descending order of K-values.

3.2 Estimating the Habitable Zones

Next, the HZs of the reduced list of systems were estimated using part of the FORTRAN

code (see Kopparapu et al. (a); Kopparapu et al. (b)). Firstly, I calculated the Seff values

for the inner (recent Venus and runaway greenhouse limit) and the outer (early Mars and

maximum greenhouse limit) habitable zone boundaries using Eq. 2.6. Parameters a, b, c

and d determine Seff for each boundary; they were provided in the code.

Then I converted Seff values into more useful and workable units of distance, astronomical

units (AU), via Eq. 2.7. To ensure larger HZs around the stars in order to increase the

range of orbits for the hypothetical planet, smaller inner (recent Venus ≈ 0.75 AU) and

larger outer (early Mars ≈ 1.68 AU) HZ boundaries were chosen. They were mapped on a

scatter plot against the corresponding stellar luminosities (Fig. 4.2). Semi-major axes of

the known planets and the habitable zone boundaries of the host stars were plotted against

their stellar hosts (Fig. 4.2).

3.3 Running Simulations using the MEGNO

The Python package REBOUND was used to run the simulations and to create the

MEGNO stability maps. The code was fed the relevant stellar parameters - mass, and

the initial conditions for the known planets - mass, eccentricity, period, argument of peri-

astron, epoch of periastron. Since the parameters (a, b, c, d) used to calculate the habitable

zone boundaries corresponded to a 1 Earth mass planet, the inserted planet’s mass was,
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3.3. RUNNING SIMULATIONS USING THE MEGNO CHAPTER 3. METHOD

consequently, 1 Earth mass for all systems. The code was also fed the stellar mass and the

time-step for the integration for each system. I chose the time-step to be roughly 10 % of

the orbital period of the inner planet of each system in order to be consistent. The WHFast

integrator in the code along with the chaos indicator MEGNO mapped the stability of the

systems for the given range of the semi-major axis (range of the HZ of the star between the

two known planets) and the range of eccentricity (which was chosen to be between 0 and

0.5) of the inserted planet. We stop at 0.5 e because higher eccentricity orbits would mean

smaller periastrons and consequently greater velocities at periastrons which would require

smaller time-steps to account for those two factors, leading to longer simulation periods.

Also, the climate is likely not very stable at higher eccentricities. Keeping in mind the

limitations on time, as a compromise, the upper limit of the eccentricity was chosen to be

0.5.
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Chapter 4

Results and Discussion

4.1 Shortlisting Systems

Stellar luminosities were needed to calculate the HZ boundaries in units of distance. There-

fore, the HR diagram was plotted to ensure that the systems whose stellar luminosities

were estimated using the Stefan-Boltzmann equation, due to their absence in the exoplanet

archive, sit well on the HR diagram by following its characteristic shape. It can be seen

in the left panel of Fig. 4.1 that the diagram retains the characteristic shape. The gap

roughly between 3000-3500 K is due to the elimination of many systems due to multiple

filters applied while processing the data.

As a sanity check, the inner and outer habitable zone boundaries were plotted against

stellar luminosities (right panel of Fig. 4.1).
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Figure 4.1: Left: HR diagram of the final shortlisted systems. Right: Inner and outer HZ
boundaries against the stellar luminosities of the shortlisted systems.

Table 4.1 below summarizes the shortlisted systems and some of their properties. Fig. 4.2

represents those systems graphically by plotting the planets’ semi-major axes, the systems’

HZ boundaries, as well as the planets’ periapsis and apoapsis on their orbits. The systems

are listed in descending order of K values, with the most stable system on the top, and the

least stable system on the bottom.
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Figure 4.2: Host stars, their known planets, HZ boundaries, and their periapsis/apoapsis
on their orbits plotted in descending order of K-values.

4.2 The MEGNO Maps

In this section we will analyse and discuss some of the MEGNO maps. They display the

stability of the systems after the insertion of a hypothetical Earth-mass planet in the HZ

in the gap between the two known planets. It should be noted that the HZ did not en-

tirely lie in the gap in some of the systems but only partially overlapped (see Fig. 4.2).
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4.2. THE MEGNO MAPS CHAPTER 4. RESULTS AND DISCUSSION

In such cases the hypothetical planet was placed in the partial HZ between the two planets.

Table 4.2 below lists the percentage of the stable regions in the stability maps of the

hypothetical systems. Two out of the 15 systems (HAT-P-11 and HD 187123) are found to

be over 95% stable while four of them (HD 92788, HD 38529, HD 219828 and HD 4732) are

completely or close to being completely unstable. HIP 67851 and Teegarden’s star display

possible co-orbital configuration which we shall explore in detail below. The white pixels

mark the missing MEGNO values which I believe correspond to infinity.

HD 163607, HD 75784 and HD 142 are of particular interest as they demonstrate dif-

ferent levels of stability over different integration time periods. The MEGNO indicator

was especially chosen as it is believed to establish the stability of a system by detecting

chaos over a relatively shorter time period. However, the drastically varying results of HD

163607, HD 75784 and HD 142, integrated over 500 and 5000 years, hint at the possible

shortcomings of the indicator.

I chose 4 systems (HD 219828, HD 37605, HIP 67851 and Teegarden’s Star) for a more

detailed analysis based on the features they demonstrated. However, this method of quan-

tifying the amount of stable region in a system, in general, could also help us sort and

choose our systems capable of hosting a terrestrial planet for more detailed investigations.

MEGNO maps not discussed can be found in Appendix B.
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4.2. THE MEGNO MAPS CHAPTER 4. RESULTS AND DISCUSSION

Table 4.2: Fraction of the stable area in the MEGNO maps measured by taking the ratio
of the pixels with MEGNO value less than 2.75 to the total number of pixels. HD 163607’s,
HD 75784’s and HD 142’s two values each correspond to the integration time of 500 and
5000 years respectively.

Host Name Stable region %

GJ 414 A 46.4
HAT-P-11 98.7
HD 187123 99.6

Teegarden’s Star 4.2
HD 163607 10.6, 5.2
HIP 67851 8.5
HD 37605 41.4

Pr0211 16.2
HD 75784 19.9, 5.2
HD 92788 0.9
HD 38529 0.0
HD 219828 0.0

HD 142 39.5, 18.0
HD 4732 0.3

HD 148164 9.8

4.2.1 HD 219828
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Figure 4.3: HD 219828 MEGNO stability
map integrated over 500 years. Inserted
planet parameters: time-step = 0.001 years,
mean anomaly M = 0, ω = 0.

Fig. 4.3 highlights the instability of the sys-

tem when a third planet is inserted in the

HZ in the gap between the two known plan-

ets. Although there is a large gap between

the planets and the HZ lies well within the

gap, upon further investigation, it is re-

vealed that planet HD 219828 c’s pericen-

ter encloses the HZ of the system as can be

seen in Fig. 4.2. Such a highly elliptical

orbit means that the inserted planet’s orbit

would have to lie within HD 219828 c’s or-

bit or intersect it. This would increase the

chances of close encounters of the two plan-
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4.2. THE MEGNO MAPS CHAPTER 4. RESULTS AND DISCUSSION

ets, rendering the insertion unstable. It is

likely that the instability is due to the prospective close encounter of HD 219828 c and the

1 M⊕ inserted planet.

4.2.2 HD 37605

Along with a fairly continuous region of stability between 0.8-1.4 AU, Fig. 4.4 has green

stripes throughout the map that also signify the stable regions. This was anticipated to

be due to the mean-motion orbital resonance inside the system. Even though the period

ratios of the innermost and the outermost planet with the inserted planet did not turn out

to be exact integers (see table 4.3), some of the higher order orbital resonances of the type

k:2 of the innermost planet with the inserted planet, manually marked on the stability

map, lined-up with the green stripes (right panel of Fig. 4.4). Since k:1 resonances did not

line-up and k:2 resonances appeared to align at higher orders, we concluded that k:2 is the

strongest contender of the two resonance types for the given set of initial conditions.
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Figure 4.4: Left: HD 37605 MEGNO stability map integrated over 500 years. Inserted
planet’s parameters: time-step = 0.01 years, mean anomaly M = 0, ω = 0. Right: k:1
(black) and k:2 (blue) resonances marked on the map.
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Table 4.3: Periods of the HD 37605 b (Tb), HD 37605 c (Tc), and the inserted planet’s
period (TE) calculated at the semi-major axes of the green stripes and their ratios.

aE [AU] TE [yrs] Tb [yrs] Tc [yrs] TE

Tb
[yrs] Tc

TE
[yrs]

0.6 0.479533 0.150720 7.452055 3.181616 15.540223
0.73 0.643540 0.150720 7.452055 4.269778 11.579767
0.84 0.794348 0.150720 7.452055 5.270355 9.381347
0.95 0.955382 0.150720 7.452055 6.338790 7.800074
1.05 1.110135 0.150720 7.452055 7.365546 6.712745
1.15 1.272443 0.150720 7.452055 8.442436 5.856489
1.25 1.441972 0.150720 7.452055 9.567226 5.167959
1.34 1.600475 0.150720 7.452055 10.618867 4.656149

4.2.3 HIP 67851

Fig. 4.5 below shows the stability map of HIP 67851. The x-axis corresponds to the tiny

gap between the inner edge of the HZ and HIP 67851 c. The presence of a stable region in

such a narrow gap points to the existence of a potential co-orbital configuration.
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Figure 4.5: HIP 67851 MEGNO stability map integrated over 500 years. Inserted planet’s
parameters: time-step = 0.02 years, mean anomaly M = 0, ω = 0.
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Upon further inspection by taking the difference of the mean longitudes, where the mean

longitude is defined as l = Ω +ω+M , of HIP 67851 c and the inserted planet at a number

of locations characterized by a and e locations (see Appendix A for details), it was learnt

that the inserted planet indeed librates around 0 radians in relation to the planet (Fig.

4.6). The angular Hill sphere (angle the surface of the Hill sphere makes with the line

joining the center-of-mass of the star and the planet) of HIP 67581 c (roughly 1900 M⊕)

was calculated to be 0.0872 rad, less than the amplitude of the oscillation (roughly 0.4 rad)

of the inserted planet. This suggests that the inserted planet is not gravitationally bound

by HIP 67581 c but rather is a quasi-satellite which orbits the central star with higher

eccentricity than HIP 67581 c.
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Figure 4.6: The figures display the mean longitude difference for planet HIP 67851 c and
the inserted planet. There is a possible quasi-satellite arrangement with the following
parameters on the left: a = 3.7, e = 0.3 and on the right: a = 3.8, e = 0.35.

4.2.4 Teegarden’s Star

By the looks of the map in Fig. 4.7 below, it seems there are two regions of potential

co-orbital configuration - the extreme left and right on the bottom, and a sparse region of

stability in between.
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Figure 4.7: Teegarden’s Star MEGNO stability map integrated over 500 years. Inserted
planet’s parameters: time-step = 0.001 years, M = 0, ω = 0.

In Fig. 4.8 and 4.9 I plot the mean longitude difference ∆l against time for the inner and

outer planet, respectively. They display what was expected to be some kind of co-orbital

configurations. For Teegarden’s Star b (Fig. 4.8), there seems to be no apparent structure

as the inserted planet seems to oscillate all over between 0 − 2π rad around it. However,

planet b’s angular Hill sphere (0.022 rad) is so small that it is not readily discernible from

the plot whether the inserted planet’s oscillation amplitude respects that boundary. This

might be the case of a horseshoe orbit where the inserted planet librates about π radians

from planet b.

Fig. 4.9 displays what is likely a tadpole orbit where a body oscillates at about 1.05

rad (60◦) in front of or behind the other body. The oscillations are not symmetric about

the mean position which is what gives it its name. From this, we deduce that the inserted

planet is in a tadpole orbit with respect to planet c. It should to be noted that the mass

of both of Teegarden’s star b and c is approximately 1 M⊕ (comparable to the inserted

planet).
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Figure 4.8: The figures display the mean longitude difference for planet Teegarden’s Star
b and the inserted planet with the following parameters on the left: a = 0.025, e = 0.01
and on the right: a = 0.025, e = 0.02.
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Teegarden's Star Potential Co-orbital Configuration

Figure 4.9: The figures display the mean longitude difference for planet Teegarden’s Star
c and the inserted planet with the following parameters on the left: a = 0.0443, e = 0.0
and on the right: a = 0.0443, e = 0.02.
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Chapter 5

Conclusions

Simulations were run on 15 different planetary systems but due to the restriction of time

only a few were discussed in the report. Planetary systems are complex structures that

are most times not fully understood analytically. Usually, a computational analysis is re-

quired to integrate such systems where the wealth of orbital parameters only adds to the

complexity.

We learnt that some of the systems are extremely capable of accommodating an Earth-mass

planet in their HZs while others displayed a lesser tendency to do so. Some of the stability

maps produced by running computer simulations were studied in greater detail. It was

also learnt that by varying the initial conditions, such as the integration time, the stability

of a system varied (see table 4.2). There were several other variable initial conditions - the

mean anomaly, the argument of periastron, the eccentricity, that could have been explored

in greater detail had time permitted.

Although systems with large gaps were anticipated to be hiding a potential planet, some

of the systems that demonstrated such a feature were found to be incapable of hosting one

due to the orbital dynamics of the system, such as HD 219828.

HD 37605 displayed higher order orbital resonances of the form k:2 for the given set of

initial conditions.
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CHAPTER 5. CONCLUSIONS

There were some other interesting systems that displayed potential co-orbital arrangements

- HIP 67851 and Teegarden’s Star. The results of HIP 67851 confirmed the phenomenon

and the hypothetical planet was found be to be a quasi-satellite of the outer planet in

the system. The results of Teegarden’s Star b, apparently, did not confirm the hypothesis

unless it is in a horseshoe co-orbital configuration with the inserted planet. The results of

Teegarden’s Star c also confirmed the hypothesis and the inserted planet was found to be

in a tadpole co-orbital arrangment with it.

HD 163607, HD 75784 and HD 142 demonstrated a distinct feature about the MEGNO

indicator. They all showed a significant reduction in the stability for an increased integra-

tion time (see Table 4.2 and Appendix B for details). MEGNO was distinctly chosen as

it is capable of detecting chaos over a rather short period as compared to direct N -body

integrations. However, this anomaly raised concerns about the stability of the remaining

MEGNO maps that could not be tested over longer periods. Had time permitted, the

rest of the systems would also have been integrated for different time periods to examine

whether the apparent anomaly is exclusive to the three systems for varying time periods.

Integrations could also be run for longer periods to verify whether the systems eventually

stabilise. MEGNO maps that could not be discussed in section 4 can be found in Appendix

B.

All in all, planetary systems are an area of ongoing research and exoplanets, especially

Earth-like, are being actively hunted by scouring through data provided by satellites and

other, Earth-based, telescopes. Simulations such as those performed here will help us un-

derstand planetary systems better. The acquired knowledge from the simulations about

the exoplanetary systems can be employed to focus our search and studies on particular

systems that are more capable of hosting a terrestrial planet in their HZs, and ultimately

to hosting life. I found HAT-P-11 and HD 187123 to be almost completely stable (over

95%), which could be prospective contenders in our future search for terrestrial planets.
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Appendix A

Code

A.1 Shortlist Interesting Systems and Estimating Hab-

itable Zone Boundaries

from pylab import *

import numpy as np

from mpl_toolkits.mplot3d import axes3d

import pandas

x1 = float("nan")

# Read CSV file

df = pandas.read_csv('PS_2021.04.19_10.15.21.csv')

pandas.set_option("display.max_columns", 100) # set number of columns to

↪→ display

pandas.set_option("display.max_rows", 1000) # set number of rows to

↪→ display

df.dropna(subset=['pl_orbsmax','pl_orbeccen', 'pl_orblper'], inplace=True)

↪→ # Define in which columns to look for missing values (NaN) and take

↪→ out those rows.

df['pl_bmasse'] = df['pl_bmasse'].fillna(0) # relace 'nan' with 0s.
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df['pl_rade'] = df['pl_rade'].fillna(0) # relace 'nan' with 0s.

df['st_mass'] = df['st_mass'].fillna(0) # relace 'nan' with 0s.

df['st_teff'] = df['st_teff'].fillna(0) # relace 'nan' with 0s.

df['st_rad'] = df['st_rad'].fillna(0) # relace 'nan' with 0s.

df['st_lum'] = df['st_lum'].fillna(0) # relace 'nan' with 0s.

df['pl_tranmid'] = df['pl_tranmid'].fillna(0) # relace 'nan' with 0s.

df['pl_orbper'] = df['pl_orbper'].fillna(0) # relace 'nan' with 0s.

df['pl_orbtper'] = df['pl_orbtper'].fillna(0) # relace 'nan' with 0s.

df.drop(df[(df.pl_rade >= 10) & (df.pl_bmasse == 0)].index, inplace=True)

↪→ # Remove rows whose radii are greater than or equal to 10 and their

↪→ planetary mass is not given

df.drop(df[df.st_mass == 0].index, inplace=True) # Remove rows with

↪→ stellar mass = 0

#df[~df.st_teff.str.contains("a", na=False), inplace=True]

df.drop(df[df.st_teff == 0].index, inplace=True) # Remove rows with

↪→ stellar effective temperature = 0

df.drop(df[df.st_rad == 0].index, inplace=True) # Remove rows with stellar

↪→ radii = 0

df.drop(df[(df.pl_orbtper == 0) & (df.pl_tranmid == 0)].index, inplace=

↪→ True) # Remove rows where both time of conjunction and epoch of

↪→ periastron are 0

df1 =pandas.concat(g for _, g in df.groupby("hostname") if len(g) > 1) #

↪→ Keep only duplicate entries in "Host Name"

df2 = df1.drop_duplicates(subset=['hostname'], keep='first') # keep first

↪→ duplicate entry

PNb = df2['pl_name'].tolist()

HN1 = df2['hostname']

PRb_list = df2['pl_rade'].tolist()

SemiMA1_list = df2['pl_orbsmax'].tolist()

PMb_list = df2['pl_bmasse'].tolist()

PEb_list = df2['pl_orbeccen'].tolist()

POb_list = df2['pl_orbper'].tolist()
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omega_b = df2['pl_orblper'].tolist()

EoP_b_list = df2['pl_orbtper'].tolist()

st_mass_list = df2['st_mass'].tolist()

st_teff = df2['st_teff'].astype(float)

st_teff_list = st_teff.tolist()

st_rad_list = df2['st_rad'].tolist()

st_lum_list = df2['st_lum'].tolist()

df3=df1.drop_duplicates(subset=['hostname'], keep='last') # keep second

↪→ duplicate entry

PNc = df3['pl_name'].values.tolist()

PRc_list = df3['pl_rade'].values.tolist()

SemiMA2_list = df3['pl_orbsmax'].values.tolist()

PMc_list = df3['pl_bmasse'].values.tolist()

PEc_list = df3['pl_orbeccen'].tolist()

POc_list = df3['pl_orbper'].tolist()

omega_c = df3['pl_orblper'].tolist()

EoP_c_list = df3['pl_orbtper'].tolist()

#print(df.pl_tranmid)

#print(df.pl_orbtper)

#%%

def g(x): # convert planetary radii to mass

return x**(1/0.59)

for n, i in enumerate(PMb_list): # replace 0 with estimate mass from their

↪→ respective radii

if i == 0.0:

PMb_list[n] = g(PRb_list[n])

for n, i in enumerate(PMc_list): # replace 0 with estimate mass from their

↪→ respective radii

if i == 0.0:

38



A.1. SHORTLIST INTERESTING SYSTEMS AND ESTIMATING HABITABLE
ZONE BOUNDARIES APPENDIX A. CODE

PMc_list[n] = g(PRc_list[n])

planetary_mass_b = [] # planetary mass in kg

planetary_mass_c = [] # planetray mass in kg

planetary_radii_b = [] # planetary radii in meters

planetary_radii_c = [] # planetary radii in meters

stellar_mass = [] # stellar mass in kg

planetary_mass_b_sol = [] #planetary mass in solar mass units

planetary_mass_c_sol = [] #planetary mass in solar mass units

planetary_orbit_b_years = [] #planetary orbit in years

planetary_orbit_c_years = [] #planetary orbit in years

host_star = HN1.tolist()

omega_b_rad = [] # omega in radians

omega_c_rad = [] # omega in radians

R_H=[]

K=[]

EoP_b_years = []

EoP_c_years = []

def h(x): # convert Earth-mass to kg

return x * 5.97e24

def d(x): # convert Earth-radii to m

return x * 6.378e6

def e(x): # convert Solar-mass to kg

return x * 1.988e30

def l(x): # convert planetary mass from kg to solar units

return x/1.988e30

def l1(x): # convert planetary orbit from days to years

return x/365
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def f(a_1,a_2,m_1,m_2,M_star): # calculate mutual hill radii (R_H)

return ((a_1 + a_2)/2)*((m_1+m_2)/(3*M_star))**(1/3)

def k(a_1,a_2,r): # calculate K-value

return (a_1-a_2)/r

def k1(x):

return x * (np.pi/180)

for n in range(len(PMb_list)):

planetary_mass_b.append(h(PMb_list[n]))

planetary_mass_c.append(h(PMc_list[n]))

planetary_radii_b.append(d(PRb_list[n]))

planetary_radii_c.append(d(PRc_list[n]))

stellar_mass.append(e(st_mass_list[n]))

planetary_mass_b_sol.append(l(planetary_mass_b[n]))

planetary_mass_c_sol.append(l(planetary_mass_c[n]))

planetary_orbit_b_years.append(l1(POb_list[n]))

planetary_orbit_c_years.append(l1(POc_list[n]))

R_H.append(f(SemiMA1_list[n],SemiMA2_list[n],planetary_mass_b[n],

↪→ planetary_mass_c[n],stellar_mass[n]))

K.append(k(SemiMA2_list[n],SemiMA1_list[n],R_H[n]))

omega_b_rad.append(k1(omega_b[n]))

omega_c_rad.append(k1(omega_c[n]))

EoP_b_years.append(l1(EoP_b_list[n]))

EoP_c_years.append(l1(EoP_c_list[n]))

pl_orb_per_b_10 = [planetary_orbit_b_years[n]*0.1 for n in range(len(

↪→ planetary_orbit_b_years))]

pl_orb_per_c_10 = [planetary_orbit_c_years[n]*0.1 for n in range(len(

↪→ planetary_orbit_c_years))]

#print(pl_orb_per_c_10)

#print(planetary_orbit_b_years)
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zippedList1 = list(zip(host_star, PNb, planetary_mass_b_sol, SemiMA1_list,

↪→ omega_b_rad, PEb_list, planetary_orbit_b_years, pl_orb_per_b_10,

↪→ EoP_b_years, PNc, planetary_mass_c_sol, SemiMA2_list, omega_c_rad,

↪→ PEc_list, planetary_orbit_c_years, EoP_c_years, R_H, K, st_mass_list

↪→ , st_teff_list, st_rad_list, st_lum_list))

dfx = pandas.DataFrame(zippedList1,columns=['host_name','planet b','

↪→ pl_mass_b','semi_major_axis b', 'arg of periastron b [radians]', '

↪→ eccentricity b', 'pl_orbper_b [years]', 'pl_orbper_b 10% [years]', '

↪→ Epoch of Periastron b [years]', 'planet c','pl_mass_c','

↪→ semi_major_axis c', 'arg of periastron c [radians]', 'eccentricity c

↪→ ', 'pl_orbper_c [years]', 'Epoch of Periastron c [years]', 'R_H', 'K

↪→ -values','stellar mass [M_sol]', 'effective temperature', 'stellar

↪→ radii', 'stellar luminosity (solar)'])

dfx.drop(dfx.loc[dfx['K-values'] < 10].index, inplace=True)

dfx.sort_values(by='K-values', inplace=True, ascending=False)

#dfx.drop(dfx.loc[dfx['K_values'] > 100000].index, inplace=True)

dfx.drop(dfx.loc[dfx['effective temperature'] > 10000].index, inplace=True

↪→ )

#dfx.drop(dfx.loc[dfx['stellar luminosity (solar)'] == 0.0].index, inplace

↪→ =True)

stellar_temperature = dfx['effective temperature'].tolist()

stellar_luminosity = dfx['stellar luminosity (solar)'].tolist()

stellar_radii = dfx['stellar radii'].tolist()

sma_b = dfx['semi_major_axis b'].tolist()

sma_c = dfx['semi_major_axis c'].tolist()

dfx.reset_index(drop=True, inplace=True)

#print(dfx)

#%%

sigma = 5.670374419e-8 # [W/m^2T^4]

st_radii = [stellar_radii[i]*6.957e8 for i in range(len(stellar_radii))] #

↪→ convert solar radii to meters
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st_area = [4*np.pi*st_radii[i]**2 for i in range(len(st_radii))] # area in

↪→ squared meters

st_temp = [stellar_temperature[i]/5777 for i in range(len(

↪→ stellar_temperature))]

for n, i in enumerate(stellar_luminosity): # replace 0 with estimate

↪→ luminosity from their respective radii and effective temperature

if i == 0.0:

stellar_luminosity[n] = np.log10(((stellar_radii[n]**2)*(st_temp[n

↪→ ]**4)))

#stellar_luminosity[n] = np.log10((sigma*st_area[n]*

↪→ stellar_temperature[n]**4)/3.828e26)"""

#print(stellar_luminosity)

#%%

seff = [0,0,0,0,0,0]

seffsun = [1.776,1.107, 0.356, 0.320, 1.188, 0.99]

a = [2.136e-4, 1.332e-4, 6.171e-5, 5.547e-5, 1.433e-4, 1.209e-4]

b = [2.533e-8, 1.580e-8, 1.698e-9, 1.526e-9, 1.707e-8, 1.404e-8]

c = [-1.332e-11, -8.308e-12, -3.198e-12, -2.874e-12, -8.968e-12, -7.418e

↪→ -12]

d = [-3.097e-15, -1.931e-15, -5.575e-16, -5.011e-16, -2.084e-15, -1.713e

↪→ -15]

st_luminosity = [10**stellar_luminosity[i] for i in range(len(

↪→ stellar_luminosity))]

starTemp = []

recentVenus = []

runawayGreenhouse = []

maxGreenhouse = []

earlyMars = []

fivemeRunaway = []

tenthmeRunaway = []
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#print(st_luminosity)

for n in range(len(stellar_temperature)):

tstar = stellar_temperature[n] - 5780.0

for i in range(len(a)):

seff[i] = seffsun[i] + a[i]*tstar + b[i]*tstar**2 + c[i]*tstar**3 +

↪→ d[i]*tstar**4

starTemp.append(stellar_temperature[n])

recentVenus.append(seff[0])

runawayGreenhouse.append(seff[1])

maxGreenhouse.append(seff[2])

earlyMars.append(seff[3])

fivemeRunaway.append(seff[4])

tenthmeRunaway.append(seff[5])

def d(x,y): # calculate HZ distance in AU

return (x/y)**0.5

innerHZ_Venus = []

innerHZ_runaway = []

outerHZ_Mars = []

outerHZ_maxgreen = []

innerHZ_runaway_fiveme = []

innerHZ_runaway_tenthme = []

for i in range(len(starTemp)):

innerHZ_Venus.append(d(st_luminosity[i],recentVenus[i]))

innerHZ_runaway.append(d(st_luminosity[i],runawayGreenhouse[i]))

outerHZ_Mars.append(d(st_luminosity[i],earlyMars[i]))

outerHZ_maxgreen.append(d(st_luminosity[i],maxGreenhouse[i]))

innerHZ_runaway_fiveme.append(d(st_luminosity[i],fivemeRunaway[i]))
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innerHZ_runaway_tenthme.append(d(st_luminosity[i],tenthmeRunaway[i]))

innerHZ_V = pandas.Series(innerHZ_Venus)

innerHZ_R = pandas.Series(innerHZ_runaway)

outerHZ_M = pandas.Series(outerHZ_Mars)

outerHZ_max = pandas.Series(outerHZ_maxgreen)

st_lum_new = pandas.Series(stellar_luminosity)

dfx.insert(16, 'Inner HZ - Venus', innerHZ_V)

#dfx.insert(3, 'Inner HZ - Runaway', innerHZ_R)

dfx.insert(17, 'Outer HZ - Mars', outerHZ_M)

#dfx.insert(6, 'Outer HZ - Max Greenhouse', outerHZ_max)

dfx.insert(21, 'Luminosity [L_sol]', stellar_luminosity)

dfx.drop(dfx.loc[dfx['semi_major_axis c'] <= dfx['Inner HZ - Venus']].

↪→ index, inplace=True)

dfx.drop(dfx.loc[dfx['semi_major_axis b'] >= dfx['Outer HZ - Mars']].index

↪→ , inplace=True)

dfx.drop('stellar luminosity (solar)', axis=1, inplace=True)

sma_b = dfx['semi_major_axis b'].tolist()

sma_c = dfx['semi_major_axis c'].tolist()

K_values = dfx['K-values'].tolist()

innerHZ_venus_new = dfx['Inner HZ - Venus'].tolist()

outerHZ_Mars_new = dfx['Outer HZ - Mars'].tolist()

dfx.reset_index(drop=True, inplace=True)

planetary_mass_b_new = dfx['pl_mass_b'].tolist()

planetary_mass_c_new = dfx['pl_mass_c'].tolist()

stellar_mass_new = dfx['stellar mass [M_sol]'].tolist()

print(dfx)

#%%

plt.figure(1)

plt.scatter(st_luminosity,innerHZ_Venus)

plt.xscale('log')
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plt.yscale('log')

plt.xlabel('$\log_{10}(L)$ $[L_\odot]$')

plt.ylabel('Inner HZ Boundary - Venus [AU]')

plt.savefig("innerHZ.pdf")

plt.figure(3)

plt.scatter(st_luminosity,outerHZ_Mars)

plt.xscale('log')

plt.yscale('log')

plt.xlabel('$\log_{10}(L)$ $[L_\odot]$')

plt.ylabel('Outer HZ Boundary - Mars [AU]')

plt.savefig("outerHZ.pdf")

plt.figure(2)

plt.scatter(stellar_temperature,stellar_luminosity)

plt.xlabel('$T_{\mathrm{eff}}$ [K]')

plt.ylabel('$\log_{10}(L)$ $[L_\odot]$')

plt.gca().invert_xaxis()

plt.savefig("fig2.pdf")

#%%

plt.figure(6)

ax = dfx.plot.scatter(x='semi_major_axis b', y='host_name', label='Planets

↪→ ', figsize=(6,7))

dfx.plot.scatter(x='semi_major_axis c', y='host_name', ax=ax)

dfx.plot.scatter(x='Inner HZ - Venus',marker='|', color='DarkGreen', y='

↪→ host_name', label='HZ inner boundary', ax=ax)

dfx.plot.scatter(x='Outer HZ - Mars',marker='|', color='LightGreen', y='

↪→ host_name', label='HZ outer boundary', ax=ax)

plt.xscale('log')

#plt.patches.rectangle()

plt.xlabel('$\log_{10}(\mathrm{Semi-major \; axis})$ [AU]')

plt.ylabel('Host Stars')
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plt.gca().invert_yaxis()

plt.savefig("fig6.pdf", bbox_inches = "tight")

A.2 Running Simulations and Creating MEGNO Maps

from pylab import *

import numpy as np

from mpl_toolkits.mplot3d import axes3d

import pandas

def simulation(par):

a, e = par # unpack parameters

sim = rebound.Simulation()

sim.units = ('yr', 'AU', 'Msun')

sim.integrator = "whfast"

sim.ri_whfast.safe_mode = 0

sim.dt = 0.00059

sim.add(m=0.94) # Star

sim.add(m=0.001794, omega=0.296706, e=0.0110, P=0.005880, T

↪→ =6730.626849)

sim.add(m=0.007435, omega=1.937315, e=0.7100, P=13.287671, T

↪→ =6730.783562)

sim.add(a=a,e=e,omega=0,m=0.000003)

#sim.add(m=0.000070, a=0.05254, omega=0.331613, e=0.2180)

#sim.add(m=0.001523, a=4.1300, omega=2.508038, e=0.6010)

#sim.add(m=0.000003, a=a, omega=0, e=e)

sim.move_to_com()

sim.init_megno()

sim.exit_max_distance = 20.

try:
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sim.integrate(5e2*2.*np.pi, exact_finish_time=0) # integrate for

↪→ 500 years, integrating to the nearest

#timestep for each output to keep the timestep constant and

↪→ preserve WHFast's symplectic nature

megno = sim.calculate_megno()

return megno

except rebound.Escape:

return 10. # At least one particle got ejected, returning large

↪→ MEGNO.

#print(simulation((7,0.1)))

Ngrid = 80

par_a = np.linspace(0.538878,1.288364,Ngrid)

par_e = np.linspace(0.,0.5,Ngrid)

parameters = []

for e in par_e:

for a in par_a:

parameters.append((a,e))

from rebound.interruptible_pool import InterruptiblePool

pool = InterruptiblePool()

results = pool.map(simulation,parameters)

results2d = np.array(results).reshape(Ngrid,Ngrid)

#%matplotlib inline

fig = plt.figure(figsize=(7,5))

ax = plt.subplot(111)

extent = [min(par_a),max(par_a),min(par_e),max(par_e)]

ax.set_xlim(extent[0],extent[1])

ax.set_xlabel("semi-major axis $a$")

ax.set_ylim(extent[2],extent[3])

ax.set_ylabel("eccentricity $e$")
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A.3. CALCULATING PERIOD RATIOS FOR HD 37605 APPENDIX A. CODE

im = ax.imshow(results2d, interpolation="none", vmin=1.9, vmax=4, cmap="

↪→ RdYlGn_r", origin="lower", aspect='auto', extent=extent)

cb = plt.colorbar(im, ax=ax)

cb.set_label("MEGNO $\\langle Y \\rangle$")

plt.title("Pr0211 MEGNO Stability Map")

plt.savefig("Pr0211 - timestep=0.00059 - int=500.pdf")

#\%\%

semi_major_axis = [x[0] for x in parameters]

eccentricity = [x[1] for x in parameters]

zippedlist = list(zip(semi_major_axis, eccentricity, results))

df = pd.DataFrame(zippedlist,columns=['semi_major_axis', 'eccentricity', '

↪→ MEGNO value'])

df.to_csv("Pr0211 - timestep=0.00059 - int=500.csv", index=False)

A.3 Calculating period ratios for HD 37605

G=6.67430e-11 #SI units

M=1.87e30 # stellar mass in kg

P_b=0.150720 # orbital period of planet b in years

#P_c=7.452055 # orbital period of planet c in years

a_AU=[0.6,0.73,0.84,0.95,1.05,1.15,1.25,1.34] #semi major axes of 1 Earth

↪→ mass planet in AU

a_meters=[a_AU[n]*1.496e11 for n in range(len(a_AU))] #semi major axes of

↪→ 1 Earth mass planet in meters

def period(a): #function defining orbital period

T = 2*np.pi*((a**3)/(G*M))**0.5

return T

P_earth=[period(a_meters[n])/(3.154e7) for n in range(len(a_meters))] #

↪→ orbital period in years
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A.4. ASSESSING THE POSSIBLE CO-ORBITAL CONFIGURATION OF HIP 67851
AND TEEGARDEN’S STAR APPENDIX A. CODE

P_ratio=[P_earth[n]/P_b for n in range(len(P_earth))] #P_out/P_in

print(P_ratio)

A.4 Assessing the possible co-orbital configuration of

HIP 67851 and Teegarden’s Star

import numpy as np

import matplotlib.pyplot as plt

import rebound

def simulation(par):

a, e = par # unpack parameters

sim = rebound.Simulation()

sim.units = ('yr', 'AU', 'Msun')

sim.integrator = "whfast"

sim.ri_whfast.safe_mode = 0

sim.dt = 0.001

sim.add(m=0.09) # Star

sim.add(m=0.000003, omega=1.343904, e=0.0000, P=0.013452, T

↪→ =6734.389863)

sim.add(m=0.000003, omega=4.991642, e=0.0000, P=0.031258, T

↪→ =6734.392329)

sim.add(a=a,e=e,m=0.000003)

sim.move_to_com()

ps = sim.particles

sim.exit_max_distance = 20.

Noutputs = 500

year = 2.*np.pi # One year in units where G=1

times = np.linspace(0., 500.*year, Noutputs)
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A.4. ASSESSING THE POSSIBLE CO-ORBITAL CONFIGURATION OF HIP 67851
AND TEEGARDEN’S STAR APPENDIX A. CODE

l1 = np.zeros((1, Noutputs))

l2 = np.zeros((1, Noutputs))

for i, time in enumerate(times):

sim.integrate(time)

l1[0][i] = ps[2].l # This stores the data which allows us to plot

↪→ it later

l2[0][i] = ps[3].l

return np.subtract(l1, l2), times

angles_2pi = np.mod(angles, 2*np.pi)

delta_l, times = simulation((0.0443,0.03))

fig = plt.figure()

plt.scatter(times,delta_l)

ax = plt.subplot(111)

ax.set_xlabel("Time [$yrs$]")

ax.set_ylabel("Mean Longitude $\Delta$l [rad]")

plt.title("Teegarden's Star Co-orbital Configuration")

plt.savefig("Teegarden's Star - a=0.0443, e=0.03.pdf")

plt.show()
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Appendix B

Figures
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Figure B.1: HD 142 MEGNO stability map integrated over 500 years on the left panel and
5000 years on the right. Inserted planet’s parameters: time-step = 0.0096 years, M = 0,
ω = 0.

51



APPENDIX B. FIGURES
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Figure B.2: HD 75784 MEGNO stability map integrated over 500 years on the left panel
and 5000 years on the right. Inserted planet’s parameters: time-step = 0.093 years, M =
0, ω = 0.
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Figure B.3: HD 163607 MEGNO stability map integrated over 500 years on the left panel
and 5000 years on the right. Inserted planet’s parameters: time-step = 0.02 years, M = 0,
ω = 0.
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Figure B.4: Left: HD 187123 MEGNO stability map integrated over 500 years Inserted
planet’s parameters: time-step = 0.0008 years, M = 0, ω = 0. Right: HAT-P-11 MEGNO
stability map integrated over 500 years. Inserted planet’s parameters: time-step = 0.001
years, M = 0, ω = 0.
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Figure B.5: Left: HD 4732 MEGNO stability map integrated over 500 years. Inserted
planet’s parameters: time-step = 0.099 years, M = 0, ω = 0. Right: HD 38529 MEGNO
stability map integrated over 500 years. Inserted planet’s parameters: time-step = 0.004
years, M = 0, ω = 0.
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Figure B.6: Left: HD 92788 MEGNO stability map integrated over 500 years. Inserted
planet’s parameters: time-step = 0.089 years, M = 0, ω = 0. Right: HD 148164 MEGNO
stability map integrated over 500 years. Inserted planet’s parameters: time-step = 0.09
years, M = 0, ω = 0.
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