

Department of Automatic Control

Implementation of a Simple Asynchronous
Pipeline Framework (SAPF) for construction

 of real-time BCI systems

Tom Andersen

MSc Thesis
TFRT-6141
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2021 by Tom Andersen. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2021

1
Abstract

This thesis attempts to implement a library in pure Python for building real-time
Brain-Computer Interface (BCI) systems. The library does this by employing nodes
containing data transformation methods—filtering, classification, data acquisition,
and more. These nodes are linked together to create pipelines of nodes in which
data flows. Due to the asynchronous nature of the data flow the library was named
Simple Asynchronous Pipeline Framework (SAPF).

Moreover, a demonstration BCI was also built using SAPF. In parallel with this,
a small game application was developed which the specific BCI system was used to
control. At first eye-movements were considered as a user command for controlling
the example BCI system. However, in a later phase this was changed to eye-blinks
and jaw clenching.

3

Acknowledgements

First and foremost I want to thank my supervisors, Frida Heskebeck and Carolina
Bergeling, for their time, comments, and optimism. During times like these it is
hard to find motivation, and I don’t think I would have finished the thesis without
your support.

I also want to thank my family for your support; my mother and father, Anette
and Toni, for supporting me and my education and work, even though you are not
really sure what I am doing exactly. And I also want to thank you, my sister, Jonna,
for your cheerfulness, but also for letting me borrow your camera.

Lastly, I also want to thank my flatmates, the people at Real Fighter club, and
my colleagues and friends Josef and Daniel for this semester. The situation that
these times brings would had a much higher negative impact on my thesis if it was
not for them.

5

Contents

1. Abstract 3
List of Figures 9
List of Tables 10
2. Introduction 11

2.1 Current situation . 11
2.2 Objectives, scope and methodology of thesis 11
2.3 Thesis outline . 12

3. Background 13
3.1 A brief history of the electroencephalography and brain-computer

interfaces . 13
3.2 Categorization of BCI systems 14
3.3 Ethical aspects . 16
3.4 EEG acquisition . 16
3.5 State-of-the-art real-time BCI systems 19
3.6 Ocular activity and EEG . 19
3.7 A quick review of digital filter theory 20

4. Implementing a Simple Asynchronous Pipeline Framework (SAPF) 24
4.1 Existing BCI platforms . 24
4.2 Definitions and figure interpretations 26
4.3 The SAPF implementation . 26
4.4 The LSL node . 32
4.5 The pre-processing node . 33
4.6 The processing node . 39
4.7 The feature extractor node . 39
4.8 The classifier node . 40
4.9 The application interface node 40
4.10 The stimuli node . 40
4.11 Final discussion and further work regarding SAPF 50

7

Contents

5. Implementing a game application 52
5.1 Game world . 52
5.2 Remote control of the game application 55
5.3 Player movement . 57

6. Implementation of a demonstration using SAPF and the game 60
6.1 User commands . 60
6.2 Hardware selection . 61
6.3 The LSL node configuration . 61
6.4 The pre-processing node configuration 61
6.5 The processing node configuration 62
6.6 The feature extractor node configuration 63
6.7 The stimuli node and adapter configuration 65
6.8 The classification node configuration 67
6.9 Building and running the pipelines 67
6.10 Discussion . 70

7. Final remarks 72
8. Appendix 74
Bibliography 77

8

List of Figures

3.1 Mason and Birch’s functional BCI model 15
3.2 Electrode placements according to the 10/10 system. 17
3.3 The EasyCap and Smarting amplifier. 18
3.4 The Muse S EEG cap. 19

4.1 The TOBI CIP pipeline . 25
4.2 Decomposition of functionality . 27
4.3 Overview of the intrinsic behaviour of a node 28
4.4 Two example SAPF pipelines . 31
4.5 LSL node overview . 32
4.6 Pre-processing node overview. 34
4.7 Chunk-wise filtering . 34
4.8 Chunk-wise filtering, baseline correction then filtering 36
4.9 Chunk-wise filtering, filtering then baseline correction. 37
4.10 Band-pass filtering to remove drift 38
4.11 Feature extractor node overview . 39
4.12 Stimulation-response mapping . 41
4.13 Stimuli node application interface 42
4.14 Stimuli node and adapter communication 43
4.15 Stimuli and adapter due in the loop 45
4.16 Example of focus point selection . 49

5.1 Simple game graphics . 53
5.2 Updated game graphics. 54
5.3 Remote control of the game application 56
5.4 Game remote control diagram of second iteration software 58

6.1 Filter bank filters . 64
6.2 Feature extraction example using filter bank 64
6.3 Collect the crowns example world 65
6.4 Limited traversability . 66

9

6.5 The calibration pipeline . 69
6.6 The classification pipeline. 70

List of Tables

4.1 Overview of SAPF nodes and their behaviour. 30

6.1 Digital filter design arguments . 62
6.2 The two pipelines . 67

10

2
Introduction

2.1 Current situation

Brain-computer interfaces (BCIs) generally aims to measure neural activity in the
user’s brain, extract useful information from these signals, and use this infor-
mation to control application, supplement or restore human body functions, and
more [Schalk and Allison, 2018]. Examples include controlling a model plane us-
ing signals from the motor complex of the user [Kryger et al., 2016], or attempting
to restore limb movements in paralysed patients by means of so called bi-direcitonal
BCI [Collinger et al., 2018].

As of 2018 there exists at least a handful of BCI libraries and platforms, some
of them are BCI2000, BioSig, OpenVibe, TOBI, and PMW. These platforms and
libraries aim to simplify the construction of BCI systems. Some of these require
programming knowledge in either MATLAB, C, or C++. However, platforms such
as OpenVibe allows the user to construct BCI platforms with a graphical lan-
guage [Stegman et al., 2020].

2.2 Objectives, scope and methodology of thesis

It is debatable if there already exists a minimalistic open-source BCI platform writ-
ten in a simple language such as Python. However, this thesis attempts to fill this
potential gap by I) constructing a simple BCI library for constructing real-time BCI
pipelines, and II) constructing a specific real-time BCI system, acting as a demon-
stration, using the library, and lastly III) implement a small tile-based game appli-
cation, acting as a toy example, which the user of the BCI can control, in real-time,
using user commands.

The user commands considered in this thesis will not be of purely neural ori-
gin however, instead eye movements, eye-blinks, and jaw clenching will be used.
These signals are generally of great magnitude and are in many systems considered
artefacts. It is common to attempt to remove them as they make EEG data analysis
difficult or even impossible [Plöchl et al., 2012][Simon L. et al., 2017]. These com-

11

Chapter 2. Introduction

mands will therefore only act as a place holders. One should note that these easily
can be exchanged for other user commands in the future.

The first real-time BCI system developed using the library used eye movements
only. However, due to poor classification accuracy the user commands were later
swapped with eye-blinks and jaw clenches.

Moreover, in this thesis only non-invasive electroencephalography (EEG) data
acquisition will be considered.

2.3 Thesis outline

Chapter 3 introduces previous work as well as the history of the technologies used
in this thesis. Chapter 4 describes the implementation of the library. Chapter 5 is
dedicated to the implementational details of the game application. The final chapter,
Chapter 6, described the implemented BCI system using the library.

12

3
Background

This chapter presents the background needed to better understand this thesis. In
Section 3.1 the history of the so called electroencephalography (EEG) and Brain-
Computer Interfaces (BCI) are briefly introduced. In Section 3.2 some categories
and examples of BCI systems will be presented. Section 3.3 briefly touches ethical
aspects of BCI. Section 3.4 introduces the reader to hardware and software related
to the acquisition of user EEG data. Section 3.5 presents some already existing
BCI systems. Section 3.6 introduces the reader to how ocular activities, such as eye
movements and eye-blinks, affects the EEG. And finally, in Section 3.7 the fun-
damentals of digital signal processing is introduced. This section will also expand
briefly on filtering of EEG signals.

3.1 A brief history of the electroencephalography and
brain-computer interfaces

The invention of EEG
Year 1929 the German doctor Hans Berger published his Über das Elektrenkephalo-
gramm des Menschen—an article on electroencephalography (EEG)—where he de-
scribes his findings of electrical potential oscillations in the measurements on the
scalp of his patients. He found these signals by placing the same kind of elec-
trodes that, at the time, was also used for electrocardiogram (ECG), in the vicin-
ity of enlarged trephine openings—a hole drilled into the scull. By the use of a
galvanometer—a device for measuring small current fluctuations—Berger could
amplify the signals measured from the patient’s scull enough to be displayed on
so called photographic paper [Millett, 2001].

It took Berger many attempts to find any readable signals, and even after discov-
ering the alpha and beta waves—two types of brain signals—Berger was sceptical
towards the results. Not only he was sceptical, most of his work was regarded with
indifference in Europe. In 1934 the leading neurophysiologist Lord Edgar Adrian
even constructed an experiment to show that Berger’s finding indeed were arte-
facts. However, Adrian’s results were not as expected. His experiment showed clear

13

Chapter 3. Background

indications that the alpha and beta waves were indeed not artifacts. He immedi-
ately published his results which lead to a burst of excitement and EEG becoming
the mainstream diagnostic tool in neurology and psychiatry [Kaplan, 2011][Millett,
2001]

Though Berger is considered the discoverer of the alpha and beta wave, and
the EEG [Kaplan, 2011], much of Berger’s work were based on previous work by
other scientists like Richard Caton. Caton was an English scientist known for his
recordings of electrical activity on animals. In 1875 he reported his first experiments
in which he found—using a galvanometer—an increase in electrode current with
sleep [Haas, 2003].

The emergence of Brain-Computer Interfaces
Berger’s first recordings were, as one might expect, not nearly as sophisticated as
what one might achieve today. His setup was analog to the core, and no processing
was done to the EEG signals before being drawn on photographic paper [Millett,
2001]. A big milestone of the history of BCI and EEG was therefore, as we will see,
the leap away from working with analog signals and the introduction of digitaliza-
tion.

Thelma Estrin, an electrical engineer from the University of Wisconsin, was one
of the first to create a system that was able to convert analog EEG signals into the
digital domain [Kübler, 2020]. As we know today, the digitization of signal process-
ing opens up a new world of possibilities such as more sophisticated preprocessing,
data storage, and much more.

In his paper from 1973, Vidal, [Vidal, 1973], introduces the Brain Com-
puter Interface project—a pilot project in direct brain-computer communication—
conducted at the University of California. Vidal further discusses the applications
of different types of EEG recordings and the general apparatus setup which was
named The Computer Interface Laboratory. The paper is seen as the first attempt to
systematically clarify the different concepts regarding EEG as well as their limita-
tions. [Vidal, 1973].

Due to the lack of a standardized language in the BCI research community be-
tween the 70s to 90s, Mason and Birch attempted to generalize the existing BCI
systems into models to simplify communication between research groups [Mason
and Birch, 2003]. Among others, they identified one type of BCI system referred to
as the functional BCI model, see Figure 3.1.

3.2 Categorization of BCI systems

There are many different types of BCI systems and [Chang S. Nam et al., 2018]
suggests categorizing them according to their so called mode of operation, brain
signal pattern, stimulus modality, and recording method. A further explanation will
be made in this section of the different categories.

14

3.2 Categorization of BCI systems

User

Amps Feature
Translator

Feature
Extractor

Control
interface

stimulus

Device
Controller

&
Device

user-reported error

Figure 3.1: A version of Mason and Birch’s functional BCI
model [Mason and Birch, 2003].

Mode of operation
The mode of operation for the BCI system specifies how signals from the user are
obtained. The mode of operation can either be synchronous, or asynchronous. In
synchronous mode the BCI presents information to the user to obtain the brain sig-
nal in a synchronous fashion. In asynchronous mode, however, the BCI system does
not expect the user to respond synchronously with the presentation of information—
the user’s response time is determined by the user herself.

Brain signal pattern and some of their BCI applications
The brain signal pattern refers to the type of brain signals that will be used to control,
or communicate, with the BCI system.

Visual-Evoked Potential (VEP) based BCI
Visual-evoked potential (VEP) are the EEG activity observed in users when a

visual stimuli—such as a flash of light—is applied in the subject’s visual field [Bin
et al., 2009].

There exists multiple types of VEPs, but they are all based on the same funda-
mental principle that a visual stimulation results in a measurable response.

A VEP-based BCI system generally consists of multiple visual targets which
the user can focus attention on. An example of this is the VEP-based spelling BCIs
in which a virtual keyboard of characters is displayed to the user. Each target on the
screen—i.e. each character—is coded with a unique sequence of flickering. Each of
these codings1 gives rise to different unique VEPs in the brain signal produces by
the subject. Based on this the BCI system can determine which target the subject
focuses attention on. By looking at different characters the user can thus spell out

1 If a single frequency of flickering is selected it is called Steady-State Visual Evoked Potential
(SSVEP) [Masood et al., 2020]

15

Chapter 3. Background

words without any need of physical movement such as eye movement or physical
typing [Masood et al., 2020].

Stimulus modality
The stimulus modality refers to the method used to present the user with stimuli.
This could for example be visual (what VEP-based BCIs uses), tactile, auditory, or
a combination of them all [Chang S. Nam et al., 2018].

Recording method
There are two types of recording methods: invasive and noninvasive.

3.3 Ethical aspects

In clinical use of BCIs, one of the most important aspects might be informed
consent-related. Patients can be promised too much, and in some cases some of
the patients might not be able to use the BCI system at all. This is especially true
for severely disabled patients who might not be able to sufficiently operate non-
invasive EEG-based BCIs. Detrimental effects could also not be excluded—due to
BCI training which evokes neuroplasticity and thus changes behaviour. This must
also be made clear to any user [Grübler et al., 2014].

However, as the system here developed will not be used by any wider audience
this is not relevant in this thesis.

3.4 EEG acquisition

In this section different aspects of hardware and software will be presented that can
be used for EEG acquisition.

Electrode placement
Defined 1958, the 10/20 system standardizes the placement of EEG electrodes. It
is, as of today, the de faco standard for clinical EEG [Oostenveld and Praamstra,
2001]. There exists extensions of the 10/20 system, such as the 10/10 and 10/5
system, which allows for more electrodes [Jurcak et al., 2007]. In Figure 3.2 the
electrode placement of the 10/10 system can be seen.

Lab streaming layer and time-synchronization
Lab streaming layer (LSL) is a protocol for collecting time series data in research
experiments (e.g. a stream of EEG data from a EEG-cap). Relating LSL to the e.g.
Mason’s model (Figure 3.1), LSL handles the communication between the user, or
the data source, at the first block in the BCI pipeline.

16

3.4 EEG acquisition

Figure 3.2: Electrode placements according to the 10/10 sys-
tem.

Moreover, LSL handles time-synchronization of time series and networking.
LSL is typically used to stream data over a local network from one or more appli-
cations with integrated LSL functionality, together with event marker streams, to a
data acquisition software on another device in the network [Computational Neuro-
science, n.d.] Event markers can be used to associate intervals in the collected time
series with different external events, such as when a stimulation was presented, or
when a button was pressed.

When receiving multiple streams from different devices the problem of time
synchronization occurs (e.g. the event marker stream might be hosted by a personal
computer, whereas the EEG data from dedicated hardware in the EEG-cap). The
time-synchronization that LSL implements uses a protocol similar to the Network
Time Protocol (NTP) where UDP packages are repeatedly sent to the remote device
to estimate the round-trip time and the clock offset2 of the device. The process of
doing this is referred to as the Clock Filter Algorithm [Computational Neuroscience,
n.d.]

LabRecorder
The default software that comes with LSL is the LabRecorder software which can
be used to collect data off of the streams and save it into Extensible Data Format
(xdf) [Computational Neuroscience, n.d.]

2 Difference in starting times for the LSL devices.

17

Chapter 3. Background

LabRecorder has a built-in remote control server (RCS) that enables remote con-
trol of the software over sockets. One can thus control the LabRecorder application
programmatically using e.g. Python.

Smarting
SMARTING 24 is a battery-driven mobile EEG amplifier intended for use as a
biofeedback research platform, see Figure 3.3b. It supports 24 channel EEG-caps
that can be connected via an insulation-displacement connector (an electrical con-
nector design). The amplifier hosts a LSL stream over Bluetooth that can be read by
any platform that supports the LSL protocol [Smarting, n.d.]

EasyCap for Smarting
EasyCap for Smarting is a 24 electrode EEG-cap that employs the international
10/20-system, see Figure 3.3a.

(a) EasyCap EEG cap. (b) EasyCap EEG cap. The Smarting ampli-
fier is attached to the cap using elastic bands.

Figure 3.3: The EasyCap and Smarting amplifier.

Muse S
Muse S is an EEG-cap marketed as a tool for sleep and meditation tracking. Muse S
supports 5 channels of EEG electrodes (with placements TP9, AF7, AF8, TP10, and
Fpz as reference electrode according to the 10/20-system) [Muse, n.d.(a)][Krigolson
et al., 2017], photoplethysmogram, pulse oxiometry, and accelerometer and gyro-
scope measurements [Muse, n.d.(b)]. Muse S has a sampling frequency of 256 Hz.
The electrodes are of so called dry-type, which means than no conductive paste is
needed between the skin and the electrode.

18

3.5 State-of-the-art real-time BCI systems

Figure 3.4: The Muse S amplifier attached to the EEG cap.
The white strip near the ear is one of the electrodes.

3.5 State-of-the-art real-time BCI systems

There exists several BCI competitions open to researcher to commit his or hers BCI
research. One of them are the Brain-Computer Interface Race3, which is a part of
Cybathlon—a multi sport event for people with physical disabilities.

During Brain-Computer Interface Race teams—consisting of developers, re-
searchers, and a disabled person acting as the "pilot"—are given virtual cars in the
game BrainDriver which they can control using a BCI system. The pilots compete
to reach the goal line first, and have to control the virtual car left and right to not
crash into objects and to optimize speed.

3.6 Ocular activity and EEG

Saccades and eye-blinks
Ocular activities—such as saccades (eye movements) and eye blinks—generate sig-
nals in the EEG measurements. Due to the relatively large amplitudes of these sig-
nals, compared to other signal patters that arise from neural activity, and due to the
ocular signals’ non-neural origins, they are generally considered as artifacts in most
EEG-paradigms. Furthermore, the ocular-related signals are considered generated
by at least three mechanisms; corneo-retinal dipole rotation, eyelid movements, and
the recruitment of extra-ocular muscles [Plöchl et al., 2012][Picton et al., 2000].

The corneo-retinal rotation effect is due to the ionic gradient between the retinal
pigment epithelium. In human eyes this creates a dipole whose axis closely follows

3 www.cybathlon.ethz.ch/en/event/disciplines/bci

19

Chapter 3. Background

the direction of gaze. Eye movements, i.e. dipole rotations, thus result in potential
changes which can be seen in EEG measurements containing saccades. Eye move-
ments in the opposite direction results in a mirror reversed version of the measured
signal in the EEG recording [Plöchl et al., 2012].

Interestingly, the movement of eyelids have been found to result in measurable
changes in the EEG. One explanation of this effect is the change in resistance be-
tween the corneo-retinal and the recording electrodes that is accompanied by eyelid
movements, which results in changes in the EEG [Chioran and Yee, 1991].

The lesson one should take from this is that, though not consisting of neural ac-
tivity only, movement of the eyes and eye-lid do elicit EEG signals that are generally
of great amplitude.

Fixation and involuntary eye movements
It is possible to fixate one’s gaze at a target for quite some time. However, even
though the intent is to keep one’s gaze still, there are notable eye movements
occurring. Among these movements are drift and involuntary so called micro-
saccades [Rolfs, 2009].

These movements affect EEG measurements, and in settings where the corre-
sponding EEG components are not desired the quality of the fixation target can be
adjusted to minimize their magnitude. The stability of a fixation target can be mea-
sured by how much of these components are present when a certain target is used. It
should be noted that external factors also affect the stability. Another factor related
to the target itself is its shape and size, and these parameters have been shown to
affect the spatial dispersion and rate of micro-saccades, i.e. the fixation stability.
Specifically, a smaller target results in lower dispersion [Thaler et al., 2013].

3.7 A quick review of digital filter theory

A quick review of digital filter theory
Frequency filtering refers to the act of applying a digital filter onto a signal of inter-
est. By carefully designing filter parameters specific frequency bands can be attenu-
ated or amplified according to the designer’s wishes. Attenuating specific frequency
bands can be desired if it is known beforehand that these will contain noise or dis-
turbances that will lower the signal-to-noise ratio.

There are at least two methods of applying a filter to a signal, convolution in
time domain and multiplication in frequency domain.

Convolution in the time domain
The convolution in time domain involves applying the convolution operator be-

tween the filter characterizing series—called the impulse response, denoted h(i) =
hi. The convolution can be written as:

20

3.7 A quick review of digital filter theory

y(n) = (x∗h)(n) =
∞

∑
i=−∞

hix(n− i) (3.1)

where x(n) is some discrete series that is the input to the filter, y(n) the filter
output, and n ∈ Z denotes the time sample.

Note that equation (3.1) is a recursion equation but without any recursive terms.
Sometimes filters are described on the form below where recursive terms are in-
cluded

y(n) =
∞

∑
i=−∞

biy(n− i)+
∞

∑
j=−∞

a jx(n− j) (3.2)

where bi and a j are some constant parameters defining the filter. However, one can
show that equation (3.2) can be described on the form in equation (3.1) by choosing
the appropriate values of hi. Any digital filter described on form (3.2) can be applied
to a signal by using the convolution in equation (3.1).

Lastly, one should note that i.e. equation (3.1) potentially includes future sam-
ples when calculating the current sample. However, if hi = 0, i < 0 then this is pre-
vented. Filters of this type are called casual filters and they only include previous
data points. By contrast, filters where hi 6= 0, i < 0 are called non-casual.

Multiplication in the frequency domain
According to the convolution theorem, that states that convolutions in time do-

main equals multiplication in frequency domain, the multiplication in frequency
domain approach can be formulated

Y (k) = X(k) ·H(k). (3.3)

Here Y (k), X(k), and H(k) denote the discrete-time Fourier transform (DTFT)
of the series y(n), x(n), and h(n). If one wishes to retrieve the filtered series y(n),
the inverse transformation can be applied to the output Y (k).

It is thus possible to obtain the filter output y(n) without using the convolution in
equation (3.1). This is done by first converting the time series into the frequency do-
main, multiplying it with the filter frequency function as in (3.3), and lastly inverse
transform it back into time-domain.

Filtering methods
Fast convolution — a frequency domain approach

The frequency multiplication approach might seem like a detour, first the signal
of interest needs to be transformed to frequency domain, then multiplied with the
filter, and then inverse transformed back into sample domain. This technique was
known since the time of Fourier but was mostly ignored since it took longer to com-
pute than using the standard time convolution approach. However, this changed

21

Chapter 3. Background

1965 when the Fast Fourier Transform (FFT) algorithm was developed [Smith,
1997].

By swapping the DTFT with the FFT the detour presented by the frequency
multiplication approach can in some cases yield faster computational time than the
direction convolutions approach, at least for longer filters (>40–80 samples de-
pending on hardware) and input sequences [Lyons, n.d.]. The method involving
frequency multiplication with the FFT is referred to as the FFT convolution, or Fast
convolution.

An implementation of this method can e.g. be found in the SciPy package,
namely scipy.signal.fftconvolve. According to the documentation this im-
plementation is generally faster for longer arrays (>500 samples) [Virtanen et al.,
2020].

Overlap-add method — a time based approach
The overlap-add (OA) method is a method that allows chunk-wise filtering of

long sequences of input data. This can be attractive in systems with insufficient
memory to store the entire input sequence, or in real-time applications where the
filtering must occur on-line as data is collected [Smith, 1997].

The direct convolution OA method builds on the direct convolution approach.
The data is first segmented and zeros are right-padded to the segment. The segments
are then convoluted with the filter impulse response and lastly added together. Note
that the padding of zeroes results in the filter output being somewhat longer than
the initial segment. When the output segments are added to yield the unsegmented
output there are thus some overlap between the filtered segments. The result after
summing the segments are identical to the direct convolution approach without the
OA [Smith, 1997].

An implementation of the fast convolution OA method can e.g. be found in the
SciPy package, see scipy.signal.oaconvolve [Virtanen et al., 2020].

There are other methods, such as overlap-save, that builds on OA. However,
they are not included here.

Filter properties
Causality

Causal filters are filters where the output depends on current and previous infor-
mation only. In (3.1) this would mean that h(n) = 0 when n < 0.

Non-causal filters use future samples to calculate the current value. In a strict
on-line context this is not possible.

One should note that, because the non-causal filters use future values, some
future information can "leak" backwards in time. When e.g. studying onset in EEG
signals non-causal filters can potentially produce results that make the onset period
appear shorter. This leakage can potentially lead to a systematic underestimation
of signal onset, or even erroneous interpretation of pre-stimuli phase of the filtered
signal [Widmann et al., 2014].

22

3.7 A quick review of digital filter theory

IIR and FIR filters
Infinite impulse response (IIR) filters are filters with internal feedback, i.e.

where the filter output at one sample depends on the filter output at another sample.
As one can imagine this feedback can result in instabilities. In contrast, finite im-
pulse response (FIR) filter outputs depend only on the filter input. An example of
FIR filter is the moving average filter which calculates the average of a fixed num-
ber of previous samples and outputs the result. See any introductory digital signal
processing book, e.g. [Proakis and Manolakis, 2006].

Though IIR filters can be designed to have approximately linear phase they
never truly posses it. FIR filters on the other hand possess linear phase if the corre-
sponding impulse response, h(n), is symmetric. A linear-phase filter is a filter with
a phase-delay that changes linearly with frequency. One can show that if frequency
components are phase-delayed linearly with frequency, then all frequency compo-
nents are delayed equally in time. A filter with the linear-phase property does thus
not change where in time the frequency components present in the signal relative to
each other (because all frequency components are changed, or delayed, equally).

Digital filtering and EEG
Non-linear phase filters

Filter with non-linear phase distorts the temporal shape of the input signal—e.g
broadband signals such as ERP or signals with complex spectrum—even if its spec-
trum is in the filters pass-band [Widmann et al., 2014]. Depending on the application
this can have more or less impact.

Cutoff frequencies and frequency content
Generally, the EEG-signals are filtered with a band-pass filter with cutoff fre-

quencies around 1–40 Hz during the preprocessing step. In some cases wider pass-
bands are used but special care has to be taken to suppress mains frequency (50
or 60 Hz depending on location). In EEG-preprocessing band-stop filters centered
around 50/60 Hz are almost exclusively used [Widmann et al., 2014].

If eye movement related EEG-signals are of interest the cutoff-frequencies must
be adjusted accordingly. Previous studies have shown that to retain 95 % of the spec-
tral power of the eye-blink related signals frequencies up to 54 Hz must be consid-
ered. Similarly, frequencies up to 13 Hz must be included for saccades [Noureddin
et al., 2007]. This suggests that eye-blink signals contains a wide span of frequen-
cies compared to saccade signals.

It has been shown that it is possible to detect eye-blinks by simply applying
a threshold check on the low-pass filtered EEG-signal using a cutoff frequency of
10 Hz. It is also shown that corneo-retinal dipole rotations give rise to signals with
frequency content centered at around 10 Hz. Moreover, the spectral power of eye-
blinks seems to be contained in frequencies mostly below 10 Hz [Keren et al., 2010].

23

4
Implementing a Simple
Asynchronous Pipeline
Framework (SAPF)

This chapter describes the implementation of the library that will later be used to
build an example BCI system. Most of the library consists of nodes—i.e. blocks
of functionality—that can be puzzled together to create data pipelines acting as a
BCI system. The library will be referred to as a Simple Asynchronous Pipeline
Framework (SAPF) to simplify references from hereon.

Most of the node implementations described in this section will have general
and configurable behaviours, and the configurations suitable for the specific BCI
system presented in this thesis will thus be presented later in Chapter 6.

Section 4.1 describes existing BCI platforms and libraries and some parallels
are drawn, Section 4.2 presents definitions that will be used throughout the chapter,
and, finally, Section 4.3 through Section 4.10 present the implementations of the
SAPF and its SAPF nodes. Some of the sections will contain a small discussion at
the end to highlight some of the findings and results. Moreover, at the end of the
chapter, in Section 4.11, a final discussion regarding the SAPF as whole will be
held. For more information see the source code1.

4.1 Existing BCI platforms

Tools for BCI (TOBI) Common implementation platform (CIP)
Though not a BCI system itself, the TOBI system specifies the communication be-
tween the BCI "blocks" in the model largely based on Mason and Birch’s formal-
izations, see figure 4.1. This allows different BCI platforms that obey the CIP to
communicate. For example, a newly create a data acquisition module that follows

1 https://gitlab.control.lth.se/users/sign_in

24

4.1 Existing BCI platforms

the CIP standard could easily be integrated in an already existing BCI system. This
is achieved by using the standardized interfaces, namely the TOBI interface A–D.

The TOBI interface A (TiA) specifies the communication between the data ac-
quisition module (e.g. data acquisition server) and the feature extractor. This inter-
face is built on XML over socket (either UDP or TCP is available).

Data
Acquisition

Pre-
processing ClassificationFeature

Extraction Fusion Application

Data source
(e.g. EEG)

TiD

TiA TiA TiCTiB TiC

Figure 4.1: The TOBI CIP pipeline decomposition.

The TOBI interface B (TiB) is used to transmit features between the the feature
extractor and the classifier. The TOBI interface C (TiC) specifies communication
between the classifier and the application. Lastly, the TOBI interface D (TiD) is
used to transmit event markers over XML in between the BCI blocks in a bus-like
fashion.

BCI2000
BCI2000 is an open-source self-contained BCI software implemented in C++. The
BCI pipeline is built on four modules; source, signal processing, user application,
and operator interface, which communicate over a protocol that runs over TCP/IP.
As of 2018 more than 1000 articles have been published supported by BCI2000,
making it the most used BCI platform [Peter Brunner, 2018].

OpenVibe
Similar to BCI2000, OpenVibe is a open-source self-contained BCI software im-
plemented in C++. Its drag-and drop based graphical user-interface makes it easy to
use for a wide array of users [Peter Brunner, 2018].

OpenVibe’s architecture is based around a kernal together with what is referred
to as boxes. The boxes act as a way of decomposing the functionality into discrete
units with an input and output that are connected to other boxes in the pipeline.
Each box runs what is referred to as a "box algorithm" which can be run either on
an external trigger, a clock tick, or when data arrives at its input [OpenVibe, 2017].

25

Chapter 4. Implementing a Simple Asynchronous Pipeline Framework (SAPF)

4.2 Definitions and figure interpretations

To simplify the explanation of the concepts in this chapter many images are used.
Much of the images contain information about the connection, and flow of data, and
proper definitions of the geometries used are thus needed:

Direct pipeline connection

Visual stimulation

X Miscellaneous connection
explained by X if needed

Communication between
hardware or processes (e.g.
over sockets)

X

Miscellaneous virtual object
or class

Node (inheriting the
BaseNode class)

Explicit buffer (e.g. queue)

Hardware

4.3 The SAPF implementation

In the beginning of the thesis the TOBI CIP implementation was considered a good
candidate as a foundation for the BCI pipeline. This was mainly because it stan-
dardizes the communication between the pipeline blocks and thus offers greater
flexibility than other home-made implementations. However, the TOBI comes with
a couple of problems that made other solutions more attractive.

26

4.3 The SAPF implementation

f(x)

f(x)

a(x) b(y) c(z)
y z

x

Figure 4.2: The concept of decomposition of functionality.
The pipeline itself describes the overall mapping pipeline-
mapping, which can be decomposed into easily interchange-
able sub-functionalities.

The TOBI CIP specifies four different interfaces (the TiA–TiD), but only two
of them seem to be implemented as of when this thesis was written (TiC and TiD).
Also, no binaries2 are available and must therefore be built from the source code,
written in C++, which could be problematic for the non-programmer user. This also
makes it harder to do any modifications to implementations, as most of the end-users
are more familiar with Python than C++.

Therefore a simple pipeline library was implemented instead without the struc-
tural restrictions of TOBI CIP. The library contains mainly a pipeline framework
which will be further presented in this section. The concept and implementation
will be referred to as Simple Asynchronous Pipeline Framework (SAPF).

An asynchronous node-based pipeline
A pipeline can in some sense be seen as a series of transformations of the input
data. The idea of decomposing the transformations into "discrete blocks" increases
the code reusability, flexibility, and makes unit-testing easier as the functionality
can be run on its own, see Figure 4.2. Taking a step further, a pipeline can be seen
as a directed graph of these discrete blocks—from now on referred to as nodes—
each performing some functionality on the data that flows within the graph. Some
nodes generate data, and thus acts as an input to the pipeline graph, and some nodes
might absorb the data and send it to any external source thus acting as an output out
of the graph. Note that the functionality of a node is defined by the way it processes
the inflow of data and outputs it to the connected nodes.

In the implementation, each node—implemented as a node object using object
oriented programming—runs in its own thread and is connected to other nodes with
thread-safe3 Queue.queue objects acting as buffers. The nodes perform some ac-
tion, defined by its action(x) method, on any data x that appears on its input

2 Compiled code, in contrast to source code that is not itself executable.
3 Thread-safe means that the only one thread can access the data at the time. This prevents race-

conditions and other unpredictable behaviour.

27

Chapter 4. Implementing a Simple Asynchronous Pipeline Framework (SAPF)

Node Node ...

Queue.queue Queue.queue

y x y

def _thread_worker():

 while thread_running:
 if in_queue exists:
 x = in_queue.get()

 y = self.action(x)

 if out_queue exists:
 out_queue.put(y)

def action(x):
 ...
 return y

def _thread_worker():

 while thread_running:
 if in_queue exists:
 x = in_queue.get()

 y = self.action(x)

 if out_queue exists:
 out_queue.put(y)

def action(x):
 ...
 return y

Figure 4.3: Overview of how node objects perform transfor-
mation of the data, and how the processed data is outputted to
the next node via shared buffers. The _thread_worker(.)
is run by the node thread. The node thread waits for items
to appear in the input buffer. Incoming items are fetched and
transformed using the node’s action(.) method, after which
the item is pushed to the output queue.

queue. The result of the action(x) is placed on the node’s output queue for other
nodes to use, see Figure 4.3.

At first, attempts where made to implement nodes that were capable of support-
ing directed graphs. However, due to time limitations, and the fact that the cyclic
pipeline graphs (which is a subset of directed graphs) brings many problems such
as instability issues, the graph was later limited to be only of the linear type, as seen
in Figure 4.3. The pipelines presented in this thesis are thus nothing more than a
series of decomposed functionalities.

The asynchronicity comes from the fact that the nodes’ transformations are not
necessarily performed in a synchronized fashion, as suggested by Figure 4.3. Ob-
jects placed in any queue might, or might not, be picked up by subsequent nodes
directly. As one might expect this can result in a build-up of data in the pipeline if
any node outputs data faster than subsequent nodes can process. However, through-
out this thesis it is assumed that the processing delay of any node is short enough,
and the pipeline graphs are small enough, so that only one piece of data is present
in the pipeline at once:

28

4.3 The SAPF implementation

ASSUMPTION 1 Zero, or one, chunk (pieces of data) is present in the pipeline graph
at once. 2

Data flowing in the pipeline will sometimes be referred to as a chunk. Through-
out the thesis only EEG time series data will be considered, and this data contains
not only one sample, but a time interval of EEG recording. This, accompanied by
the fact that multiple channels of EEG data are contained in the time series, are
hopefully highlighted by the word chunk.

A bit of implementational details; one should note that—according to the pseu-
docode in figure 4.3—nodes could potentially have no input or output buffers. These
nodes are used as end or start nodes of the pipeline. The start nodes can generate
data inside the action(.) method, and output it to the subsequent node. Generate
here typically means loading data from a file, or a so called LSL stream, as will be
discussed further later.

Moreover, the threads in Figure 4.3 can easily be changed to processes—and
the buffers to e.g. processes-safe multiprocessing.queue buffers—if needed.
Attempts were made to implement process-based nodes, but this implementation
was later abandoned as it was not needed.

Another assumption that will be made, if not explicitly stated otherwise, the
processing delay of the pipeline will be assumed to be zero.

ASSUMPTION 2 Placing and fetching operations of chunks from and to the inter-
mediate queues, as well as transforming the chunks using the nodes action(.)
method, are assumed to be instantaneous. Any time delays introduced by the OS in
which the pipeline is run, and any time delays introduced by e.g. context switching,
are assumed to be negligible. In other words, any data generated by any node is as-
sumed to be present and readily available inside the output node instantaneously.2

This assumption is made as any potential real-time considerations and optimiza-
tions are regarded as out of scope of this thesis. The assumption might, or might not,
be realistic depending on hardware, action(.) implementation as well as frame-
work implementations, and which size of chunk is used in the pipeline.

The implemented SAPF nodes
A hand-full of nodes and their corresponding general functionality were imple-
mented following approximately the decomposition of functionality that TOBI CIP
presented (Figure 4.1). These nodes will be referred to the SAPF nodes as they are
a part of the SAPF framework, and are meant to give the user the standard func-
tionalities that are needed to construct any basic BCI pipeline. An overview of these
nodes, and their general behaviour, is shown Table 4.1.

29

Chapter 4. Implementing a Simple Asynchronous Pipeline Framework (SAPF)

Table 4.1: Overview of SAPF nodes and their behaviour.

LSL node Reasonably acting as the first node in the pipeline, the
LSL node handles the connection to EEG hardware,
and the acquisition of the user EEG. The node buffers
the incoming LSL samples from the LSL stream and
generates a chunk which is outputted to any subse-
quent node. The length of the buffer defines the length
of the outputted chunks, and the length—in samples if
not explicitly stated—will be denoted Lc.

Pre-processing
node

A node that performs the pre-processing of the EEG
data. This includes chunk-wise digital filtering using a
Filter object, and any potential baseline correction
of the acquired EEG data.

Processing
node

An optional node that performs e.g. chunk validity
check, as described later.

Feature extrac-
tor node

An optional node that is dedicated to extracting
features of interest from the inputted data using a
FeatureExtractor object.

Classification
node

A node that performs the classification of the in-
putted time series, features, or data in general, using a
Classifier object.

Application in-
terface node

A node dedicated to communication between an ap-
plication and the pipeline, and thus reasonably acts as
an end node of the graph. The communication e.g. in-
cludes commands for changing the state of the appli-
cation, which can be used to stimulate a user engaged
in the application.

Stimuli node A node that attempts to generate a labeled data set
by sending stimuli commands to the application in-
terface node. The application interface node performs
the stimulation and the stimuli node saves the incom-
ing chunks and labels them accordingly.

In the implementation all these nodes extends the BaseNode class. The abstract
class BaseNode itself contains the fundamental behaviour of a node as presented in
Figure 4.3. If any future projects finds that a node is missing a new node extending
the BaseNode class can simply be introduced.

The SAPF pipeline graph – a composition of SAPF nodes
The class PipelineGraph was introduced to simplify the act of connecting the
SAPF nodes to a graph. As previously stated, only linear graphs were allowed. On

30

4.3 The SAPF implementation

LSL
node

EEG
hardware

Pre-
processing

node

Processing
node

Feature
extraction

node

Adapter

Stimuli
node

Application
interface

node

Game
server

LSL

Socket

Classifier
node

A

B

Figure 4.4: Two example pipelines. If the connect A is made
the pipeline works as an acquisition pipeline, and if the B con-
nection is made the pipeline works as a classification pipeline.
In this example the application interface node is controlling a
game via a socket. The decomposition of functionality is com-
parable with the TOBI CIP in Figure 4.1 or Mason and Birch’s
model in Figure 3.1.

start the PipelineGraph simply iterates through the supplied nodes and generates
the shared buffer queues as shown in Figure 4.3. The act of sharing a queue is what
corresponds to a connection in the graph. When the pipeline graph is started the
graph starts each of the node’s listening thread. An example pipeline is shown in
Figure 4.4.

Due to time limitations, the framework cannot produce one pipeline that is able
to both perform calibration (i.e. creating a labeled data set which is the purpose of
the stimuli node), and perform classification. Instead, as Figure 4.4 suggests, two
pipelines have to be constructed—one for collecting the data, and one for perform-
ing the actual classification. This is of course a disadvantage as the operator of the
system would have to manually collect the data, train the classifier, and then run the
pipeline for real-time user EEG classification.

In the following sections the different nodes, and their general behaviour, will
be discussed.

31

Chapter 4. Implementing a Simple Asynchronous Pipeline Framework (SAPF)

4.4 The LSL node

The LSL node reasonably acts as a start node in the pipeline. The node operates—
as all other nodes—in its own thread where it attempts to pull samples off from
the LSL host’s stream and send it—as chunks of data—to any connected node as
NumPy arrays of shape:

(No. epochs, No. samples, No. channels 1, No. channels 2)
The number of samples in a chunk will be denoted as Lc. The reason why two

dimensions are dedicated to holding the channels are mainly of historical origins
and will be discussed further later. This shape will simply be referred to as the
standard shape and everything referred to as a chunk is of this type and shape.

LSL
nodeEEG hardware

Chunks of EEG data

LSL

Figure 4.5: Overview of the functionality of the LSL node.
The node collects samples from the LSL stream and produces
chunks. Two chunks are displayed in the image with 5 chan-
nels of EEG.

It should be noted that longer chunk, i.e. bigger Lc, has the potential to contain
more of the signal, but also increases the pipeline delay as the LSL node’s buffer
needs to be filled before a whole chunk can be constructed and sent to the next node.
If the time delay produced by the buffering mechanics, τLSL, are the only delay
considered—i.e. if Assumption 2 holds—a minimal expected time delay can be
formulated. If a sample enters the buffer, and the sample is the last sample before a
chunk can be constructed, the time delay experienced by this sample is 0. Moreover,
if the sample is the first sample to enter the buffer before a chunk is constructed, then
it must wait until the chunk is constructed and passed to the next node. The longest
and shortest time delay experienced by any sample due to the buffering mechanics

32

4.5 The pre-processing node

are thus
max(τLSL) =

Lc

fs
, min(τLSL) = 0. (4.1)

Assuming that τLSL is uniformly distributed in this interval one can then formu-
late the guaranteed minimal expected time delay, τsys, of the entire system

E{τsys} ≥ E{τLSL}=
Lc

2 fs
(4.2)

where Lc is the length of the outputted chunks, and fs is the frequency of arriving
samples, which is also the sampling frequency of the hardware. τsys is the delay
experienced by the user of the system. Due to the assumptions made, and the fact
that the OS that the BCI system is run on is not strictly speaking suitable for real-
time systems (typically Windows or Linux), it is hard or impossible to guarantee an
upper bound.

The lower bound presented by (4.1) and (4.2) will act as a theoretical limit of
what can be achieved by a BCI system utilizing the LSL node in terms of speed.
A more thoroughly motivated explanation of the equations is presented in the ap-
pendix.

4.5 The pre-processing node

The pre-processing node is dedicated to digital signal processing of any time series
presented on the input. The node is also capable of dropping specified channels and
applying baseline correction. The filtering was implemented using the previously
presented concepts of chunk-wise filtering.

Methodology, dummy filter and dummy data
The pre-processing node was developed through an iterative process of testing dif-
ferent methods and evaluating the results. During the testing a moving average filter
of length 11 acting as a dummy low-pass filter was used if not explicitly stated
otherwise. During the final test a dummy band-pass filter was used with cutoff fre-
quencies 40 Hz and 2 Hz. The dummy signal used throughout the experimentation
was a 1 second long EEG snippet split into 4 chunks of equal length. A saccade is
contained in the chunk. An online setting was mimicked by giving the pre-processor
node one chunk at the time.

It should be noted that the filter and the signal are just dummy objects for de-
veloping the node, and during later usage in the BCI system any linear filter can be
used.

Chunk-wise filtering
The first couple of filter output samples is affected by the initial conditions of the
digital filter, this is demonstrated in Figure 4.7a below. The uninitialized filter (UF)

33

Chapter 4. Implementing a Simple Asynchronous Pipeline Framework (SAPF)

Preprocessor
node

Figure 4.6: Overview of the pre-processor node functional-
ity. In the example the last channel was dropped by the pre-
processor node as it suggestively contains no information
(which channels to drop are manually specified).

produces output with transients heavily affected by the initial states of zeros. This
distorts the signal which is not desired.

(a) Chunk-wise filtering using UF. (b) Chunk-wise filtering using IF.

Figure 4.7: Chunk wise filtering. The vertical black lines indi-
cate the start of a new chunk.

To remove the transient effects one could e.g. use the OA method. At first
SciPy’s OA-method, such as scipy.signal.oaconvolve, were considered. How-
ever, this method seemed to be suitable for offline filtering only. Instead SciPy’s
scipy.signal.lfilter method was used as this allows the specification of initial
states. scipy.signal.lfilter seems to be implemented using the convolution in

34

4.5 The pre-processing node

time domain approach however.
A demonstration using what will be referred to as re-initializing filter (IF) can be

seen in Figure 4.7b. The output is produced using Scipy’s scipy.signal.lfilter
where the previous filter state is reused:

Function filter(x)
global z, b, a ; // Filter state and parameters
y, z = scipy.signal.lfilter(b, a, x, initial_state=z);
return y;

One should note that the first chunk is still affected by the transient effect as no
previous data is present at this point. The filter states can at this point be guessed or
simply set to zero. The latter alternative was used.

As can be seen in both plots in Figure 4.7 the signal seems to contain a constant
negative component. If this component changes slowly over time the signal is said
to be subjected by drift (i.e. it contains low frequency content that does not con-
tain useful information). Different methods were considered to remove this signal
component.

Removing drift
When performing offline analysis of EEG data, baseline correction (BC) can be used
as a way to normalize the chunks by removing the baseline. This is one method to
counter drift. Therefore, naturally, the first approach was to use the same method
in the online setting. Three methods were tested: BC then filtering, filtering then
BC, and removal of drift using simple band-pass filtering (the high-pass component
baked into the band-pass filter is the interesting part).

BC then filtering
BC was first applied to the sample data after which the data was filtered using

the dummy filter. The results—using either IF or UF—are shown in Figure 4.8.

35

Chapter 4. Implementing a Simple Asynchronous Pipeline Framework (SAPF)

(a) BC then UF.

(b) BC then IF.

Figure 4.8: BC first applied after which filtering using UF or
IF was performed.

Filtering then BC
Changing the order so that filtering—again, both UF and IF—was performed

before BC was applied yielded results presented in Figure 4.9.

36

4.5 The pre-processing node

(a) Filtering using IF then BC.

(b) Filtering using UF then BC.

Figure 4.9: Filtering first performed after which BC was ap-
plied. Blue indicates the dummy sample and red indicates first
filter then BC node output.

Band-pass filtering
The dummy low-pass filter was replaced by a FIR band-pass filter. No baseline

correction was used. The filter was applied using the IF and the UF method. The
UF filtering result is not included here as it yields results similar to the BC then UF
approach seen in Figure 4.8a.

37

Chapter 4. Implementing a Simple Asynchronous Pipeline Framework (SAPF)

Figure 4.10: Band-pass filtering using IF.

Discussion regarding the pre-processor node
Chunk-wise filtering

It is unclear what type of filtering method is used by scipy.signal.lfilter.
Attempts were made to understand the source code, but due to the strict time sched-
ule, and the low demand of high-speed filtering, this was deemed as a too high
hanging fruit and no further investigation was done.

Removing drift
Interestingly, during "BC then filtering" the UF performed seemingly better than

IF. Given a second though, this is not strange at all. The BC introduces discontinu-
ities larger than those already present in the EEG data. The IF filter re-initializes its
states by using the previous states from the last chunk, and will therefore see these
discontinuities as large steps in the filter input. In contrast, the UF filter keeps none
of the previous states and therefore "starts" from zero, right in the vicinity of EEG
data which too "starts" near zero (due to BC).

Less interesting is the results from using filtering then BC. The results appear
less obvious, and almost chaotic. However, there is a reasonable explanation; the
time lag imposed by the filter—which shifts the signal to the right in the figures—
basically changes the interval which BC is applied on, and thus result in an output
(red) that does not even slightly follow the input (blue).

During band-pass filtering the results are as expected, the low frequency compo-
nent(s) in the signal is removed after the first chunk is filtered and the IF is properly
initialized. Depending on the choice of filter this period might be longer.

The results suggest that BC is not recommended in an online setting, and that
other means—such as high-pass or band-pass filtering—should be used.

38

4.6 The processing node

Feature
extractor

node

Figure 4.11: Overview of the functionality of the feature ex-
tractor node. The example is showing features based on fre-
quency band energies for different bands. This will be further
discussed in section 6.6

4.6 The processing node

The processing node was mainly added to separate any use-case specific processing
and the digital filter—which is generally present in every BCI pipeline. The process-
ing node can be used for e.g. independent component analysis (ICA) or principle
component analysis (PCA) transformations or simple chunk rejection (e.g. rejecting
chunks with too high variance). One should note that there are nothing that corre-
sponds to the processing node in Masons and Birch’s model, or in the TOBI CIP
pipeline. Most likely ICA and PCA are considered a type of feature extraction in
those models.

4.7 The feature extractor node

The feature node contains a FeatureExtractor object which performs channel-
wise feature extraction. The FeatureExtractor acts as a composition of vector-
valued callback functions that extract one, or multiple, features from one channel at
the time. What features to use depends on the specific use-case.

One could argue that the feature extraction could be implemented in the classi-
fier node. This is possible and can be easily done. However, if one wishes to build a
data set—using the stimuli node—of features and label pairs using a separate node,
performing feature extraction is more reasonable as the extraction would only be
implemented once.

39

Chapter 4. Implementing a Simple Asynchronous Pipeline Framework (SAPF)

4.8 The classifier node

The classification node is dedicated to hold any classification method that is capable
of translating user EEG or features to a command class. The class (typically an
integer) is sent to the subsequent node, reasonably the application interface node. In
the bare framework implementation no classifier is selected by default.

4.9 The application interface node

The application interface node was dedicated to connect the pipeline and an ap-
plication. The node was supposed to act as a general end-node in the pipeline
and handle communication to any application. Much of the application specific
implementations—how the application is connected, and how exactly the pipeline
to application communication occurs—were implemented in a separate class, the
GameClient class, as will be further discussed in Chapter 5. This class acts as a sort
of adapter and could easily be swapped with little change in the code, thus allowing
other applications to be connected.

The general behaviour of the application interface node is that it takes a user
command (extracted from the EEG by e.g. the classification node) and performs
whatever is associated with said command.

4.10 The stimuli node

Implementation of the stimuli node
The stimuli node is used to generate stimuli and save the incoming responses to
create a labeled data set. The node is not dependent on the choice of stimulation
type—tactile, visual, etc—as will be seen later.

The implementation is based on the "black-box" idea presented in Figure 4.12.
The goal was to make the stimuli node independent of any other node in the pipeline
graph. In this concept, the node produces a signal—a stimulation command—that
is sent forward in the pipeline. When the command reaches the appropriate node,
i.e. the application interface node, that node performs what is necessary to produce
the stimulation described by the stimulation command.

One should note that the node does not perform classification and is thus not
capable of translating user responses to an actual user command to control the con-
nected application. During calibration—i.e. when the stimuli node is used—no data
set exists and no classification can be done. However, as will be seen later, the stim-
uli node can "simulate" classification by applying whatever is associated with the
expected user response given a stimulation command.

40

4.10 The stimuli node

Stimulation-response mapping – the concept
The stimuli node attempts to explore the mapping from stimulation command4

to response5, as seen in Figure 4.12. It does this by employing a strategy to stimulate
the user. The resulting response chunk(s) is then collected by the stimuli node, and
associated with the type of stimulation used, to create a labeled data set.

Stimulation command

 ...

Stimuli
Node

Visual
Stimuli

EEG

.....

Response

Preceding
pipeline nodes

Game

Figure 4.12: Simplified diagram of the stimuli node in a
pipeline. The implementation builds around the idea that the
stimuli node should select and output something—e.g. a stim-
ulation command—and listens for the preceding node’s re-
sponse. In the example above, a game displays visual stimula-
tion to a user. The loop is closed as the user’s EEG is affected
by the visual stimulation.

Stimulation-response mapping – the implementation
In contrast to the conceptual idea, shown in Figure 4.12, the implementation

deviates slightly. This is mainly due to implementational restrictions and time lim-
itations. The node was restricted to communication with application nodes only,
and the communication was through a so called stimuli adapter. The genera-
tion of a stimulation—i.e., algorithmically, what should be done to produce said
stimulation—is highly use-case specific. The adapter handles this and therefore
encapsulates the use-case specific behaviour from the general mapping behaviour

4 A stimulation command is a command that informs the application what stimulation should be run.
In the case with visual stimulation the command can e.g. change the visual appearance of the appli-
cation.

5 A response is, in general, a chunk (containing any type of data) that appears on the input of the stimuli
node directly after the stimulation command was sent. The chunk could e.g. contain pre-processed
EEG data, or features.

41

Chapter 4. Implementing a Simple Asynchronous Pipeline Framework (SAPF)

which remained in the stimuli node. The stimuli adapter basically interfaces the
stimuli node and the application interface node, see Figure 4.13.

The adapter converts the abstract stimulation commands provided by the stimuli
node to actual application and or game commands that are needed to produce the
desired user response. The stimuli node and adapter communication and behaviours
are presented in Figure 4.14.

...
Game

commands
Stimulation
command

Stimuli
Node

Response

Stimuli Adapter

Game commands
over socket

... Application
Interface

Node

Figure 4.13: Diagram of the interface between the stimuli
node and the application interface node. The stimuli adapter
acts, in a sense, as a mediator. The stimuli node behaviour
does not depend on the application or application interface
node implementation—what exactly a stimulation involves is
abstracted away by the stimuli adapter.

The stimuli node retrieves a set of possible stimuli from the adapter and picks
one6. The stimuli node then notifies the adapter to perform the selected stimulation.
The adapter sends the appropriate commands to the application interface node to
change the application state in such a way that the desired user response can be
expected.

When no stimulation command is sent the incoming EEG chunks are stored and
labeled as containing "nothing". Note the user might still perform actions during
these intervals, and the incoming chunks might erroneously be labeled as "nothing".
The node-adapter communication is presented in Figure 4.14.

6 Randomly in this case. It can be desirable to have a data set where the number of data points per class
is approximately equal.

42

4.10 The stimuli node

Stimuli
Node

Response

App commands
Stimuli Adapter

def action(response):

 if do_stimulate:

 // Stimulate and get user reponse label.

 label = stimulate(response)

 else:

 // No stimulation was done, "nothing" expected

 label = -1

 // Process incoming response

 process_response(response)

def stimulate(response) -> int:

 /* Use adapter to get available user reponses */

 usr_resp_list =\

 adapter.get_available_stimulations()

 /* Select one of them using a scheme or

 at random */

 user_resp = select_resp(user_resp_list)

 /* Let the adapter do whatever it takes to

 create the selected user reponse */

 adapter.apply_stim(user_resp)

 return user_resp

def get_available_stimulations():

 /* Get app state */

 app_state = app.get_app_state()

 /* Based on the app state, get

 possible game state changes

 and what type of reponse

 these are most probable to generate

 */

 trans_list, usr_resp_list =\

 available_state_trans(app_state)

 return usr_resp_list

def apply_stim(usr_resp)

 ...

 /* Send the app commands to envoke the

 specificed user reponse */

app

Figure 4.14: Pseudo-code describing the communication be-
tween the node and adapter. The figure shows how stimu-
lation is selected by the stimuli node, how the adapter per-
forms the stimulation, and lastly that the stimuli node pro-
cesses the incoming chunks and labels them accordingly. The
process_response(.) will be further discussed later.

43

Chapter 4. Implementing a Simple Asynchronous Pipeline Framework (SAPF)

As the reader hopefully has discovered the stimuli node-adapter duo—simply
referred to as NA from hereon—acts as a tool for calibration. As mentioned, the NA
is not capable of letting the user actually control the application. Fortunately, the NA
implementation offers a surprisingly simple way of introducing basic gamification
concepts which almost changes this. However, before these are discussed a quick
summary of what exactly NA does is suitable.

1. NA investigates the application state and finds potential user evoked state
transitions—what virtual button can be pressed, in which direction can a
player move, etc.

2. These transitions are collected and paired with what the user has to do to
evoke these transitions—typically an integer representing a user command.

3. The NA now knows what stimulation to use to evoke a user response of a
specific class and can therefore select one stimulation and perform it—i.e.
what should be done to make the user press that button, or move the player in
a certain direction.

4. The NA saves the incoming chunks and labels them using the known user
response class.

As mentioned, a stimulation here means changing the application state. In the
case of visual stimulation it could be to move something on the screen. Instead
of just letting the NA stimulate only, the NA can follow through and perform not
only the stimulation, but also what the user might had done if exposed to the stim-
ulation. If the user is assumed to be a fully engaged in the application—and fully
susceptible or benevolent in the sense that the user’s response always coincides with
the expected user response—then if the NA follows through and performs the state
transitions that the user would do, it would appear as if the user controlled the ap-
plication herself.

An example could be if the NA puts an attractive item next to a user controlled
player in a game, then it is reasonable to assume that the user would attempt to
collect the item. The NA—which is incapable of actually classify the user EEG—
could then simply move the player to collect the item.

The processing of chunks
This section will highlight different implementations of the process_response(.)

method. But first some terminology will be presented.
A more abstract view of the loop previously presented (Figure 4.12) can be seen

in Figure 4.15. NA denotes the stimuli node and stimuli adapter combination, and
S the remaining BCI system components in the loop. The incoming response chunk
is denoted X , and its true class is denoted Y . CŶ denotes the stimulation command
selected by the stimulation node with expected user response class label Ŷ . The
index k denotes the chunk index.

44

4.10 The stimuli node

CŶ (k) is produced right after X(k− 1) is processed by NA, i.e. the stimulation
commands are sent synchronized with chunks appearing on the input of NA. The
EEG response contained in the chunk X(k) thus appears to be the output of the sys-
tem S when the input CŶ (k) is inputted (with a delay described by the equations 4.1
and 4.2 if the LSL node is present in S).

If only one chunk is presented in the pipeline S at once—i.e. Assumption 1
holds—then the first chunk read after stimulation onset, i.e. X(k), will contain EEG
data generated after the stimulation CŶ (k) was presented to the user. If the assump-
tion does not hold modifications have to be made to the implementation, which
might be more or less complicated due to the asynchronous nature of the pipeline.

Figure 4.15: Abstract view of the NA in the BCI loop.

The predominant problems of this approach is that there are generally a user re-
sponse delay, τuser, before the user responds to the stimulation. Using the terminol-
ogy presented in Figure 4.15, if τuser is longer than the chunk length Lc in seconds,
then Y (k) 6= Ŷ (k). Maybe the user response instead is present in the second chunk,
then Y (k+ 1) = Ŷ (k). However, in general it is unknown in which chunk the user
response resides, and frankly, if the user even responded at all.

Handling user response time delay
The following algorithms attempts to solve the issue of finding the user re-

sponse in the stream of incoming chunks. This is done by implementing the
process_response(.) presented before in Figure 4.14 in different ways. These
algorithms assume that the user responds within some fixed time and the BCI sys-
tem, at least during this calibration phase, is regarded as synchronous.

Assuming small user response delay The seemingly naive approach is to assume
no, or a relatively short, user response delay. "Short" here means short enough so
that the entire user response is contained in the first chunk of EEG data, i.e. Y (k) =
Ŷ (k). If the user response is contained in the first chunk then the mapping is trivial:

45

Chapter 4. Implementing a Simple Asynchronous Pipeline Framework (SAPF)

Algorithm 1: Pseudo-code of trivial mapping algorithm assuming short
τuser. The code is run in the NA, more precisely the stimuli node as Fig-
ure 4.14 suggests.

Function save(X, Y)
... /* Saves the chunk X with label Y to file. */

Function read_chunk()
... /* Blocking read. Wait for a chunk to appear on

input buffer queue of NA and read it. */

Function process_response(Yhatk)
Xk = read_chunk();

save(Xk, Yhatk);

Assuming constant user response delay A more realistic approach would be to
assume that τuser is longer than the chunk length, and thus not contained in the
first chunk. To simplify, it is here assumed that the user response is approximately
constant and known. Because it is known one can simply wait and discard the cor-
responding number of chunks before saving and storing the chunk containing the
response.

However, the user response might be located in two chunks simultaneously7. To
solve this, multiple chunks were stored and merged into one larger chunk. In this
larger chunk, a new chunk was extracted centered around the user response (i.e. the
sample corresponding to τuser measured from the start of the larger chunk).

7 If the user delay τuser is approximately a multiple of the chunk length Lc, that way the onset will be
just at the start, or end, of one chunk, and the response might stretch over two chunks.

46

4.10 The stimuli node

Algorithm 2: Pseudo-code, run in NA, describing the process of collect-
ing and merging chunks after which a new chunk is extracted centered
(hopefully) around the user response.

Function process_response(Yhatk)
tau_user = user delay in samples;
chunk_length = chunk length in samples;

/* Calculate number of chunks needed to capture the
user response. */

N = ceil(tau_user / chunk_length);

/* Save the N chunks and merge them. */
X_temp = [];
repeat N times

X_temp[i] = read_chunk();
i++;

X_merged = merge_chunks(X_temp);

/* Calculate interval to use and extract new chunk of
original length using this interval. */

n0 = tau_user - chunk_length/2;
n1 = tau_user + chunk_length/2;
X = X_merged[n0:n1];

save(Xk, Yhatk);

Assuming user response delay with small variations The assumption of con-
stant user response delay is not always valid. If smaller chunk sizes are used this is
even more important as the window in which the EEG response can be captured is
smaller. To introduce a degree of time invariance the n0 and n1 in Algorithm 2 was
allowed to vary. A placeholder function for finding the user response was selected
and is denoted find_focus_point(.) in Algorithm 3.

47

Chapter 4. Implementing a Simple Asynchronous Pipeline Framework (SAPF)

Algorithm 3: Pseudo-code run in NA describing a similar process as pre-
sented in algorithm 2. In this method the focus point is allowed to vary,
and it is defined by the implementation of find_focus_point(.).

Function process_response(Yhatk)
chunk_length = chunk length in samples;
N = number of chunks to store;

/* Save the N chunks and merge them. */
X_temp = [];
repeat N times

X_temp[i] = read_chunk();
i++;

X_merged = merge_chunks(X_temp);

/* The tau_user is now replaced by a calculated focus
point. */

focus_point = find_focus_point(X_merged);
n0 = focus_point - chunk_length/2;
n1 = focus_point + chunk_length/2;
X = X_merged[n0:n1];

save(X, Yhatk);

/* Method defining the focus point. */
Function find_focus_point(X)

return arg_max(abs(X));

The find_focus_point(.) method attempts to determine where in the
merged epochs the user response is located. Due to time limitations, and the fact
that the SAPF was designed only to implement the specific use case later discussed,
the focus point was simply set as the point of maximal deviation from the mean of
the chunk, and an example of this can be seen in Figure 4.16.

Finally, it should be noted that this approach assumes that the user responds
within some fixed time8. Moreover, this approach also assumes that the user respond
only once in this time window, or at least that the find_focus_point(.) finds the
correct response.

Discussion and further work regarding the stimuli node
The stimuli node and adapter Due to time limitations very little research was
done on implementational—or even conceptual—alternatives to the stimuli adapter
and stimuli node. The result was therefore a somewhat "rough" solution, see e.g
the filled arrow in Figure 4.4 which indicates that the shared queues concept is not

8 Within N· chunk_length
fs

seconds to be specific, where fs is the sampling frequency.

48

4.10 The stimuli node

Stored epochs Merging of epochs and window selection Final epoch

Figure 4.16: Example of focus point selection of merged EEG
chunks using the max deviation focus point. In the example
two EEG chunks (with 4 channels) are merged after which a
focus point is generated using the find_focus_point(.). A
span defined by the original chunk length, and the center point
(the focus point), is used to extract the final chunk as seen in
the figure.

used there. Further work could therefore aim to find better ways of implementing
the desired behaviour that aligns better with the SAPF implementation.

Passive mapping A potentially better alternative to the stimulation-response
mapping approach would be to build the stimuli adapter around a more passive
approach. The stimuli adapter could e.g. return a probability distribution of user ac-
tions based on the application state—e.g. if the application is a game, and something
attractive is placed next to the player, the adapter can most likely assume that the
player will collect the item, the probability of the corresponding player command
is thus high. This approach was in fact in focus during the beginning of the thesis,
however, due to time limitations, and the fact that it is more complex and less likely
to produce a satisfying demonstration, it was discarded.

Limitations of the implementation The problem of no user response was never
solved. Furthermore, the selected find_focus_point(.) method also assumes
that the user user response has a high magnitude. However, the reader should note
that the selected find_focus_point(.) mainly acts as a placeholder for more
sophisticated methods. Previous work suggests that a sliding window calculating the
Higuchi’s fractal dimension—which measures the complexity of the time series—
can be used to find changes in the signals stationarity [Klonowski, 2016]. This could

49

Chapter 4. Implementing a Simple Asynchronous Pipeline Framework (SAPF)

potentially be used to find intervals in the signal which differentiates—in statistical
properties—from baseline or the rest of the EEG time series. These intervals might
then be regarded as containing the user response. However, further work is needed
to evaluate this method.

Another disadvantage with the approach presented in Algorithm 3 and Algo-
rithm 2 is that it is assumed that the user responds within some time defined by N.
The most obvious case is when N is too small and the user too slow, then the user
response will not be captured. If N is too big an abundance of chunks are saved,
some of which might contain information that is not actually associated with the
stimulation response. Further work could therefore focus on developing an algo-
rithm that, in some sense, is capable of early stopping. A check could potentially be
done after the read_chunk(.) has been executed and one chunk is loaded—if the
loaded chunk deviates too much from previously saved chunks containing "noth-
ing", then it can be regarded as containing the user response, and the algorithm can
stop storing chunks (i.e. early stopping).

4.11 Final discussion and further work regarding SAPF

Standardized data types
The pipeline nodes lack a proper type check at the input of each node. It is up to the
user to make sure that each node is supplied with the correct input type.

The EEG time series are contained in numpy arrays. This is also the data type
that is sent between most of the nodes. Also, here it is up to the user to make sure
that the dimensions are setup and used correctly.

As of now the time series are contained in 4 dimensional arrays as previously
mentioned, where the channels take up 2 dimensions. This is mainly due to his-
torical reasons—two dimensions allows one to rearrange the channels according to
their physical placement on the head, and previous work that this framework is built
on included classifiers that used this spatial information.

One could imagine that the mne.Epochs and mne.io.Raw objects9 would be
suitable to use instead of numpy arrays as the data type of choice to send between
the nodes. The mne.Epochs comes with many features that could potentially be
beneficial. However, in some cases the mne’s data types might also provide too much
functionalities and the data types were experienced as less transparent to numpy
arrays.

Process-based nodes and plotting of node data
Attempts were made to create nodes that were able to plot the data that passes
through it. This would potentially allow for much better understanding of what

9 More information about the mne package and the included data types can be found on MNE’s web
page www.mne.tools

50

4.11 Final discussion and further work regarding SAPF

is happening in the graph. However, many python modules for plotting—such as
matplotlib—are not completely thread-safe. One solution to the plotting problem
might be to either run the matplotlib GUI in the main thread, and simply updating
it with data coming from the node threads, or to use processes instead of threads.
As mentioned, processes-based nodes were implemented but not fully tested. More
work that did not align with the goals of the thesis would then be needed to fully
understand and implement this, which is why this feature was not added.

Pipeline not capable of calibration and classification at the
same time
Due to mainly time limitations the SAPF is not capable of producing a pipeline
that can run the data collection in parallel with actual EEG or feature classification.
Therefore, to train a classifier and run it one must construct two pipelines—one for
collecting the data using the NA, and one for running the real time classification of
user EEG.

In practice, this means that the calibration process must be done separately and
before the training of the classifier and thereafter the actual controlling of the appli-
cation can be done.

51

5
Implementing a game
application

In this chapter the implementation of a game application is described. This game
will act as the application to control when a BCI system is implemented—using the
SAPF—in Chapter 6. The game will also act as a stimulation program for collect-
ing a labeled data set, it will sometimes be referred to as the stimuli program. For
more details see the source code1 Most of the game was built with no connection
or dependency to either the previously described SAPF, or the specific BCI system
described in Chapter 6. However, the graphics of the game, and the player move-
ment, were heavily affected by the choices made when implementing the specific
BCI system.

In Section 5.1 the game world will be presented, the main focus in this section
will be the graphics. Section 5.2 is dedicated to the interface between the applica-
tion interface node and the game itself. And finally, Section 5.3 presents the player
movements.

5.1 Game world

In order to visually present the game to the user the game was rendered using the
pygame2 Python module. The game is completely tile based, and each tile can either
be empty or contain a game object. The game supports different world sizes and 3
different game objects; a player object, collectable objects, and wall tiles.

By sending the appropriate commands to the game program the player object
can be moved in the world. Empty tiles are traversable by the player, and wall tiles
are non-traversable. When the player object is moved over a collectable object, the
object is collected by the player and removed from the game.

1 https://gitlab.control.lth.se/users/sign_in
2 www.pygame.org

52

5.1 Game world

Figure 5.1: During the first iteration simple squares were used
to display the game object. The yellow squares represent col-
lectable objects, blue the player object, and gray wall objects.

Iteration 1 – simple graphics
During the first iteration of the game no special considerations on the graphics were
made. Colored squares were used to represent the different game objects, see Fig-
ure 5.1 for an example world.

Discussion
As mentioned, no special considerations were made during the first graphics

iteration. However, after using the game in the specific BCI system presented in
Chapter 6 problems arose. As previously briefly mentioned in the introduction, the
BCI system in Chapter 6 used eye movements as user commands. In that system,
the user moves the player object by looking at any tiles adjacent to the player object.

The first problem that arose was related to the poor choice of fixation targets.
In the situation described above the adjacent tiles, and any objects in them, act as
potential fixation targets. The homogeneous coloring of both the tiles and the objects
was hypothesized to result in unstable fixations. The recorded EEG chunks should
then contain both the saccade component—which is the desired component as this
act as the user command—and an abundance of the undesired EEG components
which is a result of an unstable fixation.

The coordinates displayed in each tile were also experienced to sometimes ac-
cidentally act as an fixation targets.

Another problem related to the colors of the game objects are the fact that the
player avatar and the collectable tiles look very much the same. The shape and

53

Chapter 5. Implementing a game application

Figure 5.2: During the second iteration of the game the graph-
ics were updated.

general design does not indicate what the tiles are and how to use them.

Iteration 2 – updated graphics
In the second iteration the tile coordinates were removed. The squares representing
the player and the collectable coins were changed to sprites3 resembling a person4

and a golden crown5 respectively, see Figure 5.2.
Due to time limitations no objective analysis was done to investigate the quality

of the new fixation points.

Discussion
Compared to the previous iteration the complexity of the visualization of the

game objects increased substantially. Due to time limitation no objective compari-
son were made between the new and old graphics, it is therefore unclear if any im-
provements were made at all. However, due to the heterogeneity of the new sprites
the player now more easily consciously select a point in the sprite and use that as
a fixation point. It is unclear how consistently these fixation points could be used.

3 A sprite is a two dimensional image, e.g. a bitmap, that can be displayed on the screen.
4 Made by the creator BilouMaster www.opengameart.org/content/rpg-asset-pack. Licensed

under CC-BY 4.0. No changes were made to the original sprite. Date downloaded 2021-05-19.
5 Made by the creator Bonsaiheldin www.opengameart.org/content/
gold-treasure-icons-16x16. Licensed under public domain. No changes were made to
the original sprite. Date downloaded 2021-05-19.

54

5.2 Remote control of the game application

The new graphics of the game was experienced as easier to engage in, and more
relaxing as the gaze could easily be put on any of the new tile details.

5.2 Remote control of the game application

To increase flexibility of the BCI system the game application was written as a
stand-alone application. To allow for remote control of the stimuli program (i.e.
control of the application outside the process in which it is running) a simple server
was constructed using multiprocessing. Any external software running in an-
other process can easily exchange commands with the server by connecting to it.
The connection was based on a socket, and from hereon anything that connects
to server via this socket is referred to as the client. multiprocessing allows for
different types of so called Inter-process communication (IPC) methods, and the
socket communication will therefore from hereon simply be referred to as IPC.

Game commands
The server has two states; start-up state and running state. During the start-up state
the server accepts the following setup commands:

Game setup commands Description
--gamesize w h Set game board width and height to

(w, h) number of tiles.
--wintitle t Set the window title to t.
--winsize x y Set the window width and height to

(x, y) pixels.

As soon as the first message is received and parsed the server enters the running
state in which it accepts the following commands:

Game commands Description
--move d Moves the player in direction d.
--set t x y Se the tile at position (x, y) to the tile type

t.
--clear Set all tiles to empty.
--quit Shutdown server.

To simplify sending and receiving these commands the GameClient class was
created. In this case the GameClient was used to encapsulate the application specific
communication, described above, from the application interface node. The applica-
tion interface node, or any other node, can use this class to easily communicate with
the game server.

55

Chapter 5. Implementing a game application

Below the GameClient (Figure 5.3) in the "protocol stack" the IPCClient can
be seen. This class handles the lower layer communication between processes (i.e.
IPC). As mentioned before, the IPC is over sockets.

If any other application is needed the GameClient can easily be swapped, and
if any other lower layer communication is needed the IPCClient and IPCServer can
be swapped.

GameClient
(contains game state)

IPCClient IPCServer

Game
(contains game state)

CommandsCommands

User

Visual stimuli

Game programClient program

Commands over
socket

EEG
To EEG acquisition

program

Commands from
e.g. pipeline

Game state to
e.g. pipeline

Figure 5.3: Overview showing the general structure of how a
client communicates with the game program. The IPCClient
and IPCServer classes act as so called mediators classes. Both
the GameClient and the Game class contain a model of the
game. The state of the games are kept identical by applying the
same state transitions on both sides of the socket. The game
state is thus directly accessible on the client side.

Sometimes it is desirable to know the state of the application. This is the case
when using the stimuli adapter to create stimuli suggestions to the stimuli node.
Also, if the passive mapping method suggested in Section 4.10 is implemented,
the application state will be needed too. However, as the game is run in its own
process, with its own separate memory, it is not possible to access the game state
from outside the game process directly.

One solution to this was to allow the GameClient to fetch the game state from
the server when it is requested (externally). However, another feasible solution was
to store a copy of the game state inside GameClient. By applying the same state
transitions on both the client side and server side the GameClient could effectively
keep an up-to-date game in its own process as long as the socket connection is alive
and working properly. This allows for easy access of the game state from within the
client process through GameClient, see Figure 5.3. As the game state is very small

56

5.3 Player movement

in terms of memory, this was deemed as a good enough solution.

5.3 Player movement

Iteration 1 – free movement
During the first iteration of the game the player object could be moved in all four
directions—up, right, down, and left. If no commands were sent to the game the
player object remained stationary.

To control the player using the BCI pipeline four distinct user commands would
be needed. However, at a later phase of the thesis the 4 commands were reduced
to two due to difficulties classifying the four ocular user commands. To allow the
player to be able to move in the two dimensional world with only two commands,
changes had to be made to the game.

Iteration 2 – snake movement
During the second iteration, the player movement commands were reduced to two
which corresponded to clockwise or anti-clockwise turning. The player object was
also continuously moved forward in the direction the object faced, similar to the
snake in the game snake.

At this phase of the thesis the game was planned to be entirely rewritten. There-
fore, the question of where to implement the continuous forward moving behaviour
naturally arose.

Method 1 – contained in game mechanics, using two parallel games
In the first method the forward movement was identified as intrinsic to the game,

and a part of the game update. This implementation allowed the game to handle the
forward movement without any external commands or interaction. The server could
thus run the game—with the forward movements—without the client.

This choice lead to the question of how to handle the two parallel copies of the
game state. As mentioned, and as previously seen in Figure 5.3, the game models
are updated and kept synchronized by applying the same transitions on both models.
However, if the game state is changed internally from within the server without
notifying the client, the game states will diverge6.

The naive solution to this problem would be to run the same internal logic on the
client side as is run on the server side. Both the client and server side thus have this
internal dynamics—simply referred to as game mechanics—that updates the model
without external interaction.

As one can imagine, this potentially also leads to diverging states. One aspect of
this divergence is the racing condition that is intrinsic to this method. If an external

6 Diverging here simply refers to the game models becoming less and less similar due to e.g. an external
event associated with a state transition not being applied to the models at exactly the same time, or
non-equal model update frequencies.

57

Chapter 5. Implementing a game application

GameClient

Game state

IPCClient IPCServer

Game state

Game
(contains game state)

Game
commands

Game
commands

User

Visual stimuli

Game programClient program
Game commands

EEG
To EEG acquisition

program

Commands from
app interface

Game state to
app interface

Game state

Figure 5.4: The so called game mechanics are contained on
the server side (in the Game class). When needed on the server
side, the game state is fetched through a request over the IPC
connection. This approach is used by Method 2.

action is producing a state transition on the server side, the corresponding game
command is sent over the socket to server to, hopefully, produce the same transition
there. However, due to the small time delay between client and server, the server
model could have transitioned to a new state before the game command arrives.
In short, the game commands are constructed to invoke a specific transition at the
client side, but could potentially meet a model with a different game state at the
server side.

Method 2 – contained in game mechanics, using one game
A more sophisticated approach was to only run the so called game mechanics

on the server and simply let the client fetch the game state when needed, see Fig-
ure 5.4 (which meant that a new game command had to be introduced). However,
one should note that racing conditions are still present in the system if any action
on the client side is based on the fetched game state—the fetched game state might
be outdated at the time when the said action is generated.

An example of when this is obvious is during the generation of golden crown
tiles next to a forward moving player. The "next to" here indicates the game state
is needed to find tiles adjacent to the player. If the forward moving player makes
a forward jump between the client fetch and the generation of the golden crown,
the "adjacent tiles" will no longer be adjacent to the player, and the crown will not
appear where it was supposed to.

58

5.3 Player movement

Method 3 – as an external interaction
Due to the multitude of potential problems associated with the first and second

method, a third less complex approach was outlined.
In contrast to the other methods described, the forward movement of the player

was not viewed as a part of the game mechanics. Instead, the forward movement
was produced by continuously sending appropriate movement commands from the
client. When this approach was used all dynamics were eliminated from the game,
and so are the racing conditions.

Similar to the first method, the client holds the game state. In contrast to the
first and second method, all dynamics are contained in the game client. Because
of this one can be sure that the available game state is always the most recent.
There are also no issues with racing conditions and diverging games. To clarify, this
method does not use two way communication, and operates as previously shown in
Figure 5.3.

This approach was used in the final software.

59

6
Implementation of a
demonstration using SAPF
and the game

This chapter describes a BCI system implemented using the SAPF and the game
previously presented.

Section 6.1 the selection of EEG signal to use as user command will be pre-
sented and discussed. Section 6.2 gives a discussion and motivation of the choice
of hardware. In In the subsequent sections, Section 6.3–6.8, each node will be con-
figured for the specific BCI system in this chapter. Section 6.9 will present the con-
struction of the BCI pipeline using the configured nodes.

As will be discussed further in this chapter, the signals used as commands were
at first eye movements. The outcome was, however, poor. Therefore a second at-
tempt was made using jaw clenching and eye blinks as commands. The following
sections will treat both attempts.

6.1 User commands

At first, eye movements were selected as user commands. The idea was that the
user should control the player object in the game by looking at tiles adjacent to the
player. The number of commands are thus 4. Problems arose when these commands
were used. Due to these difficulties the commands were later swapped to eye-blinks
and jaw clenching (pressing teeth together) instead.

60

6.2 Hardware selection

6.2 Hardware selection

Selecting EEG hardware
At first the EasyCap EEG-cap and the Smarting amplifier were considered. How-
ever, with its 24 wet-type electrodes the system provided more data—and of higher
quality—than needed in this thesis. Therefore, the MuseS was selected. Its 5 dry-
type electrodes, and sampling frequency of 256 Hz, provided the right quantity (in
terms of number of channels) and quality of data for the use-case in this thesis.

Moreover, the inexperience of the author in the field of experimental setup and
EEG further motivates the selection of the Muse S. The inexperience would—as
predicted—lead to many spontaneous experiments which further required a remis-
sive setup in the sense that it allowed for quick and not thoroughly planned exper-
iments. The setup time of EasyCap—which is in the vicinity of 20 minutes due to
the requirement of conductive paste—does not allow quick and spontaneous exper-
iments. In contrast, the setup time of Muse S is a couple of seconds, mainly due to
the usage of dry-type electrodes.

Other hardware
To run the experiment a Bluetooth module was needed to connect to the Muse S.
BLED112 was selected.

6.3 The LSL node configuration

The LSL node was configured using Lc = 64 samples. According to Equation (4.1)
and Equation (4.2) the theoretical minimal average experienced system delay is then
125 ms, which was deemed small enough.

6.4 The pre-processing node configuration

The filter coefficients were calculated using mne.filter.create_filter(.) in-
stead of more transparent methods such as scipy.signal.firwin(.) (which the
mne-method is built on). The filter design arguments are shown in Table 6.1. One
should note that mne.filter.create_filter(.) automatically determines the
length of the filter based on the given requirements.

As indicated by the requirements, high-pass filtering (implied by the low-
frequency cutoff) was used to remove drift as BC was deemed not suitable for online
filtering in Section 4.5.

The transition bandwidth was deliberately set to relatively large number—as
advised by [Widmann et al., 2014]—which resulted in "poor" attenuation of stop-
band in the sense that the transition region between pass- and stop-band is relatively
large. However, this should also reduce ringing artefacts. To compensate for the

61

Chapter 6. Implementation of a demonstration using SAPF and the game

Table 6.1: Filter arguments

Argument explanation Argument name Value
Low-pass cutoff frequency l_freq 0.5 (Hz)
High-pass cutoff frequency h_freq 20 (Hz)
High-frequency transition
bandwidth

h_trans_bandwidth 15 (Hz)

Filter phase phase ’minimum’
Design method fir_design ’firwin’
Filter type method ’fir’

large transition bandwidth the high-pass cutoff frequency was deliberately set to the
low value 20 Hz to avoid the line-noise at 50 Hz.

The AUX channel of the Muse S was discarded by the pre-processing node as
this does not contain any EEG.

Due to time limitations no objective evaluation were done to maximize signal-
to-noise ratio, or to keep as much of the signal power as possible. The signal was
simply examined—in time domain—before and after filtering, and the parameters
were changed based on intuition until satisfying results were achieved.

Discussion
Much work was dedicated to understand the pre-processing and selection of filter-
parameters of previous work. However, in the end, much of the filter design was
based on experimentation. Also, no exclusive line-noise filtering was deemed nec-
essary.

It was also unclear how much effect the minimum-phase argument made except
introducing a delay in the filter output. It was also unclear if the selection of an IIR
filter would potentially provide better filtering.

Moreover, as mentioned, phase-distortion distorts the temporal shape of the sig-
nal, which might be critical if high time precision is necessary (phase-distortion
"smears" the signal). However, if features based on the spectrum of the entire chunk
is used, this most likely has no or little effect as the frequencies are still present in
the chunk.

The filter produced by the filter method did not possess linear phase, and the
maximum time delay in the pass-band was 4 ms. This delay is relatively small com-
pared to the LSL buffering delay, which was 125 ms.

6.5 The processing node configuration

The processing node was equipped with a channel-wise variance check. If the vari-
ance was too high the chunk was rejected (i.e. not passed further in the pipeline).
The rejection threshold was set to 4000.

62

6.6 The feature extractor node configuration

Discussion
Initially, the intent of the node was to reject chunks containing eye blinks when
only eye movements were considered a command. However, the variance rejection
features proved useful for rejecting epochs containing rapid head movements or
channels with electrodes with poor connection, and were thus kept even after eye-
blinks were considered an user command.

However, the combination of the processing node and nodes such as the stimuli
node—which were built around the assumption that a stimulation command always
result in a response as presented in Section 4.10—did not mix well. Remember,
the the stimuli node stimulates the user and expects an incoming chunk to contain
the response. However, what if the chunk has high variance and is rejected by the
processing node? Then the mapping will fail, and therefore the processing node was
later not used in the acquisition pipeline.

6.6 The feature extractor node configuration

Selecting the features
The selection of features were based on the first choice of user signals, namely eye
movements. However, as will be seen later, the selected features worked well to
distinguish eye-blinks from jaw clenching as well. The reader should therefore note
that the reasoning in the following sections are based on eye movements as user
commands.

Spectral envelope
As was seen in Section 3.7, the frequency content of saccades and eye-blinks

seem to be a distinguishing feature.
Therefore different parts of the spectrum were extracted, and the sum of the

frequency bins corresponding to the specific part of the spectrum were used as a
feature. One could simply select the correct frequency bins, however, a filter bank
was used for this instead. The filter bank (Figure 6.2) was based on 6 triangular
filters.

When 4 EEG channels are used in the EEG chunks a total of 24 features are
extracted from each chunk. The Python package pyfilterbank1 was used to con-
struct the filters.

1 www.github.com/SiggiGue/pyfilterbank

63

Chapter 6. Implementation of a demonstration using SAPF and the game

0 5 10 15 20 25
Frequency / Hz

0.0

0.2

0.4

0.6

0.8

1.0

Fil
te

r a
m

pl
ifi

ca
tio

n

Filter bank

Figure 6.1: Triangular filters used in the filter bank.

TP9

AF7

AF8

TP10

EEG chunks Features

Figure 6.2: Example showing the features (right) which were
extracted from the EEG chunks (left).

Discussion
At first, channel variance features seemed suitable to input to a classifier. How-

ever, a desired classifier accuracy could not be achieved using this method alone. It
is unclear exactly what is the cause of this, but it was hypothesized that the variance
feature itself had a high inter-class variance. This could be especially true when us-
ing the first iteration graphics of the game application—and eye-movements as user
commands—which had problems with fixation points. The lack of a proper fixation
point could potentially lead to a higher variety of saccade sizes, and a lower fixation
stability, which potentially could increase the inter-class variance when using the
variance feature. However, it should be noted that no data is available to support
this claim.

In the pipeline no data normalization was done to the EEG chunks entering the
feature extractor node. Using some normalization might increase the classification

64

6.7 The stimuli node and adapter configuration

accuracy.

6.7 The stimuli node and adapter configuration

When the NA is configured most of the work is done in the adapter part. This is, as
mentioned before, because most of the use-case specific behaviour is located in the
adapter part.

Two different stimuli strategies were considered when implementing the
adapter—these are referred to as collect the crowns, and limited traversability.
Note that the stimuli node expects a known user response for each possible stimula-
tion presented by these two methods. Thus, both strategies aim to change the game
state in such a way that the type of the user response can be regarded as known.
However, due to time limitations, and due to the changes made in the game during
the second iteration, only the "collect the crowns" strategy was implemented.

Collect the crowns
The adapter based on the collect the crowns strategy finds traversable tiles next to
the player to generate a crown in, see Figure 6.3. The adapter associates each of
these tile selections with a user response class. The expected user response is to
collect the crown, and in Figure 6.3 this is "move left".

Figure 6.3: Example of game world during calibration session
with stimuli adapter based on the collect the crowns approach.

65

Chapter 6. Implementation of a demonstration using SAPF and the game

The stimuli node was first configured using Algorithm 2 with τuser = 1 second.
A test using Algorithm 3 was also done, then N = 4 which—with the LSL node’s
Lc = 64 samples and Muse S fs = 256 Hz—corresponds to 1 second. To summarize,
in both methods it is assumed that the user responds to the crown stimulation within
1 second. The time interval between stimuli were set to 2 seconds. Note that, as
previously mentioned, the chunks collected in this period is labeled as "nothing".

Limited traversability
The limited traversability approach aims to reduce the number of reasonable player
actions by reducing the traversability of the tiles surrounding the player.

Figure 6.4: Example of game world during calibration session
using the limited traversability approach.

Discussion
Not much more work was dedicated to the limited traversability approach, and it is
unclear if it is even possible to implement this strategy using NA—the stimuli node
and stimuli adapter duo—as the NA is based around the stimulation command and
response concept. During the limited traversability approach no changes are made
to the game state to stimulate a user to respond. The discussion in Section 4.10 about
asynchronous mapping suggests that mapping approach would have been suitable
for this strategy.

66

6.8 The classification node configuration

Table 6.2: The two pipelines and the included nodes. These
two pipelines acts as the BCI system.

Acquisition pipeline Classification pipeline
LSL node LSL node
Pre-processing node Pre-processing node

Processing node
Feature extractor node

Stimuli node Classification node
Application interface node Application interface node

6.8 The classification node configuration

The classifier was a simple CNN built in Keras, see Appendix for a summary. Little
time was dedicated to finding a good classifier as this was not the main objective.

6.9 Building and running the pipelines

Building the pipelines
As mentioned before, the framework was not capable of producing pipelines capa-
ble of running both a classifying pipeline and the data labeling pipeline. Therefore
two pipelines were constructed, see Figure 6.2. The implementations and settings
described in this chapter were used for the nodes. Note that, due to time limitations,
these two pipelines are, as mentioned, not capable of running in parallel.

The reason why the processing node was not used in the data acquisition
pipeline was due to the chunk rejection that it contains. The stimuli node, which
is also present in the acquisition pipeline, does not cooperate well with this be-
haviour as it assumes that a stimulation command leads to a response chunk. This is
not the case if the processing node "accidentally" rejects one or more of the chunks.

Moreover, the feature extractor node was not included in the acquisition pipeline
as the find_focus_point(.) implementation was based on finding the user re-
sponse in the EEG chunks and not chunks containing features.

Running the acquisition pipeline
The acquisition pipeline was setup according to Table 6.2, and to the configurations
described in this chapter. As mentioned, the collect the crowns method was used,
which can be seen in Figure 6.5. The game server and the pipeline was started,
these are automatically connected and an overview of the initial setup commands
(automatically) sent by the GameClient can be seen below:

67

Chapter 6. Implementation of a demonstration using SAPF and the game

Game setup commands Comment
--gamesize 7 7 Set game size to (7, 7)
--winsize -1 -1 Automatically sets window

size to maximize the window
size of the game, while keep-
ing the aspect ratio of tiles
1:1.

--wintitle " "
Game commands
--set 3 3 PLAYER Create a player object in the

center of the game world.
--setsquare 0 0 6 6 WALL Generate the walls around

the borders of the map (for
aesthetic purposes only)

Note, the NA takes cares of the rest of the communication needed to implement
the collect the crowns approach, and is not included here.

68

6.9 Building and running the pipelines

(a) A crown appears next to the player.

(b) The user attempts to collect the crown by sending the ap-
propriate user command, in this case by pressing teeth together
slightly.

Figure 6.5: The process of stimulating the user by creating a
crown next to the player object. The user responds by attempt-
ing to collect the crown, in this case by pressing the teeth to-
gether. More crowns appear either to the left or right of the
player as the calibration proceeds.

As mentioned, two user commands were used—jaw clenching and eye-blinks.
During the calibration the user can attempt to either move the player to the left or
to the right2. After stimulation N = 4 (1 second) EEG chunks are collected after
stimulation onset. Using Algorithm 2 the user response was identified among these
N = 4 chunks, and one single chunk extracted from these chunks which was asso-
ciated with the expected user response (i.e. "left" in Figure 6.5).

In total 40 crowns were collected, which corresponds to 20 data points of "left",
and 20 of "right". Meanwhile, 200 data points of "nothing" were collected.

2 Again, note, the player does not actually control the player. It is the NA that does that.

69

Chapter 6. Implementation of a demonstration using SAPF and the game

Processing and training of the classifier
The data set generated during the calibration phase was used. The feature extraction
had to be done manually using a FeatureExtractor object implemented to extract
the features previously described. A new data set was thus generated containing the
features. This data set was used to train the classifier.

Running the classification pipeline
The FeatureExtractor object was inserted into the feature extractor node, and the
trained Classifier object into the classification node. The classification pipeline
described in Table 6.2 was setup.

Due to the fact that only 2 commands were used, instead of 4 as was initially
planned, the free movement described in Section 5.3 could not be used if the whole
game world shall be traversable by the player. Instead the snake movement was used
in the GameClient. The collected "left" and "right" data during acquisition was thus,
in the real time classification pipeline, regarded as turning left and right respectively.

Figure 6.6: The classification pipeline running. A random
game world with one crown can be seen above.

A demonstration of the process mentioned above can be found here
youtu.be/i3kGB5Ed8ww.

6.10 Discussion

As mentioned, no objective evaluation of anything was done. However, the author
experienced that it took some time to learn the control after the calibration process.
After a few minutes of controlling the player object around the world the author
experienced that the control was good enough to be enjoyable. It should be relatively

70

6.10 Discussion

simple to add more game objects to the game that in turn would make the game itself
more interesting. However, the final game play was left as presented in Figure 6.6.

71

7
Final remarks

The SAPF presented a simple way of stacking functionality together. However, it
is unclear if the asynchronous multi-threading approach (the concept of nodes) pre-
sented in SAPF was a good design choice. If one chunk is present in the pipeline at
once it does not matter if the pipeline works asynchronously as it will appear as if
it is working synchronously anyways. The context switching that is intrinsic to the
multi-threading approach might introduce unnecessary processing delays, and the
approach itself might introduce unnecessary complexity. It is arguable if the node
based concept makes the code more or less readable.

However, the SAPF was able to construct a BCI pipeline capable of controlling
a simple game, which was two of the objectives of the thesis. The final objective
was to create a simple game to control, and this was also accomplished.

Throughout this thesis many problems, bugs, and other setbacks have affected
the quality and quantity of the work done. Much of the technical problems revolved
around the LSL connection made between the EEG hardware and the computer on
which the BCI is run. Bluetooth dongle compatibly issues also setback the thesis
somewhat.

However, not only problems were to be found, throughout the many investiga-
tions and implementations done in this thesis many opportunities for further work
was discovered. Some of the most interesting ones might be the passive mapping
approach, presented in Section 4.10, which might be combined with the sliding win-
dow fractal presented in the same section. If the synchronous mapping approach—
the stimulation command to response mapping—is further used one can attempt to
implement early-stopping and improve the find_focus_point(.).

Another interesting feature would be if the SAPF actually could produce
pipelines capable of both calibration and classification simultaneously. Some work
was dedicated to implementing other types of nodes—based on the stimuli node and
the classifier node—that could produce this behaviour. These were never finished
and were thus never included in the thesis.

The main reason for using Python throughout this thesis was that it is simple
to learn and thus allows more potential users to make changes to the SAPF later.
However, if one wish to write larger programs Python has its drawbacks. This was

72

Chapter 7. Final remarks

especially noted when attempting to implement the more complicated nodes where
no known code patterns, at least to the author, could have been used instead. Also,
as it is not possible to declare the types of Python variables, mistakes are sometimes
easily made which might go unnoticed as there are no compiler warnings. The ques-
tion is then, is software written in 100% Python code really easier to understand than
e.g. C++ or Java code?

Lastly, some of my own thoughts will be presented. The SAPF pipeline provides
a solution to create asynchronous data pipelines and could most likely be used sim-
ilarly in other contexts outside BCI. It is flexible in the sense that it is relatively
easy to adjust nodes, change order of them, and implement new nodes. However,
the implementation solutions to many problems that arose throughout the thesis are
inefficient and generally regarded as "rough" solutions (code smell). Some parts of
the source code of SAPF follows bad code practices and should ideally be rewritten.
Also, some of the core mechanics of SAPF—i.e. the buffering using queues, and the
corresponding threads—could more efficiently be implemented in e.g. C++. At this
stage, however, the SAPF would indeed just be an uglier twin of OpenVibe. There-
fore, if one only wish to demonstrate a certain BCI system only, OpenVibe is most
certainly a better choice than SAPF.

73

8
Appendix

Pipeline and system delay

As the pipeline is run under a non-real time OS no guarantees can be made on the
upper bound of the pipeline delay.

If one assumes that the processing speed of all nodes are 0, i.e. assumption 2
holds, and the time delay imposed by context switching is negligible—i.e. the only
source of time delay is the buffering in the LSL node. Then a lower bound on the
pipeline delay can be formulated by using the delay imposed by the LSL node.

If a sample enters the LSL buffer right before a chunk is created the sample
will experience a time delay of 0 seconds. If a sample enters the buffer right after
a chunk is created the sample is the first sample in the buffer, and it has to wait
there until the buffer is full before the buffer can be flushed and a chunk created.
The sample experience a time delay of Lc/ fs seconds, where Lc is the chunk length,
and fs the sampling frequency (rate of which samples appear on the buffer) which
is assumed to be constant. I.e.:

min(τLSL) = 0, max(τLSL) =
Lc

fs

Assume that the user response can be pin-pointed to one sample. As the re-
sponses of the user of the system is, in most cases, independent of the buffer status
it is reasonable to assume that this sample appears (discrete) uniformly on the LSL
buffer1.

τsamp,pipeline = unif
{

0,
Lc

fs

}
The expected delay of the user response sample in the pipeline is thus:

E{τsamp,pipeline}=
Lc

2 fs
1 This is not always the case. During the active mapping approach the stimulation and the appearance

of the user response sample is highly correlated. As the stimulation is synchronized with the appear-
ance of chunks on the stimuli node buffer (and therefore the LSL buffer if the time delay is assumed
to be 0, i.e. assumption 2 holds), then user response is also synchronized with the LSL buffer. In this
case the user response is most likely not uniformly distributed in the LSL buffer.

74

Chapter 8. Appendix

This delay only includes the delays imposed by the pipeline itself, where most
of them—expect the LSL buffer delay—is assumed to be 0.

If one wishes to account for delays imposed by fetching the samples from the
hardware, and sending the pipeline results to the application, a lower bound of the
entire system delay can be formulated. This delay, τsys, is what is experienced by
the user. The LSL buffer delay is included in this delay, then:

τsys ≥ τLSL

and the expected delay of the user response sample in the pipeline is thus

E{τsys} ≥ E{τsamp,pipeline}=
Lc

2 fs

.

Keras model

model . summary ()
Model : " s e q u e n t i a l "

Layer (t y p e) Outpu t Shape
Param #
=====================================
conv3d (Conv3D) (None , 8 , 4 , 1 , 4)
28

max_pool ing3d (MaxPooling3D) (None , 4 , 3 , 1 , 4)
0

b a t c h _ n o r m a l i z a t i o n (BatchNo (None , 4 , 3 , 1 , 4)
16

f l a t t e n (F l a t t e n) (None , 48)
0

dense (Dense) (None , 8)
392

d r o p o u t (Dropout) (None , 8)
0

dense_1 (Dense) (None , 5)
45

75

Chapter 8. Appendix

d r o p o u t _ 1 (Dropout) (None , 5)
0

dense_2 (Dense) (None , 3)
18
=====================================
T o t a l params : 499
T r a i n a b l e params : 491
Non− t r a i n a b l e params : 8

76

Bibliography

Bin, G., X. Gao, Y. Wang, B. Hong, and S. Gao (2009). “VEP-based brain-computer
interfaces: Time, frequency, and code modulations [Research Frontier]”. IEEE
Comp. Int. Mag. 4, pp. 22–26. DOI: 10.1109/MCI.2009.934562.

Chang S. Nam, Inchul Choi, Amy Wadeson, and Mincheol Whang (2018).
“Brain–computer interface an emerging interaction technology”. Ed. by F. L.
Chang S. Nam Anton Nijholt, pp. 11–52.

Chioran, G. and R. Yee (1991). “Analysis of electro-oculographic artifact during
vertical saccadic eye movements.” Graefe’s Archive for Clinical and Exper-
imental Ophthalmology 229:3, pp. 237–241. ISSN: 0721832X. URL: http :
/ / ludwig . lub . lu . se / login ? url = https : / / search . ebscohost .
com/login.aspx?direct=true&db=edselc&AN=edselc.2- 52.0-
0025732468&site=eds-live&scope=site.

Collinger, J. L., R. A. Gaunt, and A. B. Schwartz (2018). “Progress towards restor-
ing upper limb movement and sensation through intracortical brain-computer
interfaces”. Current Opinion in Biomedical Engineering 8. Neural Engineer-
ing/ Novel Biomedical Technologies: Neuromodulation, pp. 84–92. ISSN: 2468-
4511. DOI: https : / / doi . org / 10 . 1016 / j . cobme . 2018 . 11 . 005.
URL: https : / / www . sciencedirect . com / science / article / pii /
S2468451118300369.

Computational Neuroscience, S. C. for (n.d.). Labstreaminglayer. URL: https:
//github.com/sccn/labstreaminglayer.

Grübler, G., E. Hildt, A. Al-Khodairy, R. Leeb, I. Pisotta, A. Riccio, and M. Rohm
(2014). “Psychosocial and ethical aspects in non-invasive EEG-based BCI re-
search - A survey among BCI users and BCI professionals.” Neuroethics 7:1,
pp. 29–41. ISSN: 18745504. URL: http://ludwig.lub.lu.se/login?
url=https://search.ebscohost.com/login.aspx?direct=true&db=
edselc&AN=edselc.2-52.0-84896040602&site=eds-live&scope=
site.

77

Bibliography

Haas, L. F. (2003). “Hans Berger (1873–1941), Richard Caton (1842–1926), and
electroencephalography”. Journal of Neurology, Neurosurgery & Psychiatry
74:1, pp. 9–9. ISSN: 0022-3050. DOI: 10 . 1136 / jnnp . 74 . 1 . 9. eprint:
https://jnnp.bmj.com/content/74/1/9.full.pdf. URL: https:
//jnnp.bmj.com/content/74/1/9.

Jurcak, V., D. Tsuzuki, and I. Dan (2007). “10/20, 10/10, and 10/5 systems revisited:
their validity as relative head-surface-based positioning systems.” Neuroimage
34:4, pp. 1600–1611. ISSN: 1053-8119. URL: http://ludwig.lub.lu.se/
login?url=https://search.ebscohost.com/login.aspx?direct=
true&db=edselp&AN=S1053811906009724&site=eds- live&scope=
site.

Kaplan, R. M. (2011). “The mind reader: the forgotten life of Hans Berger, discov-
erer of the EEG”. Australas Psychiatry 19:2, pp. 168–169.

Keren, A. S., S. Yuval-Greenberg, and L. Y. Deouell (2010). “Saccadic spike poten-
tials in gamma-band EEG: Characterization, detection and suppression”. Neu-
roImage 49:3, pp. 2248–2263. ISSN: 1053-8119. DOI: https://doi.org/10.
1016/j.neuroimage.2009.10.057. URL: https://www.sciencedirect.
com/science/article/pii/S1053811909011288.

Klonowski, W. (2016). “Fractal Analysis of Electroencephalographic Time Series
(EEG Signals)”. In: Di Ieva, A. (Ed.). The Fractal Geometry of the Brain.
Springer New York, New York, NY, pp. 413–429. ISBN: 978-1-4939-3995-4.
DOI: 10.1007/978-1-4939-3995-4_25. URL: https://doi.org/10.
1007/978-1-4939-3995-4_25.

Krigolson, O. E., C. C. Williams, A. Norton, C. D. Hassall, and F. L. Colino
(2017). “Choosing MUSE: Validation of a Low-Cost, Portable EEG System for
ERP Research”. Frontiers in Neuroscience 11, p. 109. ISSN: 1662-453X. DOI:
10.3389/fnins.2017.00109. URL: https://www.frontiersin.org/
article/10.3389/fnins.2017.00109.

Kryger, M., B. Wester, E. A. Pohlmeyer, M. Rich, B. John, J. Beaty, M. McLough-
lin, M. Boninger, and E. C. Tyler-Kabara (2016). “Flight simulation using a
Brain-Computer Interface: A pilot, pilot study”. Experimental Neurology 287.
DOI: 10.1016/j.expneurol.2016.05.013.

Kübler, A. (2020). “The history of BCI: From a vision for the future to real support
for personhood in people with locked-in syndrome.” Neuroethics 13:2, pp. 163–
180. ISSN: 18745504. URL: http://ludwig.lub.lu.se/login?url=
https://search.ebscohost.com/login.aspx?direct=true&db=
edselc&AN=edselc.2-52.0-85066635311&site=eds-live&scope=
site.

Lyons, R. G. (n.d.). Understanding Digital Signal Processing 3rd Edition c2011
(Lyons). Prentice Hall. ISBN: 0-13-702741-9,978-0-13-702741-5.

78

Bibliography

Mason, S. and G. Birch (2003). “A general framework for brain-computer interface
design.” IEEE Transactions on Neural Systems and Rehabilitation Engineering,
Neural Systems and Rehabilitation Engineering, IEEE Transactions on, IEEE
Trans. Neural Syst. Rehabil. Eng 11:1, pp. 70–85. ISSN: 1558-0210. URL: http:
//ludwig.lub.lu.se/login?url=https://search.ebscohost.com/
login.aspx?direct=true&db=edseee&AN=edseee.1200910&site=eds-
live&scope=site.

Masood, F., M. Hayat, T. Murtaza, and A. Irfan (2020). 2020 International Con-
ference on Emerging Trends in Smart Technologies (ICETST), Emerging Trends
in Smart Technologies (ICETST), 2020 International Conference on. ISSN: 978-
1-7281-7113-5. URL: http://ludwig.lub.lu.se/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=
edseee.9080743&site=eds-live&scope=site.

Millett, D. (2001). “Hans Berger: From Psychic Energy to the EEG.” Perspec-
tives in Biology and Medicine 44:4, pp. 522–542. ISSN: 1529-8795. URL:
http : / / ludwig . lub . lu . se / login ? url = https : / / search .
ebscohost.com/login.aspx?direct=true&db=edspmu&AN=edspmu.
S1529879501405229&site=eds-live&scope=site.

Muse (n.d.[a]). Muse S. Accessed: 2021-03-18. URL: %5Curl % 7Bhttps : / /
choosemuse.force.com/s/article/What-electrode-channels-does-
Muse-use?language=en_US%7D.

Muse (n.d.[b]). Muse S. Accessed: 2021-03-18. URL: %5Curl % 7Bhttps : / /
choosemuse.com/muse-s/%7D.

Noureddin, B., P. Lawrence, and G. Birch (2007). “Time-frequency analysis of eye
blinks and saccades in eog for eeg artifact removal”. In: pp. 564–567. DOI: 10.
1109/CNE.2007.369735.

Oostenveld, R. and P. Praamstra (2001). “The five percent electrode system for
high-resolution EEG and ERP measurements”. Clinical Neurophysiology 112:4,
pp. 713–719. ISSN: 1388-2457. DOI: https://doi.org/10.1016/S1388-
2457(00)00527-7. URL: https://www.sciencedirect.com/science/
article/pii/S1388245700005277.

OpenVibe (2017). Openvibe software architecture. URL: http : / / openvibe .
inria.fr/software-architecture-130/ (visited on 2021-03-31).

Peter Brunner, G. S. (2018). “Bci software”. Ed. by F. L. Chang S. Nam Anton
Nijholt, pp. 323–336.

Picton, T., P. van Roon, M. Armilio, P. Berg, N. Ille, and M. Scherg (2000). “Blinks,
saccades, extraocular muscles and visual evoked potentials (reply to Verleger).”
Journal of Psychophysiology 14:4, pp. 210–217. ISSN: 02698803. URL: http:
/ / ludwig . lub . lu . se / login ? url = https : / / search . ebscohost .
com/login.aspx?direct=true&db=edselc&AN=edselc.2- 52.0-
0034458593&site=eds-live&scope=site.

79

Bibliography

Plöchl, M., J. Ossandón, and P. König (2012). “Combining EEG and eye track-
ing: Identification, characterization and correction of eye movement artifacts in
electroencephalographic data”. Frontiers in human neuroscience 6, p. 278. DOI:
10.3389/fnhum.2012.00278.

Proakis, J. G. and D. K. Manolakis (2006). Digital Signal Processing (4th Edi-
tion). 4th ed. Prentice Hall. ISBN: 0131873741. URL: http : / / www .
amazon . com / Digital - Signal - Processing - John - Proakis / dp /
0131873741 % 3FSubscriptionId % 3D192BW6DQ43CK9FN0ZGG2 % 26tag %
3Dws % 26linkCode % 3Dxm2 % 26camp % 3D2025 % 26creative % 3D165953 %
26creativeASIN%3D0131873741.

Rolfs, M. (2009). “Microsaccades: Small steps on a long way”. Vision Research
49:20, pp. 2415–2441. ISSN: 0042-6989. DOI: https://doi.org/10.1016/
j.visres.2009.08.010. URL: https://www.sciencedirect.com/
science/article/pii/S0042698909003691.

Schalk, G. and B. Z. Allison (2018). “Chapter 26 - Noninvasive Brain–Computer
Interfaces”. In: Krames, E. S. et al. (Eds.). Neuromodulation (Second Edition).
Second Edition. Academic Press, pp. 357–377. ISBN: 978-0-12-805353-9. DOI:
https : / / doi . org / 10 . 1016 / B978 - 0 - 12 - 805353 - 9 . 00026 - 7.
URL: https : / / www . sciencedirect . com / science / article / pii /
B9780128053539000267.

Simon L., K., L. David, M. Danilo P., and K. Preben (2017). “Physiological artifacts
in scalp eeg and ear-eeg.” BioMedical Engineering OnLine 16:1, pp. 1–16. ISSN:
1475-925X. URL: http://ludwig.lub.lu.se/login?url=https://
search.ebscohost.com/login.aspx?direct=true&db=edsdoj&AN=
edsdoj.f7d87fc0dbcc404d928bba65476f32bf&site=eds-live&scope=
site.

Smarting (n.d.). Smarting user manual. Accessed: 2021-03-18.
Smith, S. W. (1997). The Scientist and Engineer’s Guide to Digital Signal Process-

ing. California Technical Publishing, USA. ISBN: 0966017633.
Stegman, P., C. S. Crawford, M. Andujar, A. Nijholt, and J. E. Gilbert (2020).

“Brain–Computer Interface Software: A Review and Discussion”. IEEE Trans-
actions on Human-Machine Systems 50:2, pp. 101–115. DOI: 10.1109/THMS.
2020.2968411.

Thaler, L., A. Schütz, M. Goodale, and K. Gegenfurtner (2013). “What is the best
fixation target? the effect of target shape on stability of fixational eye move-
ments”. Vision Research 76, pp. 31–42. ISSN: 0042-6989. DOI: https : / /
doi . org / 10 . 1016 / j . visres . 2012 . 10 . 012. URL: https : / / www .
sciencedirect.com/science/article/pii/S0042698912003380.

Vidal, J. J. (1973). “Toward Direct Brain-Computer Communication.” Annual Re-
view of Biophysics and Bioengineering 2:1, pp. 157–180. ISSN: 00846589. URL:
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.

80

Bibliography

com/login.aspx?direct=true&db=edo&AN=ejs6236742&site=eds-
live&scope=site.

Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern,
E. Larson, C. Carey, l. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Lax-
alde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.
Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and S. 1. 0. Contrib-
utors (2020). “Scipy 1.0: fundamental algorithms for scientific computing in
python”. Nature Methods.

Widmann, A., E. Schröger, and B. Maess (2014). “Digital filter design for elec-
trophysiological data—a practical approach”. Journal of neuroscience methods
250. DOI: 10.1016/j.jneumeth.2014.08.002.

81

Document name

Date of issue

Document Number

Author(s) Supervisor

Title and subtitle

Abstract

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

	Blank Page

