

Department of Automatic Control

Development of a controller
to switch between relative and absolute path

for target vehicles in simulation scenarios

Olof Karlsson

Erik Fredin

MSc Thesis
TFRT-6139
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2021 by Olof Karlsson & Erik Fredin. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2021

Abstract

Simulating vehicle scenarios for autonomous cars saves both time and money com-
pared to physical testing. For this to work efficiently a sophisticated simulation
software is often needed. Esmini is an open-source, lightweight vehicle simulator
that can handle advanced traffic scenarios. When designing scenarios to be used
for testing autonomous vehicles, it is often beneficial to set up relative vehicle
behaviour to ensure that a hazardous situation arises. This could be that the car in
front of the autonomous car drives a couple of kilometers per hour slower com-
pared to the autonomous car. At some point the autonomous car must react to avoid
a collision, e.g., by braking. To avoid having the car in front slowing down when
the autonomous car brakes, a switch must be done such that the car in front has an
absolute speed.

Hence, the purpose of the controller developed in this thesis is to decide when
to switch from the relative setup and what the new control objective should be.
This is implemented by simulating a short period into the future to observe how
the scenario develops. The controller generates predictions using simulation data
of the events that should transpire for every vehicle except the autonomous one.
The expected vehicle states are then continuously compared to the actual vehicle
states generated during the simulation. If the actual vehicle states deviate too far
from the expected values, a switch occurs. A new objective is then given to the
vehicle, depending on its behaviour before the switch and what type of relative
setup previously existed.

The proposed solution is available in the official Esmini repository and has been
tested in traffic scenarios with CSPAS, a platform where Volvo’s active safety func-
tions are simulated. The performance of the controller depends on how it is tuned.
For all tested scenarios a satisfying result has been achieved.

3

Acknowledgements

We are deeply grateful for all the help we received and would like to extend our
sincere thanks to Emil Knabe, Mikael Andersson and Angel Molina Acosta for
their support at Volvo cars. We would would also like to offer a special thanks to
Anton Cervin at LTH for the guidance and support we have been given.

5

Nomenclature

Symbols and Abbreviations

ACC Adaptive Cruise Control
AD Autonomous Drive
ASAM Association for Standardization of Automation and Measuring

Systems
API Application Programming Interface
CMBB Collision Mitigation By Braking

Terms and Definitions

CSPAS A platform by Volvo Cars that can run active safety functions
or AD software.

Ego Vehicle The vehicle(s) which is(are) the focus of a scenario, i.e., the
vehicle(s) under test. For evaluation of automated driving
system, the Ego vehicle will be the one controlled by the
system-under-test.

Esmini Environment Simulator Minimalistic, see Chapter 2.2
Switch The process where the controller removes the relative

kinematic constraint between the target and the ego vehicle,
such that the target’s desired movement is defined in absolute
terms, i.e., with respect to a fixed reference frame.

Target
Vehicle

The vehicle(s) used to test collision scenarios with the ego
vehicle. The target vehicle(s) is/are not used to test AD
software, and instead serve as additional vehicles in traffic
scenarios.

7

Contents

1. Introduction 11
1.1 Overview . 11
1.2 Problem Description . 11
1.3 Research Questions . 13
1.4 Methodology . 13
1.5 Delimitation . 13

2. Background 14
2.1 ASAM OpenSCENARIO . 14
2.2 Esmini - an OpenSCENARIO player 18
2.3 Background on Simulation Model Testing 30

3. Controller Design 34
3.1 Controller Concepts . 34
3.2 Controller Implementation . 36
3.3 Integration of the Controller with Esmini 44

4. Controller Validation 46
4.1 Controller Validation Process 46
4.2 Results . 52

5. Discussion 60
5.1 Controller Concept and Prediction Algorithm 60
5.2 Control Objective after the Switch 61
5.3 Testing . 62

6. Conclusion & Future Work 67
6.1 Conclusion . 67
6.2 Future Work . 68

Bibliography 69
Appendices 71

A OpenSCENARIO xml code . 71

9

1
Introduction

1.1 Overview

The development for Active Safety and Autonomous driving (AD) features in cars
is a very high priority for car manufacturers across the world. While active safety
features are already included in many cars on today’s market, level 5 autonomy
road cars are expected to be available in the 2030s [Litman, 2021]. Most likely, the
first autonomous vehicles will be available in the form of "ride-shares", as well as
autonomous trucks and busses. Volvo Cars currently invests significantly into the
research and development of both active safety as well as AD software. Physical
testing for these is often expensive, time-consuming and in many cases not feasible
at early stages of AD development. A solution to this is to test software using sim-
ulations. Volvo makes use of “Esmini” [Knabe, 2021a], an open-source OpenSce-
nario [ASAM OpenSCENARIO 2021] player for traffic simulations of autonomous
vehicles. This is in order to test AD and active safety software in traffic scenarios
that could lead to a collision.

1.2 Problem Description

Simulations in Esmini typically contain an ego (AD) vehicle, and a so-called target
vehicle which is used to define a scenario that can lead to a collision (i.e., "colli-
sion scenario"). There are two types of controllers that can be used to control the
movement of the target vehicle in Esmini. The first is absolute control, where the
vehicle is controlled such that its motion complies with a predefined trajectory that
is fixed to the road. Relative control on the other hand means that the target vehicle
is controlled so that the relative motion between target and ego vehicle satisfies
some sort of condition. This could for instance be a fixed difference in distance or
speed between the two vehicles.

A traffic scenario is defined in order to test how the ego vehicle reacts to a po-
tential collision, and is significantly easier to define using relative control. How-

11

Chapter 1. Introduction

ever, defining the target vehicle’s behaviour using relative control during the entire
scenario can lead to unrealistic behaviour. For instance, if the ego vehicle triggers
an emergency braking function in order to avoid a potential collision, the target
vehicle may also brake and come to a stop, causing both vehicles to wait for each
other in order to continue driving. This is unrealistic and undesirable behaviour in
such a simulation. In order to avoid this, the controller controlling the target vehicle
must switch from relative to absolute control at an appropriate time (see Figure
1.1). This is to ensure that the target vehicle acts independently of the ego vehicle’s
behaviour after the ego vehicle reacts to a potential collision. The problem is made
more challenging by the fact that the ego vehicle is not controlled by Esmini, and
is instead controlled by an external software. This means that Esmini does not have
access to any data on the future states of the ego vehicle, i.e., any future motion of
the ego is unknown to Esmini.

Esmini has always lacked a controller that supports switching from relative to
absolute control for the target vehicle, and this is therefore a primary focus of this
thesis. The controller’s design is primarily focused on key issues such as when
the switch should occur and what the control objective should be after the switch.
These must be defined such that the controller successfully controls the target vehi-
cle in a realistic fashion during many different types of scenarios. Because of this,
experimental verification in order to evaluate the controllers performance is a key
element of this Thesis. The switching controller is verified using different collision
scenarios in Esmini, where the ego vehicle will be controlled by a software called
CSPAS. CSPAS, which stands for Compiled Simulation Platform for Active Safety,
is a vehicle simulator used by Volvo Cars which can execute code for autonomous
driving functions. Testing the controller while the ego vehicle is controlled using
CSPAS is vital, since this ensures that the controller can function even without any
prior knowledge of the ego vehicle’s behaviour.

Figure 1.1 Flowchart of when the target vehicle switches from relative to absolute
control.

12

1.3 Research Questions

1.3 Research Questions

The following research questions were formulated for this thesis:

• When should the target vehicle switch from relative to absolute control and
vice-versa?

• How can standard behaviour by the target vehicle after the collision scenario
be ensured?

• What vehicle state variables are to be used for determining when to switch
control objectives?

1.4 Methodology

This thesis consists of the following steps:

• Scenario analysis

• Implementation of a simple controller

• Testing without CSPAS

• Evaluation of different controller concepts

• Implementation of the final controller concept

• Testing with CSPAS

In the scenario analysis phase of the thesis, different scenarios are analysed in or-
der to observe and identify undesired behaviour. In addition, Esmini and Open-
SCENARIO were thoroughly analysed in order to explore how a controller could
be implemented. The next phase includes developing concepts for the controller,
and testing these in Esmini using the scenarios from the initial phase. These con-
troller concepts are then evaluated, and one is selected for further development. The
controller is then fully developed, while also being tested on the Esmini scenarios.
Continuous testing during development will be vital to determine how the controller
performs. Once the final controller has been fully developed, it is then tested on var-
ious scenarios using CSPAS.

1.5 Delimitation

In this thesis, no algorithms for controlling the ego vehicle are developed. Devel-
oping safety functions or autonomous driving functions is out of scope. Hence, the
work is solely focused on the switching controller for the target vehicle. Certain el-
ements and/or features already included in Esmini may be modified in order to suit
certain control objectives, however the main focus is the switching controller itself.

13

2
Background

2.1 ASAM OpenSCENARIO

Traffic simulations can be a safe, cheap and more efficient alternative to real-world
testing, and have hence gained in popularity over the past years [Figueiredo, 2009].
In addition, they allow for the testing of more traffic scenarios in a shorter period of
time, with less risk. Traffic simulators are generally distinguished into two different
types. The first type are large scale traffic simulators, where several hundreds of
vehicles are simulated in complex traffic scenarios. Due to the high number of
vehicles simulated, this type of simulator typically does not simulate sensor data or
kinematics/dynamics of individual vehicles. The second type of traffic simulator are
small-scale robotic simulators, where most commonly one or very few vehicles are
simulated at a time. Robotic simulators however provide much more detailed data
on sensors and vehicle dynamics. The traffic simulation standard ASAM Open-
SCENARIO provides a compromise between these two types of simulators, as it
allows for the simulation of multiple vehicles, while at the same time providing the
ability to simulate sensor and vehicle dynamics data for autonomous vehicles.

ASAM OpenSCENARIO is a standard that defines a file format which describes
dynamic content for driving and traffic simulators [ASAM OpenSCENARIO 2021].
The standard makes use of road network descriptions from ASAM OpenDRIVE
and has support for road surface profiles from ASAM OpenCRG. Together they
complement each other to describe both static and dynamic content of vehicle sim-
ulation applications.

OpenSCENARIO is primarily used to describe complex, synchronized maneuvers
that involve multiple entities such as vehicles, pedestrians and other traffic partic-
ipants. A maneuver can be based on either actions or on trajectories. An example
of an action could be a lane change or speed change while a trajectory could be a
recorded driving maneuver. However the standard also specifies the description of
the ego vehicle, driver appearance, pedestrians, traffic and environment conditions.
OpenSCENARIO by itself does not function as a traffic simulator. Instead, software

14

2.1 ASAM OpenSCENARIO

implementing the standard is required to run traffic simulations for autonomous
vehicles.

Simplified OpenSCENARIO Structure
OpenSCENARIO features three fundamental and mandatory concepts that imple-
mentations of the standard must feature. The first concept is that so-called Road
Networks are populated by instances of entity, and interact with these using a set
of instructions defined by the storyboard. The second concept is that a scenario sto-
ryboard must contain at least one instance of story. Figure 2.1 shows a simplified
illustration of the elements that are contained within a story and by extension of a
storyboard. The most fundamental of these is a so-called action. An action defines
the motion and/or position of an actor (e.g., a car, pedestrian) in Esmini. The third
fundamental concept is that actions taken by actors are triggered by so-called condi-
tions. Conditions along with triggers are used to define when actions and acts occur,
and are thus the basic building block of OpenSCENARIO. [ASAM OpenSCENARIO
2021]

Figure 2.1 A simplified diagram showing the structure of storyboard.

The storyboard is used to define what happens and when, and encompasses
all elements shown in Figure 2.1. The storyboard encompasses two fundamental
building blocks, which are in turn made up of so-called storyboard elements. The
first building block is Init, which defines initial conditions such as speed and posi-
tion in the scenario. In Init, the behaviour of actors cannot be defined conditionally
or relative to other actors. Story on the other hand encompasses all storyboard
elements that occur as the scenario progresses. A storyboard element can either be

15

Chapter 2. Background

an act, maneuvergroup, event and action. An act defines when a certain action in a
scenario occurs through triggers and conditions, whereas a maneuver defines what
is happening in the action. Maneuver groups define what actors take part in the
action.

Actions are used in order to define the behaviour of dynamic elements in Open-
SCENARIO. There are three types of actions in the OpenSCENARIO standard:

• PrivateActions

• GlobalActions

• UserDefinedActions

A user defined action can be used by user’s to create or modify their own action
using a script file. Global Actions are used to define non-entity related qualities,
such as traffic signal-states, weather conditions or infrastructure. Private Actions on
the other hand define qualities related to entities, such as position or speed of vehi-
cles. They can either define lateral or longitudinal behaviour of entities, such as a
longitudinal speed change or lateral lane change. Private actions can also define the
behaviour of one entity relative to another. For instance the position of a car can be
defined such that the car always holds a fixed distance to another car, or other entity.

Since actions are singular elements describing the behaviour of entities, they must
be combined in order to create more complex behaviour. Therefore, actions must
be contained within events in the story sections of a scenario. However, in the Init
section actions can be defined by themselves, without the need for being contained
in an event. An event is started using a startTrigger, for which the event has to be in
a stand-by state. Due to the fact that each event defined in a scenario corresponds to
a single runtime instance, multiple instances of the same event cannot run simulta-
neously. [ASAM OpenSCENARIO 2021]

Catalogs and Controllers
Catalogs are used in order to create and store parameters or other information in
OpenSCENARIO. The use of catalogs, which are in turn referenced in scenario
files, prevents the user from re-writing the same parameter declarations multiple
times. Instead, users can reference catalogs, which contain relevant information for
the scenario. If a catalog is referenced by a scenario description, the parameter dec-
larations in the catalog override those in the scenario description where applicable.
A wide variety of different OpenSCENARIO elements can be defined in using a
respective catalog, for instance vehicle, pedestrian and their controllers. Controllers

16

2.1 ASAM OpenSCENARIO

can be used to control the behaviour of an entity in the longitudinal or lateral do-
main, and are assigned to either vehicles or pedestrians. They have three intended
uses according to the OpenSCENARIO standard, specifying that an entity should
be controlled by a system under test, e.g., AD or active safety function; defining an
actor that should be more advanced and has more complex behaviour than can be
described with actions; or assigning the control of an entity to a human. Controllers
can either be part of the simulator implementing OpenSCENARIO, or they can be
external. Controllers must be activated in an XOSC file using an activate controller
action. It is useful to reference a controller via a controller catalog containing all
controllers implemented by a simulator in such an action. The controller catalog in
turn references the simulator files implementing the controllers in it.

Scenario Creation
OpenSCENARIO files (.xosc) are written in an XML format. It is worth noting that
OpenSCENARIO files by themselves merely provide a set of instructions for se-
quences of behaviour that take place in the scenario, however they do not execute
these scenarios. In order to simulate a scenario, a scenario engine implementing
the OpenSCENARIO standard is needed (see Section 2.2). Part of an XOSC file is
shown in Appendix A. The Init section in this includes teleport, activate controller
and speed actions. The teleport action is used to define the referenced entities’ ini-
tial position and the longitudinal speed action defines its initial speed. An activate
controller action is used in order to assign a specific controller to a certain entity, by
referencing the desired controller in the controller catalog. An example of a longi-
tudinal speed action is given below:

1 <Private entityRef="Ego">
2 <PrivateAction>
3 <LongitudinalAction>
4 <SpeedAction>
5 <SpeedActionDynamics dynamicsDimension="time" dynamicsShape="

step" value="0"/>
6 <SpeedActionTarget>
7 <AbsoluteTargetSpeed value="8.333333333333334"/>
8 </SpeedActionTarget>
9 </SpeedAction>

10 </LongitudinalAction>
11 </PrivateAction>

Listing 2.1 Longitudinal Speed Action example.

This type of action references the entity "ego", and hence defines the behaviour of
this entity. In addition, the dynamics dimension and shape can be specified by the
action. In this case, these are "time" and "step", respectively, meaning that "ego"
will obtain the desired output speed value directly, without any acceleration phase.
Other actions, such as distance actions also use similar keywords in order to specify
the behaviour of referenced actions. In addition, longitudinal speed actions can be
used in both the Init and Story sections of a scenario, and therefore serve as a good

17

Chapter 2. Background

example of how an action is implemented in the XOSC format.

In order to ease the creation of scenarios, Volvo Cars has created a Python-based
scenario generation framework called scenariogeneration [Andersson, 2021]. Sce-
nariogeneration includes packages for the generation of both XOSC and XODR
(describing road networks) files in the XML format. The goal of this is to provide
a more user-friendly method for generating OpenSCENARIO files, eliminating the
learning curve that can be associated with the XML format.

2.2 Esmini - an OpenSCENARIO player

Esmini is a minimal vehicle scenario simulation software. It can be used to simulate
different situations where AD software can be tested. Esmini uses the OpenSCE-
NARIO standard for describing dynamic events and has some support for road
networks in OpenDRIVE format.

Esmini was originally developed as a project intended to explore and get famil-
iar with the emerging OpenSCENARIO data format [Knabe, 2021a]. There is a
wide support for different platforms which was one of the goals for the project.
Tool integration and portability was also high priority in the development. Since its
purpose has never been for production use, even though the license allows it, the
code quality can be lacking. Furthermore, full coverage of the OpenSCENARIO
standard is missing. This is due to the project being developed on demand and being
defined by the research scope of the original project.

Esmini Structure
Esmini can be broken down into a few key players. There is the Scenario engine
which runs the program, a Gateway that is used for accessing data, a player that
provides a high level API for controlling the scenario in a custom player application
and a viewer that the renders frames. A frame sequence can be seen in Figure 2.2.
Here we can see that controllers are handled separately from the scenario engine
and more importantly they are executed after the default controllers and actions.
The importance of this will be shown later. We can note that an external app calls
the player which executes a timestep of the simulation. The external app would be
any AD or active safety function software that is to be tested in the simulation.

18

2.2 Esmini - an OpenSCENARIO player

Figure 2.2 Frame sequence Esmini - High level [Knabe, 2021a].

In Figure 2.3 an overview of the class hierarchy is given. This arrow, which can be
seen in the figure, is a standard aggregation arrow. Aggregation means that owner-
ship is not implied [Jillre and Jesong, 2016].

Only the ScenarioEngine in the UML diagram observed in Figure 2.3 is of interest
for this thesis. For that reason, it is the only class that will be further explained of
the seven in the figure.

19

Chapter 2. Background

Figure 2.3 Esmini high level UML class diagram [Knabe, 2021b].

The Scenario Engine
Figure 2.4 shows that the classes catalogs, entities and storyboard are linked through
aggregation to the class ScenarioEngine. The storyboard and catalog classes are de-
fined by the OpenSCENARIO standard and implemented as such. Entities is a class
containing all objects in the scenario.

Figure 2.4 Esmini UML class diagram for the scenario engine [Knabe, 2021b].

Actions and Events in Esmini
Both actions and events are defined by the OpenSCENARIO standard. As previ-
ously mentioned there are three types of actions whereof only two are supported in
Esmini. UserDefinedActions is as of early spring 2021 not implemented. In Figure
2.5 it is explained how events are linked to other classes. An event can contain one
or more actions and has a trigger which starts it. It is also clear that there are no
links to any object at this level since the action can be either global, not acting on
an object, or private, acting on an object. However if we step up one level in the

20

2.2 Esmini - an OpenSCENARIO player

class diagram there is the maneuver group which links a maneuver to an object.
This can be seen in Figure 2.6. All these links are unidirectional, meaning that e.g.,
an action does not know which event they are part of. Since they are also linked
through aggregation a lower class in the diagram can outlive a higher one by e.g.,
being assigned to another event in the case of an action.

Figure 2.5 Esmini UML class diagram for actions and events [Knabe, 2021b].

Figure 2.6 Esmini UML class diagram for maneuver and maneuver group [Knabe,
2021b].

21

Chapter 2. Background

OpenSCENARIO defines plenty of actions but only some of them have been im-
plemented in Esmini. There are currently three types of global actions implemented
whereof only one is from OpenSCENARIO and that is a set parameter action. The
two others are traffic swarm and environment/infrastructure actions. The private
actions which are actions on a specific entity are:

• Longitudinal speed

• Longitudinal distance

• Lateral lane change

• Lateral lane offset

• Assign controller

• Activate controller

• Teleport

• Assign route

• Follow trajectory

• Synchronize

All these actions can have different setups with relative or absolute targets and
other flags as being continuous, i.e., being a non-ending action. OpenSCENARIO
features a large number of different private actions setups [ASAM OpenSCENARIO
2021]. The most relevant of these that have been implemented will be presented in
Table 2.2. All actions in the table directly control movement of an object. Several
of these actions goals are self explanatory, e.g., longitudinal speed action with the
continuous flag set to true and relative target will keep a relative speed to an object
regardless of what happens. The assign route action will technically not move the
vehicle but force it to move along a predefined route meaning lateral motion from
the route is prohibited. Instead the vehicle will be moved with a special move along
route call and the speed can still be controlled by actions. The same is true for the
follow trajectory action.

The most interesting actions for this thesis are those which can be set up rela-
tive to another object and are executed during more than one timestep, which are
the following:

• Longitudinal speed

22

2.2 Esmini - an OpenSCENARIO player

• Longitudinal distance

• Synchronize

The longitudinal speed action can be set up such that a relative speed, defined as the
desired difference, towards another object is achieved. Worth noting is that a speed
action can have four different shapes (step, linear, cubic, sinusoidal), which can be
seen in Table 2.1. Both cubic and sinusoidal must according to the OpenScenario
standard start with a gradient of zero [ASAM OpenSCENARIO 2021]. This is the
shape the transition between the old speed and the new speed, specified by the
action, will have. When the speed is to be achieved can be specified in three ways:
at a predefined constant rate, in a predefined time, or in a predefined distance. A
predefined rate is, in a linear case, equivalent to the acceleration that the change in
speed have.

The longitudinal distance action is a little more complex than the speed action,
but in short it will ensure that a relative distance is achieved with constraints
available on both acceleration and deceleration. It does this by calculating how to
manipulate the speed to reach the target distance. The synchronize action will be
covered in the next section.

Table 2.1 The different shapes a speed profile in a speed action can take.

linear f (x) = f0 + rate · x
cubic f (x) = A · x3 +B · x2 +C · x+D
sinusoidal f (x) = A · sin(x)+B
step not applicable, instantaneous

23

Chapter 2. Background

Table 2.2 A selection of Esmini actions and their settings.

Action Settings (time, space,
domain)

Controls
axis

Action Ends

Longitudinal
SpeedAction

target is "absolute" or
"relative" with contin-
uous = "false"

Longitudinal on reaching the speed

Longitudinal
SpeedAction

target is "relative" with
continuous = "true"

Longitudinal never

Longitudinal
DistanceAc-
tion

continuous = "false" Longitudinal by reaching the tar-
geted distance

Longitudinal
DistanceAc-
tion

continuous = "true" Longitudinal never

Lateral
LaneChange-
Action

not applicable Lateral by reaching the lane

Lateral Lane-
OffsetAction

continuous = "false" Lateral by reaching the tar-
geted lane offset

Lateral Lane-
OffsetAction

continuous = "true" Lateral never

Synchronize-
Action

not applicable Longitudinal controlled vehicle
reaching the target
point

Routing
AssignRoute-
Action

not applicable None immediately

Routing
FollowTrajec-
toryAction

not applicable Lateral/Both by reaching the end
of the trajectory

24

2.2 Esmini - an OpenSCENARIO player

The Synchronize Action
The synchronize action is the most advanced private action in Esmini, especially
in terms of implementation. This action does not, compared to many of the others,
describe a current or desired current state but rather a future state. This means there
are several ways of reaching this state and the solution is not trivial. However the
problem is simplified to one dimension. The actions goal is to synchronize arrival
at two points, with the additional option of specifying a speed for the vehicle at that
point. An example can be seen in Figure 2.7. At point 2 one could then specify a
speed for the target vehicle. [ASAM OpenSCENARIO 2021]

Figure 2.7 Synchronized arrival at an intersection.

To calculate the desired motion for the vehicle under control by the action one
has to divide the problem into different cases. In Esmini this is done such that the
magnitude of acceleration will be minimized [Knabe, 2021a]. This achieves smooth
operation with regards to acceleration and deceleration. To prevent a solution with
negative speeds, stops have been implemented to still achieve the desired result.
Knabe et.al. claim this solution maximizes the chance of succeeding even if the
vehicle is also constrained by external vehicle dynamics or brake limits.

The first two main cases of the solution include either solving for the desired
motion using a specified or an unspecified speed. For unspecified speed the accel-
eration is assumed constant over a time period t and calculated from:

s = v0t +
1
2

at2 =>

25

Chapter 2. Background

a =
2(s+ v0t)

t2

where v0 is the current speed of the action entity, s is the remaining distance for the
action entity and t is the estimated remaining time for the master object. The new
speed is the calculated according to v = v0 +a ·dt, where dt is the sample time.

In the case of a specified final speed the task is to control the speed profile such
that we arrive just in time. Note that both cases have a constrained starting speed
which is the current speed of the entity. To cover a distance s in a specific time t the
average speed va must be equal to s/t. One could also describe it as the integral, or
area, of va over the time t should be equal to the distance s as seen in Figure 2.8.

Figure 2.8 Average speed needed to cover the distance s in the time t.

This method will be divided further into four subcases where different conditions
apply. It is assumed that the acceleration or deceleration is constant. If both accel-
eration and deceleration are needed to reach the desired state they are assumed to
be equal in magnitude. Since the master entity can change speed at any time the ac-
celeration needs to be reevaluated each step. The first subcase is with a linear speed
profile meaning the target can be reached with a constant acceleration according to
Figure 2.9.

Figure 2.9 Constrained starting and final speed with linear speed profile.

26

2.2 Esmini - an OpenSCENARIO player

The acceleration can simply be calculated according to a = (v1− v0)/t. It is worth
noting that the area A and C are equal resulting in the same distance covered as in
Figure 2.8.

The second subcase is for when a single linear acceleration or deceleration is
not enough, but rather one of each is required. This is referred to as a non-linear
speed profile and can be seen in Figure 2.10.

Figure 2.10 Constrained starting and final speed with non-linear speed profile.

This is in reality a new more complex constant acceleration case, for phase x, to-
gether with the linear case, for phase y. The absolute acceleration is assumed to be
the same for both phases. To calculate the acceleration needed to reach speed vx a
system of equations are set up as follows:

A = v0x+(vx− v0)x/2
B = v1y+(vx− v1)y/2
t = x+ y

s = A+B

(vx− v0)/x = (vy− v0)/y

where t,s,v0,v1 are known and A,B,x,y,vx are unknown. By solving for x and v0
the acceleration can then be calculated according to a = (vx− v0)/x. When vx is
reached Esmini switches to the linear case.

The third subcase is a variation of the non-linear case but with a defined stop,
meaning that to prevent backwards movement a stop is needed as can be seen in
Figure 2.11.

27

Chapter 2. Background

Figure 2.11 Constrained starting and final speed with non-linear speed profile and
a defined stop.

When the remaining time allows for a linear transition, i.e., y time left, Esmini
handles this as a linear case. Since the final speed for phase x is zero the equation
system becomes:

A = v0x/2
B = v1y/2
s = A+B

v0/v1 = x/y

where s,v0,v1 are known and A,B,x,y are unknown. Solve for x and the acceleration
can then be calculated as a =−v0/x. The absolute acceleration is assumed to be the
same for both phases just like in the previous subcase.

The last subcase is a non-linear speed profile with an undetermined stop, meaning
that the master entity is for any reason not moving and the final speed should be
zero. This should result in an immediate stop as can be seen in Figure 2.12. When
the master entity starts moving the action will enter one of the previously described
modes. [Knabe, 2021a]

Figure 2.12 Constrained starting and final speed with non-linear speed profile and
a undetermined stop.

28

2.2 Esmini - an OpenSCENARIO player

Controllers in Esmini
Controllers exist in the OpenSCENARIO standard but unlike the actions there are
no subtypes defined. All controllers use the same API defined in an interface in
Esmini [Knabe, 2021a]. This API defines that every controller is attached to an
object which it also controls. It also, among others, specifies a step function that
will be called by the scenario engine if said controller is activated. The default
controller is however not handled as a controller in Esmini but rather by itself. Any
references to a controller will therefore not apply to the default controller.

Every controller has a mode that manages how to deal with actions. This mode
decides whether a controller should have complete control over the object it is
attached to or if actions also can manipulate it. If the controller has the mode over-
ride it will, as the name suggests, override all actions. This is the default setting.
The other mode is additive where the actions movements are simply added to the
controllers, or rather vice versa since actions are performed before controllers are
evaluated as mentioned previously.

As defined by the OpenSCENARIO standard, a controller can be assigned on
either the longitudinal, lateral or both domains in Esmini. In Esmini these domains
are handled differently through an API. You can either move along the current road,
path or trajectory, i.e., longitudinally, or move laterally from the current longitudinal
path. As an example, a lane change will only move a vehicle laterally and depends
on the vehicle being moved longitudinally elsewhere. This longitudinal movement
could be by an action or by the default controller.

A Scenario Engine Frame Sequence
For every frame sequence, or step, the scenario engine handles a lot of information
as was shown in the start of the chapter, in Figure 2.2. The length of the step is
either fixed, i.e., it is set by the user, or calculated by the scenario engine. All initial
actions are stepped forward if still applicable, all triggers are evaluated, and all
states are updated. Storyboard elements can be in three states; standby, running and
complete. Furthermore all storyboard elements are evaluated if they are to be started
and actions are stepped. Then the so called default controllers are stepped which
basically means that entities not controlled by actions nor controllers move forward
along the road or path with a constant speed. Lastly the controllers are evaluated
and manipulate affected entities. This is a full explanation of all dynamic content
handled, in order, by the Esmini scenario engine.

Esmini Reference Frame
Esmini uses a global coordinate system with three parameters, x,y and z. The ori-
entation of these will depend on the scenario but the x and y coordinate are always
defined as the horizontal- or ground-plane. Z is defined as the vertical displace-

29

Chapter 2. Background

ment, i.e., height, from this plane. Entities in this frame of reference will in most
cases have, in addition to these coordinates, a coordinate called s. This parameter is
the distance travelled along the current road network path or trajectory, which is a
path you constrain a vehicle to travel along. If there is no road or trajectory assigned
to the object, this value s will be zero or undefined. Each entity also has a velocity
and a heading in the global coordinate system. The heading is defined in degrees
from the x-axis.

Esmini vehicle model
In Esmini all entities are modelled as point masses. They have a position in the
global three dimensional coordinate system, a heading angle in the xy(ground)-
plane as well as pitch and roll angles. Furthermore they have a speed in the heading
direction. There is also support for more advanced models that can be updated
through an external application, e.g., an AD software. This could be that the when
the car brakes, more weight is transferred to the front suspension which would
mean that the pitch angle increases and the front is pushed closer to the ground.

Through a simple API one can manipulate the entities on the ground plane along
a road, path or trajectory. The method call MoveAlongS uses a distance as an
argument and will move the entity along the current road, handle intersections ac-
cording to a junction strategy type, random by default, and ensure the entity follows
the roll and pitch of the road. The length of this step is determined with the known
simulation step time for the frame sequence, entity speed and any dynamic change,
e.g., acceleration.

2.3 Background on Simulation Model Testing

Testing simulation software models can be broadly defined as revealing and identi-
fying errors in the simulation model [Balci, 1995]. In practice, this means that test
data for different test cases is collected from the simulation software. Simulation
model testing can be comprised of either verification, validation, or a combination
of both. A paper by R.G. Sargent adopts the definition of validation as being “sub-
stantiation that a computerized model within its domain of applicability possesses
a satisfactory range of accuracy consistent with the intended application of the
model” [Sargent, 2004]. Hence, validation attempts to investigate the accuracy of
the mathematical model used in a particular simulation. On the other hand, verifi-
cation can be defined as “ensuring that the computer program of the computerized
model and its implementation are correct” [Sargent, 2004]. Verification therefore
attempts to investigate the accuracy of the computer program, rather than the math-
ematical model itself. The combined process of validation and verification can be
referred to as VV&T testing or simply model testing [Sargent, 2004].

30

2.3 Background on Simulation Model Testing

There are a number of different VV&T techniques that can be used for testing
simulation software. These include, but are not limited to [Balci, 1995]:

• Informal Methods:

– Face Validation

– Inspection

– Reviews

• Static Methods:

– Consistency Checking

– Data Flow Analysis

– Semantic Analysis

• Dynamic Methods:

– Black-Box Testing

– Debugging

– White-Box Testing

• Symbolic Methods

• Constraint Methods

• Formal Methods

This thesis focuses mainly on testing using dynamic methods, more specifically
black-box testing and white-box testing.

White-Box Testing
White-Box testing (or white-box validation) assumes that the individual compo-
nents (e.g., source code) for the simulation software are completely accessible. The
testing method is then executed in an attempt to analyse different subsystems of
the simulator, and to validate whether these are sufficiently accurate [Thaler, 2021].
This can be very useful in order to gain a detailed understanding of the system, and
which components of it need further improvement. In addition, the understanding of
the model itself and the simulation as a whole can be greatly improved through this.
Hence, using this method of testing, both the logic of the model and the behaviour
against the real world can be validated. Jonthan Thaler outlines several approaches
for implementing white-box testing practically, including but not limited to [Thaler,
2021]:

• Stepping through different functions/components of the simulation software

31

Chapter 2. Background

• Creating predictions of what the outcome of a certain subsystem will be, and
then stepping through said subsystem in order to validate the prediction

• Setting up condition such that certain desired events take place (events in this
case do not refer to OpenSCENARIO/Esmini events)

• Evaluating the system performance under extreme conditions

• Tracing

Black-Box Testing
In contrary to white-box testing, black-box testing is performed on systems where
there is no knowledge of the individual components of the system. Instead, the
overall behaviour of the model is considered [Robinson, 2004]. There are two main
approaches to black-box testing, which are making a comparison to real-world data
and making a comparison to other simulation models. The latter is particularly
useful if there is no access to reliable real-world testing data for the model that is
being validated. However, this does not preclude the use of comparing the model
to other simulation models if there is reliable real-world data available, as the use
of both of these methods can further increase confidence in the validated model.
There is however unfortunately no real-world data available that corresponds to the
simulations conducted in Esmini, and hence this thesis focuses on comparing the
system to other simulation models.

For validation by comparing the model to other simulation models, the compar-
ison is usually made to models that intend to simulate the same or similar systems.
It can also be useful to compare the simulation model to a mathematical model,
as long as the mathematical model can make predictions with sufficient accuracy.
In this case, the simulation model should be simplified if needed, so that adequate
comparisons can be made.

Figure 2.13 Black-Box Validation: comparison to another simulation model
[Robinson, 2004]

32

2.3 Background on Simulation Model Testing

Figure 2.13 shows an illustration of the method of comparing the simulation model
to another simulation. Is, Im represent the input variables for the simulation model
intended to be validated and the simulation that it is validated against, respectively,
while Os,Om represent the outputs of each simulation. The main hypothesis, H1, of
this validation technique is then if Is = Im, then Os ≈ Om. Hence, both simulation
models are given the same input variables, and their outputs are measured against
each other.

33

3
Controller Design

3.1 Controller Concepts

Several controller concepts were explored and partially tested, with the aim of se-
lecting a final version to be implemented in Esmini. Each controller concept was
designed to address key research questions, such as when the switch should occur
and what the control objective is after the switch.

Motion Analysis Controller
A first approach to designing the controller was to analyze the dynamic behaviour
of the ego vehicle. The aim of this was to detect behaviour where the ego vehicle
reacts to an unsafe traffic condition. This could for instance be emergency braking
in a 4-way crossing or a lane change. Since reactions to unsafe traffic scenarios by
the ego vehicle often involve braking maneuvers, an early strategy for switching was
to switch when a large longitudinal deceleration by the ego vehicle was detected.
Since vehicle acceleration is not directly accessible through the object instance of
the vehicle in Esmini, it was approximated by differentiation of the velocity at each
timestep (Equation 3.1).

ak =
vk− vk−1

tk− tk−1
(3.1)

The acceleration is then compared to a threshold value. If the absolute value of the
acceleration exceeds the threshold, the target vehicle will switch from relative to
absolute control (see Listing 3.1).

1 if (mode_ != Mode::MODE_OVERRIDE)
2 {
3 if (fabs((egoSpeed - prev_ego_speed) / timeStep) > threshold)
4 {
5 std::cout << "Now I’m using absolute control!" << std::endl;
6 mode_ = Mode::MODE_OVERRIDE;
7 }
8 }

Listing 3.1 Switching mechanism in motion analysis controller concept.

34

3.1 Controller Concepts

The mode_ object refers to whether the controller can override actions in order to
control its referenced entity. While the mode_ object is set to MODE_ADDITIVE,
active actions will control the motion of the target vehicle rather than the controller
itself. When switching occurs, mode_ is set to MODE_OVERRIDE, meaning that
the controller takes control of the target vehicle. The controller then controls the
target vehicle such that it continues at the same speed that it had before the switch.
It does so using a point-mass model that follows the given trajectory:

xk = xk−1 + vk−1× (tk− tk−1)

Action Controller
Another controller concept that was explored involved analyzing Esmini actions in
order to determine when to switch, and what the control objective should be after
the switch. This controller concept attempts to analyze the actions of a scenario in
order to create a prediction for how the target vehicle will behave. Throughout the
simulation, this predicted states for each time step are then compared to the actual
states of the target vehicle. Algorithm 1 illustrates a pseudocode for how actions can
be "predicted" using a "step function" built into Emsini for each action. By using
the step function, the target vehicle state can be predicted for the entire action. It
is important to note that this "prediction algorithm" is taking place within a single
timestep of the actual simulation itself.

target_copy = target.copy()
while action is active do

action.step
speed_est = target_copy.speed
x_est = target_copy.x
y_est = target_copy.y

end
Algorithm 1: Basic pseudocode for predicting an action.

After the loop in algorithm 1, the predicted states are continuously compared to the
target vehicles actual states. A simple switching mechanism can be implemented by
comparing whether the x and y states of the target vehicle deviate significantly from
their prediction. In order to do so, a position error is calculated for each timestep
(Equation 3.2). If the error exceeds a threshold, the vehicle switches to absolute
control.

error =
√
(x̂k− xk)2 +(ŷk− yk)2 (3.2)

This concept was also tested by implementing the pseudocode into C++ code in
Esmini. Unfortunately, this test ran into several issues. The first issue was that the
loop in Listing 3.2 would in some cases run indefinitely, and thus cause the whole
scenario simulation to get stuck. The reason for this is that the activate controller

35

Chapter 3. Controller Design

action does not have a step function, and hence never becomes inactive. Thus, the
while-loop continues indefinitely in this case. Another issue was that there were
cases where no actions were active, and hence no pre-simulation could be obtained.

Evaluation of Controller Concepts
The motion analysis controller proved to work quite well for the scenario that it
was tested on (see Appendix A for OpenSCENARIO code). However, this type
of motion analysis is simply too simplistic to function properly on other types of
scenarios. For instance, if the ego vehicle reacts slowly to the motion of the target
vehicle rather than abruptly, the ego vehicle’s deceleration will never be very large.
This could prevent the controller from switching in instances were a switch should
occur. Further, the target vehicle simply continues with the same constant velocity
after the switch that it had prior to the switch. However, some scenarios may require
the control objective to be more sophisticated than simply holding a constant veloc-
ity. For instance in crossings, the target vehicle may be required to turn into another
street. Hence, the final controller must take actions that occur after the switch into
account.

The action controller had several issues when tested in Esmini and would need
to be rewritten in order to function sufficiently. However, since the action controller
analyses actions that occur in a scenario, it has a lot more potential to control the
target vehicle such that it behaves according to the scenario description. The ability
to complete scenario actions even after the switch occurs is a key benefit of the
action controller. Another benefit is that it has the potential to switch even when
the ego vehicle reacts slowly to a potential collision and hence does not exert a
large deceleration. Because of this, the action controller concept was chosen to
be implemented in further detail in Esmini. This implementation seeks to address
issues that the previous action controller had, while maintaining the general concept
of extrapolating actions in order to decide when a switch should occur.

3.2 Controller Implementation

Since the concept of predicting vehicle states using actions has been found to have
more potential, this concept is implemented for the final controller. This means
that the final controller continuously predicts the x,y position as well as the speed
of the target vehicle. If the actual position and speed deviate from their respective
counterparts by a threshold set by the user, the controller will switch from relative to
absolute control. In addition, the controller will only predict the states for a limited
time ahead. This time, known as the "prediction horizon" is also set by the user (in
seconds). Overall, this implementation results in a controller using predictions for
switching, with three separate tuning parameters.

36

3.2 Controller Implementation

Vehicle Modelling
The predictions for the target vehicle are modelled using a point-mass model. This
is due to the fact that Esmini also models the target vehicle as a point mass. The
reason for this is that the goal of Esmini simulations is not to investigate the dy-
namic behaviour of the target vehicle. Instead, the aim of the controller is to control
the movement of the target vehicle such that it reflects a realistic traffic scenario.
Hence, a point-mass model (also known as kinematic bicycle model) is the most
suitable model for generating predictions. Assume that the state of the vehicle can
be modelled by:

q =

x
y
θ

 (3.3)

where x,y represent the position of the vehicle, while θ represents its heading.
All three variables are defined with respect to the global coordinate system outlined
in Section 2.2. The point mass model is then given by Equation 3.4 [Umit Ozguner
and Redmill, 2012].

ẋ =Vs cos(θ)
ẏ =Vs sin(θ)

θ̇ = r

(3.4)

This point mass model is already implemented in Esmini as part of the position
class, and this existing function is hence used in the controller code.

Prediction algorithm
The point mass model presented in Section 3.2 is used in order to predict the kine-
matic motion of the target vehicle. This is however only one part of the prediction
algorithm. The other part makes use of the step function of any active actions asso-
ciated with relevant objects. The prediction algorithm combines these two elements,
which is illustrated in Figure 3.1.

37

Chapter 3. Controller Design

Figure 3.1 Block diagram illustrating how the prediction algorithm makes use of
actions and the point mass model to predict vehicle states.

The previous states are used as input to the action’s step function. Note that during
the first time-step of the prediction algorithm, the actual vehicle states are used
instead. This is then used in the step function in order to calculate the heading and
the speed of the vehicle. The values for position, heading and speed are then used
in the point mass model (Equation 3.4) in order to predict the position in the next
time-step. Values for x,y and speed are saved for each time-step.

Algorithm 1 was altered to make use of the block diagram in Figure 3.1. The
result of this is Algorithm 2, which shows the pseudocode for predicting actions.
Rather than pre-simulating actions for their entire lifetime, this algorithms uses a
so-called prediction horizon for which it pre-simulates the target vehicle. For in-
stance, if the prediction horizon is set to 1 second, predictions for 1 second into the
future will be generated by the algorithm. Using a prediction horizon rather than
pre-simulating entire actions or scenarios is computationally more efficient while
still providing enough data for the controller to perform a switch.

38

3.2 Controller Implementation

for all objects do
pos = copy_pos(object)
speed = save_speed(object)

end
for all actions do

copy(action)
end
for prediction_horizon do

for all objects do
if object has active action of the right type then action.step
steplen = timestep * speed
pos.use_point_mass_model(steplen)
save(x,y,V)

end
end
Return objects to original state

Algorithm 2: Algorithm for predicting target vehicle behaviour.

The start of the algorithm copies all objects and actions, in order to ensure that
no elements in Esmini are altered by the pre-simulation algorithm. In addition, the
algorithm disregards types of actions that do not need to be pre-simulated. For in-
stance, activate controller actions do not need to be pre-simulated since they are
merely used for activating a controller and do not affect the target vehicles motion.
The actions simulated will then affect various vehicle parameters, most notably the
heading and speed. For instance, a longitudinal speed action will change the speed
of the vehicle, whereas a lateral lane change action will gradually change the head-
ing of the vehicle such that it changes lanes. After all actions were called using their
respective step function, the point mass model (Equation 3.4) is used in order to
pre-simulate the target vehicles motion.

Switching Mechanism and Controller Tuning
In the initial time step of the simulation, the pre-simulated states are generated for
a prediction horizon of t seconds ahead of the target vehicles current state. It was
decided that the global x,y-position as well as speed are used as state variables.
However, other variables such as heading or z-position could also be used as state
variables. As the simulation is running, the controller compares the pre-simulated
state values to the target vehicles actual state values using Equation 3.2 for the
duration of the prediction horizon. After prediction horizon time t (for instance 1
second) has elapsed, a new prediction is calculated using Algorithm 2 for the next
time steps within time t. This cycle continues throughout the simulation, and is
illustrated by Figure 3.2. If the error at any point in time exceeds a given threshold
value, the controller switches from relative to absolute control.

39

Chapter 3. Controller Design

Figure 3.2 Conceptual visualization of how the prediction algorithm is used for
switching.

In Figure 3.2, the prediction horizon is set to 1 second, and hence a new predic-
tion is calculated every second. While this is a constant value throughout a single
simulation, both the prediction horizon and error thresholds can be used as tuning
parameters in order to adjust the controller to a certain scenario. Position and speed
each have separate error threshold values that can be tuned for different scenarios.
A shorter prediction horizon has the advantage of reacting to potential actions that
become active faster. For instance, if an action becomes active between two calcu-
lated predictions, that action will be taken into account for the next prediction after
0.5 seconds if the prediction horizon is 1 second. However, if the prediction horizon
is 3 seconds, it will take 1.5 seconds until the new action is accounted for in future
predictions. In addition, predictions are not fully accurate, and will hence deviate
from the actual states as illustrated in Figure 3.2. A longer prediction horizon may
cause the controller to switch at an incorrect time because the prediction deviated
too much from the actual state. In an ideal case, the prediction should only deviate
slightly from the actual state until the ego vehicle triggers an emergency braking
function or otherwise reacts to a potential collision. A longer prediction horizon
however has the advantage that it may capture reactions by the ego vehicle hap-
pening over a longer period of time. For instance, the ego vehicle’s AD software
may sense a collision scenario 10 seconds in advance, and slow down over a longer
period rather than emergency braking quickly. In this case, a shorter prediction
horizon would cause a failure of the controller to switch at an appropriate time.
The values for the speed and position error thresholds can be adjusted in order to
achieve a switch at a desired time.

40

3.2 Controller Implementation

Figure 3.3 Example of prediction algorithm used for switching.

Figure 3.2 shows an example of the prediction algorithm during a lane change
scenario. In this scenario, the ego vehicle uses a collision mitigation by braking
(CMBB) function to avoid a collision with the target vehicle (see Section 4.1 for
more detailed description). Because the prediction algorithm simulates active ac-
tions, the speed is predicted with near-perfect accuracy until around 5.4 seconds.
The reason for this is that in this example, the ego vehicle is controlled by Esmini
rather than an external software. Therefore, the controller has access to actions
for all objects (including the ego vehicle), and can therefore predict their motion
with a very high degree of accuracy. After 5.4 seconds, the ego vehicle triggers a
speed action that causes it to slow down. Since the target vehicle’s speed is defined
relative to the ego vehicle’s speed, the target vehicle will also reduce its speed.
Due to the prediction horizon of 1 second, this is however not taken into account
by the prediction algorithm immediately, and hence the error in speed estimation
rises above the specified threshold. This causes the target vehicle to switch from
relative to absolute control. In general, relative scenarios that include a higher ac-
celeration/deceleration by the ego (and by extension the target) vehicle, are tuned
to have higher thresholds. The reason for this is that the speed and position errors
will be higher as a results of the greater change in speed. Tuning parameters for
common relative Esmini scenarios are outlined below. Note that tuning parameters
for each of these can vary depending on rate of change in speed, type of active
safety function used etc.

In Figure 3.2, the controller is tuned using the default parameters for the controller,
which are as follows:

• Prediction horizon = 1 second

• Position error threshold = 1.8 m

• Speed error threshold = 0.5 m/s

41

Chapter 3. Controller Design

These tuning parameters ensure adequate controller performance for scenarios us-
ing CMBB and ACC safety functions (these scenarios are described in more detail
in Section 4.1). Since the position error is not very sensitive in these scenarios,
the speed error is mainly used for switching. Setting this to 0.5 m/s, along with
the standard prediction horizon of 1 second, the controller will switch as the active
safety function is triggered by the ego vehicle.

For scenarios using the relative distance action, the tuning parameters can be
set to the following values:

• Prediction horizon = 1.1 s

• Position error threshold = 2.0 m

• Speed error threshold = 2.0 m/s

These values cause controller to switch both using the position error threshold and
the speed error threshold. The tuning parameters may however vary depending on
how the scenario is set up, and what active safety function is used.

Scenarios using the synchronize action can be tuned using the following parameters:

• Prediction horizon = 1 s

• Position error threshold = 2 m - 5 m

• Speed error threshold = 2 m/s - 5 m/s

Errors generated during the synchronize action tend to be large compared to other
scenarios, and hence both thresholds are set to relatively large values. The exact
value for each threshold depends on what additional actions the scenario contains,
how large any rate changes in speed are and what safety functions are used.

Control Objective after the Switch
Defining the control objective after the controller has switched from relative to
absolute control is not trivial. It depends on what was happening before the switch
and what the goal of the simulation is. Initially the desired behaviour was defined
as the behaviour that would occur given that no active safety function was engaged.
This proved achievable for the simpler actions with well defined behaviour, for the
synchronize action however a different approach is used.

In the general case, the controller will create a new action with a speed goal
that tries to mimic a believed future steady state. In the simplest case, which is a
longitudinal speed action with a relative target, the target is simply converted to an
absolute speed action. This is done by retrieving the ego’s target speed and then

42

3.2 Controller Implementation

setting the new target as the retrieved speed. Esmini will automatically convert the
relative target speed to an absolute target speed. If the controller switches quickly
enough, meaning it does not allow the target to slow down, it ensures that the correct
speed will be achieved at the right time. This is because all dynamics are the same
as the original action that was defined by the user. It will also be indistinguishable
from a speed profile where an active safety function was not activated. This can be
seen in Figure 3.4, where the blue and orange curves represent a scenario where an
emergency brake function was activated. The green and red curves show the same
scenario but without a safety function. There is is no difference between the orange
and red curve due to the switch occurring instantaneously. If the controller would
not have switched, the orange curve would have started dropping at the same rate
as the blue curve and would have fallen to negative five.

Figure 3.4 Example of a simple emergency brake scenario with 2 overlapping runs,
one with (blue and orange) and one without (green and red) the braking activating.
The orange curve cannot be seen due to being identical to the red curve.

If the target vehicle is instead constrained by a relative longitudinal distance to
another vehicle, a new longitudinal speed action must be created. In this case it
is assumed that the target is either close to reaching steady state conditions, or
is close to doing so. Any dynamics from the current action that the controller is
switching from is copied to the new one. If there are none, the maximum allowable
acceleration for the target to reach the actions goal is set to 10 m/s2. This is due to a
number being needed to call the actions step function, however it will not affect the
speed profile since the current speed is used. Since a new action has been created, it
must be added to the event that contains the longitudinal distance action to ensure it

43

Chapter 3. Controller Design

is visible for the scenario engine. The longitudinal distance action is then removed,
and from the scenario engine’s perspective nothing has changed. It continues to step
the function through a base class, unaware of which type of private action it is or
was.

The last case is for the synchronize action, which is more complicated. There
are several modes during the lifetime of a synchronize action, as shown in Chapter
2.2. The current mode influences whether the controller will switch from relative
to absolute control. For the case where a final speed is specified, the controller will
only switch from the synchronize action if it is in linear subcase. All other subcases
will only occur further from the endpoint. It is assumed that the ego will not react in
the beginning of the action. Since the final speed is specified and we know at which
point to achieve this speed, the longitudinal speed action is created such that it will
be achieved in the current distance to this point. The transition will either assume a
linear or a cubic shape, depending on whether the target is currently accelerating or
decelerating. A linear shape is selected if the target is accelerating, since this will
prevent the gradient of the speed from resetting to zero when the new action starts.
If the target is decelerating, a cubic shape is chosen such that an abrupt change in
the direction of the speed profile is avoided. In the case where a final speed is not
specified no constraints on whether a switch should occur or not are applied.

3.3 Integration of the Controller with Esmini

The scenario file can assign a specific controller to the target vehicle using an as-
sign controller action. It does so by referencing the controller in the controller cat-
alog, where each controller in Esmini is listed. The controller catalog provides the
controller’s type name, which is used to assign the controller to the target vehicle.
Figure 3.5 shows this with a controller called "MyController" as an example.

Figure 3.5 Flowchart of how a controller is integrated into Esmini.

44

3.3 Integration of the Controller with Esmini

Identifying the Ego
The controller has access to a vector with every object in the scenario. It can there-
fore access data about every other object in the scenario. Since the ego vehicle is
defined by the user, identifying it is not always trivial. Solely relying on the name
for identifying the ego vehicle is not sufficient, as the user may use any name to
define the ego vehicle while creating the scenario description. However, since the
convention is to name the ego vehicle "Ego", the controller attempts to search for
any vehicles with this name. If there is no vehicle named ego, the controller instead
searches for a vehicle that is controlled externally. This implies it is the vehicle on
which active safety software is tested, since it is controlled by an external software.
As a fallback if all the above fails, it will default to the first vehicle added in the
scenario file. Normal practice is that the ego vehicle is listed as the first vehicle in
the scenario file.

Esmini Modifications
Much of the functionality needed to implement the controller is already available
in Esmini. The only area not supported is the ability for controllers or objects (e.g.,
a vehicle) to manipulate actions. This was previously handled exclusively by the
scenario engine. To resolve this problem, a vector with events containing at least
one private action each, is added to each object. This means that the scenario engine
is modified in order to update and create these vectors. Additional modifications
are made such that initial actions, which are handled differently in Esmini, can be
accessed. One of these updates can be seen in Listing 3.2. This code will run every
timestep for every existing event.

1 if (event->IsTriggable() || event->IsActive())
2 {
3 for (size_t n = 0; n < event->action_.size(); n++)
4 {
5 OSCAction* action = event->action_[n];
6 if (action->base_type_ == OSCAction::BaseType::PRIVATE)
7 {
8 OSCPrivateAction* pa = (OSCPrivateAction*)action;
9 if (!pa->object_->containsEvent(event))

10 {
11 pa->object_->addEvent(event);
12 break;
13 }
14 }
15 }
16 }

Listing 3.2 One of the Esmini scenario engine modifications.

45

4
Controller Validation

4.1 Controller Validation Process

Controller Validation during the Design Process
Throughout the design process, various elements of the controller are being tested
in order to sufficiently validate them. This especially includes testing the prediction
algorithm, but also the code for the control objective after the switch. The scenarios
used for this type of testing include the same scenarios that will be used for the
final controller validation, see Section 4.1. These scenarios are fully defined using
Esmini, and therefore data on all past, current and future motion of all vehicles is
fully accessible. Because of this, and because smaller segments of the controller are
being tested using debugging, this type of testing corresponds to white-box testing
outlined in Section 2.3. The results are evaluated qualitatively rather than quantita-
tively, since this eases controller development and is sufficient in order to evaluate
how well individual segments of the controller function.

Final Controller Validation
In contrary to the controller validation done during the design process, the final
controller validation process takes a more rigorous and quantitative approach to
evaluating the controllers overall performance. The validation process outlined here
includes comparing the outputs of two different simulation models with the same
input, and is hence quite similar to black-box testing outlined in Section 2.3. During
the final controller validation, the ego vehicle is controlled by CSPAS. The contents
and future outputs of CSPAS are unknown, which is why a black-box testing ap-
proach is used for the final controller validation.

CSPAS is a vehicle simulator developed by Volvo Cars that can execute autonomous
driving and/or active safety functions. CSPAS controls all active safety (AS) func-
tions for the ego vehicle, and Esmini hence serves as an environment for testing
how well AS functions in CSPAS perform. The goal of the controller developed in

46

4.1 Controller Validation Process

this thesis is to control the target vehicle in Esmini scenarios such that it behaves in
a realistic manner regardless of the behaviour exhibited by the ego vehicle. Since
Esmini is used to test autonomous driving and active safety functions from CSPAS,
it is feasible to evaluate the performance of the controller while controlling the ego
vehicle using CSPAS.

Previously, the aim of the controller has been broadly defined as switching from
relative to absolute control in order to ensure "realistic" behaviour by the target
vehicle. However, a more precise metric rather than simply "realistic" behaviour is
required in order to adequately evaluate the performance of the controller. During
an Esmini scenario, the ego vehicle should react to various traffic scenarios, as well
as to the behaviour of the target vehicle. The target vehicle should however largely
exhibit constant behaviour regardless of what actions the ego vehicle performs.
In other words, the behaviour of the target vehicle should remain as constant as
possible within a given scenario, regardless of what behaviour other vehicles may
exhibit. Therefore, the chosen approach for evaluating the performance of the con-
troller is to analyze how consistent the behaviour of the target vehicle is. In order
to do so, data on the state variables (i.e., x,y position and speed) are recorded for
a given scenario where the ego vehicle does not perform any AS functions. The
same scenario is then tested again, where the ego vehicle does make use of such AS
functions such as adaptive cruise control (ACC) or collision mitigation by braking
(CMBB). The state variables from both simulations are then compared. Speed and
position error values between the two scenarios are calculated (in percent) as shown
in Equation 4.1 and Equation 4.2.

Errorpos =

√
(xnoAS− xAS)2 +(ynoAS− yAS)2√

x2
noAS + y2

noAS

×100 (4.1)

Errorspeed =
|vnoAS− vAS|

vnoAS
×100 (4.2)

If the state variables from both simulations only deviate by small margins (i.e., the
percentage errors are small), the controller is deemed to have achieved its aim of
controlling the target vehicle in a realistic fashion. This approach builds on the as-
sumption that the target vehicle exhibits realistic behaviour even if the ego vehicle
does not make use of any AD functions. This is in fact the case for most scenarios
defined using relative actions, as a lack of triggered AD functions will imply that
the target vehicle will not react to any sudden motion by the ego vehicle.

Throughout the testing process, the controller is verified by testing the follow-
ing active safety features and/or esmini actions in their respective scenarios:

• Collision Mitigation by Braking (CMBB)

47

Chapter 4. Controller Validation

• Adaptive Cruise Control (ACC)

• Scenario using the Synchronize Action

• Scenario using the Relative Distance Action

One reason for choosing these tests is to ensure that the controller functions with
prevalent active safety functions included in CSPAS, such as ACC and CMBB. In
addition, scenarios for testing the controller were chosen such that all three rela-
tive actions in Esmini are tested using the controller developed in this thesis. This
includes the synchronize action, the relative distance action and the relative speed
action. The relative speed action is tested when testing the CMBB and ACC sce-
narios. These scenarios are also tested using CSPAS, in order to test the controller
with the autonomous driving software that Volvo Cars uses. The scenario using the
synchronize action is however not tested using CSPAS. This is due to the fact that
the scenario file is written in such a way that the ego vehicle would not behave as
needed if controlled by CSPAS.

The scenario using a relative distance action was initially not planned to be tested
with CSPAS. Instead it is tested manually using a similar method as with the sce-
nario using a synchronize action, by triggering a hard brake manually through an
action. An attempt for testing it with CSPAS was made, after doing some major
modifications to the scenario. Unfortunately, due to a bug in the esmini code and
lack of time, these tests could not generate any results and are hence not included
in this report.

Collision Mitigation by Braking (CMBB) Scenario
This is the simplest scenario in combination with the least complicated safety func-
tion. It only contains two vehicles and the sequence of events can be seen in Figure
4.1. A dangerous situation will arise since the ego will catch up to the target.

48

4.1 Controller Validation Process

Initial speed ego: 30 km/h
Initial speed target: 30 km/h

Scenario sequence:
Target:
At 1 second(s): Set target speed = ego speed – 1, (Relative speed)
Ego:
At Close proximity to target: Activate emergency brake function

Figure 4.1 Description of the CMBB scenario.

Adaptive Cruise Control (ACC) Scenario
Not considering the change of safety function, Figure 4.2 is the same scenario as
the previous one with a minor difference in relative speed for the target.

Initial speed ego: 30 km/h
Initial speed target: 30 km/h

Scenario sequence:
Target:
At 1 second(s): Set target speed = ego speed – 0.5, (Relative speed)
Ego:
At a certain distance to the target: Activate adaptive cruise control

Figure 4.2 Description of the ACC scenario.

49

Chapter 4. Controller Validation

Scenario using the Synchronize Action
Scenarios using the synchronize action are more complicated to set up than normal
scenarios. Because of this the testing for this scenario is conducted on one of the
example scenarios in Esmini, which is modified in order to activate a CMBB func-
tion at a desired point in time.

For a switch to occur before the synchronize actions ends, the switch is required to
take place before the vehicles reach point 1 and 2, respectively, as seen in Figure
4.3. The synchronize action ensures they both reach these points at the same time
and will then be finished. Unfortunately, it is then clear that to test switching from
a synchronize action one must induce a switch before there is any evidence that a
dangerous situation will arise. This is why this scenario could not be tested with
CSPAS. However, inducing a switch early has no implications for the performance
of the controller since the prediction algorithm does not make any assumptions on
where or when a safety function is likely to be activated.

Initial speed ego: 36 km/h Final speed ego: 29 km/h
Initial speed target: 36 km/h Final speed target: 29 km/h

Scenario sequence:
Target:
At 0 second(s): Activate synchronize action. Achieve final speed at point 2,
when ego arrives at point 1
Ego:
At 2 second(s): Slow down to final speed
At 13 meters from intersection: Slow down to 0 m/s with a deceleration
of 9m/s2 (Mimicked CMBB function)

Figure 4.3 Description of the synchronize action scenario.

50

4.1 Controller Validation Process

Scenario using the Relative Distance Action
For the scenario in Figure 4.4, the switching controller is assigned to Target 2. This
vehicle will try to keep a fixed distance to ego vehicle. The purpose of this test is
to see how the controller performs while switching from a relative distance action,
since new behaviour and target is based on what type of action was active. A dan-
gerous situation will arise when Target 1 tries to switch lane, requiring the ego to
react.

Initial speed ego: 80 km/h
Initial speed Target 1: 80 km/h
Initial speed Target 2: 80 km/h

Scenario sequence:
Target 1:
At 1 second(s): Change to lane 3 such that the lane change is completed
in 6 seconds
Target 2:
At 0 second(s): Reach and keep 15 meters distance to ego.
Ego:
At lateral distance of 2.2 m to Target 1: Slow down to 0 m/s with
a deceleration of 9m/s2 (CMBB)

Figure 4.4 Description of the relative distance action scenario.

51

Chapter 4. Controller Validation

4.2 Results

In Figure 4.5 and Figure 4.7, the speed, and in some cases the position, oscillate
to a certain extent. This is due to the fact that CSPAS was not tuned properly to
these scenarios prior to testing, and hence the ego vehicle (and by extension the
target vehicle) displayed this oscillatory behaviour. However, the amplitude with
which the speed oscillates is between 0.1-0.2 m/s, which was deemed to be quite
low. Hence, these test results were used regardless, as the oscillation was too small
to impact the behaviour of the target vehicle.

Collision Mitigation by Emergency Braking (CMBB)
Relative Error Graphs:
The relative error graphs (Figure 4.5) show the states of the target vehicle with- and
without the use of the CMBB active safety function, as well as their relative errors.
In Figure 4.5 it can be seen that the y-position of the target vehicle is identical for the
active safety function scenario and the scenario without the active safety function.
This is simply due to the fact that the target stays in the same lane during the entire
scenario. The x-position deviates increasingly over time between the two scenarios,
but the difference is quite small (only around 5% at most). The speed error is at first
0%, but after the triggering of the active safety function, the speed decreases in the
scenario using the active safety function, thus resulting in a speed error of around
10%.

Figure 4.5 Relative error for the scenario run with & without CMBB function.

52

4.2 Results

Prediction Graphs:
Figure 4.6 visualizes the prediction algorithm for the CMBB scenario. The figures
show the predicted vs actual states for position and speed, respectively, as well as
the errors generated from both speed and position. The active safety function is
triggered at around 12 seconds, causing a rapid increase in both errors. Because the
speed error exceeds the speed error threshold (denoted in green), the target vehicle
switches from relative to absolute control. The position error was set to 1.8 m, and
hence it is not used for switching in this scenario. This is also the reason why it is
not visible on the error graph.

Figure 4.6 Prediction algorithm for a CMBB scenario.

53

Chapter 4. Controller Validation

Adaptive Cruise Control (ACC)
Relative Error graphs:
Similarly to the CMBB scenario, the y-position for the ACC scenario is constant
regardless of whether or not the ACC active safety function is triggered. The x-
positions deviate increasingly over time, reaching a maximum difference of 7% (see
Figure 4.7). However, the ACC scenario differs from the CMBB scenario in that, in
the version of the scenario with no active safety function, the speed decreases. In
the version with an ACC active safety function the speed instead increases, leading
to a speed error around 9.5% - 11%.

Figure 4.7 Relative error for the scenario run with & without ACC function.

54

4.2 Results

Prediction graphs:
Figure 4.8 illustrates the prediction algorithm for the ACC scenario. The predicted
x-position follows the actual x-position of the target vehicle with a near perfect
accuracy. Both the predicted speed and the actual speed of the target vehicle ex-
perience a rapid decrease as the ACC function is triggered, followed by a sharp
increase and a final value of around 8.6 m/s. The prediction however decreases to
a value significantly lower, leading to a speed error peak of around 1.1 m/s. Since
the speed error threshold is 0.5 m/s, the controller switches from relative to abso-
lute control because of this. Because the prediction for position is quite close to the
actual values, and the position error threshold is set to 1.8m, the controller does not
use position error in order to switch.

Figure 4.8 Prediction algorithm for the ACC scenario.

55

Chapter 4. Controller Validation

Scenario using the Synchronize Action
Relative Error Graphs:
In Figure 4.9 the x,y position of the version of the scenario with the active safety
function follow those without the active safety function closely. The values for the
y-position for the scenario without safety function are delayed by about 0.5 sec-
onds behind the y-position for the scenario without. This is because the speed for
the scenario with CMBB function drops significantly at around 6 seconds, before
regaining the same speed as the scenario without CMBB function. In contrast to
the "CMBB scenario", where the two vehicles were constrained by a relative speed
action, here the speed changes very rapidly, creating a speed error of up to 70%.
However, after the switch, the speed error drops to 0% and the position error starts
to gradually decline.

Figure 4.9 Relative error to the scenario run with & without an active safety func-
tion.

56

4.2 Results

Prediction graphs:
The predictions for the position of the vehicle still follows the actual vehicle po-
sition somewhat closely compared to the predictions for speed. Position errors do
however still reach values of around 2 meters. The synchronize action follows rela-
tively complicated speed profiles, and hence the predictions for speed are not very
accurate. This results in large speed error peaks, the first of which occurs before the
CMBB function is triggered and has a value of 3.9 m/s. When the CMBB function
is triggered however, the speed error becomes over 5 m/s, exceeding the speed error
threshold and causing the controller to switch from relative to absolute control. It is
worth noting that the speed predictions never follow the curve for the actual speed
values. Instead, the prediction algorithm reads the value of the actual target vehicle
speed at the start of each prediction, and predicts this same speed throughout the
entire prediction horizon.

Figure 4.10 Prediction algorithm for the scenario using a synchronize action.

57

Chapter 4. Controller Validation

Scenario using the Relative Distance Action
Relative Error Graphs:
In Figure 4.11 the relative speed and position error values can be seen increasing to
4% and 3% respectively. In the graph for the state variables it is clear that a minor
deviation from the x and y coordinate occurs. For the speed a static error can be seen
compared to the run without a safety function. The active safety function engages
at approximately 2 seconds of run time.

Figure 4.11 Relative error for the scenario run with & without an active safety
function.

Error graphs with different prediction horizons:
In Figure 4.12 the same relative distance scenario is shown three times with different
prediction horizons. In graph a), with a horizon of 0.9 seconds, a large error occurs
at roughly 2 seconds where the active safety function engages. In graph c) it is
less noticeable and in graph b) it is difficult to determine where the active safety
functions activates.

58

4.2 Results

(a) Horizon = 0.9 s (b) Horizon = 1.0 s

(c) Horizon = 1.1 s

Figure 4.12 Error values with different prediction horizons for a relative distance
action CMBB scenario.

59

5
Discussion

5.1 Controller Concept and Prediction Algorithm

The controller concept was chosen so that the controller is able to switch from rel-
ative to absolute control in reaction to various types of active safety functions. The
motion analysis controller was implemented as a first step, and showed satisfactory
performance with the CMBB scenario. This concept did however receive the feed-
back from Volvo employees that the controller would only be capable of reacting to
specific types of motion (such as rapid braking during CMBB). Hence, the predic-
tion concept was developed in order to switch in case any "unexpected" behaviour
was detected by the controller. This way, the controller can detect any active safety
function, and not just those that had their kinematic behaviour programmed into the
controller. Because of this objective, the controller was tested on a variety of dif-
ferent scenarios featuring different active safety functions and Esmini actions. The
relative error graphs from the results (Section 4.2) show that the controller concept
fulfilled its goal of reacting to various different types of active safety functions.
The largest error generated during any of these scenarios is during the synchronize
action, where the speed error rises rapidly before stabilizing after around 1 second.
This is due to the fact that when an active safety function is triggered during a
scenario using the synchronize action, the target vehicle will rapidly decelerate.
The controller will switch as a result, and the target vehicle will accelerate in order
to regain its desired speed. While this behaviour may not be perfectly smooth, the
behaviour of the target vehicle is acceptable in order to adequately test active safety
functions on the ego vehicle while avoiding circular dependencies between the two
vehicles. Overall, judging by these results, the prediction concept was successful at
determining when to switch from relative to absolute control in a variety of different
scenarios.

The main drawback of the prediction concept for switching is the need for tuning
the controller. The controller features three different tuning parameters, which are
the prediction horizon, speed error threshold and position error threshold. Although
all three parameters have default values (1 second, 1.5 m/s and 1.5 m respectively),

60

5.2 Control Objective after the Switch

tuning is necessary in order to adjust the controller to different scenarios. The pri-
mary method for tuning the controller when testing has been by changing the speed
threshold and using the same value for the positional threshold. It is often beneficial
since the difference in the position, i.e., the difference in the travelled distance, is
the integral of the difference in speed. Hence, the speed error will always be more
sensitive to changes in kinematic behaviour. Scenarios using longitudinal speed
actions in combination with a CMBB or ACC function will likely experience sat-
isfactory controller performance without tuning. This is simply due to the fact that
a scenario of this type was used for rapid testing of the code while programming
the controller. For other types of scenarios however, the controller will likely need
at least some tuning. Users have to adjust three different parameters, and need
at least some knowledge of how the switching algorithm works in order to tune
effectively. In practice, users will try to use this controller as a means of ensuring
reliable behaviour by the target vehicle, while testing active safety functions on
the ego vehicle. Hence, excessive time spent tuning will likely come as somewhat
frustrating to users who are more interested in optimizing the performance of the
ego vehicle. In order to mitigate this problem, a tuning guide has been developed,
where the optimal tuning parameters are given for each of the scenarios tested in
this thesis. These parameters roughly correspond to those outlined in Section 3.2,
and were determined through experimentation. In addition, the controller can be
used for standard ACC and CMBB scenarios with the default values outlined in
Section 3.2. Given that the controller and Esmini are intended to be used by en-
gineers accustomed with programming, control theory and vehicle dynamics, this
will hopefully significantly ease the tuning process for this controller.

5.2 Control Objective after the Switch

After the switch, the new control objective is defined using the latest action that
was active for the target vehicle. The difficulty of defining the control objective
greatly depends on what type of action this is. For the longitudinal speed action,
CMBB and ACC scenarios, the solution is quite trivial since Esmini handles con-
versions from relative to absolute. As mentioned previously, there is also no need
to create a new action. The shortcomings of this approach are that no history of
the speed is saved, resulting in that the new target speed will be the current speed
plus the relative component, defined by the action. If the switch is to happen when
the target has started slowing down, there is no way of knowing that the absolute
target speed, generated by Esmini, will be too small. Thus, it causes a static rela-
tive error in speed compared to when running the scenario without a safety function.

The approach for the relative longitudinal distance action is similar to that of
the longitudinal speed action. Both solutions use current absolute speed as a base
for the new speed. This results in the same weakness in both actions, which is that

61

Chapter 5. Discussion

a static speed error is introduced if the switch is not instantaneous. However, the
creation of a new action that is needed for a switch from this type of action has
further implications. If the target vehicle is in a steady state, no change can be
observed from the speed profile. But if the target is changing speed when a switch
occurs, e.g., it did not switch quickly enough to not slow down with the ego, an
abrupt change in the gradient of the speed curve will occur. This does not impact
the end result in a major way since the new target speed will, by definition, be the
current speed. Thus, it will transition from a negative gradient to zero in a single
timestep or point, but it will stay at zero. This is not the case for the synchronize
action. It can have a final speed specified for the target when it is created. If this is
the case, the controller knows were the target should be and at what speed. If the
target starts decelerating, it can then regain the lost speed. This results in a speed
profile that often loses speed during the switch but it will regain it before the action
ends. This can be seen in Figure 4.11b, where the newly created longitudinal speed
action perfectly matches the run without active safety after a second.

5.3 Testing

Testing Process
The testing process has overall been fairly successful in extracting results that
reflect on the controller’s performance in a fair manner. Because the aim of the
controller was originally both loosely defined and unconventional, finding a fair
way to accurately assess the controller’s performance was not trivial. The idea of
measuring the relative error as described in Section 4.1 was chosen due to the fact
that ideally, the target vehicle would display constant behaviour regardless of which
safety functions the ego vehicle uses. This, in combination with the prediction
graphs, gives an overview both of how the controller concept works for different
scenarios as well as the kinematic behaviour of the target vehicle. Both of these
insights are valuable in assessing the controller. In addition, the scenarios that were
chosen for testing provide data for different useful test cases. This is because the
CMBB and ACC active safety functions are the most commonly used active safety
functions and the four test cases include each of the relative actions currently in
existence in Esmini. These include the longitudinal speed action (ACC and CMBB
scenario), the longitudinal distance action and the synchronize action. Other sce-
narios using the same relative actions with the controller may mimic the behaviour
of the target vehicle in the scenarios tested in this thesis. Further testing would
however be required in order to verify the extent to which this is true.

On the other hand, there are some drawbacks with how the testing process was
carried out. The foremost of these is that only the ACC and CMBB scenarios were
tested using CSPAS, while the other two scenarios were tested using only Esmini.
Because the ultimate goal is to use the controller while testing active safety func-

62

5.3 Testing

tions with CSPAS, this means that the controller’s performance has not been fully
tested for these scenarios. While the test results using only Esmini can still give a
good indication of the controllers performance, better assessments could have been
made if the controller was tested using CSPAS for all scenarios. This was not done
due to the fact that the synchronize action scenario would not work with CSPAS,
for the reasons explained in Section 4.1. Similarly, the longitudinal distance action
scenario ran into issues when testing with CSPAS, and there was not enough time to
adjust either of these scenarios such that useful data could be extracted when test-
ing with CSPAS. This does ultimately mean that the data given for the longitudinal
distance and synchronize scenarios only shows how the controller performs for an
ideal scenario. More insight could however have been gained if these scenarios also
had been tested using CSPAS.

ACC and CMBB Test Cases
Judging by the relative error graphs for the CMBB and ACC scenarios (Figure 4.7
and Figure 4.5), the controller was quite successful in assuring adequate behaviour
of the target vehicle during these test cases. The relative position error is at most
5% for the CMBB scenario and at most 7% for the ACC scenario. The relative
speed error was around 10% and 11-12% for CMBB and ACC respectively, which
translates to an abolute speed error of 0.8 m/s for ACC and 0.7 m/s for CMBB. The
error in speed for both of the scenarios can be explained by the control objective
after the switch from relative to absolute control. The target vehicle is controlled
such that it continues to drive with the speed that it has at the time of the switch.
Figure 4.5 shows that if an active safety function is triggered by the ego vehicle,
the target vehicle will react by slowing down, which triggers a switch. The target
then continues with the speed that it has had at the time of the switch. However,
if there is no active safety function triggered, the target simply continues at the
same speed that it had previously. This generates a difference in speed between the
two tests, which in turn causes a difference in position. However, this difference
is hardly noticeable when running these scenarios in Esmini. The difference in
speed and position that these results show do not hinder the evaluation of any active
safety functions tested in Esmini with CSPAS. Hence, the controller is reasonably
successful in ensuring stable behaviour by the target vehicle.

The prediction graphs for the CMBB and ACC scenarios (Figure 4.6 and Fig-
ure 4.8) illustrate the switching mechanism for the controller in each respective
scenario. They also show the effect of controller tuning. The switch in both cases
is caused by the speed error exceeding its threshold of 0.5 m/s. This difference in
predicted speed vs actual speed is in turn caused by the ego vehicle triggering its
active safety function, something that is not accounted for in the prediction. When,
for instance, CSPAS triggers a CMBB function, the ego vehicle decelerates quite
rapidly, causing a sharp rise in the speed error. The speed error is significantly

63

Chapter 5. Discussion

higher at this point in time than previously, which is why the controller works very
well for these types of scenarios. Tuning the controller to a prediction horizon of 1
second and a speed error threshold of 0.5 m/s ensures that the controller switches
at an optimal time, but, the speed error threshold could be tuned between 0.2-1
m/s. Scenarios that generate prediction errors in speed or position earlier, before the
active safety function is tuned, could however be significantly harder to tune. These
earlier prediction errors could for instance be caused by either a new action that
is triggered and not immediately incorporated into the prediction algorithm. The
result of this would be that the controller either switches too early if the thresholds
are set low, or does not switch at all if the thresholds are set too high. However,
even in this case tuning could hopefully be used in order to mitigate this problem.
Tuning the prediction horizon could change when the new action is incorporated
into the prediction algorithm, and hence decrease the initial error. However, this
level of tuning would likely require the use of prediction graphs and knowledge
of how to tune the controller, and would ultimately not be very friendly. On the
other hand, the most common active safety features tested with CSPAS are CMBB
and ACC features. It is hence a satisfactory result that the controller functions as
intended with these scenarios while using the default tuning parameters.

Scenario using the Synchronize Action
In Figure 4.9 the results from the scenario using synchronize action are shown. No
oscillations in the error graph to the right occur since this scenario is run exclu-
sively with Esmini. This means that no external software is controlling the ego.
The relative speed error observed increases quickly to 70% due to the threshold
being set high. This is since the ego is changing speed before entering the inter-
section, creating a large increase error that is not created by the mimicked safety
function. The increase in error before the intersection can be seen in Figure 4.10,
in the graph for prediction error values over time. This extra action that the ego is
executing exists to make the scenario more complicated and it gives the ego the
same speed as the target. Another interesting observation is that the position error
never fully recovers as the speed does, even though the targets goal is to reach
the old target at the same point. This is due to the fact that the controller didn’t
compensate for the lost distance it should have travelled when it was slowing down.
The loss in speed when the switch was to occur can be seen in Figure 4.9, in the
graph to the left. The graph also shows the loss in the x position compared to the
run without an active safety function, or in this case without a action mimicking an
active safety function. It is clear the position cannot be regained without achieving
a higher speed for the vehicle. The small plateau at the end of the x position graph
is likely due to the road ending and the vehicle stopping. Esmini in this case does
not update the speed, which explains why it is left at the steady state it has achieved.

An apparent problem with running the controller without an external software

64

5.3 Testing

is that the ego vehicle’s actions, that are needed for it to move, will be included
in the prediction simulation. This is seldom a problem for the test cases. The only
time this could be a problem is if the active safety function engages at the time or
just before a new simulation starts. This would result in the newly started action
that mimics an active safety function is included in the prediction and thus, no error
would be generated.

Scenario using the Relative distance Action
The problem mentioned above is what happened for the scenario using a distance
action in Figure 4.12(b). At about 1.96 seconds the mimicked safety function starts,
allowing for a short increase in speed error that is hardly noticeable in the graph.
If the horizon is increased to 1.1 seconds, the speed error has sufficient time to
increase further as can be observed in Figure 4.12(c) in the same figure. If the
horizon instead is shortened as with Figure 4.12(a), the speed error will increase
to approximately 7 meters per second. This is due to the fact that the simulation
started just before the ego activated the action that is to simulate a safety function.
Furthermore the speed error then drops significantly the next timestep, due to the
new action, that is stopping the ego, being included in the simulation.

In Figure 4.11 the relative error values are shown in the graph to the right. In
this scenario the relative error reaches a maximum of 4% for the speed and close
to 3% for the position. This is due to the same reason discussed with the ACC and
CMBB cases. When a switch occur the behaviour of the target is changed such
that the speed error will stop growing. In this case the controller will switch when
the target vehicle has a speed of roughly 23 meters per second. This results in the
relative position error continuing to increase since the target is moving at a lower
speed compared to the scenario where it didn’t slow down due to a safety function.

From Figure 4.12 it is clear that the horizon is of high importance when tun-
ing. To achieve adequate results, the horizon should be set such that the active
safety function does not trigger in close proximity to a scenario time equivalent
to a multiple of the horizon time. An example of this can be seen in Figure 5.1.
However, the size of this time span, that is to be avoided, has not been investigated
in this thesis.

65

Chapter 5. Discussion

Figure 5.1 A five seconds scenario timeline with one second prediction horizons,
showing an area, A, were it is undesirable to do a new prediction. Note that this figure
is for demonstration purposes only and in no way indicates the exact time span that
should be avoided.

66

6
Conclusion & Future Work

6.1 Conclusion

The aim of this project was to develop a controller to switch from relative to ab-
solute control of the target vehicle when an active safety function is triggered by
the ego vehicle. If the controller does this successfully, the target vehicle should
exhibit constant behaviour, regardless of whether a safety function is triggered or
not. A prediction algorithm was chosen as a concept for switching because it was
believed to switch at the correct time for a wider range of different scenarios than
alternative controller concepts. The results confirm that it is able to switch from
relative to absolute control, at the time that an active safety function is activated,
for four different scenarios commonly used in Esmini. Tuning using 2-3 different
tuning parameters is however required for it to do this for the synchronize action
and the longitudinal distance action. While tuning expands the controller’s ability
to switch correctly for a wider range of scenarios, it does so at the expense of
user-friendliness.

The new control objective after the switch is absolute, meaning that the kine-
matic behaviour of the target vehicle will no longer be defined relative to any entity
in the scenario after the switch. In a scenario with a safety function, where the
target is controlled by a properly tuned controller, one can expect it to have similar
kinematics after the switch as in the same scenario without any safety function. This
is true assuming no major dynamic events occur before the switch is supposed to
take place. The controller could however switch early if major dynamic changes do
take place before the triggering of an active safety function, as this could generate a
prediction error higher than the specified thresholds. In this case, the target vehicle
may experience undesired kinematic behaviour. However, with correct tuning, the
switch will likely occur at the correct time, that is slightly after an active safety
function is triggered. If this is the case, the control objective after the switch leads
to overall realistic behaviour of the target vehicle.

67

Chapter 6. Conclusion & Future Work

6.2 Future Work

The controller developed can be further analyzed by testing a larger variety of
scenarios using CSPAS, including the longitudinal distance and synchronize sce-
narios. This is a time consuming process that includes several steps and requires the
assistance of CSPAS developers for some of these steps, including executing the
tests. However, further testing on a wider variety of different scenarios would give
a better overview of how well the controller performs in different conditions. This
may be quite valuable, as the controller may be intended to be used for scenarios
not tested in this thesis. Further testing would validate the controller for a wider
range of scenarios, as well as finding the right tuning parameters for each of these
scenarios.

Furthermore, improvements can be made to the controller and its prediction algo-
rithm. A possible improvement to the prediction algorithm is to incorporate more
data from the actual Esmini simulation in order to make predictions. Since the con-
troller has access to all data associated with a scenario except for the ego vehi-
cle’s behaviour, it could be of interest to restart the prediction when a new action
is started. This could possibly minimize large unwanted errors that can cause an
premature switch. In addition, it could significantly ease tuning for some scenar-
ios. It does however make the prediction horizons inconsistent which could cause
other problems. Overall, the prediction algorithm should ideally predict the target
vehicle’s states with a high degree of accuracy until an active safety function is
triggered, at which point a large error should cause the controller to switch. Incor-
porating more data from Esmini into the controller therefore has a lot of potential to
improve the controller’s overall performance, as well as make it more user friendly.

68

Bibliography

Andersson, M. (2021). Scenariogeneration. URL: https://www.overleaf.com/
project/6005485827ab87a34c0efd7a (visited on 2021-03-24).

ASAM OpenSCENARIO (2021). URL: https://www.asam.net/standards/
detail/openscenario/ (visited on 2021-01-25).

Balci, O. (1995). “Principles and techniques of simulation validation, verification,
and testing”. URL: https://ieeexplore-ieee-org.ludwig.lub.lu.se/
stamp/stamp.jsp?tp=&arnumber=478717 (visited on 2021-04-01).

Figueiredo, M. C. (2009). An approach to simulate autonomous vehicles in urban
traffic scenarios. URL: https://core.ac.uk/download/pdf/143407198.
pdf (visited on 2021-03-26).

Jillre and Jesong (2016). Uml class diagrams: reference. URL: https://docs.
microsoft.com/sv-se/previous-versions/visualstudio/visual-
studio-2015/modeling/uml-class-diagrams-reference?view=vs-
2015 (visited on 2021-03-20).

Knabe, E. (2021a). Environment simulator minimalistic (esmini). URL: https://
github.com/esmini/esmini (visited on 2021-01-18).

Knabe, E. (2021b). Esmini uml diagram. URL: https://viewer.diagrams.net/
?highlight=0000ff&layers=1&nav=1&title=esmini_class_diagram.
xml#Uhttps%5C%3A%5C%2F%5C%2Fdrive.google.com%5C%2Fuc%5C%
3Fid%5C%3D1z5TM6o-RryOGl1l-lRgiiv9ZMcrw0jBZ%5C%26export%5C%
3Ddownload (visited on 2021-06-07).

Litman, T. (2021). Autonomous vehicle implementation predictions implications for
transport planning. URL: https://www.vtpi.org/avip.pdf (visited on
2021-03-26).

Robinson, S. (2004). Simulation: The Practice of Model Development and Use.
John Wiley Sons.

Sargent, R. (2004). “Validation and verification of simulation models”. URL:
https : / / ieeexplore - ieee - org . ludwig . lub . lu . se / document /
1371298/authors#authors (visited on 2021-06-08).

69

Bibliography

Thaler, J. (2021). Computer simulation. URL: https://homepages.fhv.at/
thjo/lecturenotes/sim/index.html (visited on 2021-06-08).

Umit Ozguner, T. A. and K. Redmill (2012). Intelligent and autonomous road vehi-
cles. URL: http://citr.osu.edu/ECE/osuact/class/ControlIssues.
pdf (visited on 2021-03-26).

70

Appendices

A OpenSCENARIO xml code

1 <Storyboard>
2 <Init>
3 <Actions>
4 <Private entityRef="Ego">
5 <PrivateAction>
6 <LongitudinalAction>
7 <SpeedAction>
8 <SpeedActionDynamics dynamicsDimension="time" dynamicsShape="

step" value="0"/>
9 <SpeedActionTarget>

10 <AbsoluteTargetSpeed value="8.333333333333334"/>
11 </SpeedActionTarget>
12 </SpeedAction>
13 </LongitudinalAction>
14 </PrivateAction>
15 <PrivateAction>
16 <TeleportAction>
17 <Position>
18 <LanePosition laneId="-1" offset="0" roadId="1" s="25"/>
19 </Position>
20 </TeleportAction>
21 </PrivateAction>
22 <PrivateAction>
23 <ActivateControllerAction lateral="true" longitudinal="true"/>
24 </PrivateAction>
25 </Private>
26 <Private entityRef="Target1">
27 <PrivateAction>
28 <LongitudinalAction>
29 <SpeedAction>
30 <SpeedActionDynamics dynamicsDimension="time" dynamicsShape="

step" value="0"/>
31 <SpeedActionTarget>
32 <AbsoluteTargetSpeed value="5.333333333333334"/>
33 </SpeedActionTarget>
34 </SpeedAction>

71

Bibliography

35 </LongitudinalAction>
36 </PrivateAction>
37 <PrivateAction>
38 <TeleportAction>
39 <Position>
40 <LanePosition laneId="-1" offset="0" roadId="1" s="60"/>
41 </Position>
42 </TeleportAction>
43 </PrivateAction>
44 <PrivateAction>
45 <ActivateControllerAction lateral="true" longitudinal="true"/>
46 </PrivateAction>
47 </Private>
48 </Actions>
49 </Init>

Appendices/pythonscenario2.xosc

72

Document name

Date of issue

Document Number

Author(s) Supervisor

Title and subtitle

Abstract

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

