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Abstract

The purpose of this thesis is to model and develop a control law that lets an un-
manned aerial vehicle of blimp type fly autonomously in three-dimensional space.
There are several uses of the blimp type UAV including, but not limited to, cargo
transportation and surveillance. The work done throughout the thesis includes op-
timization of actuator placements, modelling the blimp and simulating the process,
developing a PID controller for positioning and orientation, trajectory generation,
actuator effort optimization, prototype construction and real-time experiments. The
results of the thesis show that with a simulation model the control sequence im-
plementation is facilitated, but not necessarily directly convertible to the real-time
prototype. They also show that faulty signal processing can lead to disturbances
which propagate throughout the process. Finally, it can be stated that the system
was stable enough to remain close to a point in space, however, it was not fast and
stable enough to follow a trajectory and thus the goals of the thesis were not fully
met.
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1

Introduction

For hundreds of years mankind has looked up to the sky and tried to invent ways
of travelling across it. Whether it is Henri Giffard’s steam powered airship con-
structed in 1852 [Li et al., 201 1], the Wright brothers’ first flight in 1903 [Howard,
or the first composite airliner, Boeing 787 Dreamliner, released in 2004 [Lu,
2010], mankind has not only tried but also succeeded in travelling across the skies.
Given time scientists and engineers have developed several different ways of air
travel, both manned and unmanned, each having its own advantages and disadvan-
tages. In this thesis different control methods are implemented and combined with
the purpose to control an unmanned aerial vehicle (UAV) of a blimp type. The im-
plemented control methods are verified by performing real-time experiments on a
prototype blimp UAV, which can be seen in Figure[I.1]
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Figure 1.1: Picture of the blimp UAV used to perform real-time experiments.
A common way of controlling an UAV is to have it be autonomous, meaning
that it is controlled by a computer that handles sensory input and generates control

outputs that transports the UAV in a desired way. There are many ways to obtain
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Chapter 1. Introduction

the required sensory data both through internally placed sensors on the UAV, and
externally placed sensors which tracks the UAV from a distance. Alternatively, com-
binations of internal and external sensors can be used. Examples of internally placed
sensors are accelerometers that measure acceleration and gyroscopes that measure
angular velocity. Externally placed sensors can be a camera that reads the UAV’s
position through image processing. An example of a combination of internal and
external sensor units is a Lighthouse positioning system, with an onboard sensor
deck, that geometrically traces light emitted by an externally placed base station.

1.1 Overview of the Master’s Thesis

The report is split into six different chapters; Introduction, Background, Methodol-
ogy, Results, Discussion and Conclusion. Each section presents different topics and
parts of the thesis and can be described as follows.

Chapter 1. Introduction, gives a brief introduction to the purpose and layout
of the thesis, what the main goals are and which scientific concepts will be included.

Chapter 2, Background, summarises the theory on which the thesis is based.
Here the concepts of autonomous unmanned aerial vehicles, blimp and UAV mod-
elling, and Lighthouse positioning are described in-depth.

Chapter 3. Methodology, is where all the practical parts and steps of progres-
sion of the thesis are presented. This involves descriptions of how the literature
review was performed, how the blimp UAV was modelled theoretically, how the
Lighthouse positioning system was set up, how the control methods were imple-
mented, and how the prototype blimp was constructed and tested.

Chapter 4. Results, presents and explains the relevant data that was collected
during the tests performed throughout the thesis.

Chapter 5. Discussion, is where the full scope of the thesis is discussed and
reflected upon. The methodology is scrutinized and both what was successful and
what could be improved is presented.

Chapter 6. Conclusion, presents a summary of the work performed throughout
the thesis, and the results are interpreted and evaluated to how well they meet the
goals of the thesis. Suggestions for future work and development of the blimp are
discussed with respect to Chapter 3.

1.2 Goals of the Master’s Thesis

The main goal of the thesis is to actuate and control a blimp UAV indoors so that
it can navigate safely and autonomously to coordinates and orientations in three-
dimensional space (R?), provided as user input. The system should use position
data provided by a Lighthouse positioning system for its controller. The main goal
can be further clarified by dividing it into five intertwined sub-goals, which are listed
below.
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1.3 Delimitations

* Obtain position data from a Lighthouse positioning system.

* Numerically determine the optimal rotor placements.

* Model and simulate the blimp and design controllers for the model.

» Construct a prototype blimp UAV by using the determined rotor placements.
« Stably control the position and orientation of the blimp UAV in R?.

The results and outcomes of this thesis are purposed to be used as a basis for further
development of blimp UAVs.

1.3 Delimitations

To be able to achieve the main goal of the thesis within a feasible timeline, it is
important to limit the scope of the project. It will therefore be necessary to strongly
rely on previous work and existing material to avoid unnecessary development of
preexisting solutions. Some of the major delimitations of the project are described
in the following paragraphs.

The blimp used will be not be designed and constructed but purchased with a
design that can be seen in Figure[I.2] The parameters used to describe the geometry
and properties of the blimp can be found in Appendix |D|and will be used when
modelling in Chapter 3]
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Figure 1.2: Shape of the final used blimp, expressed in meters. [Windreiter, 2020]]

For actuation, sensor data collection, and communication with the designed
controller, the propeller driven, 92x92x29mm (WxHxD) quadcopter developed by
Bitcraze AB, called CrazyFlie 2.1 will be used. A CrazyFlie 2.1 unit is depicted
in Figure [I.3] which if equipped with a Lighthouse positioning board has the addi-
tional capability of being used with a Lighthouse sensor system. This will be used
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Chapter 1. Introduction

to obtain accurate position and orientation data for the UAV. To handle the Light-
house system and control the CrazyFlie, Bitcraze AB supplies a Python application
programming interface (API) containing relevant code and tutorials which will be
used to base the further development on.

Figure 1.3: Picture of a CrazyFlie 2.1 [Bitcraze, 2020].
As the purpose of the blimp UAV is to be used indoors, the influence of wind

will be not be considered and the air surrounding the blimp will be assumed to be
stationary at all times.
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2

Background

In this chapter all the relevant theoretical information used in the thesis is presented.
It serves as a foundation on which the several design and implementation decisions
are based. Each section of the chapter gives a general introduction to a main topic,
followed by an in-depth description of selected subtopics. The purpose is to present
the scientific topics in a way that is comprehensible and rewarding to the reader and
at the same time focused only on the parts relevant to the thesis.

2.1 Unmanned Aerial Vehicles

As mentioned in Chapter [T} an unmanned aerial vehicle (UAV) requires no pilot
sitting inside of the vehicle, and can be controlled either manually through a re-
mote control, or autonomously by letting a computer control the vehicle. UAVs have
many uses in a variety of fields, some of them being military use, cargo transporta-
tion and surveillance [Shakhatreh et al., [2019]. They come in a variety of designs
which are use-case specific. Some of the more common design configurations are
the quadcopter configuration, with a small body being propelled by four indepen-
dent propellers, and the airplane configuration with a fuselage fitted with wings.
The small body size and use of independent propellers allows the quadcopter con-
figuration to be quick and able to move in any direction, but it constantly must spin
its propellers to remain in the air which makes flight very energy-consuming. The
airplane configuration is fast and can travel a longer distance due to how it generates
lift, but it must move forward and roll or pitch to change direction, which makes it
less agile [Paredes et al.,[2017]].

A solution to the large energy consumption of the quadcopter configuration, is
to combine it with a buoyant blimp and make it blimp-like. A blimp or airship is
a type of aircraft that makes use of lighter-than-air gases confined within its body
to generate buoyancy [Li et al., |2011]]. The combination would allow a UAV with
a blimp-like design to create enough buoyancy to remain in theair with minimum
energy input, while at the same time be able to move in all directions. However, to
create the required buoyancy, the gas confining body must have sufficiently large
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Chapter 2. Background

volume. This creates problems for navigating through narrow passages and gives
rise to an increased sensitivity to air and wind disturbances in the form of gusts
of wind [Li et al., |2011]]. Besides being increasingly affected by gusts of wind,
the increased volume also creates a larger air resistance in the form of drag forces
that counteract the movement of the UAV, thus reducing its speed. This can be
concluded by looking at the drag force model in Equation (2.1)), where Fp is the
drag force acting in the negative x-direction of the object (see Figure [2.1), p is the
surrounding air density, V is the velocity in positive x-direction, Sy, is the airship
reference area, Cp is the empirically derived drag coefficient, and A is the airship
volume [Kukillaya and Pashilkar, 2017].

//—\)x

Figure 2.1: 2D shape of a double ellipse [Kukillaya and Pashilkar, 2017].

1
Fp= Epvzs,,CD (2.1a)

S, = A3 (2.1b)

2.2 Modelling

When designing the control system of an aircraft, vehicle or system in general, it
is important to have an accurate mathematical model that reflects the system’s dy-
namic properties. A proper mathematical model of the system’s dynamics allows
the designer to calculate and simulate how the system responds to different con-
trol inputs and parameter changes, without having to perform tests on the system
itself. This allows tests to be performed quickly and without the risk of breaking
the product, which reduces the amount of time required to tune the controller [Glad
and Ljung, 2000|]. One of the disadvantages is that for the model to be fully rel-
evant, it must properly capture the necessary dynamics, otherwise the results will
likely be off on the real system, and the designed controller might be poor. This
can lead to issues since some dynamic properties are hard to anticipate and model
mathematically. However, even simplified models can be informative as to give an
approximate image of how the system may act.
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2.2 Modelling

Newton-Euler Dynamics

The basis of modelling a physical system is to capture how the system is affected by
external influence. One way of doing this is to use Newton-Euler dynamics, which
is a combination of different physical theorems and laws of classical mechanics that
are used to describe the dynamic properties and relationships of a rigid body. This
includes, among other things; the relationship between different frames of reference
and different coordinate systems, how forces acting on the body result in accelera-
tion, and how moments and inertia affect rotation [Ardema, |2005]].

Frames of Reference and Coordinate Systems: The basis of using Newton-Euler
dynamics is to use relevant reference frames and coordinate systems, of which there
are many. Some of the most common reference frames, that are also used in this
thesis are: the inertial frame denoted -, and the body-fixed frame denoted 5. The
inertial reference frame is fixed arbitrarily in R? and the body-fixed reference frame
is fixed in an object which can often move in relation to the inertial reference frame
[Ardema, 2005]]. Both mentioned reference frames can be described by the right-
hand orthogonal unit base vectors {£,$,2}. The * notation means that it is a base
vector that is being referred to. As for coordinate systems, two common systems are:
the rectangular coordinate system and the spherical coordinate system. Rectangular
coordinates describe the location of a point P in reference to the origin (O) by
vector ﬁxyz in Equation (2.2a)). In spherical coordinates, P is instead described in
reference to O by vector OP, g in Equation (2.2b). Both of these coordinate systems
are illustrated in Figure|2.2]and the coordinate transformation equations relating the
two are seen in Equation (2.3). Note that in Figure the OP vectors are not drawn
but are defined as the distance between O and P followed by respective reference
frame notation. Right-handed reference frames such as the one in Figure 2.2] where
x is forward, y is to the left and z points upwards can be called North-West-Up
(NWU) frames, which are commonly used for land-based bodies. However, when
regarding the body-fixed reference frame of an airplane, it is common to use a so-
called North-East-Down (NED) frame, which is shown in Figure 2.3]

OPyy; = xt+y§+22 = (x,3,2) (2.22)
OP,9q = (r-sinat-cos@)£+ (r-sina-sin@)y + (r-cosa)? = (r,0,a)  (2.2b)

X =r-sinx - cos@ (2.3a)
y=r-sinq - sinf (2.3b)
Z=r-cos0 (2.3¢)

When using both an inertial reference frame and a body-fixed frame, it is important
to determine how they are positioned in relation to each other. Introduce an inertial
reference frame {%g,9¢,2c}, that is fixed in a global origin position O = (0,0,0)
defined by a rectangular coordinate system. In the inertial frame, introduce an arbi-
trary rigid body with a body-fixed reference frame, {£5, 95,2p} placed in its center
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Chapter 2. Background

Figure 2.2: Description of how rectangular coordinates and spherical coordinates
relate to each other and to the set frame of reference.

<>

=

Z

Figure 2.3: Illustration of a North-East-Down.

of gravity (CGp). The position vector, X in Equation (2.4a) consisting of the coor-
dinates xp, yp and zp describes the distance from O to CGg which for this example
is the same as the position of CGp in reference to the inertial frame. The attitude
vector, fjg in Equation (2.4D) describes the extrinsic Euler angle rotation of the body
frame in reference to the inertial frame. Both X3 and )3 are illustrated in Figure

)_(B:[XB YB ZB}T (24&)
=0 6 v’ (2.4b)

To determine the dynamics of an objected in a given frame, Newton’s three laws
can be used, and are described as follows:

Newton’s First Law  states that if the sum of all forces acting on a particle or
body’s CG is equal to zero at any given time, then the acceleration of the particle or
CG is also zero in that time instance [Ardema, [2005]).
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2.2 Modelling
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(a) Distance vector X5 (b) Roll angle ¢ around the £g-axis
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(c) Pitch angle 6 around the ys-axis (d) Yaw angle y around the Z;-axis

Figure 2.4: Description of the distance vector 7 and the attitude states ¢, 0 and ¢.

Newton’s Second Law ~ states that the acceleration, g = [a¥, ayG , aZG]T of a particle
or body’s center of mass in reference to the inertial frame is directly proportional to
the sum of the forces, Fiz = [Fo,, Fg,, FGZ]T acting on it. This can be expressed as in

Equation (2.5) [Ardema, 2005]].
Y Fo=m-ac (2.5)

Newton’s Third Law states that the force exerted by one particle onto another is
equal to in size but opposite in direction to the force that the second exerts on the
first [Ardema, 2005]].

Angular Dynamics The angular dynamics of an object can be described by its
attitude rates @ = 7] which are driven in time by the applied moments M. The ap-
plied moment are, in turn, related to the attitude rate time derivatives, as in Equation
(2:6), where I is a positive definite inertia tensor derived from the mass and geome-
try properties of the object. Equations for calculating the inertia tensor can be found
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Chapter 2. Background

in Appendix [A][Ardema, [2005]).

v
Il

(2.6a)

I
~I
S

=
|
ST‘ e Sll
I

(2.6b)

Tait-Bryan Rotations

To determine a body’s acceleration in the body frame instead of the inertial frame,
coordinate transformation must be performed. One way to do this is to use Tait-
Bryan rotations or Tait-Bryan angles, which are a part of the Euler angles, where
Euler angles are described in [Ang and Tourassis, [1987] as a way of describing
orientation through consecutively rotating around the coordinate axes three times.
The order in which each axis is rotated around differs and there are 12 different
combinations available, with six of them using all three available axes [Ang and
Tourassis, [1987]. Tait-Bryan rotations use all three available axes and are used to
relate the base vectors of a body-fixed reference frame to the base vectors of an
inertial reference frame. The way they are used is by looking at the trigonometric
relationship between the two frames for each of the three rotation angles displayed
in Figure[2.4] The projections of the inertial axes onto the rotated body-fixed axes,
can for each type of rotation be written as the 3 x 3 matrices derived in Equation
(27). The order in which the axes are rotated can be chosen arbitrarily as long as all
three axes are included. The Tait-Bryan rotation matrices derived in Equations (2.7)
and are ordered as counter clockwise rotation around the first the £-axis, then
the j-axis and finally the Z-axis, and are often referred to as X YZ-rotations.

1 0 0 |

Rgp(¢) = |0 cosp  sing (2.7a)
|0 —sing cosd |
[cos® 0 —sind]

Rgp(0) =] 0 1 0 (2.7b)
|sin@ 0 cos6 |
[cosy siny 0

Rgp(w) = | —siny cosy 0 (2.7¢)
| 0 0 1

Multiplying the three axial rotation matrices results in the complete rotational
matrix in Equation (2-8)), where C; and S; denote the cosine and sine values of the
angle i, respectively. The equation describes the relationship of going from the in-
ertial frame to the rotated body frame.

Rgp(9,0,¥) =Ras(9) - Rs(0) - Ros(v)
Co-Cy Co-Sy —Se (2.8)
= CV,'S(]) -So —C¢ -Sq, C¢ 'CW+S¢ 'SV,~S(9 Co ~S¢
Sop Sy +Cy-Cy-Sg Cp-Sg-Sy—Cy-Sp Cy-Cog

18



2.2 Modelling

The resulting relationship for transforming acceleration in the inertial reference
frame to the body-fixed reference frame, and from the body-fixed reference frame
to the inertial reference frame is presented in Equation (2.9).

ap = RGB((P, 0,v)ac (2.9a)

ac = RGp(9,6,y)as = Rp (9,6, y)as (2.9b)
Similar to this, transforming from a NWU frame to a NED frame can be described
as rotating the coordinates with the rotational matrix in (2.8) by a roll angle, ¢, of
7 radians. Another way to view it is to add an extra rotation of the body frame from
the NWU body frame to the NED body frame. Using the first way of transformation
from a NWU frame to a NED frame, the relationships seen in Equation can
be derived.

1 0 0
Rrp =Rgp(7,0,0)= ({0 —1 0 (2.10a)

0 0 -1
Xvep = ReXnwu (2.10b)
XNED = XNWU (2.10¢)
YNED = —YNWU (2.10d)
INED = —INWU (2.10e)
ONED = T+ nwu (2.10f)
OnED = —Ovwu (2.10g)
YNED = —YNwWU (2.10h)

An issue with this type of coordinate transformation is that it is prone to result in

mathematical matrix singularities at certain rotations. This is discussed by [Greiff,

2017], and can be seen by letting the parameters in Equation (2.8)) be (¢,60,y) =

(¢,(n+ %)n’, 0), which for n € N leads to the following result:

[ 0 0 -1

RGp(9,0,y) = [Cy-Sp—Cy-Sy Co-Cy+5Sy-Sy 0

:S¢'SW+C¢~CW Co-Sy—Cy-Sy O @.11)
0 0 -1

= |sin(¢—y) cos(¢—y) O

[cos(0—y) —sin(9—y) 0

Having the singular rotation matrix shown in Equation (Z.11]) implies that for a pitch

angle where the body-fixed X-axis points either straight up or straight down in the

inertial reference frame, the roll and yaw angles will appear in pairs allowing differ-

ent combinations of angles to give the same rotation matrix. The rotation matrix is

ambiguous unless one of the two angles are known which leads to a reduction of the

numbers of freedom by one in regions close to 6 = £7 [Hemingway and O’Reilly,

2018]]. One way to negate this issue when considering flight is to avoid the trouble-

some region through careful piloting of the aircraft, thus avoiding the singularity.

Other examples of avoiding the singularity are: using quaternions instead of Eu-
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Chapter 2. Background

ler angles, and switching coordinate systems near the troublesome region [Hosier,
2018].

A similar phenomenon to the singularity of the rotation matrix, is the so-called
gimbal lock. A gimbal is a circular plane that rotates around an axis and are in
combinations of three used in sensory equipment such as gyroscopes and inertial
measurement units. When combined in groups of three, the gimbal group can be
viewed as a physical manifestation of rotations using Euler angles. The way the
gimbals are organized in the gimbal group can be described as interconnected. The
rotations of the outermost gimbal results in rotations around the same axis for the
two inner gimbals. Rotation of the middle gimbal results not only in rotation of
itself but also in rotation of the innermost gimbal, while rotation of the innermost
gimbal only affects itself.

Consider a fictive arrow pointing along the axis of rotation of the innermost
gimbal. By rotating the three gimbals in a certain sequence, the arrow can point
in any direction. However, if the middle gimbal plane was to rotate by =% so that
it coincides with the outermost plane, the gimbal group would lose one degree of
freedom. This is known as a gimbal lock, and can be described as a physical mani-
festation of the mathematical singularity of a Tait-Bryan rotation matrix. Figure [2.5]
shows an illustration of a gimbal group in its starting position where all planes are
orthogonal to each other. If the middle blue plane in the figure was to rotate around
its axis by =%, it would coincide with the outer red plane, thus a gimbal lock would
ensue. Examples of ways of avoiding the gimbal lock phenomenon are: avoiding the
troublesome region through navigation, and adding a fourth gimbal. [Hemingway
and O’Reilly, [2018]]

Figure 2.5: Tllustration of a gimbal group in a starting position where all planes are
orthogonal to each other.
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2.2 Modelling

Equations of Motion

To be able to use the Newton-Euler dynamics for a large body, such as a blimp, the
relationship between all forces acting on the body and how its mass is dispersed
must be obtained. Therefore the mass part of Newton’s Second Law (2.5), must be
expanded to account for the holistic view of the mass distribution of the body. As
for the case of a blimp, the forces acting on it can be summed as in Equation 2.12),
which has the form of Newton’s Second Law [Kukillaya and Pashilkar, [2017]].

YF=F;+F.+Fy+Fy+F +F,+F;=M, X (2.12)
Each part of Equation (2.12) holds its own relevant part of the blimp dynamics and
is defined by [Kukillaya and Pashilkar, 2017] as in Table [2.1| where the states are
selected as the translational and rotational velocities expressed in the body frame.
The further descriptions and derivations of these parts are all adapted from the work

of [Kukillaya and Pashilkar, [2017]], which serves as the model used in this thesis
[Kukillaya and Pashilkar, 2017]). To derive the expressions for the components listed

Variable Definition Dimension
Time derivative of state vector X, holding
X the body frame’s translational and rota- 6x1
tional accelerations
M, Matrix of masses and inertias 6x6
Fy Coriolis and centrifugal terms 6x1
7 Aerodynamic forces and moments caused 6x 1
a4 by the hull and fins
— Forces and moments caused by the
Fy . , 6x1
blimp’s buoyancy
— Forces and moments caused by the iner-
Fg . . 6x1
tial frame gravity
= Aerodynamic forces and moments caused
F c 6x1
by control surfaces
—= Forces and moments caused by the
Fp . . . . 6x1
propulsive units acting on the blimp
— Forces and moments caused by the iner-
Fy . . 6x1
tial moment of the fluid

Table 2.1: Definitions of the different components of the blimp’s equations of mo-
tion.

in Table 2.1] [Kukillaya and Pashilkar, 2017] use a blimp shaped like an axisym-
metric double ellipsoid as that in Figure [2.1] On the ellipsoid, four fins are placed,
and a complete illustration of the blimp with directional axes and measurements is
seen in Figure with the measurements being described in Table alongside
other relevant measurement definitions.
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Figure 2.6: Illustration of the blimp with directional axes and measurements [Kukil-
laya and Pashilkar, 2017]).

Variable Definition
Coordinates along the %-, y- and Z-axes of the
x,yand z blimp, oriented in a North-East-Down configura-
tion
M.Nand L TheA positi:/e dire.ction of moments acting. on the
X-, - and Z-axes in the body frame respectively
v Direction and magnitude of the blimp’s velocity,
0 defined by o and 8
o Angle of attack, being the angle between V and
the its projection on the £y-plane
B Sideslip angle, being the angle between Vjy and the

X-axis projected to the £y-plane

Parameters describing the placement of the rud-
ders and fins.

The principal semi-major axes of the front and

dfh de» df3a dgm dgz

@1 and az back ellipsoid halves respectively.
cv Center of volume of the blimp
d Distance from the front of the blimp to its center
v of volume
b The principal semi-minor axis of the blimp being

equal in the - and Z-directions

Table 2.2: Description of the notations used when describing the blimp geometry
and properties.

Aerodynamic forces and moments (F,..) These forces and moments are the re-
sult of the blimp displacing a fluid as it travels. Each part of the blimp’s surface
and extremities has its own contribution and it is therefore reasonable to sum the
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2.2 Modelling

contributions of all parts into one extended equation for each force and moment
contribution. As derived by [Kukillaya and Pashilkar, 2017|], the aerodynamic force
and moment vector is expressed in Equation (2.13) with its components expressed in
Equation (2.T4). The constants, Cx,Cy» etc., are the drag coefficients of the blimp’s
different parts and can be calculated by observing the geometry of the airship. As
for the scope of this project, these coefficients will not be calculated for reasons that

will be discussed in later parts of the report.
= T
Flate) = [Fatex Flaroy Flaro: Margs Matey Maro:]  (213)

1 o
Flatx =5 pVE |Cricos?acos®B + Casin2asin + Cy3sin2f sing (2.14a)

1
Flate)y = EPVOZ Cylcosgsilﬂﬁ + Cypsin2 3 + Cy3sinfBsin| B (2.14b)
+Cys(OrupT + 5RUDB):|
L o . . .
Flate .= EPVO Czlcosismhx + Cpsin2a + Cysinosin| (2.14¢)
+Ca(OgLve + SELVR)}

1 . .
Mgy x= EPVOZ CL1(8eLve — Sevr + Orups — OrupT) + CrasinBsin| |

(2.14d)

Mgse)y = %pVO2 -CMlcos%siHZOc + Cuasin2a + Cyzsinosin| ot (2.14e)
+Cwma(Oeve + 5ELVR):|

Myye) . = %pVO2 CNlcosgsiHZﬁ + Cnpsin2f + CyssinBsin| ]| (2.14f)
+Cna(Sgupr + 6RUDB)]

Coriolis and centrifugal forces and moments (F;) These forces and moments
are the outcome of the stored kinematic energy and inertia of the blimp. The force
and force moment contributions are directly proportional to the translational and
rotational velocity scaled by the apparent mass and apparent inertia terms that are
dependant on how the mass is disposed throughout the volume. To describe these
dependencies it is useful to first define the added mass matrix. In [Severholt, 2017]],
the forces induced by added mass and inertia are described as the pressure induced
forces and moments created by the object displacing the surrounding fluid as it
moves. For a body with six degrees of freedom, the added masses and inertias can
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be collected into a 6x6 matrix, known as the added mass matrix, My, € R®*®.
The matrix coefficients are derived from the object’s geometry and mass from the
perspective of each degree of freedom [Kukillaya and Pashilkar, 2017|]. For an ax-
isymmetric ellipsoid, the added mass matrix can be reduced to a diagonal matrix,
as shown in Equation (2.13)). The coefficients are for the axisymmetric ellipsoid de-
fined as in Equation (2.16), with the coefficient parameters described in (2.17). The
influence of the added mass caused by fins and rudders is small relative to that of
the ellipsoid and is thus disregarded [Kukillaya and Pashilkar, 2017].

The expression for the added mass and inertia in the ellipsoidal case can be
summarized as:

X; 0 O 0 0 0
0O Y 0 O 0 0
0o 0 Z, 0 0 0
Maa=10 0 0 1, 0 0 (2.15)
b
0 0 0 0 M, O
0O 0 O 0 0 N;
where
(04)
Bo
Y, = m 2.16b
2—-Po (2165
b
Zw = 2.16¢
2= (2169
(b* —c*)* (% — Bo) m
L,—= — 2.16d
L e B (e [y (2160
(¢?—a*)* (a0 — ) m
M, = — 2.1
122 =)+ (P +a)(p—) 5 (2-162)
2 p22(B —
Moo @PPa) o166
2(a* = b?) + (a* +b%) (a0 — Po) 5

In these equations a = (a; +az)/2 denotes the mean value of the principal semi-
major axes of the double ellipsoid, b = ¢ denotes principal semi-minor axes of the
ellipsoid, m denotes the mass of displaced fluid, e denotes the eccentricity of the
ellipsoid, and the parameters o and f3y are given by:

1—é? 1
oo = 36){10g +eze] (2.17a)
e 1—e
1 (1-€?), l+e
PV ! 2.17b
Po=m e? 203 %1 e ( )

By using the added mass matrix in Equation (2.13)), the apparent mass of the blimp
can be calculated. Apparent mass is the experienced mass of the object in the differ-
ent directions meaning the mass of the object subtracted by the added mass caused
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by the surrounding fluid. Similar to this the apparent moments of inertia can be
defined as the experienced inertia of the body, thus the actual moment of inertia
subtracted by the added inertia. These definitions can be seen in Equation (2.18)),
where m,,; is the total mass of the blimp, /; are components of the inertia tensor.
Due to symmetry of the blimp the tensor’s off-diagonal elements J,y, Jy, and J,, are
all zero.

my = Myor + Xy (2.18a)
my = My + Y (2.18b)
my; =My + 2y (2.18¢)
Jy=IL+Lp (2.18d)
Jy=5L+M,; (2.18e)
J. =1L, +N; (2.18f%)
Jy=0 (2.18g)
Jy; =0 (2.18h)
Jz=0 (2.181)

The influence that apparent mass and apparent inertia has for the different force
and force moment components can be collected in a matrix known as the mass and
inertia matrix M,. [Kukillaya and Pashilkar, 2017] express this matrix for a double
ellipsoidal blimp as follows.

my 0 0 0 Myor - Az 0
0 ny, 0 —Myor - Az 0 Myor * Ax
_ 0 0 m; 0 —My oAy 0
Ma B 0 —Myor * az O JX 0 7J.XZ (2. ] 9)
Myor - Ay 0 —Mypr * Ay 0 Jy 0
0 Myor - Ax 0 —Jxz 0 J;

Using the definitions provided in (2.18), [Kukillaya and Pashilkar,2017] derive the
Coriolis and centrifugal forces and moments as follows in Equation (Z.21)) with
the state vector from Table mdeﬁned asx = [U V W p ¢ r] T, where the
vector elements refer to the respective velocities along the body £-, y- and Z-axes
and the respective angular velocities of the body ¢-, 8- and y-Euler angles in that
order. Here, the variables ay, ay and a; refer to the distance from the blimp’s center
of gravity to its center of volume. With these definitions, [Kukillaya and Pashilkar,
2017]] summarize the forces and moments caused by Coriolis and centrifugal forces
as follows:

7 T
Fy=[Fsx Fuy Faz Mg Mgy My (2.20)
where
Fy = —mgqW +myrV +may(q* +7r*) —magrp (2.21a)
Fay = —myrU + m;pW — maypq — ma,qr (2.21b)
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Fy .= —mypV +mqU — ma,rp+ma; (p2 + q2) (2.21¢c)
My = (Jy—J)gqr+Jypg+ma(p* +q°) (2.21d)
My = (J.— J)rp+Je (P — p?) + may(pV — qU) —ma (qW — V) (221e)
My, = (Jy—Jy) pq —Jxzqr —max(rU — pW) (2.21)

Buoyancy and gravitational forces and moments (Fj,.,) Apart from its actuation,
the primary forces responsible for giving a blimp its lift are related to its buoyancy.
The buoyancy is the lifting force acting on an object caused by the pressure of the
surrounding fluid. Since the buoyancy is the result of the surrounding fluid apply-
ing pressure to the object, and that the pressure of a fluid is greater closer to the
earth’s core, the direction of the buoyancy will be parallel to the earth gravitational
field. The buoyancy of an object can be calculated in accordance with Archimedes’
principle, summarized as follows:

B=mVy=pgVy (2.22)

where my is the mass of the displaced fluid, p is the density of the displaced fluid
and Vy is the volume of the displaced fluid. With a global reference frame with the
Z-axis being perpendicular to the curvature of the earth, the buoyancy will have a
constant magnitude. Furthermore, the force and moment contribution in the body
frame will depend on the orientation of the blimp, thus it will be dependent on the
body frame Euler angles. Since gravity and buoyancy act in parallel directions, it
is convenient to combine them in to a single force and force moment vector. The
combined force and force moment vector is for an axisymmetric blimp with the
equilibrium pitch angle 6, derived by [Kukillaya and Pashilkar, |[2017]], as follows:

— T
Fiorg) = [Forgr Forgy Forge Mprgx Mprgy Mpigel (223)

where
Flp4g)x = —(mg —B)sin(6 +6,) (2.24a)
Fptg)y = (mg — B)sin(¢)cos(6 + 6,) (2.24b)
Fptg),. = (mg — B)cos(¢)cos(6 + 6,) (2.24¢)
My 1q) » = —(mga; — Bb;)sin(¢)cos (0 + 6,) (2.244)
My g)y = —(mga; — Bb;)sin(0 + 6,) — (mga, — Bby)cos(¢)cos(0 + 6,) (2.24e)
M pq),. = (mgax — Bby)sin(¢)cos(6 + 6,) (2.24f)

Fluid forces and moments (Fy) Wind and waves are common examples of the
motion of a fluid. As these motions intersect with an object immersed in the fluid,
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a force and force moment is applied to the object. For an axisymmetric blimp, with
the state vector described in Table [2.2] fluid velocity described by translational and
angular components as x; = [Us Vy Wy ps qy rs| and coefficients as de-
scribed in Equation (2.27)), [Kukillaya and Pashilkar,2017]] describe the forces and
moments acting on the blimp caused by fluid motion as follows:

Fr=[Frx Fry Fro Mpc Mpy Mp]' (2.25)
where

Fy = m,qWyg —myrVy (2.26a)
Fyy = Uy —mpWy (2.26b)
Fy . =mypVy —inqUy (2.26¢)
My = —(Lyqsr—Jqr) —Jprq (2.26d)
My, = —(Lryp—Jerpy) — Je(rry — ppy) (2.26¢)
My, = —(Jxprqg—Jypqr) +Jugry (2.26f)

where the immersed parameters are given by:
iy =m+X; (2.27a)
iy =m+Y; (2.27b)
., =m+Z, (2.27¢)
Ji=L+L; (2.27d)
[y =1L, +M,; (2.27e)
J,=IL+N; (2.27)
J.=0 (2.27g)

For Equations (2.26)) and (2.27), the ~ symbol above the parameters means that the
parameter refers to the fluid displaced by the immersed object, i.e., the mass and
inertia tensor elements of the displaced fluid.

Propulsive forces and moments (F,) The means of propulsion or actuation of
a blimp is what powers it and allows it to move in a desired way. The way the
propulsive unit generates force and force moment to the blimp is entirely dependent
on the actuator. For instance, if using rotors to actuate the system, their number and
configuration relative to the body frame will determine the generated propulsive
forces and moments. In the following, these forces will be described as follows:

Fo=[Fpx Fpy Fp. My, M,, M,.]" (2.28)
where the actuator configuration and how it generates forces and moments is as-
sumed to be known.
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2.3 Control Theory

Within the field there are many topics which handle different parts of control. Some
of these topics are controllers, trajectory generation and optimization which will be
described and used in this thesis.

Proportional-Integral-Derivative Control

A proportional integral derivative controller (PID) is a type of controller that gener-
ates a control signal, u(¢) based on the control error e(¢) = r(t) — y(¢) where r(¢) and
y(t) are the reference and the measurements, respectively. The controller is based on
multiplying the error, its integral and its derivative by different scaling coefficients.
This can be described in continuous time as follows:

u(t) =Kye(t) +K; / 7)dt+ Ky d(tt) (2.29)
where K, K; and K, are the controller gains acting on the different parts of the
calculated control error [Higglund, 2019]. Commonly the derivative part is filtered
before its use and the anti-windup protection is used to limit the magnitude of the
integral part.

To use the PID controller in discrete time, which is used when programming the
controller, a sampling time s must be introduced. Using this sampling time, the
derivative and integral parts can be numerically converted from continuous to dis-
crete time as in Equation (2.30), resulting in the discrete time PID approximation in

Equation (2.3T).

/O "e(1)dt — Z n)+e(n—1) (2.30a)
de(t) _ elk)—e(k—1)
- ” (2.30)

M (2.31)

+€}’l 1)+Kd h

N\S‘

)=t L3

The K,, K; and K; parameters must be tuned carefully to the give a stable and
satisfactory controller. This can be done either by iteratively testing the controller
for the process it is to control, or for a computer model that represents the actual
process.

An alternative way of expressing the derivative part of the PID controller is by
splitting the error into its components r(¢) and y(¢). This changes the controlled
part from being the rate of change of the error signal to the difference between the
time derivative of a reference signal and the time derivative of the measured state.
This can be further expressed as the difference between a reference signal for on
the state time derivative and the state time derivative. An example to explain this
is if the measured states y(¢) are positions and r(¢) are position references, then
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——(——| Controller O Plant

Compensator

Urp

Figure 2.7: Block diagram describing how feedback compensation can be included
in a control sequence.

dy(t)/dt are the measured velocities and dr(t)/dt are velocity references. To clar-
ify the differences the reference, state and error derivatives will for the alternative
derivative be noted as 7, y and é respectively. This alternative derivative is expressed
in Equation (2.32)) and the accompanying PID controller in Equation (2.33).

de(t) _ dr(t) dy(t)
dt dt dt

) =y ell)+ - 4 e

n=1

~ #(k) — (k) = ¢ (2.32)

n)+e(n—1)+Kzé(k) (2.33)

N\S‘

Feedback Compensation

To account for known disturbances or unwanted behaviour that can be modelled,
feedback compensation or feedback linearization can be used. The concept of feed-
back compensation is to remove the effect of the unwanted disturbances by creating
a control signal that is equal to the modelled unwanted behaviour with a switched
sign [Meng et al., 2021]]. This is illustrated in Figure where if the model is per-
fect, the effects of the disturbance will be cancelled letting the controlled states be
strictly controlled by the designed controller. A simple example of this is to consider
a helium balloon with a downwards pointing propeller attached to it. If the desired
action is to maintain the balloon at a stable altitude the propeller must generate a
force that is equal to the upwards lifting force generated by the balloon’s buoyancy.
With a disturbance model equal to the lifting force of the balloon, a feedback com-
pensator will cancel this lifting force. If it is desired for the balloon to also change its
altitude, then a different control strategy, such as a PID can be implemented which
will now only act to move the balloon and not to keep its buoyancy from lifting it
uncontrollably.

Trajectory Generation

To move a vehicle from point to point, the vehicle must move along some path
through R3-space. The closest path between the two points would be a straight line,
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® D ® 0

Figure 2.8: Illustration of two cubic Bezier curves generated from the same points
but in different orders.

but in the event of obstacles or constraints on the terminal angle, the path must
take some other shape than that of a single straight line. One way of solving this
is to manually input a desired path, but a simpler way of solving it is to generate
a path determined per time-slot, also known as a trajectory, through an algorithm.
There are many ways in which this process can be automated. A common method
for producing a curved trajectory through R?- or R3-space is the Bezier curve. A
Bezier curve is a generated R” path that is calculated from n coordinates with a
Bernstein basis polynomial of degree n and is expressed as follows [Hsu and Liu,
2020]:
n n .o
B(t)=Y () (1=t P, (2.34)
i=0 \!
The curve can be described as adding the contribution of moving between straight
lines between the set coordinates, with the contribution of each line being propor-
tional to the time from start to finish, see Figure For airships that move in R
it is most common to calculate the Bezier curve for n = 3 which develops into the
cubic Bezier curve expressed as follows:

B(t)=(1—1)°Py+3(1 —1)%tP +3(1 —1)i*P, +1° P (2.35)
with its time derivative expressed as:

dB(t
# = 3(1 — I)Z(Pl — P()) +6(1— l)t(P2 — Pl) + 3t2(P3 —-P) (2.36)
Worth noting is that 7 refers to a normalization of the time it takes from the first
point to the last, thus 0 < # < 1. By storing the calculated R3-coordinates for equally
spaced values of 7, the R3-trajectory is generated [Hsu and Liu, [2020)].

Least Squares Optimization

When using a controller that measures the states of a vehicle, there might not be
a clear relationship between the states and the actuation unit. For example, take a
vehicle with three propulsion units, one creating thrust upwards and to the right,
one that creates thrust to the right and one to that creates thrust to the left. Now say
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Figure 2.9: Illustration of the maximum thrust vectors of three propulsion units
(black) and the desired resultant thrust vector (red).

that a controller gives as output that, to reach the desired setpoint the vehicle must
generate thrust straight upwards. Also say that to conserve fuel the vehicle should
use as little thrust as possible. Based on the configuration of the propulsion units,
they must be actuated simultaneously but at different output effects to achieve the
desired thrust, see Figure [2.9] In the figure it can be observed that optimal thrust,
t4es» is achieved when |t1| = 1, |f2] = v/2 and |£3] = 0. For cases that are not as simple
as the example in Figure 2.9] and when the calculations should be done iteratively,
it is useful to find an algorithm that calculates the optimal thrusts automatically.
One way of doing this is using constrained quadratic programming of which Least
Squares (LS) optimization is a subcategory. In [Hérkegard, 2002], both Sequential
Least Squares (SLS) and Weighted Least Squares (WLS) algorithms are developed.
The SLS problem formulation is expressed as follows:

ugargmin{HW(uu,,)H ‘u€arg min |Wa(Buv)||} (2.37)
u

Upnin SUSUmax

where || - || notates the two-norm of a vector, that is the square root of the sum of
quadratic vector elements [Glad and Ljung, 2000]]. The WLS problem formulation
is expressed as follows:

uw =arg  min  ||W(u—up)|[* + ¥|[Wa(Bu—v)|]* (2.38)
Upin SUSUmax

The variables used in both least-squares formulations are described in Table[2.3]

In words the SLS formulation in Equations (2.37) can be described as follows:

The WLS formulation in Equation (2.38) can in words be described as follows:
The formulations described in Equations (2:37) and (2.38) only tell the objective
of the least-squares algorithms, but not how they are to be performed. Minimizing
a function is a process that requires multiple iterations to achieve a locally optimal
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Find the actuator effort, u, that is as close to the desired actuator effort, u,, in a
square norm sense as possible by finding all u that also makes the control signal
mapping of u as close to the desired control signal v as possible without letting u
exceed a set of lower and upper limits defined by u,;, and 1.

Find the actuator effort, u, that is as close to the desired actuator effort, u,, as pos-
sible and that makes the control signal mapping of u as close to the desired control
signal v as possible without letting u exceed a set of rectangular limits defined by
Uppin and Uy,

Variables Description Dimension
us Optimal sequential least-squares actuator effort mx 1
uw Optimal weighted least-squares actuator effort mx 1
u, Desired actuator effort mx 1

u Variable actuator effort to be optimized mx 1
v Desired control signal kx1
B Matrix mapping actuator effort to control signal kxm
W Welghtlng. mat.rlx penalizing a(.:tuator effort " m
differing from the desired
Weighting matrix penalizing the mapped control
W, . . kxk
signal from the desired

Table 2.3: Description of least-squares optimization variables.

solution. One way of doing this is using Active Set algorithms. This is described
briefly in [Hérkegard, 2002] and in-depth by [Nocedal, [2006]. To summarize the
descriptions made by [Hirkegard, 2002]] and [Nocedal, [2006], the algorithm can be
explained as follows:
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Let the least-squares problem be written on the form of min, |Au — b|, with the
mapped equality constraint Bu = v and the feasibility constraint Cu > U, where
c=[1 —I TandU = [Umin  —tma] T Let W be the working set initially defined
by guessing some constraints that might be active for the optimal solution. With
this working set, and an attainable starting point u; = ug, see if the LS formula-
tion is minimized, otherwise let u; 1| = u; + p;, where p; is some step away from
the starting point and of equal dimension as the starting point. For each active con-
straint acting on some index i, let p; = 0. If u; is outside of the existing constraints
shorten the step of p; by some factor, add this new constraint to the working set and
try again. If u; | is within the existing constraints, calculate the Lagrange multipli-
ers of the mapped equality constraint and the feasibility constraint. See [Nocedal,
2006, Chapter 12] for a description of Lagrange multipliers. If the Lagrange mul-
tiplier for the feasibility constraints is component-wise greater or equal to zero, it
follows by the properties of a Lagrange multiplier that the optimal solution u, has
been found and the current working set acting on the optimal solution is known as
the active set. If the multiplier instead has negative components, update the working
set to not include the constraint related to the smallest component of the Lagrange
multiplier. With the updated working set, let the new uy,,; be the previous u; and
then reiterate the process by taking a step, p; away from the starting point and so
on. If no minimum has been found after i = N iterations, uy is used as the pseudo
optimal u [Hérkegard, 2002][Nocedal, 2006].

The exact algorithm used to solve the actuation problem is described in Ap-
pendix [B] closely following the developments in [Hérkegérd, [2004]

Signal Processing and Filtering

The definition of a numerical state derivative in Equation (E.I) gives that as the
sampling time & approaches zero, the influence of measurement noise increases,
thus distorting from the value of the state derivative. To reduce this distortion the
signals must be processed. A common way of processing the signals is to attempt
to remove the noise from the original signal, removing its distortion effect from
the derivative. Another approach is to filter or smooth the calculated derivative. To
perform these tasks there are numerous types of filters, each acting in its own way
with its own advantages and disadvantages [Taylor, 2012, p.151-165].

One such smoothing method is exponential smoothing, which acts on a mea-
sured time series of a desired length and finds a weighted average of the series. The
exponential smoothing filter can be described as follows:

k—1
yrulk] = aylk]+ Y a(1— o) y[k — ] (2.39)

i=1

where yyi,[k] is the filtered signal at time index k, y[k] is the measurement at
time index k, and @ € [0, 1] is a weighting parameter. The weighting parameter o
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is selected as how much weight the signals of each previous time index should be
given. If ¢ is near zero the most weight is given to the signals from the oldest time
indexes, while & near one gives the most weight to the signals from the most recent
time indexes. Instead of using the entire time series, it is sometimes only desired to
use the most recent part of the time series when smoothing. This type of exponential
smoothing is described as follows:

N
yrnlkl = aylk]+ Y a(l—a)yk—i] (2.40)
i=k—N

where N > 1 is the order of the filter meaning how many time samples it acts on. An
example of when the limited filter is used is when it is costly to store a lot of data
and if there are restrictions on how long time the calculation can take [Hyndman
et al.,[2008} p.13].

2.4 The CrazyFlie and Lighthouse Positioning Deck

A CrazyFlie is a small quadcopter UAV, consisting of a PCB control board, a battery,
four DC motors and four propellers, with room for accessories, such as additional
sensors [Bitcraze,|2020]]. One of the additional sensors is the Lighthouse positioning
deck, which in combination with Lighthouse V2 base stations yield accurate posi-
tion and attitude estimates of the CrazyFlie. The positioning system can in short
be described as the Lighthouse V2 base station sending out planes of light which
intersect with four sensors placed on the Lighthouse positioning deck. Based on
the observed angles that these planes intersect with the sensors, a position relative
to the Lighthouse V2 base station can be calculated [Bitcraze, 2021]]. For an in-
depth explanation of how the position and attitude is calculated, see the Lighthouse
positioning system documentation provided by Bitcraze AB on their web page.

In accordance with the system identification study performed in [Forster, [2015-
08]], the generated thrust of a single CrazyFlie motor, f; can be mapped as a polyno-
mial function of the control signal ¢;. The mapping identified in [Forster, [2015-08]]
is expressed as

fi =2.130295-10""" . ¢? +1.032633-107% - ¢; 4+ 5.4845600-10™%  (2.41)
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3
Methodology

In this chapter, the practical parts and steps of progression of the master’s thesis are
presented. This involves descriptions of how the literature review was performed,
how the blimp UAV was modelled theoretically, how the Lighthouse positioning
system was set up, how the computer vision algorithms were implemented and how
the blimp UAV was controlled. The chapter also describes how the system is tested.

3.1 Modeling the Blimp

The first step of the theoretical work is to create a mathematical model of a to
be used blimp, and implement it in a simulation software, in this case Matlab and
Simulink. The mathematical model selected for the thesis is the one derived by
[Kukillaya and Pashilkar, |2017]] which is described in Section @ Before describ-
ing the implementation, a list of assumptions and delimitations must be made. The
first assumption is that as the blimp is purposed to operate indoors, the velocity of
the surrounding air is assumed to be zero, leading to the contribution of ff =0.
Secondly, it is assumed that the angle of attack a, sideslip angle 8 and rudder de-
flection angles &;, are all set to zero. This leaves the F . vector contribution as only
affecting the F; component by the size of pVOZCyl /2. Since the purpose of the blimp
is to move slowly (Vo = 0.1m/s), which in combination with C, = 0, gives that this
component can be ignored (see Figure 21 in [Kukillaya and Pashilkar,[2017]). Thus,
F, . reduces to a vector of zeros. This leaves the contribution of the F, s Flp1g) and
Fp vectors where the propulsion vector F), will be described in Section

With the data for the intended blimp seen in Figure [D.1]in Appendix [D] the
coefficients in Equation becomes:

ay =1.341m, a, =1,490m — a=2.831m
b=c=0.472/2=0.236
mais = (2/3) 7+ paiy - (a1 +az) - b* = 0.4045
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e =0.9965
ap = 0.0307
[30 =% = 0.9847

With these coefficients and a placeholder variable for the total weight of the
airship, Mgy the added mass matrix in Equation (2.15) with the components in
Equation (2.16) become:

0.0063 0 0O 0 0 0
0 03923 0 0 0 0
0 0 03923 0 0 0
Maia = | 0 0O 0 0 0 G.1)
0 0 0 0 05950 0
0 0 0O 0 0 05950

Before the mass and inertia matrix in Equation (2.19) can be introduced, all com-
ponents that are to be attached to the blimp must be determined to their position
and mass. However, after the components’ masses and inertias are introduced and
the mass and inertia matrix is calculated, the simulation sequence can be set up.
A sketch of the simulation implementation is illustrated in Figure [3.1] In the fig-
ure, contribution from F),, F; and F{; ¢ are summed before they are multiplied by
the inverse of the mass and inertia matrix, M, !, producing the body state acceler-
ations. The body accelerations are both integrated and sent back to the F; block,
and rotated from the body frame to the global frame. In the global frame, they are
integrated twice producing the global positions which are sent back to the F;, )
block. This sequence is what is iterated through and thus simulated. The F, blocks
contribution will be described in Section[3.2

Pyio F(h+g) Vbody
Viody H e M, »’ R! H Jat H [dt P Pyio

Figure 3.1: Illustration of the steps of the simulation sequence.

—_

3.2 Propeller Optimization

An important part of controlling a vehicle is the placement of the actuators. For a
blimp-like UAV with propellers as actuators, both the number, direction and place-
ment of these propellers are relevant. For example, by placing a propeller in a way
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that coincides with the £-axis allows for propulsion forwards or backwards, but does
not allow the generation of any moment around the axes which is needed to create
rotation. By instead placing the propeller parallel to the %-axis but translated from
it, both propulsion and rotation are created, but it requires an additional propeller to
counteract the rotation if only propulsion is desired. Since the goals of the thesis,
listed in Section[I.2]includes being able to control both the position and the rotation
of the UAYV, it is important to be able to maintain six degrees of freedom. To achieve
this the propellers must be placed so that forces can be created in all directions as
well as being able to generate moments around all three axes.

Definition of Forces and Moments

The force vector, F, in Figure@ is made up of three component forces, F, F;, and
F;, each being parallel to the £-, y- and Z-coordinate axes respectively, which is il-
lustrated in Figure[3.3] To calculate the size of these three components, the angles o
and 0 are introduced, where  represents the angle between the force vector F and
the Z-axis, and O the angle between the £-axis and Fyy, which is given by project-
ing F onto the £'§/-plane. Using these notations and definitions, the resulting force
components arising from a force applied in a NWU body frame at the coordinates

[xp, yp, 2p] are:

F =Fy+F=FE+F+F (3.2a)
Fy =F -sin(a) (3.2b)
F, =F,-cos(0)=F -cos(0)-sin(cr) (3.2¢)
F, =F-sin(0) = F -sin(0) -sin(or) (3.2d)
F, =F -cos(a) (3.2e)

As illustrated in Figure [3.4] by translating the component forces so that their base
intersect the Xp¥p-, £pZp- and ypZp-planes, the resulting moments acting in the body
frame become as follows:

M,=F y,—F-z, (3.3a)
My=F;-z,—F;-xp (3.3b)
M, =F,-x,—F-y, (3.3¢)

The subequations in Equation (3.2)) are derived using a NWU reference frame, and
must be transformed if they are to be used in a NED frame. This can be done by
comparing the two reference frames which are illustrated in Figure[3.5]and noticing
that the two frames have flipped J- and Z- axes making the signs of these coordinates
switch, resulting in the following equations:

x[]:’ED :le\)/WU (343)
YD = WY (3.4b)
ZQIED — _ZgWU (340)
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[xpayp7ZF]T

[0,0,0]"

A

XB

Figure 3.2: An arbitrary force vector F' placed in the body frame coordinate system
(X8, ¥, 28], originating from the arbitrary coordinates [x,,y,,zp].

[0,0,0]"

A

XB

Figure 3.3: The force vector F with an added coordinate system [£',5,%'] with de-

scribing angles, projection lines and the projected X-, y- and Z-component forces of
F.
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[0,0,0]"

A

XB

Figure 3.4: The component forces vectors Fy, F, and F., translated parallelly to
intersect with the yZ-, £Z- and £j-plane respectively.

[0,0,01

Figure 3.5: Illustration of how forces from a NWU frame relate to a NED frame.

Another observation is that the forces along the axes can be transformed by the
rotation matrix in Equation (2.8) with R(7,0,0), resulting in the following equation:

FXNED 1 0 0 FXNWU F;CNWU

FNED| =10 —1 0 |- |F™WVU| = |-FMV (3.5)
NED NWU NWU

F, 00—l |E -k

39



Chapter 3. Methodology

The final observation from Figure [3.5] is that the moments in the NED frame
are calculated as follows:

M)ICVED FNWU yNWU FNWU ZgWU
MI,VED — FNWU J\j\;/WU FNWU wuU (36)
MéVED FNWU }\)]WU FNWU xKIWU

Using the equations derived in this subsectlon, in combination with Equation
(2:5) gives that the resulting force from n actuators attached to a body can be de-
scribed as the sum of each actuator’s contribution defined by its position described
with x,,y, and z,, and its direction described by o and 6. The same logic is valid
for the resulting force moment acting on the body. These two sums are expressed as
follows:

n
Elor = ZFW' (3.7a)

M = ZM,, ; (3.7b)

Propeller Placements

To examine how well a set of actuators, or for this thesis propellers, can create a de-
sired combination of forces and moments, numerical tests must be performed. This
is done by first creating a propeller configuration vector defining eight propellers
by positions and directions as a row vector. This vector is in turn used to extract the
data of each propeller and through Equation (3.2) calculate its force and moment
contributions which are stored in the 6 x 8 matrix, G,. This matrix consists of the
force and moment contribution of the eight propellers and is expressed as follows:

F! F}
B B
Fl ... F8
Gp= 14t .. 8| €RTS (3.8)

X X

1 8
!
M! M?

In the matrix, each column holds the contribution of an individual propeller,
with the row elements representing the size of the propeller’s force and moment
contribution. By multiplying G, with a 8x1 thrust vector T', holding the normalized
thrust amplitude of each propeller as its row elements, the resulting body force and
moments, Fp, are calculated as follows:

Fg=G,T (3.9)

Using Equation (3.9) with T as a variable, optimization using a nonlinear solver
can be performed to evaluate how well a propeller configuration is able to gener-
ate desired the forces and moments. The minimization problem is solved using the
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Matlab tool fmincon, and can be described as minimizing the two-norm of the

difference between a desired force vector, Fy,;, and a generated force vector, Fgen,
with an extra term penalizing the two-norm of the thrust by a factor A, see below.

min | Faes — Gp-T|P+A-||T|? (3.10a)

TR

subjectto [1 1 1 1 1 1 1 1]'>7 (3.10b)
00000000 <7 (3.10¢)
A =0.01 (3.10d)

Thus, the solver finds the optimal thrust combination for the propeller configuration
set, so that minimum thrust effort is required. The output of the solver is the optimal
thrust and the calculated residual or cost.

By solving this problem for a variety of realistic forces and moments for
a large number of propeller configurations, the residuals of each iteration can
be collected for each propeller configuration. With the total residual associated
with each configuration a comparison between different propeller configuration
can be made. The configuration with the least total residual is the optimal con-
figuration. The desired vectors of forces and moments are split into two, test-
ing the forces and moments separately. The separate vectors are defined by set-
ting up two ellipsoids of which the three-dimensional boundary positions rep-
resent [Fy F, FZ]T and [M, M, MZ]T, respectively. Thus, when testing the
forces, Fyes = [Fx F, F. 0 0 O]T and when testing the moments, Fjo, =

0 0 0 M, M, M] "' Setting up the propeller configurations is an iterative
process that combines testing with intuition, only limited by that the propellers must
be able to be attached to the intended blimp, described by Figure [D.T]in Appendix
D] First, a few configurations were set up by thinking intuitively on how good place-
ments might be and before they were run through the optimization algorithm. The
residuals were then analyzed and both the desired force vectors and generated force
vectors were plotted. Using these results more configurations were set up in a better
way, and then optimized. This process was iterated until a configuration that seemed
satisfactory was obtained, and the propulsion vector used in the blimp model can
be described as F, = G, - T. The force and force moment ellipsoids were sized with
semi-major and semi-minor axes as described in Table[3.1]

3.3 Simulating the Process

This section functions as a description of how the modelled blimp and the obtained
propeller configuration were implemented in Simulink. Using the model descrip-
tions of the control sequence implementation and trajectory generation are also pre-
sented.
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Axis Maximum Force Maximum Force
[N] Moment [Nm]
X [-1,2] [-0.4,0.4]
i [-1,1] [-1.2,1.2]
Z [-1,1] [-1.6,1.6]

Table 3.1: Sizes of the maximum tested Forces and moments.

Component Placements

To obtain the total mass of the blimp and its inertia, all additional components must
be included. Based on the propeller configuration obtained from the propeller op-
timization, x, y and z coordinates of the eight propellers are given. The masses of
these propellers are set as the summed weight of the DC motor, propeller and some
approximated weight of a motor holder. The two CrazyFlie boards that are used to
control the motors are given coordinates so that they are placed on the top and bot-
tom of the blimp, centered in the body frame *-direction. The weights of the boards
are set as the total CrazyFlie weight minus the weight of four motor and propeller
pairs. The inertias are then calculated using Equation and summated. The total
mass of the blimp is set as the combined weight of all components and the blimp’s
own weight. Note that the inertia of the blimp itself and the helium within are also
taken into account, and calculated using the same equations. With the components
placed and both the mass and inertia of the complete blimp acquired, M,, can be
calculated and implemented in the Simulink model visualized in Figure

Control Sequence

To control the blimp, a sequence of actions and calculations are performed. For this
purpose a combination of a PID controller, feedback compensation and LS opti-
mization is used. The sequence is described by five blocks in Figure [3.6] The PID-
block represents the PID controller, the Compensator-block represents the feedback
compensation, the LS block represents the least-squares optimizer, the B-block rep-
resents the R*® propeller configuration, and the Blimp-block represents the mod-
elled blimp dynamics. The states used in the control sequence are measured and
collected in y € R'? and are defined as follows:

y=m (3.11a)
=[x ys 2 05 05 Vs (3.11b)
X=[is ys i OB Op WB]T (3.11¢)

Additionally, r € R'?, is the reference, e € R'2 is the state error, vp;p € R® is the
PID control signal, vpp € RO is the feedback compensation signal, Uy € R3 is the
optimized actuator efforts and v, € IR® are the generated forces.
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o4 mp P2V Ls M B Yeen

— VFB

y Compensator

-——— Blimp

Figure 3.6: Block diagram describing the control sequence used to control the sim-
ulated blimp.

Tuning the PID: 'When tuning the PID parameters in Equation (2.29), the LS part
is left out, letting vge, = v in Figure @ The process is then simulated iteratively
for different references and parameter values, until satisfactory results are obtained.
For the purpose of this thesis, satisfactory results are defined as the modelled blimp
being able to follow ramp trajectories of slope 0.2 meters per second for the x, y and
7z states, a slope of 0.1 meters per second for the 6 and ¢ states, and of slope 0.5
radians per second for the y state. When the parameters are tuned for the different
ramp trajectories, the blimp is also tested for following sinusoidal trajectories of
frequencies 0.2 radians per second and amplitude 1.0 meters for the x, y and 7 states,
and of frequencies 0.2 radians per second and amplitude 7 for the ¢, 6 and y state.
If the trajectory following is deemed satisfactory for the sinusoidal trajectories as
well, the final PID parameters are found. If not, the parameters are altered until
the sinusoidal trajectories are properly followed, then the ramp curves are tested
again for the new parameters, and if the ramp and sine tests are passed the final PID
parameters are found.

Implementing the Least-Squares Optimization: Once the PID controller is prop-
erly tuned, least-squares optimization is implemented to compute the actuator sig-
nals. To do this, firstly B in Figure[3.6]is set to be the selected propeller configuration
matrix defined as Gp € R®*® in Equation (3.8). Secondly the LS algorithm is im-
plemented and tested in the simulations. The algorithm is selected as the weighted
least-squares method, and is strictly based on the algorithm designed by [Hérkegard,
2004], visible in Appendix In the algorithm, umax and umin are set to match the
limits used for the propeller configuration optimization seen in Equation (3.10d),
the algorithm parameter B is set to be equal to the B used to define the 6 x 8 con-
figuration matrix, and the parameter v is the same as the 6x1 control signal vector v
calculated by the PID controller. The initial working set W, the initial actuator effort
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u, and desired actuator effort u,,,, are set to be empty 6 x 1, 8 x 1 and 8 x 1 vec-
tors, respectively. However, each time the LS optimization finds an optimal actuator
effort, the connected working set becomes the active set, and it and the optimal ac-
tuator efforts are passed as the initial parameters for the next optimization iteration.
The maximum number of iterations are arbitrarily set to 30, and can be decreased or
increased if any deadlines are missed or the calculated effort is deemed sub-optimal.
The other algorithm parameters are left empty, thus letting the weighting matrices
W and W, in Table 2.3]be 6 x 6 and 8 x 8 identity matrices.

Once the LS optimizer is implemented, it is placed in the control sequence, after
the PID controller, and followed by a multiplication by the propeller configuration
matrix B. To make sure that the generated actuator efforts represent the desired
outputs i.e., Vgen, = sat (v)jme* similar tests as for tuning the PID controller are run.
However, before these tests can be performed, it is noted that the desired forces and
moments represented by the PID control signal vp;p € RS are all expressed in the
global frame, while the LS-block optimizes in reference to the body frame where B
is defined. To account for this, vp;p, is multiplied by the rotational matrix defined
in Equation (2.8) before the signal is passed to the LS block.

To make the generated actuator efforts less volatile some modifications are made
to the weighted least-squares algorithm presented in [Hérkegard, 2004]. The mod-
ifications include letting the parameters umax and umin be constant, set as column
vectors of ones and column vectors of zeros, respectively. Another modification of
the original WLS algorithm is that the control signal derivatives are also penalized.
This is achieved by adding a numerical derivative term, where, u,,4, is the control
signal of the previous iteration, to the WLS problem formulation in Equation (2.38),
resulting in the following formulation:

wy =arg min W (u—up)| P+ A Wa(Bu—v)|[* +[Wa(u — uota) /)| |*

Upin <U<Uma)
(3.12)
where W; € R¥*8 is a diagonal penalty matrix acting on the WLS derivative term,
and chosen to have equal size in each diagonal element.

Feedback Compensation

As a complement to the PID controller, the modelled dynamics of the blimp can be
taken into account and compensated for. As described in Chapter[2.3] this consists of
subtracting a force and moment vector, Frp, from the calculated PID control signal.
The size of Frp is equal to the size of the contributions of the modelled equations of
motion in Equation (2:12). By definition, the equations of motion are expressed in
the blimp body frame and must therefore first be rotated to the global frame before
they are subtracted from the PID control signal. This is done by multiplying them
with the transposed rotation matrix, as in Equation (2.9b). When the PID control
signal and the feedback compensation signal are both expressed in the global frame,
the subtraction is performed and the difference is transformed to the body frame by
multiplying with the regular rotational matrix in Equation (2.8).
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3.3 Simulating the Process

Trajectory Generation

With the blimp’s dynamics modelled, control signals generated, and through LS op-
timization converted to actuator efforts, and then mapped back to generated forces,
it becomes relevant to generate a trajectory for the blimp to follow. When traveling
in R3, it is often desired to travel with the front of the blimp being parallel to the
direction of where the blimp is going. The trajectory must therefore not only con-
sist of a x, y and z components, but ¢, 6 and y, components as well. By setting
a delimitation of having the blimp’s ¢ and 0 angles be zero, only the x, y, z and
v components remain. The x, y and z, components are calculated using the cubic
Bezier curve in Equation (2.35)) for a number of time steps and storing the values
in a trajectory matrix. Similarly, the respective state time derivatives are calculated
as in Equation (2.36) and stored in a trajectory derivative matrix. To calculate the y
component at each time step the geometrical definition of the Euler angle must be
reviewed. With ¢ and 6 both equal to zero, the yaw angle, v, can be described as
lying in the £§-plane, regardless of the z coordinate, which is depicted in Figure[3.7]
Based on the definition of y in Figure y can be calculated as in Equation (E-2)
with ¥ = atan(dy/dx). Its time derivative, dy/dt can be calculated by Equation
asdy(n)/dt = (y(t1) — w(f))/(r1 —to), where 1y and #; are the previous and
current time measurements, respectively. Due to the properties of the trigonometric
functions and their inverses, it is not unambiguous in what quadrant the calculated
angle lies. An alternative is to use the atan2(x,y) function available in Matlab
and Python [MathWorks, [2021]]. The function calculates the angle as atan(y/x) but
wraps the calculated angle to —n < y < 7, making it continuous between [—7, 7],
see Figure @ Howeyver, to make the calculated references continuous when the
yaw angles crosses the negative £-axis and the positive £-axis, making a full lap, a
series of conditions and changes are made. These conditions can be seen in Table
and the resulting angle is set as Wy = Weare + 27 - n, where the integer n is
altered according to the conditions in the table n = n,,, otherwise.

1.5
dy P,
{ 1
0.5
v
0 POE_. dx
-0.5

-05 0 05 1 15

Figure 3.7: Illustration of how v is defined in the £y plane.

45



Chapter 3. Methodology
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Figure 3.8: Illustration of how atan2(x,y) is mapped to the unit circle.

Previous Next
From (Ypyey) To (Wearc) Lap (rer) Lap (n)
Yprev < —0.95T+27-n | Yeue > 0.957 N/A n=Nprey— 1
Wprev > 0951+ 27 -1 Veaie < —0.957 | N/A n="Npe+1
Yyrev > 0.95T+27 -1 Weale <0957 N/A n=Nprey— 1
Yprev < —0957+27-n | Yeare <0957 Rprev < -1 n = Nprey + 1

Table 3.2: Table of conditions and changes used to make v, .. as calculated in
[MathWorks, |2021]], continuous in time.

3.4 Real-time Experiments

Now that the blimp has been modelled, propeller placements been determined,
PID controller designed, and least-squares optimization algorithm implemented, the
physical blimp is to be controlled. Initially, some preparatory steps are performed,
followed by multiple intertwined experimental steps performed iteratively to con-
tinually make adjustments and improvements. A block diagram that describes the
control sequence used for the physical blimp is illustrated in Figure 3.9]and a se-
quence describing how the CrazyFlie and PC interact is illustrated in Figure [3.10}

Retrieving and Plotting Sensor Data

The first step is to be able to obtain position and attitude data. For this purpose,
a CrazyFlie quadcopter equipped with a Lighthouse positioning deck and in radio
communication with a host PC is used. As described in Section [2.4] the Lighthouse
positioning deck gives accurate global frame position readings and body frame atti-
tude readings, which through predefined Python methods can be retrieved and used.
To verify the validity of these readings a CrazyFlie quadcopter is equipped with a
Lighthouse deck, and a GUI thread is coded in Python, purposed to plot and print the
retrieved position and attitude data at a frequency of 5 Hz. With the script available
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L,O—e, PID VPID N LS Uw
— VFF
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Blimp Actuators [«——
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Figure 3.9: Block diagram describing the control sequence used to control the phys-
ical blimp.

CrazyFlie PC
Trajectory
State Measurements Measurements . References | Generation
Estimations
b k Control Slgnal
Feedback
Actuators  [«+—|

Dmpensatlcn Compensa’[lon
Figure 3.10: Sequence describing how of the components interact.

Radio
Comunication
Radio
Comunication

Actuator Efforts

Actuator Efforts Desired Forces

L]
]

and a communication link established between the CrazyFlie and the host PC, the
CrazyFlie is manually moved around in R? and tilted around the three body axes,
while simultaneously observing the plotted data. If the plotted data agrees with the
estimated position and attitude of the CrazyFlie, the sensor data retrieval and plot-
ting is deemed satisfactory. Since the simulated model assumed all sensor readings
were measured in the blimp’s CG the retrieved sensor data must be translated from
the CrazyFlie’s position on the blimp’s surface to the blimp’s CG. This is done by
assuming that the position of the CrazyFlie relative to the CG in the body frame is
R = (Xaiffs Yaisp Zaifr) which is fixed in time. The CG position in the global frame
can thus be calculated as:

Xcg = Xér +Rec X (3.13)
The attitude of the CG is assumed to be altered only by small offset angles approx-
imated from the CrazyFlies’s mounting position and calculated as:

66 = er + Maisr (3.14)
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Preparing the Control Sequence

The next step of the preparations is to implement the designed PID controller along-
side with the LS optimizer. As follows by the PID definition in Equation (2.33)) the
translational and angular velocities must be included. This is achieved numerically
by using the retrieved position and attitude data and calculating their time deriva-
tives as in Equation (E.I), where Ay is the difference between the current state and
its previous reading, and At is the time difference between the two readings. The
time difference or sampling time was selected as the shortest time possible without
missing deadlines, chosen as 0.09s.

An issue with this type of velocity approximation, is that when the denominator
tends towards zero, small differences in the nominator lead to large differences in
the calculated velocity, making the approximation susceptible to noise and signal
outliers. To avoid this a third-order exponential smoothness filter is implemented.
With the full state vector y defined in Equation (3.11)), the PID controller can be
implemented in Python as follows by the pseudocode in Algorithm |I] available in
Appendix [C] To test that the code is valid, a known input is sent through the con-
troller and its output is observed. If the output agrees with what is expected the
controller is deemed satisfactory.

Just as in the simulation model, the PID controller is complemented with feed-
back compensation based on the equations of motion of the modelled blimp. As
the equations of motion are expressed in the body frame they must be converted to
the global frame before they are subtracted from the PID control signal. Whether
or not feedback compensation is beneficial to the control sequence depends on how
well the modelled blimp agrees with the dynamics of the real blimp. Tests must be
performed to determine if the control sequence is better with or without feedback
compensation.

Following the PID and feedback compensation blocks in the control sequence
is first a global to body frame transformation before the least-squares optimization
block. For the LS block the same modified weighted least-squares algorithm as de-
scribed by the WLS formulation in Equation (3.12) is used, only converted from
Matlab code to Python code. To test the LS block a similar test to that for the sim-
ulated LS algorithm is performed, where a known force and force moment vector
is sent into the LS block and then the resulting actuator efforts are multiplied by
the propeller configuration matrix and the generated forces observed. If the desired
forces and moments agree with the generated ones, the least-squares optimization
block is deemed satisfactory.

Actuating the Propellers

The CrazyFlie boards that actuate the motors and it is to these units that the opti-
mized actuator effort signals are sent. The signals are sent as individual motor power
parameters which takes an integer value, ¢; € [0,65535] as input and converts it to
an angular velocity of the motor. The resulting thrust value of the individual motor
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is a function of the integer value ¢; is seen in Equation (2.4T)). However, to find the ¢;
value that represents the desired actuator effort, the inverse function must be found.
This inverse function can be derived as follows:

fi=2.130295-10""1 . ¢? +1.032633-107° - ¢; 4 5.4845600 - 10~*
— 0 =2.130295- 107" ¢? +1.032633- 106 - ¢; + 5.4845600 - 10+ — f;
0 —a 1.032633-1076 ot 5.4845600-10~* — f;
~ T 2.130295-10-11 2.130295-10-11

o ~ 51631.65 51631.65\> 54845600104 — f;
T 2.130295 2.130295 2.130295- 1011

(3.15)

Realize the Propeller Configuration

In the preceding chapters, the propeller configuration has been purely theoretical
and consisting only of a mathematical matrix mapping of the actuator effort values
to their respective force and force moment contribution in the blimp’s body frame.
To be able to place the propellers and motors in the proper configuration on the
blimp, a motor holder was used. With the blimp geometry data displayed in Fig-
ure in Appendix [D] and the propeller placements in Figure 1] two types of
motor holders were designed as CAD parts, one version for placing in the front of
the blimp and one for placing in the back. Due to the symmetry of the desired pro-
peller placements the two motor holder versions were identical in all aspects except
for how the base was tilted. The tilt angle was set to imitate the angle between the
body f-axis of the blimp and the line tangent to the blimp’s surface horizontally
in the desired X coordinates. On top of the tilted base a shaft was placed so that it
was perpendicular to the body %-axis. At the top end of the shaft, two cylindrical
holders were placed at angles that match the ¢« and 6 angles of the desired pro-
peller placements. The finished CAD parts were then 3D-printed and tested to see
if they matched the weight requirements set by the buoyancy of the blimp, the di-
mensional requirements set by the tangential angle at which they are placed, and
the dimensional requirements set by the size of the motors that they hold. If the
holders matched the requirements, a matching set of holders were 3D-printed and
used for the real-time experiments on the blimp. If not, the dimensions and design
were reworked until the requirements were met.

With the designed motor holders, the motors themselves are modified. This is
done by extending their connecting wires so that they are long enough to reach the
CrazyFlie boards that power them. Additionally, holders for the CrazyFlie boards
are designed as CAD parts with the purpose of making sure that the CrazyFlie
boards remain properly fixed in the body frame even as the blimp moves. The
CrazyFlie holders, are designed with a base curved to follow the curvature of the
blimp, and a platform cast after the CrazyFlie board on top. To keep the CrazyFlie
board fixed on the platform, lids fitted with screws are attached. It is now time to
inflate the blimp and mount the 3D-printed holders, CrazyFlie boards, motors and
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connecting wires. Due to some delays in getting the properly sized blimp, a smaller
blimp with less buoyancy is initially used. As the smaller blimp is not buoyant
enough to support the added components, a chord is attached to the blimp’s top al-
lowing some testing to be done before the larger more buoyant blimp arrives. The
smaller blimp used for the initial testing is presented in Figure[3.11]

Figure 3.11: Picture of the smaller blimp used for the initial testing, with all com-
ponents attached.

Testing and Tuning the Blimp

As previously mentioned, the initial testing is due to delays performed on a smaller
blimp than intended. The smaller blimp is not buoyant enough to lift the required
equipment and is therefore suspended in the air by a thin cord placed so that the
blimp attitude angles are all close to zero while in equilibrium. The cord placement
is for a blimp that is symmetric in the £§ plane illustrated in Figure [3.12] where MG
is the net gravitational force of the blimp, B is the net buoyancy force and 7 is the
cord lifting force. For a blimp geometry resulting in the center of gravity and center
of buoyancy not coinciding, the cord must be placed so that equilibrium is achieved
when 0 = 0. An expression for the placement is derived as follows:

F, =T -sind (3.16a)
F,=T-cosé+B—MG (3.16b)
My=MG-a+B-b—T -sind-c—T-cosd-d (3.16¢)
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where B_MC
[F,=0] = T-cos6 =B—MG — T = —
cosd
M,=0] =0=MG-a+B-b—T-sind-c—T -cosd-d
B-MG B-MG B-MG
T = | =0=MG-a+B-b— -sind - ¢ — -cosé -d
cosd 0sd cosd
ind
[tan5:%] — 0=MG-a+B-b— (B—MG)-tand-c— (B—MG)-d
[6=0] = d=MG-a+B-b—(B—MG)-0-c— (B—MG)-d
MG-a+B-b
— - 1
=d B_MG (3.17)

For the blimp used, this position was instead determined through trial and error,
resulting in the test blimp setup shown in Figure [3.11]

A<
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/

Figure 3.12: Illustration how a cord attached to the blimp affects its dynamics.

With the test blimp setup ready, a preliminary PID controller can be tuned. Since
the model equations are based on the geometric data for a larger blimp, their respec-
tive feedback compensation components are excluded from the preliminary control
sequence. The mechanics of having a cord attached to the blimp implies that if
it moves away from its initial equilibrium position, additional forces and moments
are introduced in the body frame which are viewed as disturbances. Attempts can be
made to model these disturbances and include them in the feedback compensation
block in order to remove their influence.

Due to additional complications, the originally intended blimp that was delayed,
was destroyed. To solve this a substitute blimp is used, specified by the data in Fig-
ure[D.2]in Appendix D] With the previously printed propeller holders and CrazyFlie
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boards, the new blimp is assembled and can be viewed in Figure [3.13] To compen-
sate for the extra buoyancy of the final blimp that was not needed to lift all the
components mounted on it a ballast was placed on a cord on the blimp’s bottom
side. It was placed so that the CrazyFlie’s orientation remains close to zero while in
equilibrium. The ballast was shaped like a cup which enabled weights to be placed
inside of it until equilibrium was achieved. The CrazyFlie-to-CG offset was visually
approximated as )_(gG =(—0.11,0,—0.28) (m) and fjcg = (—1.5,2,0) (deg). With
this blimp the system is tested iteratively and its PID parameters and feedback com-
pensation components are tuned until a controller that can stably make the system
reach position setpoints is obtained.
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"\\\\
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Figure 3.13: Picture of the final blimp with all components attached.
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4

Results

In this chapter the results obtained during the thesis will be presented and given
context. The form of presentation will vary between tables and plots.

Propeller Placements

The desired propeller placements obtained from the optimization algorithm de-
scribed in Section @] are presented in Table @, where the x, y and z variables
are coordinates in the body frame, and the o and 0 variables describe spherical co-
ordinate directions. Illustrations of the placements and the calculated residuals are
presented in Figure

Variables P1 P2 P3 P4 P5 P6 | P7 P8
X 0.9 -09 | -09 | 09 -09 10909 | -09

y -03 1| -03 ]| =03 | -0.3 03 | 03]03]| 03

z 0 0 0 0 0 0 0 0

o _2r | _4m | 2z | _4z T it | 2z in

6 6 6 6 6 6 6 6

0 ki 3T 3T 3% KEd 3T | 3% 3T

8 8 8 8 8 8 8 8

Table 4.1: Table of propeller configuration parameters expressed in spherical coor-
dinates.

Simulation PID Tuning

With the desired propeller configuration and Simulink model simulations were per-
formed for both ramp and sinusoidal references. Simulated state responses to sinu-
soidal references for each state are presented in Figures #.2H4.7] Their ramp ref-
erence counterparts are presented in Appendix [C| The PID parameters obtained
through iterative testing and what was used in the seen sinusoidal responses are
presented in Table
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Figure 4.1: Calculated desired propeller placements for the original blimp.

Kp | K; | Kp
x| 5 2 1
y |5 2 1
z | 15| 5 5
o1 2|0 2
6| 3 0 2
v |5 1 1

Table 4.2: Obtained PID parameters for the continuous-time simulated system.

Trajectory Generation

The final generated test trajectory is presented along with the simulated state re-
sponses in Figure [4.8] with the coordinates and attitudes used to generate the tra-
jectory presented in Table[#.3] A three-dimensional illustration of the trajectory and
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State Responses
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Figure 4.2: Simulated state responses to a sinusoidal reference for state x.

State Responses
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Figure 4.3: Simulated state responses to a sinusoidal reference for state y.

the state responses is presented in Figure [d.9]

Least-Squares Optimization

The validity of the least-squares optimization is tested by running the simulating in-
cluding the LS-block with the generated trajectory as reference, which is presented
in Figure .10} A comparison of the desired force generated by the controller and
the actuated force generated by the LS block is presented in Figure .11 where the
F, components are compared. The influence of the added numerical derivative term
in the WLS formulation is presented and compared in Figures[#.12]and F.13]
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State Responses
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Figure 4.4: Simulated state responses to a sinusoidal reference for state z.
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Figure 4.5: Simulated state responses to a sinusoidal reference for state ¢.

Real-time Experiments

As the originally intended blimp was damaged a substitute blimp with different
geometry had to be used. This led to that the originally derived optimal propeller
placements could not be used and new ones had to be selected. The parameters
describing the final propeller placements are presented in Table[d.4] and illustrations
of the placements and the calculated residuals are presented in Figure .15 Running
the simulation with data for the new blimp gave the state responses presented in
Figure[#.16and a comparison between the desired and generated forces is presented
in Figure

With the final prototype blimp, seen in Figure [3.13| constructed and the Python
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State Responses
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Figure 4.6: Simulated state responses to a sinusoidal reference for state 6.
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Figure 4.7: Simulated state responses to a sinusoidal reference for state y.

control sequence implemented, the system was tested by placing the blimp arbitrar-
ily on the floor and then controlled to reach a set of constant setpoints. During the
tests plots of the position and attitude states, the desired and generated forces, the
desired and generated moments, and the actuator efforts were created. As the PID
parameters obtained while simulating did not work for the prototype, new ones had
to be found, which required numerous iterations. The final parameters are presented
in Table F-5] and plots for a selected trial run are presented in Figures {.18]to [4.22]
respectively. The trial was selected as the one that gave the visually most stable
system. The desired forces and moments are defined as the output signal produced
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x|yl z|o]|6 4
BlO[O[O]O0]O 0
PlO|O|0]|O0|O| atan2(P —P), P—F))
pl2[2]1]0]0 R
Bl 2[210]0]0 0
Pl 221-1]0]0 z
psl2]2]0]0]0 iz

Table 4.3: Points used to generate the trajectory.

State Responses

Position [m]/ Orientation [rad]
s 8 " . s

Time [s]

—

Figure 4.8: Simulated state responses for a reference trajectory not using the LS-

block.
Variables P1 P2 P3 P4 P5 P6 P7 P8
x 0.52 —-0.52 | —0.52 | 0.52 -0.52 | 0.52 | 0.52 | —0.52
y -0.36 | —0.36 | —0.36 | —0.36 | 0.36 | 0.36 | 0.36 | 0.36
Z 0 0 0 0 0 0 0 0
o 2r i 2r i 2r an 2n iz
6 6 6 6 6 6 6 6
0 3z ST RE 3 3z ST T 3z
3 8 3 8 3 8 8 3

Table 4.4: Table of propeller configuration parameters expressed in spherical coor-

dinates.

by the PID and feedback compensation blocks transformed into the body frame,
and the generated forces and moments are defined as the optimized actuator efforts
calculated by the LS-block multiplied from the left by the propeller configuration
matrix with its parameters presented in Table[4.4]
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Trajectory Following
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Figure 4.9: 3D illustration of the reference trajectory defined in Table and fol-
lowed in Figure[4.8] and the simulated responses.
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Figure 4.10: Simulated state responses for a reference trajectory using the LS-block.
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Figure 4.11: Simulated comparison of the forces sent from the controller and the
forces generated from the LS-block using the data for the original blimp.
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Figure 4.12: Plot of a thrust signal when not penalizing the numerical thrust deriva-
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Thrust Signals

Thrust [%]

1 1 | | 1 1 | | | |
o 2 P 0 8 100 120 140 160 180 200

Time [s]

Figure 4.13: Plot of a thrust signal when penalizing the numerical thrust derivative
in Equation (3.12)), with feedback compensation.
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Figure 4.14: Plot of a thrust signal when penalizing the numerical thrust derivative
in Equation (3.12)), without feedback compensation.
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Figure 4.15: Calculated desired propeller placements for the final blimp.
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Figure 4.16: Simulated state responses using the data for the final blimp.

Kp K; Kp
0.07 | 0.05 | 0.099
0.15 ] 0.1 | 0.05
0.25 ] 0.05 | 0.25
0.15 | 0.05 | 0.05

0.5 | 0.05 | 0.07
v | 0.16 | 0.06 | 0.06

DS | = | =

Table 4.5: PID parameters obtained for the prototype blimp with a sampling time of
(6)5)9 seconds.
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Figure 4.17: Simulated comparison of the forces sent from the controller and the
forces generated from the LS block using the data for the final blimp.
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Figure 4.18: Experimentally obtained position measurements for a trial run.
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Figure 4.19: Experimentally obtained attitude measurements for a trial run.
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Figure 4.20: Experimentally obtained desired and generated forces in the body -
direction.
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Desired and Generated Moments
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Figure 4.21: Experimentally obtained desired and generated moments around the
body Z-axis.
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Figure 4.22: Experimentally obtained thrust signals expressed in percentage of max-
imum thrust.
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Discussion

In this chapter, the work performed in the thesis will be reviewed and discussed.
This includes discussing the choice of methodology, implementation and the re-
sults obtained. In addition, suggestions for future work and development will be
presented based on observations made and experiences gained during the thesis.

5.1 Modelling the Blimp

The first point that can be made regarding the choice of model is that the shape of
both the initial testing blimp and the final used blimp differed from the shape used in
[Kukillaya and Pashilkar, 2017] to derive the equations of motion. The differences
come in two forms. Firstly, the physical blimp did not have rudders and fins, and
secondly, the physical blimp was not purely shaped like a double ellipsoid since its
back part was not as rounded as the shape used in the model.

The first difference reduces the complexity of the aerodynamic force vector in
Equation (2.14)) and thus its actual force and moment contributions, supporting the
choice to exclude it from the model used when simulating. However, the aerody-
namic force vector’s exclusion will have an influence on the quality of the simula-
tions. The extent of this is according to its definitions directly proportional to the
squared blimp velocity and the direction it travels. For slow-moving blimps pur-
posed to have the side slip angle, 3, and the angle of attack, o be zero, the the
aerodynamic force vector will be small and only acting in the body X-direction.

The second difference introduces a source of error which must be considered
when comparing the simulated and real system. The difference will affect both how
the geometrical parameters used in the added mass matrix in Equation are
calculated, and how the inertia components are calculated for the blimp itself. Con-
sequently, this affects the values of the mass and inertia matrix components in Equa-
tion (Z.19) which in turn affect how the Coriolis and centrifugal forces and moments
are calculated in Equation (2.21)). The shape differences are thus influential both to
the Coriolis and centrifugal forces and moments, and to the added mass and iner-
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tia matrix, which is what in the simulations is used to relate the applied forces and
moments to the body accelerations.

A second point regarding the choice of model that can be made, is about the
forces and moments caused by wind disturbances that were excluded in the model.
With the delimitation that the velocity of the surrounding fluid is zero at all times
made in Section [I.3] the forces and moments caused by fluid motion equal to zero
by default. This assumption can be valid for rooms with little to no movement of any
objects in the vicinity of the blimp, but not for crowded rooms. This claim is based
on experiences that were obtained when performing experiments with the blimp,
where for example if the blimp was sitting still on the floor and a person walked
by, the blimp would move in a way that coincided with the direction the person was
walking in.

5.2 Propeller Optimization

Optimizing the propeller placements was a step that took place early in the the-
sis, when only a blimp was chosen and in parallel with the implementation of the
mathematical model. As in consequence, assumptions regarding both the limits and
requirements of the generated forces and moments had to be made. The size of
the force and moment ellipsoids used when performing the optimization algorithm
were intuitively set up only to be able to compare how the individual configura-
tion performed in relation to each other. As Table indicates, the forces tested
for along the positive X-axis were larger than in all other directions since the blimp
was purposed to mainly move forward in its body frame, with some translational
adjustments being able to be made in the other directions. The same table states that
the moments tested for around the X-axis were the smallest followed by around the
y-axis and then Z-axis which had the greatest test moments. The blimp was purposed
to have its ¢ and 6 angles remain level during positional movement, but to allow
some angle changes if desired. As for the size of the thrust vector generated by each
propeller, this too was unknown at this point in time. The force was thus normalized
to act between 0 and 1N, which can be interpreted as acting at a percentage of the
propeller’s actual maximum force.

Using a combination of rectangular and spherical coordinates to describe the
propeller configurations worked well, the rectangular coordinates described the lo-
cation of the propeller in relation to the body frame, and the spherical coordinates
described its direction and the thrust it generates in each body frame direction. The
reason it worked well is that it provided an understandable way of describing the
propellers position and orientation that was also easy to make changes to. After
each batch of configurations was tested, the configuration parameters of the top
candidates were examined and altered to see how different variants performed.

The cost function in Equation (3.10d)), was selected to mainly penalize the dif-
ference between the desired forces and moments and the generated forces and mo-
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ments, and secondly the size of the calculated optimal thrust signals. The reason for
this was that the main purpose of the propellers is to actuate in a way so that they
collectively generate forces and moments that resemble their desired counterparts.
If the size of these signals could be reduced while retaining the appropriate collec-
tive forces and moments, less energy would be required, which should also be taken
into account. However at a much lower priority since the main goal is to stabilize
and control the blimp. Having the optimization algorithm collect the residuals of
each test as well as plot how well the generated forces and moments matched the
desired ones was beneficial in the sense that it gave direct feedback to how each
configuration performed and how it might be lacking.

The results obtained from the performed optimization are presented in Table[d.]
and in Figure The chosen configuration might seem poor in the sense that it is
unable to generate the maximal desired force in the X-direction. However, the con-
figuration was successful in generating close to all required moments. The property
of being able to generate the desired moments was in this thesis more important
than generating the maximum force in the X-direction. This statement is based on
that with a smaller force in the X-direction when traveling forward the blimp will
still accelerate to its desired velocity, even though slowly. But to also follow a trajec-
tory and keep the front of the blimp pointing in the direction of the desired velocity,
it should be able to rotate at a high pace.

5.3 Simulating the Process

The Matlab Simulink simulation was used mainly to verify that the designed
PID controller, feedback compensation, LS optimization and trajectory generation
worked in theory. The initial ambition was that the simulations and the results ob-
tained from them would be relevant enough to be directly applied to the physical
process. The first issue to be presented with this ambition is that the simulations
were run in continuous time without consideration for the influence of sampling
time.

The sequence of actions performed at each time step of the simulation is seen in
the simulation sequence depicted in Figure[BLf], where F), is equal to the signal, vge,
in the block diagram seen in Figure [3.6] In the same block diagram, the y-signal
consists of the blimp’s x-, y- and z-position states in the global frame, its ¢-, 0-
and y-attitude states, and the time derivatives of both the positions and attitudes.
Additionally, the body frame translational and angular velocities are included as
they are part of the equations of motion, used in the feedback compensator.

Both the ramp and sinusoidal reference tests performed to tune the PID were
useful in that they provided initial verification that the controller was good enough
to have the simulated blimp follow a rudimentary trajectory. Worth noting is that
the introduction of feedback compensation was made at an early stage of the PID
tuning to facilitate obtaining a stable system. By viewing the sinusoidal tests seen

68



5.3 Simulating the Process

in Figures and at the same time consider the PID parameters in Table {4.2]
some observations can be made. Firstly, not having integral action for the ¢ and 6
parts gives a stable system with a steady-state error, which is expected. Secondly,
it can be seen at the start of the x-, y- and z- plots that there are some intertwining
effects that create movement of states that are supposed to remain still. This effect
is however only brief and is compensated for after approximately 3 seconds.

The trajectory generation algorithm took a number of iterations and tests
before it was deemed successful. This was caused by how the wy-angle,
which in the simulation is defined on (—oo,00) passed through +7m for which
the atan2(y,x) command is not continuous. The conditions in Table were
derived through trial and error, and their limit values were chosen intuitively to
allow all conditions to be handled. The conditions were deemed good enough when
the trajectory curve was continuous. With the generated trajectory the system was
tested to see if the trajectory was slow enough for the blimp to be able to follow,
which, according to Figures 4.8 and[4.9] it is successful at. It should be noted that
since the conditions were derived through trial and error, it is not certain that they
cover all scenarios and might have to be complemented.

As mentioned previously in the thesis, the logic that converts the desired forces
and moments calculated by the controller and transformed to the body frame, is
the least-squares optimization block. With the LS block sending thrust signals that
are converted to generated forces and moments, the system was simulated giving
the result seen in Figure [4.10] These results agree with those of not using the LS
block. The penalty factor acting on the numerical derivative term added to the WLS
formulation in Equation (3.12) is also a parameter that can be tuned. The purpose
of increasing this penalty is to obtain a thrust signal that changes slower, allowing
delays and slow actuator dynamics to catch up. By testing the system for different
factors, a penalty of 15/dr was selected, where dt is the time between samples. A
comparison between a thrust signal acting with and without this penalty can be seen
in Figures 4.12) and f.13] In the figures it is clear that the signal oscillates more
when not penalizing the derivative, though on the downside, the signal is consis-
tently greater with the penalty. To choose which of the two types is preferred, their
implicit consequences must be considered. A greater thrust signal will lead to a
higher energy consumption, while a more oscillating thrust signal will put greater
demands on the actuation speed of the system. If the actuators are too slow to re-
act to the given signal, it is likely that the oscillations in the signal will spread to
the dynamics of the blimp. With this in mind and that it for this thesis was more
important to obtain a stable system than a fast one, the effects of using the penalty
are preferred. To test how well the system performed without the feedback compen-
sation that was introduced at an early stage a similar simulation was run without
it, resulting in Figure [4.14] which shows that the results are very similar. By com-
paring this figure with Figure [£.13]it can be seen that the system performed just as
well without feedback compensation. A likely reason for this is that when moving
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slowly the components of the Coriolis and centrifugal forces and moment vector,
(Fy), used for the feedback compensation is small.

5.4 Real-time Experiments

Converting the control sequence designed in Matlab to Python required some adjust-
ments since not all commands and data structures were readily available. To account
for these differences the Numpy Python library was used. Since the two control se-
quence implementations differed there could be some performance differences that
for the experiments went unnoticed. Another difference from the simulations is the
introduction of a sampling time chosen as 0.09 seconds. This was implemented by
comparing the system time before and after each iteration. If there was time left
until the next sample the sequence would wait. This prevented the controller from
acting continuously on the system and made the dynamics between each sample go
unnoticed. To make the system more like the simulated continuous one the sam-
ple time was reduced as much as possible while still having time to perform the
computations required for each iteration.

To obtain the position data from the Lighthouse positioning system, the
CrazyFlie placed on the blimp’s upper surface was calibrated for the used exper-
iment area. This was done using the software provided by Bitcraze AB. With the
CrazyFlie calibrated it was placed on the blimp so that it was aligned with the
blimp’s X-axis, symmetric in its y-direction and level in the £y-plane. However, due
to these placements being estimated visually a source of error is introduced here.
Since the control sequence is defined for all states being measured in the blimp’s
CG, the measured signals had to be transformed to their CG counterparts by Equa-
tion (3.13) and (3.14). As these offsets were visually estimated as well, an additional
source of error is introduced.

The motor holders that were designed and 3D-printed had to be redesigned sev-
eral times until the design was finalized. One aspect that was optimized was the
motor holding cylinders that required a diameter that gave a fit that allowed the mo-
tor to be inserted without excessive force but once inserted would remain in place.
Another design consideration was to reduce the weight of the holder without sacri-
ficing the sturdiness of the print.

Due to different circumstances regarding the delivery and quality of the blimps
used, three different blimps were used throughout the project. The one that was
intended to be used, described in Figure the smaller one that was used for the
initial testing, seen in Figure[3.11} and the one that was used for the final prototype,
seen in Figure [3.13] The blimp intended to be used was selected for its buoyancy
which was deemed appropriate to lift the attached components. However there was
some delay in its shipping, and to be able to perform tests while waiting, a smaller
one was used which did not have enough buoyancy. To compensate for the lack of
buoyancy of the smaller blimp a cord was placed on its upper surface, positioned so
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that the blimp remained level while not being actuated. This initial test setup enabled
some testing to be performed, but since the cord itself introduced disturbances it was
clear that it would be hard to develop an optimal controller using this setup. It did,
however, give an opportunity to test the validity of the Python implementation of
the control sequence.

When the originally intended blimp was delivered there was an accident where
the blimp broke down due to a combination of improper handling and flaws in its
material. To be able to continue testing a third and final blimp was used, with the
properties described in Figure [D.2] As the parameters for this blimp differed from
what had been used in both the propeller optimization and the simulations, the pro-
peller configuration was adjusted and re-optimized, and then the simulation data
was updated and run again. The results of these updates are seen in Figures [4.15]
M.16) and which show that the adjusted propeller configuration gives similar
force residuals but larger moment residuals than the original configuration. They
also show that the configuration has an equally good trajectory following, and the
comparison between the desired and generated forces is similar to before. Since
the motor holders were not designed for the final blimp there was some offset that
kept them from having a perfect fit. However, once placed on the blimp the fit was
deemed good enough through visual inspection. As the motor holders were manu-
ally placed on the blimp each holder might have been placed at an offset from its
intended position, making the LS optimization compute the actuation signal for a
configuration that differs from the real one.

To compensate for the extra buoyancy of the final blimp a ballast was used. By
introducing this new mass to the blimp its center of gravity was lowered, which
created some changes that were not accounted for in the simulations. Thus, the
simulation data were adjusted for the added mass before the feedback compensation
parameters of the Python counterpart were updated.

The real-time experiments were performed by placing the blimp still on the floor
and then running the control sequence with constant references. These tests were it-
erated and the PID parameters and feedback compensation contributions were tuned
until the system was deemed stable enough. As there were 3 x 6 = 18 PID param-
eters to tune the process was time-consuming and with room for error. As the tests
were run and the control signals plotted, it was noticed that the measurement signal
was spiky at random times which can be seen in Figure [.18] These spikes propa-
gated to the numerical derivatives and were difficult to filter out. As a consequence,
the feedback compensation that utilizes the body frame velocities became unreli-
able and had to be scaled down. Similarly, the desired force calculated in the PID
and sent to the LS optimization was spiky, as seen in Figure 4.20] As the LS opti-
mization was designed to penalize the time derivative of the actuation action, this
spiky signal was difficult to follow with the generated forces as seen in Figures[4.20]
and[d.21] As presented in Figures[#.18]and [4.19] these spikes created positional dis-
turbances. For example at time ~ 95 where a large spike disturbance appeared and
moved all position states away from the reference. However, the same figures show
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that despite these disturbances and spikes the system was stable though oscillating
and not fully reaching its references during the 200 seconds long test. From Figure
|.18]it can be deducted that it takes approximately 50 seconds before the blimp is
able to lift from the floor, which is likely caused by the derivative penalty of the LS
optimizer. This claim is supported by Figure |4.22] which has smoothly increasing
thrust signals up until the 50-second mark, after which the signals begin to change
more rapidly. For the system to be faster these signals should already from the start
be close to what they are at the 50 second mark, but this might lead to a more
unstable system.
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6

Conclusion

Before conclusions are drawn, the work performed in this thesis will be summa-
rized. At first, a mathematical blimp model adapted from the work in [Kukillaya
and Pashilkar, 2017]] was implemented in Matlab Simulink. The data for the model
were based on the geometry data for a desired blimp with some simplifications.
Secondly, an optimization algorithm was derived to find the optimal actuator so-
lution, and for the specified blimp a propeller configuration was obtained. Thirdly,
the modelled and actuated blimp was controlled by a combination of PID control
and feedback compensation, followed by a least-squares optimization block adapted
from the work of [Harkegard, 2004]. Fourthly, with the controlled modelled blimp a
trajectory generation algorithm was implemented and tested until the generated tra-
jectory was continuous and that the simulated blimp could follow it. Finally, with
the control sequence outlined in the simulations, a physical blimp prototype was
created, tested and tuned until it could be controlled in a crude but stable way.

6.1 Conclusion

The first conclusion that can be drawn from the thesis is that it is useful to perform
simulations on the system before it is tested in real-time since it allows the control
sequence to be tested and tuned for different parameters quickly. The same bene-
fit applies when developing trajectory generation, where conditions must be tested
frequently. However, for the simulation to be fully relevant for the real-time imple-
mentation, its conditions should match those of the physical system, both in terms
of data for the model and for signal discretization.

A second conclusion is that the propeller optimization algorithm gave a good
theoretical estimation of which propeller configurations would be successful.

A third conclusion to be drawn is that even a prototype that is not perfectly
matching the specifications and models can be useful to develop controller struc-
tures and to find general limits and disturbances of the system. The dynamics might
behave differently than expected but it gives something to work with and can be im-
proved upon as the testing progresses. It should however be mentioned that having
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Chapter 6. Conclusion

a poor prototype makes the experimental work much harder since the data gained
from the simulations are by default invalid.

A forth conclusion that regards to the real-time experiments is that the filter used
for the numerical derivatives was not enough. It was clear that unwanted spikes and
noise got through and greatly influenced the rest of the control. Alternatively to
using a better filter, a positioning system with a smoother signal could be used to a
similar effect.

A fifth conclusion is that the penalization of the derivative term in the LS block
was useful at slowing down the rate of change applied to the actuators, which was
useful for the otherwise twitchy blimp, likely caused by its calculated derivative
state. It is unclear if the penalty was too great and the twitchy behaviour was over-
compensated for since the comparison between generated and desired forces show
that they not similar at all.

The sixth and final conclusion is that by combining all the work done it is clear
that the full goal of autonomously navigating in 3D space was not reached. How-
ever, since the implemented controller was able to reach some sort of stability while
the blimp was in the air even though it was slow, it is my opinion that the results of
thesis were close to its goal.

6.2 Future Work and Development

With the experiences gained throughout the thesis and a vision for how the system
could be improved some suggestions for future work and development will be made.

To improve the quality of the simulations and the model four main suggestions
are made. The first one is to use the actual shape of the used blimp when calculating
the different shape parameters. The second one is to perform drag coefficient exper-
iments to be able to include the aerodynamical forces and moments in the model,
as well as including a disturbance model to handle wind and fluid motion. The third
suggestion is to consider and measure the limits of the actuator, mainly as to which
rate of change they can handle. The fourth one is to properly discretize the signal
entering the control sequence so that the simulated PID tuning can be closer to the
real one.

As for the propeller optimization algorithm, it can be suggested that before it is
executed, the maximum force of the actuator is included, as well as considering the
actual forces and moments that will be required from the configuration.

When dealing with the prototype blimp, more care should be placed in making
it as close to the simulated system as possible. This includes being exact with the
position and orientation of all placed components and making sure that the compo-
nents does not move in between or during tests. Another part when dealing with the
real-time experiments is to make sure that the signal measurements are as good as
possible and that any unwanted behaviour is properly filtered. This can greatly help
to reduce the amount of issues that appear throughout the process.
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A

Inertia Tensor Appendix

In this appendix the equations used to calculate the symmetric positive definite in-
ertia tensor of an object are presented [Ardema, [2005].

78

Ly :Zml(yzz+zlz)
m

Iy = Zmi(xz‘z+zz'2)

L= Zml +yz

xy = Zmixiyi = Iyx
m

Ly, = Zmi)’izi =1y
m

L =Y mixizi = Iy
m

(A.la)
(A.1b)
(A.lc)
(A.1d)
(A.le)

(A.1f)

(A.2)

:/y+z
=/x+z
:/x+y

Iy = / xydm = I,
L, = / yzdm = Iy
m

I, = / xzdm = I
m

(A3a)
(A.3b)
(A3¢)
(A.3d)
(A3e)

(A.3f)



B

Weighted Least Squares
Appendix

In this appendix the weighted Least Squares algorithm derived in [Hirkegard,|2004]
is shown. In the thesis this algorithm was used and modified to include a numerical
time derivative term in the cost formulation.

function [u,W,iter] = wls_alloc(B,v,umin,umax,Wv,Wu,ud,gam,u,W,
imax)

WLS_ALLOC - Control allocation using weighted least squares.

BRI

[u,W,iter] = wls_alloc(B,v,umin,umaz, [Wv, Wu,ud, gamma ,uw0, W0,
imaz])

Solves the weighted, bounded least-squares problem
min [[/Wu(u-ud)//~2 + gamma [[Wv(Bu-v)/[[]"2
subj. to umin <= u <= umazx

using an active set method.

control effectiveness matriz (k = m)
v commanded virtual control (k z 1)
umin lower position limits (m z 1)

umaz upper position limits (m z 1)

Wv virtual control weighting matriz (k z k) [I]
Wu control weighting matriz (m z m) [I]
ud desired control (m z 1) [0]

gamma weight (scalar) [1e6]

u0 initial point (m z 1)

Wo initial working set (m = 1) [empty]
imaz maz no. of iterations [100]

T DT DT AT I T DT AT QT N DT T A N DT N A N e N o e
oy
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7 Outputs:

/A

R optimal control

1 W optimal active set

/4 iter mo. of iterations (= no. of changes in the working set +
1)

z

X 0 if wu_i not saturated

4 Working set syntax: W_i = -1 4f u_% = umin_1<

3 +1 4f w_i = umaz_1

7

4 See also: WLSC_ALLOC, IP_ALLOC, FXP_ALLOC, QP_SIN.

/4 Number of wariables
m = length(umin);

/ Set default wvalues of optional arguments
if nargin < 11

imax = 100; / Heuristic walue

[k,m] = size(B);

if nargin < 10, u = (umin+umax)/2; W = zeros(m,1); end
if nargin < 8, gam = 1le6; end

if nargin < 7, ud = zeros(m,1); end

if nargin < 6, Wu = eye(m); end

if nargin < 5, Wv = eye(k); end

end

gam_sq = sqrt(gam);
A = [gam_sqg*Wv*B ; Wul;
b = [gam_sqg*Wv*v ; Wu*ud];

/ Initial residual.

d = b - Axu;

/ Determine indeces of free wvariables.
i_free = W==0;

/4 Iterate until optimum is found or mazimum number of iterations
/4 is reached.

for iter = 1:imax
/2
4 Compute optimal perturbation wvector p.
/2

/ Eliminate saturated variables.

A_free = A(:,i_free);

/4 Solve the reduced optimization problem for free wariables.
p_free = A_free\d;

4 Zero all perturbations corresponding to active constraints.
p = zeros(m,1);

/4 Insert perturbations from p_free into free the wvariables.
p(i_free) = p_free;

J e eieioolo.

4 Is the new point feasible?
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Y oo
u_opt = u + p;
infeasible = (u_opt < umin) | (u_opt > umax);

if “any(infeasible(i_free))

/ Update point and residual.

u = u_opt;

d =d - A_free*xp_free;

4 Compute Lagrangian multipliers.
lambda = W.*x(A’*d);

/ Are all lambda non-negative?

if lambda >= -eps
A |
4 | Optimum found, bail out. |/
2 /

/  Optimum not found, remove one active constraint.

/ Remove constraint with most negative lambda from the
4 working set.

[lambda_neg,i_neg] = min(lambda);

W(i_neg) = 0;

i_free(i_neg) = 1;
else
/2
4 No, find primary bounding comnstraint.
2
/4 Compute distances to the different boundaries. Since
alpha < 1
/4 is the mazimum step length, initiate with ones.
dist = ones(m,1);
i_min = i_free & p<O0;
i_max = i_free & p>0;
dist(i_min) = (umin(i_min) - u(i_min)) ./ p(i_min);
dist(i_max) = (umax(i_max) - u(i_max)) ./ p(i_max);

/4 Proportion of p to travel
[alpha,i_alphal = min(dist);
/ Update point and residual.
u = u + alpha*p;
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d = d - A_freexalphax*p_free;

/# 4dd corresponding constraint to working set.
W(i_alpha) = sign(p(i_alpha));

i_free(i_alpha) = 0;

end

end
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PID Appendix

Here a pseudocode example of the PID Python implementation is presented to give
an overview of this part of the control sequence. Following the pseudocode are the

state responses obtained when simulating for a ramp state trajectory.

Algorithm 1 Pseudocode of the Python PID implementation

1: ref, refD = getRef()

h

= getSampTime ()

statePrev, ePrev, intPrev = zeroVector()

> 6x1 vectors of references

: function PID (ref, refD, statePrev, ePrev, intPrev, h)

Kp, Ki, Kd = getkKp(), getKi(), getKd()

state, t0 = getState(), getTime()

velState = (state-statePrev)/h
velFilt = filter(velState)

e = ref - state

eD = refD - velFilt

el = intPrev+0.5%h*(e+ePrev)
vPID = Kp*e+KixeI+Kd*eD

statePrev, errorPrev, intPrev =

state, e, el

return vPID, statePrev, errorPrev, intPrev
15: end function

> 6x1 vectors of zeros

> Sample time expressed in seconds
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Figure C.1: Simulated state responses to a ramp reference for state x.
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Figure C.2: Simulated state responses to a ramp reference for state y.
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Figure C.3: Simulated state responses to a ramp reference for state z.
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Figure C.4: Simulated state responses to a ramp reference for state ¢.
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Figure C.5: Simulated state responses to a ramp reference for state 6.
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Figure C.6: Simulated state responses to a ramp reference for state Y.



D

Blimp data Appendix

In this appendix the data and shape of the originally intended blimp is presented
followed by the data for final blimp.

03
—
0.1 ] L -0.1
¥ M2 old ole  ola 1 U4 4le 418 214 Mﬂ (=
01
— R
03
- 0.4
05
07
09 0.9
A1
Ch 0,5655([-] Block Coefficient
vV 0,3563 ([m"3] Volume
L 2,831|[m] Length
D 0,472|[m] Diameter
V(integrated) 0,339851|[m"3] Volume
S 3,532|[m~2] Surface Area
Cs 0,84|[-] Surface Coefficient
rhos 0,057|[kg/m~2]
mS 0,201|[kg] Envelope Weight
lift 0,155|[kg]
lambda 0,619047023

Figure D.1: Originally intended blimp geometry data. Source: [Eissing, 2019].
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Airship Envelope Datasheet

Identifier: SB-181-200 IDate of Design: 2020-09-20
Designed by: Windreiter Team |Date of Production:
Organisation: Windreiter |Pia::e of Production: Windreiter HQ
0.4
0.2 e Saana ——
[ —
Vi ~
NZ e 0|6 1] 12 114 116 1-5"."" 22
-0.2 e __.....--""‘""’
0.4
Material Parameter Gertler Shape Coefficients
Envelope Material: TritaX Silver |Po5ilion of max. thickness: 0.4
Surface Weight [g/m?]: 30 [Bow Radius: 0.7
Tension Strength [MPa]: 245 Stern Radius: 0
Bonding Technique: Point Welding |Prismatic Coefficient: 0.6
Design Parameter Lift Assumptions*
Length to Diameter: 4.000 |Liﬂ at Sea Level He [g]: 181.51
Block Volume [m?]: 0.550 |Liﬂ at 300 m Helium [g}: 174.86
Block Coefficient: 0.47 |Liﬂ at Sea Level H2 [g]: 195.60
Envelope Volume []: 259.18 ILift at 300 m H2 [g]: 188.44
Length [m]: 2.06 *The calculations assume pure lifting gas
Diameter [m]: 0.52
Surface Area [m?]: 2.59
Envelope Weight [g]: 71.67
Number of gores 2

Figure D.2: Final Blimp geometry data. Source: [Windreiter, 2020].
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E

Equations

This section serves to collect general mathematical and physical equations that
are used variously throughout the thesis. These equations are regarded as general
knowledge and will therefore not be described in-depth.

Definition of the derivative: [Mansson and Nordbeck, 2019, p. 205, 206]
Ay flath)— f(a)

E.1
Ax =0 h ED
Trigonometric functions: [Mansson and Nordbeck, 2019, p. 138, 157, 158]
y=cos(a)= 4 (E.2a)
c
) b
y=sin(a) = — (E.2b)
c
b
y=tan(a)=— (E2c)
a
(x:cos*l(y) =acos(y), —1<y<l, o<aoa<nm (E.2d)
T b4
a=sin"'(y) =asin(y), —1<y<I, —Egagi (E.2e)
a=tan"'(y) =atan(y), yeR, —g <o < g (E.2f)
c
b
a

Figure E.1: Right angled triangle used to describe the trigonometric functions
[Ménsson and Nordbeck, 2019, p. 138].
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