
MASTER’S THESIS 2021

The Costs and Benefits of
Acting on Program Analysis
Results
Mattias Leifsson, Michael Pater

ISSN 1650-2884
LU-CS-EX: 2021-20

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2021-20

The Costs and Benefits of Acting on
Program Analysis Results

Kostnader och fördelar med att agera på
resultat från programanalys

Mattias Leifsson, Michael Pater

The Costs and Benefits of Acting on
Program Analysis Results

Mattias Leifsson
ma5565le-s@student.lu.se

Michael Pater
agy15mpa@student.lu.se

June 14, 2021

Master’s thesis work carried out at Robert Bosch AB.

Supervisors: Emma Söderberg, emma.soderberg@cs.lth.se
Ali Houmani, ali.houmani@se.bosch.com

Robert Lagerstedt, robert.lagerstedt@se.bosch.com

Examiner: Görel Hedin, gorel.hedin@cs.lth.se

mailto:ma5565le-s@student.lu.se
mailto:agy15mpa@student.lu.se
mailto:emma.soderberg@cs.lth.se
mailto:ali.houmani@se.bosch.com
mailto:robert.lagerstedt@se.bosch.com
mailto:gorel.hedin@cs.lth.se

Abstract

Program analysis is a great tool to improve code quality. However, problems
such as false positives and complicated integration makes it less attractive to
use. In this master’s thesis we integrated the open source system MEAN (MEta
ANalyzer) into the tool stack of a team at Robert Bosch AB. MEAN is a system
that tries to alleviate some of the problems with program analysis via a data-driven
approach. After MEAN had been running at Bosch for a few weeks, we deployed
two improvements intended to reduce the amount of unwanted analysis results,
in other words, noise that MEAN produced. Due to a limited time frame, the
results were also fairly limited, but they show that MEAN is a promising system
that software tool stacks could benefit from integrating. Thus, shifting the focus
to more valuable code review with more e�cient communication between tool
maintainers and developers.

Keywords: Program analysis, MEAN, Robot comment noise reduction, Code review,
Gerrit

2

Acknowledgements

First and foremost we would like to show our gratitude to Emma Söderberg for all the valuable
help and feedback she has given us throughout this thesis. We would also like to thank the
people at Robert Bosch AB for their warm hospitality with special thanks going out to our
Bosch supervisor Ali Houmani for his help and guidance. Also a special thanks to the Bosch
team in Austria that let us integrate the MEAN system into their tool stack. Last but not
least, thanks to the interview participants that gave us invaluable feedback about MEAN.

3

4

Contribution Statements

Software Related Work
Throughout the thesis, both authors have discussed and planned the added software features
and improvements. They have also worked on setting up, testing and integrating the MEAN
system into the tool stack for a team at Bosch. Finally, some minor improvements such as
some bugs have been found, fixed and pushed to the MEAN open source project by both
authors, with commit hashes:

• 1d6�547d880bfa8f658aaacb27f5c3b9eb6a593

• 6edec740e994b4416f676de94e9�5a9ce7b908f

• 60c2c5dbd8c8d33280465afa2004e1e8ecea919c

Mattias has implemented the Storage Publisher, written initial local setup guide,
implemented the wrapper for CPPCheck and Framework Analyzer, the python script that
summarizes quantitative data into graphical representations, and lastly the Filter Module
feature addition to MEAN.

Michael has added sections and improvements to the local setup guide, and implemented
a wrapper for the Correct Mappings Analyzer at Bosch. A new feature to the MEAN system
called Visual Feedback Feature was also implemented by Michael. Michael has also
focused on testing and investigating proxy issues, security measures and compatibility of
MEAN with an in-house Linux based OS.

Thesis Writing
This thesis has been written and discussions of the overall structure of the report have been
conducted by both authors. They have also pair-wise written the Introduction Chapter and
section 8.1 of the Results Chapter. Mattias has written the initial versions of the following
chapters and sections: Abstract, Method Chapter, Related Work Chapter, The MEAN System
Chapter, Integration of MEAN at Bosch Chapter, Mean Extensions Chapter (except section

5

7.4), section 8.2 of the Results Chapter, Discussion Chapter (except section 9.3), Threats to
Validity Chapter and Conclusions Chapter. Michael has been responsible for formatting and
designing the report structure. In addition to this, Michael has also written the initial versions
of: Background Chapter, several additions to, and restructuring of, the Method chapter based
on feedback, section 6.1 of Integration of MEAN at Bosch Chapter, MEAN Extensions (section
7.4), section 9.3 and parts of 9.4 of the Discussion Chapter.

Interviews and Networking
Both authors have been active during the interviews and communication with the focus team
at Bosch. Mattias designed the initial invite to the team while Michael wrote the initial
interview guide. Michael conducted the interviews while Mattias recorded the audio and took
notes during the interviews. Michael transcribed the interviews.

6

Contents

1 Introduction 11
1.1 Objectives . 13

1.1.1 Research Questions . 14
1.2 Delimitations . 14
1.3 Risks . 14

1.3.1 Di�culties with MEAN integration 14
1.3.2 Not enough quantitative data . 14
1.3.3 Not enough qualitative data . 15
1.3.4 Data Restrictions . 15
1.3.5 Infrequent Developer Activity . 15
1.3.6 Low User Engagement . 15

2 Background 17
2.1 Continuous Integration . 17
2.2 Version Control . 19
2.3 Code Review . 20
2.4 Containerization . 22
2.5 Message Communication . 23
2.6 Program Analysis . 24

3 Method 25
3.1 Review Related Work . 26

3.1.1 Literature Study . 26
3.1.2 MEAN System Review . 27
3.1.3 Study Context . 27

3.2 MEAN Integration . 28
3.3 MEAN Extensions . 28

3.3.1 Wrapping Bosch Analyzers . 28
3.3.2 Noise Reduction . 29

3.4 MEAN Deployment . 29

7

CONTENTS

3.4.1 Vanilla Deployment . 29
3.4.2 Extension Deployment . 30

3.5 Data Collection . 30
3.5.1 Quantitative Data . 30
3.5.2 Qualitative Data . 30

3.6 Data Analysis . 31

4 Related Work 33
4.1 Program Analysis Challenges . 33
4.2 Data-driven Deployment of Program Analysis 34

5 The MEAN System 37
5.1 Message Protocols . 38
5.2 MEAN-publisher . 39
5.3 Main MEAN System . 39
5.4 Analyzer Executor . 40
5.5 Analyzer Wrapper . 41
5.6 Robot Publisher . 41
5.7 Gerrit MEAN plugin . 42
5.8 Not Useful Server . 42

6 Integration of MEAN at Bosch 43
6.1 Bosch Tool Stack . 43
6.2 Pre-Integration . 44

6.2.1 Test Integration . 45
6.3 Integration Stage 1 . 46

6.3.1 Production Integration . 46

7 Mean Extensions 47
7.1 Storage Publisher . 47
7.2 Analyzer Wrappers . 48

7.2.1 Implementation . 48
7.2.2 Alternatives Considered . 48

7.3 Filter Module . 50
7.3.1 Background . 50
7.3.2 Implementation . 50
7.3.3 Alternatives Considered . 51

7.4 Visual Feedback Module . 52
7.4.1 Background . 52
7.4.2 Implementation . 53
7.4.3 Alternatives Considered . 55

8 Results 59
8.1 Qualitative Interview Data . 59
8.2 Quantitative Data Management . 62

8

CONTENTS

9 Discussion 65
9.1 RQ1: Noise Reduction . 65
9.2 RQ2: MEAN Integration . 65
9.3 RQ3: Perceived Value of Analysis . 66
9.4 Future Work . 67

10 Threats to Validity 69
10.1 External Validity . 69
10.2 Internal Validity . 70

11 Conclusions 71

9

CONTENTS

10

Chapter 1

Introduction

Static program analysis is an important tool for development of high quality source code [1].
Even though it has been in practical use for some time, existing tools are burdened by usability
problems [2–4]. For instance, false positives and incomprehensible results from the analysis
tools reduce the value gained by their usage. For example, false positives arise when the
analyzer incorrectly tells you that something is wrong. Take Listing 1.1 for example, this shows
a simple code example in the programming language C where allocated memory is deallocated
within a conditional statement. Since the condition will always evaluate to true due to the
global value staticTrue is not zero, the allocated memory will always be freed.

1 # i n c l u d e < s t d l i b . h >
2

3 s t a t i c i n t s t a t i c T r u e = 1 ;
4

5 i n t main (v o i d)
6 {
7 c h a r * d a t a = (c h a r *) m a l l o c (1 0 * s i z e o f (c h a r)) ;
8 i f (s t a t i c T r u e)
9 {

10 f r e e (d a t a) ;
11 }
12 }

Listing 1.1: C code with a conditional Memory Leak

Here the issue arises when a static code analyzer does not realize this and incorrectly assumes
that there is a memory leak. That is, the allocated memory is not deallocated before the end of
the program, due to it only occurring when the conditional in the if statement evaluates
to true.

To remedy this, meta analysis systems have been developed to gather data used to evaluate
the usefulness of static program analysis [5–8]. A meta analysis system does not analyze code
by itself but instead integrates and manages analyzers. By layering the meta analysis systems
over analysis tools like in the above example, the system can then collect data. This data

11

1. Introduction

can then be used in a process where feedback is given by developers, to the maintainers of
the system or tool upholders. The latter can then respond to this feedback by configuring
or possibly fixing problems if deemed valid. The changes are then made available to the
developers where this cycle can then continue to repeat, thus creating a data-driven feedback
loop for configuring the tools, as can be seen in Figure 1.2. Thus this meta analysis system
integrates into the workflow of the developers and maintains a feedback loop between analysis
tool maintainers and the developers that are using the results. MEAN (MEta ANalyzer) is one
such system [8].

The result from the above example code in C can be seen in Figure 1.1, is presented by the
MEAN system (detailed in Chapter 5), in the open source code review tool Gerrit (expanded
upon in Section 2.3). This analysis result is in the form of a robot comment which is a type of
comment generated by third party systems for Gerrit. The feedback loop mentioned earlier,
starts with the blue ’NOT USEFUL’ button seen in Figure 1.1. Pressing the button sends a
message back to the MEAN system that this analysis result was not useful to the developer.
The analysis tool the result was generated by can then be investigated to find out, for example,
if the result is a false positive, not relevant to the project or unclear. Changes can then be
made to the tool if the feedback is deemed valid.

Figure 1.1: A Robot Comment showing a false positive that would
appear in Gerrit from MEAN for the above C code.

We performed the thesis study at Robert Bosch AB in Lund, a company known for their
hardware ranging from power tools, dishwashers and home appliances to components in
the automotive industry [9]. In recent years, the company has started focusing on software
development as well, where the o�ce in Lund develops software solutions. These are mostly
parts of embedded systems related to the automotive industry but have also started working
on electric bikes. An interest in smart applications relying on artificial intelligence has started
gaining traction at the Lund o�ce. Due to the increasing amount of software developed, the
need for improving code quality has increased, which in turn connected this thesis with the
Lund o�ce. By improving the presentation and management of analysis results of software
code, prospects are that the code quality will increase. Another aspect with favorable prospects
is the value of development time will increase as a result of better configuration and feedback
related to analysis results.

Thus, in this thesis, we study the company and the compatibility of the prospects of
integrating MEAN into it. We then continue by setting up a functional version of MEAN,
after which, we integrate it into to their tool stack. Concurrently with the integration, we
implement improvements to the MEAN system, focusing on reducing the noise of presented

12

1.1 Objectives

Figure 1.2: A meta analyzer feedback loop detailing the flow in the
system. Users commit code in A which triggers events that cause
analyzers to execute in B. Results are then sent back to the developers
in step A. Users can give feedback based on the results, which is sent
to C, where maintainers can use the feedback data to tune the system
in B.

analysis results. Concluding these steps, we perform interviews with developers exposed to
the changes we made, to gather qualitative data. We complement this data with quantitative
data about the program analysis events generated by the MEAN system by gathering it in a
database.

1.1 Objectives
The goal of this thesis is to integrate MEAN into Bosch’s workflow and tool stack. We also
want to evaluate, from a cost-benefit perspective, how the feedback and integration gained by
using MEAN a�ects the usage of analysis results. The overarching objective is therefore to
answer the question "What is the e�ect of integrating MEAN into the developer workflow at Bosch?".

In this thesis, we expand on the work of an earlier thesis that explored meta analysis and
took place at Axis Communications in Lund, Sweden [10]. The authors of the related thesis
implemented and integrated the open source software called MEAN [7,8] at Axis Communica-
tions, introducing robot comments into Gerrit [11] reviews. Thus one of our objectives in this
thesis is to explore the possibilities of integrating the MEAN system into another company’s
development environment, in this case Robert Bosch AB in Lund. Ljungberg et al. [12], found
that program analyzers that flooded the developers with noise through superfluous amounts of
results were opted out. This then limited the usage of valuable analyzers since they hampered
the developers work. We thus aims to explore the value gained by reducing the noise by
improving the MEAN system with said functionality.

13

1. Introduction

1.1.1 Research Questions
We have formulated the following research questions from the above objectives of this thesis:

• RQ1 How can the architecture of the MEAN system and its integration into Gerrit be
improved to reduce robot comment noise?

• RQ2 How can MEAN be integrated into Bosch’s workflow and tool stack?

• RQ3 How do developers at Bosch perceive the value of analysis results?

1.2 Delimitations
This master’s thesis is limited to the integration of the MEAN system for a selected team at
Bosch. This means that MEAN should be able to send robot comments to Gerrit, as well as
gather data about the responses, for a select set of program analyzers for the chosen team at
Bosch.

Due to the pandemic (COVID-19) during the execution of this master’s thesis, the majority,
if not all, of the work we perform, is limited to a virtual environment. Thus we will have to
conduct the interviews in digital form.

1.3 Risks
This section presents several risks with the project and planned mitigation of those risks.

1.3.1 Difficulties with MEAN integration
Depending on the di�erent systems that Bosch uses, smaller or larger changes will have to be
made to MEAN before integrating it into the tool stack. This can cause RQ2, concerning the
integration of MEAN into Bosch, to be compromised in the level of detail of the answer.

Mitigation We will try to learn about the system at Bosch as early as possible, to be
more prepared for the changes that have to be made to MEAN when the time for integration
has come. Mindfulness in regard to potential increase in integration time will be reflected in
our schedule.

1.3.2 Not enough quantitative data
To be able to answer RQ1 and RQ3, a fair amount of data is needed from the MEAN system.

Mitigation To mitigate this risk, we will follow a strict deployment schedule to make
sure that MEAN is deployed early enough to gather a su�cient amount of data. Also, a weekly
meeting will serve as a checkpoint to verify that everything is moving according to the plan.

14

1.3 Risks

1.3.3 Not enough qualitative data
The accuracy of representative data we will have gathered from interviews is heavily relied
upon by RQ3, as it related to how developers perceive analysis results. Another risk arises
when considering the fact that we will be conducting this work remotely, thus limiting day to
day social interactions with the developers at Bosch.

Mitigation We will lessen the severity of the first issue by conducting interviews with
several di�erent developers of di�erent roles. While the second issue can be mitigated by
good planning on our side and coordination with team leaders. A detailed email survey can
instead be used to alleviate the limited social interactions with developers. With the help of
team leaders, we can hopefully ascertain participation from employees with the email surveys.

1.3.4 Data Restrictions
A potential risk that can impair the gathered data can arise due to security restrictions that
may be attributed to some of the collected data.

Mitigation Early meetings with involved security administrators and supervisors can
help specify what data is restricted and what alternate methods can be used.

1.3.5 Infrequent Developer Activity
Another risk that might limit the amount of data available can arise when code changes are
infrequent. This would mean that there would be fewer analysis results, and in turn less
feedback back to MEAN.

Mitigation Since it is out of our control to change the code change frequency, the
solution to lessen this risk would be to have a large amount of analyzers integrated and
enabled in MEAN. This would mean that even if the code changes are infrequent, there would
be a large amount of results when they eventually occur.

1.3.6 Low User Engagement
Even if there is a large amount of analyzers integrated into MEAN, which normally produces
a lot of analysis results, there is still a risk of little feedback from the developers. This could
occur if a large portion of the analyzers are already in use at Bosch, and are thus already ’run
in’. This would mean the analyzers would produce fewer results than otherwise expected.
Even when they produce results, they are likely to be relevant results, and therefore less ’NOT
USEFUL’ feedback would be sent back to MEAN. Another cause of low user feedback may be
due to the risk of developers being unfamiliar with the system. If changes appear without any
explanation to them, then users may be vary of them, or not even notice them.

15

1. Introduction

Mitigation By selecting some analyzers to integrate into MEAN that have not been
previously used in Bosch, and are likely to produce more noise, we hope to alleviate the above
mentioned risk. In addition to this, information regarding the functionality of the system
will be sent out by us to the team a�ected by our changes. These will be an email, a post in
their teams channel, a small wiki page as well as a video demonstration.

16

Chapter 2

Background

This chapter gives a brief overview of the components that MEAN integrates with and use.
Many of these components are based on and used for, continuous integration (CI). Thus this
development strategy and the software tools that are used in this thesis are explained first.
This exploration is then followed by the other components MEAN connects to, or uses. Some
of which are containerization, a message queuing system and program analysis tools.

2.1 Continuous Integration
Continuous integration is a development practice in software development, especially common
in the agile variety. The focus of this practice is to minimize bugs and problems that may
arise due to merging repositories [13]. The main problem arises when developers clone a code
base to work on a specific feature, a bug fix or other software related issue. The longer the
developer waits to merge their work back into the code base, the bigger the changes may be
to this main code base. Thus conflicts due to the merge may arise and lead to tedious and
time consuming work being put into solving the issues.

The practice of continuous integration aims to commit changes often and thus smaller
changes are integrated each merge. This simplifies the detecting and searching for issues, as
the new code will be more congruent with the main code base. Since the change is smaller, it
is therefore easier to pinpoint where any issue may lay if such problems do incur.

To facilitate this practice, tools are used to automate integration by building and testing
as well as tools that maintain a code base. Such code base related tools may then allow for the
review of the code and changes to be made in a more controlled and intuitive context.

A typical situation where a CI system is triggered is shown in Figure 2.1 where the steps
are detailed below:

1. The developer makes a change and commits it to the repository.

2. The CI tool triggers on the commit and fetches changed code.

17

2. Background

3. The CI tool builds and tests the fetched code.

4. If successful, the result from the build may be deployed/released, generally automatic
in the step above CI, Continuous Deployment (CD).

5. If not successful the team is notified of the problem so that they can fix the issue and
try again.

Figure 2.1: A graphical representation of a typical scenario where a
CI system is triggered.

There are tools available, capable of handling human, error-prone situations such as testing
and building of code with the new changes in place. As such errors can otherwise break the
entire code base and cause severe issues that most likely will consume valuable developer time.
The same is applicable to testing and building as such tasks in modern software development
usually entail a large number of transitions between stages. In the next step of CI, namely
Continuous Development (CD), the changes that are built successfully by the automation
server are then deployed as artifacts directly to the product [14].

Thus, automating these stages so that the changes are tested and built in a safe environment
is a major benefit to developers. The automation is usually performed by a core, also known
as a master, managing several agents, also known as slaves that do the work. The more agents
you add the more changes can be built concurrently. Which is important to consider since
builds in modern software development can often take several hours.

Jenkins is an automation server used for CI/CD by utilizing pipelines governed mainly
by scripts [15]. It is a free open source, java-based software, widely used in modern software
development. Jenkins has a vast number of plugins that enable flexibility in designing builds
and is thus easy to integrate into the development workflow.

18

2.2 Version Control

Figure 2.2: An overview of a centralized VCS.

2.2 Version Control
To be able to keep track of the changes made to the source code, a version control system
(VCS) can be used [16]. This greatly simplifies management of multiple developers making
changes to the same code base. Thus, pinpointing errors caused by a change is easy to locate
and solve.

Branching helps developers make changes concurrently to the same code base since they
all have a local copy of the code. Changes made by developers are kept track of by the VCS.
Merging the code to the main source will then be logged for when and whom made what
changes. In addition to this, if changes interfere with each other when merged, the VCS will
systematically locate this issue and allow the developers to solve the conflict. In some cases
the VCS can even solve merge conflicts automatically.

Due to this, VCSs are invaluable to agile software development, where changes made by
developers need to be merged often and many times in a day. An overview of a typical version
control system can be seen in Figure 2.2, depicting a centralized model. For this type of model,
the central repository contains the history of changes made. Here all developers share one
main repository and as such, are dependent on the main server to jump between versions.

Git is a version control system that is among the more popular tools used in the software
industry [17]. It is also the VCS used in the environment this thesis is done in. Among the
di�erent kinds of VCSs used, Git is a distributed VCS. In a distributed VCS each copy of
the main source a developer is working on is its own working repository. Thus, this local
repository will also contains the history of changes made, as can be seen in Figure 2.3. Thus if
the main server goes down, a developer can still work with the assurance that the changes
committed will be kept track of.

19

2. Background

Figure 2.3: An overview of a distributed VCS such as Git.

2.3 Code Review
There are always bugs that arise when coding due to our human nature. Variations of coding
styles can bring frustration to other developers trying to understand the code. Thus code
practices and policies are utilized in development teams, let alone companies. Such guidelines
helps maintain the readability of the code in a team. Code review is a well-established
concept with benefits such as finding defects, making team level coding conventions easier
to maintain as well as help maintain a shared authorship of code written by team members.
These advantages are detailed by A. Bacchelli and C. Bird, which state that the mentioned
aspects have greatly increased in use with the help of tools [18].

When a feature, bug fix or other change has been completed, the developer will publish
it for code review where other developers will review it. If any problems are found then the
reviewers will mark the code for revision with comments on the issues. The developer will
then be tasked to fix these to have their code added to deployment. When a revision has been
made, another session of review is performed. This iterative process then continues until the
reviewers give a pass for the code.

In a case study at Google, Sadowski, C. et al concluded that code review enables knowledge
sharing between developers, helping the team as a whole improve, as well as improve the
learning phase for junior developers [19]. Hence reviewers can learn new techniques from the
developer that submit the changes. The submitting developer, may on the other hand learn
from the critique given by the reviewers.

Code review is done before the code is truly submitted to the version control system. This
helps bugs and other issues to be found early in the development cycle. As such, this greatly
saves time and e�ort when compared to being found later in development. Improvements
to the code can be commented on by the reviewers as well, thus highlighting the knowledge
sharing in this practice.

Gerrit Code Review is an open source code review tool with Git at its core [11]. It
automates code review and version control related procedures. Examples of which are: creating

20

2.3 Code Review

a branch for a change and supporting in-line code comments from software. At the same
time, Gerrit o�ers an intuitive platform for the reviews to take place. This is done by acting
as a channel between the commits from developers and the main code base repository. It
automatically creates review branches for each new change to be committed. By amending
commits the changes can go through iterations, also referred to as patch sets. The reviewers
can then, at each patch set, decide at their own leisure whether the change is acceptable or
not.

With the help of comments and numeric scoring, both from humans and automatically for
instance, by continuous integration, communication can be done between the developer and
the reviewers. The integer based scoring labels range from +2 to -2, the meaning of each can
be seen in the list below [20]. A change must have at least one +2 with no votes with -2 labels
to be accepted. It is also important to note that the labels do not accumulate. An overview of
the Gerrit system and connecting components is shown in Figure 2.4.

+2 "Looks good to me, approved"

+1 "Looks good to me, but someone else must approve"

0 "No score"

-1 "I would prefer that you did not submit this"

-2 "Do not submit"

Figure 2.4: An overview of the relationship between reviewer, CI
server and developer tied around Gerrit.

21

2. Background

2.4 Containerization
Virtualization at the operating system level can yield several benefits to development and
execution of software. The two common virtualization techniques are virtual machines (VMs)
and containers, sharing many attributes. Containerization is a modern and lightweight
approach to virtual machines, greatly reducing the high resource overhead otherwise instilled.
In both cases, software is isolated together with the libraries, binaries, configurations and
other necessary dependencies to run the application. All running on top of the operating
system of the host machine.

The main di�erence between virtual machines and containerization is the extra overhead
induced by each virtual machine. Since each VM needs its own virtualization of the host
such as hardware, CPUs, the stack and other necessities of running the application, as can
be seen in Figure 2.5. Then they need to access the host operating system and resources via
interfacing through a hypervisor further incurring overhead [21]. Containers instead make
use of the host machines kernel, and as such all container share the same kernel as can be
seen in Figure 2.6. The containers are thus smaller than VMs, where each instance has its
own virtualized kernel. These containers then interface to the host operating system and
its resources via a runtime engine. Due to this, the containers are faster and less resource
intensive to run. Thus, several containers can run on a host where one virtual machine would
struggle. The main benefit of containerization is isolating the software from the operating
system. This adds high portability benefits which eases development time of these small
software packages. Compatibility issues between machines are thus removed [22].

Figure 2.5: Overview of how a virtual machine is structured upon
the host. Notice the need for a virtual kernel in each virtual machine.

Docker is the leading platform for working with containerization, and helps build and
run containers [23]. Written in the Go programming language, it has both a premium edition
and a free open source community edition.

22

2.5 Message Communication

Figure 2.6: Overview of how a containers being run on top of the
host. Notice the there is no need for a virtual kernel in each container.

2.5 Message Communication
Messaging techniques can be used as a method in cases when software components need to
communicate with each other asynchronously. Using queues to contain the messages allows
components to perform other tasks instead of waiting for a response. Messages are generated
by a producer, which are then sent to the message queue and stored in order. These messages
are then consumed by another component, thus fulfilling the communication without the
need for both parties to have been "present" simultaneously.

Once a message is consumed it is deleted and thus removed from the queue. This can
cause problems if several applications need to "read" the message sent from another unit. To
accommodate this problem, a publish-subscribe methodology, visualized in Figure 2.7, is used
to allow several components to "subscribe" to a queue. A message will not be removed until
all subscribers have "read" the message.

RabbitMQ is a lightweight, open source message broker with a wide variety of features,
the publish-subscribe method is one among them [24]. It supports several message protocols,
such as the Advanced Message Queueing Protocol (AMQP).

Figure 2.7: An overview of a simple publish subscribe relationship.
There can be one or more publishers, generating messages to a queue
tied to a topic. Multiple subscribers can sign up for the queue of a
specific topic. Once all subscribers have read a message in the queue,
it is deleted.

23

2. Background

2.6 Program Analysis
Program analysis is used to maintain reliable and bug free software code. It can even help
optimize the code for improved performance and memory usage. There are two categories
of program analysis, static and dynamic. In dynamic program analysis, the code is analyzed
while the program is running. Examples are debuggers, bench marking tools, and unit tests.
On the other hand, static analysis is done without running the code. It is usually done before
or during compilation of the software code. Examples of static analysis are type checkers,
optimizing compilers, and static checkers.

In this thesis, we focus on the usage of automatic static program analysis tools. Thus
the results can easily be collected after having run the tools on the presented code by use of
wrappers, which will be further described in 7.2.

Cppcheck is among the analyzers used in this thesis. It is used to analyze and find issues
such as memory leaks and bugs in C and C++ code [25].

24

Chapter 3

Method

This chapter outlines the steps we took to complete this project. With our goal being to
find the answers to the research questions formulated in Section 1.1. The path taken to find
each answer is detailed in Figure 3.1, showing relevant components of this chapter for each
research question. Our first involved reviewing related work by performing a literature review
(method described in Section 3.1.1) to form a basis for RQ1, regarding how to reduce robot
comment noise, and RQ3, regarding how the developers perceive the analysis results. In this
step, we also examined the MEAN system (method reported in Section 3.1.2). As such, we
could establish the relevant understanding to undertake the next steps for all three research
questions.

Having studied and accustomed ourselves to the architecture of the MEAN system, we
began the integration process (method reported in Section 3.2). We started with adapting it
to the tool stack used at the Lund Bosch o�ce. We did this by setting up a local version of
the MEAN system within the Bosch network. During this step we also made some minor bug
fixes to the MEAN system source. In addition to this, we also added an essential component
for quantitative data gathering to the running local version of the system (also described
in Section 3.1.2). Following this we were able to easily switch over to the main production
line with some minor changes in configuration. As such, we deployed the MEAN system to
the software team in Austria (method described in Section 3.4). This gave us the necessary
understanding to answer RQ2, how to integrate MEAN into Bosch, as seen in the middle path
in Figure 3.

None of the already existing wrapped analyzers in the MEAN open source where usable
due to not being relevant. We thus had to implement three new wrappers to take on the
task of producing analysis results for the Austrian team (method reported in Section 3.3).
In addition to this, based on related work, we implemented two noise reduction features,
a Filter Module and a Visual Feedback Feature (method described in Section 3.3)
with the focus of answering RQ1.

To be able to answer RQ1 and RQ3, we gathered both quantitative (produced and collected
by the MEAN system, method described in Section 3.5.1) and qualitative data (gathered

25

3. Method

Figure 3.1: An overview of the di�erent steps taken in this thesis to
answer the proposed research questions. Each flow graph shows the
path taken from start to an answer for each research question.

through interviews, the method of which is reported in Section 3.5.2) both methods found in
Section 3.5. We finished with analyzing the gathered data (method reported on in Section 3.6),
thus reaching the end of the path as shown in Figure 3.

3.1 Review Related Work
In this section we describe how we reviewed related work by performing a literature study
and exploring the architecture of the MEAN system in depth. Finishing with a study of the
context of our thesis compared to the previous one.

3.1.1 Literature Study
Early in the project, we conducted a literature study. We did this by searching through the
academic database LUBSearch, as well as going through the references of a few articles [2, 3, 5]
given to us by our university supervisor. As can be seen in Figure 3.1, the main reason for
conducting the literature study was for us to get an understanding of how earlier work in meta
analysis was done. As well as the finding out what shortfalls and future work was described.
With this knowledge, we had the necessary means to answer research question about reducing
noise, RQ1. The means of which, was formulated by assessing which ways we could improve

26

3.1 Review Related Work

MEAN to reduce robot comment noise. In another part of the literature study, we focused on
research done on the usability of program analysis. This gave us an understanding of why meta
analysis is needed in the first place. We detail the results of the literature study in Chapter 4.

3.1.2 MEAN System Review
To be able to install, set up and run the MEAN system, we first needed to understand how
it worked. Thus, we studied the MEAN source code in detail to form an overview of the
architecture of the system. To better help us understand the design choices made, we also
relied on the thesis report of the developers of MEAN [7]. As such, we formed a cohesive
understanding the MEAN system which we describe in detail in Chapter 5.

We then put this knowledge in practice to further form an understanding of the system.
We did so by getting all the components that serve as the MEAN system to run on a local
machine. During this experimental phase we discovered some minor bugs in the code, which
we fixed. Later, we added these fixes to the source code via a process of reviewing by the
emerging MEAN open source software (OSS) community. In addition to this, we kept detailed
notes of the method performed to get the MEAN system to run locally. A guide to set up and
run the MEAN system locally was then written by us from these notes and later added to the
above mentioned repository.

We also discovered the lack of a storage module to collect and store the quantitative data
produced by the MEAN system. As such, we implemented this storage feature (presented in
Chapter 7). The module collected and stored the messages sent via RabbitMQ, in the MEAN
system. Examples of which are: analyzer events, robot comments and ’NOT USEFUL’ presses,
all of which were stored in a MongoDB database. MongoDB is a document-based database
system that stores entries in JSON format. This module was later added by us to the MEAN
OSS through the same process the bug fixes went through.

3.1.3 Study Context
Based on a previous thesis where the MEAN system was built and integrated at Axis Lund, we
formulated RQ2 to explore the process of integrating the MEAN system at another company.
Thus, we would gain valuable insight in increasing the accessibility of MEAN. For this purpose,
Robert Bosch AB in Lund was selected by us due to their interest in the MEAN system and
the di�erences between it and Axis.

In the software department, within hardware development, Axis had over 1150 developers
while there were, at the time of this writing, only about 200-300 developers at the Bosch
Lund site. But due to the strict regulations regarding adding plugins to the production Gerrit
at Bosch Lund, we could not integrate the MEAN system there. Instead, we found a team
through the help of our Bosch supervisor of roughly 50 developers in Austria. We found this
team since they had full control of their tool stack. As such, our thesis greatly di�ers from the
previous thesis at Axis in number of software developers exposed to MEAN.

While our work took place at the Lund o�ce, we integrated the MEAN system in the
tool stack of the team in Austria. We found that mainly in-house tools were used at Bosch,
developed for specific purposes. The analyzers used in the Austrian team were built by
single developers. In contrast, Axis housed a large team dedicated to developing tools, when
comparing a team from Bosch with the entire Lund o�ce of Axis.

27

3. Method

3.2 MEAN Integration
We integrated the MEAN system in two stages: setting up a local running version and
connecting it with the production tool stack of the selected team. The first stage used what
we learned from the review of the MEAN system (see Section 3.1.2) where we followed the
detailed step by step guide we wrote to set up theMEANsystem. Thus, we installed and ran
the system on a computer provided by Bosch that was connected to their internal network. As
such, we started of with this local test environment for the first phase of the integration. Since
the system would be running within the Bosch network, the transition needed to switch over
to the production tool stack could be quickly performed by us. As this only involved minor
changes to the configuration of the MEAN system. Our main reason for the first integration
phase was thus to work out a few Bosch-specific uncertainties, without the risk of disrupting
the production system for the developers.

While setting up the MEAN system locally, we discovered the lack of RabbitMQ at Bosch
which resulted in us having to research possible message brokers to use (reported in Section 6.2).
In the end, we decided to set up a small RabbitMQ server for the purpose of our thesis. At
the same time, our usage of Docker and the building of images was impacted by strict proxy
restrictions set up by Bosch for security measures. To solve this problem, we studied Docker
and Bosch related Docker guides as well as spoke with developers experienced in such matters.
As a result, with some minor modifications we managed to modify the Dockerfiles such that
we could build the images in harmony with the proxy.

Meanwhile, we slightly modified the MEAN Gerrit plugin to be compatible with the
somewhat older version of the Austrian team’s production Gerrit. Once done, we built the
plugin and installed it into their Gerrit, hibernating for when the MEAN system was activated.

Before we could deploy the system in a state where analysis results would be produced, we
had to study the static code analyzers used by the team. As none of the available analyzers
provided by the MEAN system were relevant to the team and its software. Once we had
found valid analyzers had and integrated them into the MEAN system (method reported in
Section 3.3.1) we could deploy the system (approach detailed in Section 3.4.1).

3.3 MEAN Extensions
This section details the additions we made to the MEAN system. With Section 3.3.1 detailing
the process of studying the Austrian teams active analyzers. Followed by the wrapping and
finally incorporating them into the MEAN system. While Section 3.3.2 explores how we
decided upon the two extensions for the purpose of finding answers to RQ1, how to reduce
robot comment noise.

3.3.1 Wrapping Bosch Analyzers
We were unable to use any of the already available analyzers wrapped and packaged in the
MEAN system. This was due to the fact that none of them where applicable to the software of
the Austrian team, reasons of which are explained in Chapter 8. As such, we discussed with a
team responsible what analyzers they used for which we could wrap and incorporate into the
MEAN system running on our Bosch server. What we discovered was that they mainly used

28

3.4 MEAN Deployment

in-house program analysis in their production line. As such, we chose two di�erent tools to
wrap (reported on in Section 6.1). The main reason for this was that they produced the most
results, and as such, compensate due to the small size of the team.

The first analyzer consisted of about 50 modules, none of which adhered to a standardized
output scheme. This meant that we needed to select the most useful, in other words, most
noisy, plugins so that wrappers could be created for them. As it was unfeasible to wrap all
available plugins within the time constraints of our thesis. The second one only produced one
result per build for an entire project, if certain conditions were met.

Later, we chose an ’o�-the-shelf’ analyzer to be added due to issues explained in Section 3.4.
This analyzer was Cppcheck [25] (see Figure 6.1 for an overview of MEAN that shows all the
wrappers), and involved a relatively painless process of creating a wrapper for.

3.3.2 Noise Reduction
We devised two ’intent-to-implement’ proposals based on what we learned from the MEAN
architecture (detailed in Chapter 5). After which, we combined them with related work
(described in Chapter 4) to answer RQ1 about noise reduction. These proposal went through
a review process in the emerging OSS MEAN community, resulting in our solutions described
in Chapter 7. The first was a feature that filtered out analysis results between reviews that were
not generated from changed lines. The second one added a Visual Feedback Feature,
altering the color of robot comments based on ’NOT USEFUL’ clicks to visually mark sticky
robot comments.

3.4 MEAN Deployment
We divided up the deployment into two parts, as shown in Figure 3. In the first step, we
deployed a vanilla system consisting of the fully integrated MEAN system with added analyzers
(repported on in Section 3.4.1). Following this step, we performed a feature update (detailed
in Section 3.4.2) that added the noise reduction extensions previously mentioned.

3.4.1 Vanilla Deployment
After we had implemented a working version the wrappers for the first analyzer group, we
finally deployed the MEAN system. This was done by re-configuring the MEAN system to
instead communicate with the Austrian team’s production Gerrit and test Jenkins server. As
such, Bosch developers of the Austrian team started to receive robot comments in Gerrit with
analysis results. Two work-days later, we had completed and finished testing the wrapper for
the second analyzer, deploying it as well. Barring a few bug-fixes, we made no improvements
to MEAN during this phase. As such, the system was behaving roughly in the same way as it
did for the original users of MEAN.

After a week, we had observed a low amount of analysis results produced by MEAN.
We had suspected this risk of happening, as we’ve written in the risks Section 1.3.5 and
Section 1.3.6. Thus, we opted to include a more noisy, ’o�-the-shelf’ analyzer to retroactively
mitigate this risk. This third and last analyser was Cppcheck [25], (see Figure 6.1 for an
overview of MEAN that shows all the wrappers). Before we enabled it, we first ran Cppcheck

29

3. Method

on one of the repositories in Gerrit. As such, we could see that it would actually produce
any real amount of results, which it did. We selected Cppcheck specifically because it was
an ’of-the-shelf’ tool that might garner more ’NOT USEFUL’ feedback, unlike the two more
finely tuned in-house analyses.

What we learned through the study of the MEAN system followed by integration and
deployment into a Bosch teams tool stack was then used to form an understand to which we
could use to answer RQ2.

3.4.2 Extension Deployment
Three weeks after the deployment of the vanilla system, we rolled out two improvements
to MEAN regarding reduction of robot comment noise. Our original plan was to roll these
improvements out separately, but due to time constraints, we decided to deploy them simul-
taneously.

We rolled out the Filter Module quietly by modifying the Jenkins script to accom-
modate the new module and then running the micro-service alongside the other MEAN
components. On the other hand, for the Visual Feedback Feature, we first updated the
local source code of the Robot Publisher, building and then executing it together with an
update performed to the Gerrit plugin.

3.5 Data Collection
To be able to answer RQ1 and RQ3 we needed to collect both quantitative and qualitative
data. The quantitative data was gathered with the help of the storage module (detailed in
Section 7.1), further described in Section 3.5.1 below. We then gathered qualitative data by
interviewing developers of the Austrian team, the process of which we detail in Section 3.5.2.

3.5.1 Quantitative Data
As mentioned earlier, the quantitative data consisted of the communication within the
MEAN system as well as published robot comments and any registered ’NOT USEFUL’ clicks.
Having implemented a storage module that listened to these topics, saving them in respective
MongoDB collections, the gathering of this data was performed automatically throughout the
deployment of the system.

3.5.2 Qualitative Data
From what we discovered from our review of related work together with the experiences of the
integration and deployment of the MEAN system, we designed an interview guide, outlined
in Appendix 11. This guide was then used as a starting point when we gathered qualitative
data by performing, loosely, semi-structured interviews [26] of varying lengths.

Originally we had planned to perform two sets of interviews, one each for the vanilla
and extension deployments. The first set was to gather an overall picture of the tool stack
of the Austrian team and how they perceived the MEAN system. Instead, in the second

30

3.6 Data Analysis

set we wanted to focus in depth on the noise reduction improvements. The low amount
of Gerrit activity and late deployment of the MEAN system for a small team, a�ected our
originally planned interview approach. Through discussions with a responsible for the team
in Austria we found that the time available for 30-minute-long interviews was infeasible.
Another discovery was that only a portion of the team, located in Asia, had mainly been active
with the production Gerrit. The team responsible also advised us to not use questionnaires
as there was a very low participation rate for non-mandatory questionnaires. We therefore
opted out of this approach since it was not feasible for us to ask for such mandatory surveys
for the team. We thus concluded, due to the time constraints of this thesis through extensive
discussions with the team responsible and help from our supervisor to relax the length of the
interview time. This then gave us the possibility to perform shorter interviews, extracting the
most important parts of the semi-structured interview guide originally designed.

Our main focus was then shifted to gather the opinions of developers that had interacted
with the MEAN system. With the help of collected ’NOT USEFUL’ clicks, we were able to
target specific developers. Thus, we established a list of four developers with coordination
from the team responsible, one of which had interacted with the ’NOT USEFUL’ button. For
the others, we presented some examples to thus still be able to gather feedback about the
changes we made. During the interviews, we emphasized our willingness to hear any negative
feedback to avoid participant response bias that can arise when presenting a tool you built to
someone (discussed more in Section 10.2). Following the first interview, we managed to find
an opportunity to perform a longer interview with the team responsible. We adapted it to a
key-informant interview [27] based on the interview guide. In this specialized interview, we
focused on the usage of analyzers in Bosch and the history behind the process of implementing
and tuning their in-house analyzers. The second author performed the interview with the
respondent, while the first author focused on taking notes and presenting the examples. This
way, if the participant did not want to be recorded, or if the recording would be lost/corrupted,
we would still retain the important data.

3.6 Data Analysis
We implemented a tool that read the collected quantitative data and produced graphical
representations found in Chapter 8. To analyze the qualitative data, the second author
transcribed the recorded audio of the interviews. These transcriptions where then analyzed
together with the graphical representations of the quantitative data to formulate the results
found in Chapter 8 and as such, used to find answers to RQ1 and RQ3.

31

3. Method

32

Chapter 4

Related Work

This section briefly describes previous research and work done related to our master’s thesis,
in the area of program analysis and meta analysis. We found the related articles by starting
from a few articles provided by our supervisor. With more added by us when we systematically
went through their references to find more related articles. Also, we used the Lund University
Libraries database (LUBsearch) to find articles. To find articles in LUBsearch, we used
keywords such as ‘static analysis’ and ‘program analysis’.

4.1 Program Analysis Challenges
Several challenges exist regarding the usage and integration of program analysis, which may
deter developers from using such tools. In a paper by Imtiaz et al. [3], 280 Stack Overflow
questions related to static program analysis were categorized to understand the challenges
developers face when using static program analysis. They found that a large part of the
questions were related to Ignoring/Filtering alerts (23.9 %), false positive validation (22.9 %),
and how to fix the alert (19.6 %). A large part of these questions did not have an accepted
answer, which indicates that the answers given were unsatisfactory. They conclude that static
analysis tools would benefit from alert filtration and customization options. Meta analysis
tools, in this case MEAN, is the tool we used in this project to try and reduce these problems.

Johnson et al. [2], carried out interviews with 20 developers to find out the attitude of
developers towards static program analysis. Each interview was divided into two parts, where
the first part consisted of questions related to usage and opinion of static analysis tools. The
second part consisted of observing the participants while they used a static analysis tool, to
get an understanding of the developer workflow. The results show that developers perceive a
number of problems with static program analysis, which might prevent them from using such
said tools. Among the interviewed people, 14 of the 20 pointed to poor output, such as an
abundance of false positives and large number of warnings, as a hindrance. Customization
of the analysis tools were another important aspect, mentioned by 17 participants. Another

33

4. Related Work

important point was workflow integration of the tools, which 19 of the 20 people interviewed
mentioned. In our project, MEAN is used to solve some of these problems. For instance, one
purpose of MEAN is to make the integration of analysis tools easier.

Nachtigall et al. [4], describes usability issues with static program analysis. This was
done by surveying research from the past decade to group usability issues into six di�erent
categories: ’Understandable Warning Messages’, ’Fix Support’, ’False Positives’, ’User Feedback’,
’Workflow Integration’, and ’Specialized User Interface’. These categories were then used
to explain the shortcomings of 14 state of the art static analysis tools, to see if and how
the issues were addressed. By studying the 14 static analysis tools, three overall weaknesses
were revealed: Too generic warning messages, false positives and limited user feedback, and
developer workflow disruptions. Nachtigall et al. suggests that the creation of interactive
systems that perform analysis based on user input could be used to enhance explainability. In
our project, the meta analysis tool MEAN works as such an interactive system, which gives
the developers the possibility of sending feedback back to the system.

4.2 Data-driven Deployment of Program
Analysis

A meta analysis system is a system which integrates and evaluates program analysis tools. One
such system, called Tricorder, was developed at Google [5]. The goal of Tricorder was to create
a scalable and easy to integrate static analysis platform that would create a feedback loop
between analysis creators and developers. Tricoder is built on five principles: No false positives,
Empower users to contribute, Make data-driven usability improvements, Workflow integration is key,
and Project customization, not user customization. To achieve the goals, Tricorder is implemented
via micro-services, where each service has one specific task. New analyzers can be easily
added to Tricorder, in part due to the modularity of the system. Every analyzer can be
triggered to run in one of three di�erent stages, FILES, where analyzers only know which
source code files have changed, DEPS, where analyzers know about dependencies, and the
final stage COMPILATION, where the analyzers have access to the abstract syntax tree of the
program. This means that simpler analyses that can run in the FILES stage, can run earlier
and provide faster results. The results of the analysis are then sent to the code review system
as robot comments, and reviewers can mark the comments as “NOT USEFUL”, “PLEASE
FIX”, “PREVIEW FIX”, or “APPLY FIX”. This feedback can then be used to tune or even
disable analyzers. The number of code violations reported by the analyzers reduced over time,
due to tuning of the system based on the feedback gathered via the robot comment buttons.

Another program analysis system, called Review Bot, was developed by VMware, to
automatically integrate static program analysis into their code review process [28]. Review
Bot integrates three Java analysis tools (PMG, Checkstyle, and FindBugs). However, the
system is built in a way that makes extending it with analysis tools for other programming
languages possible. Unlike Tricorder, Review Bot has to be manually invoked, by adding it
as a reviewer in the review tool, and it is not possible for the developers to give feedback
to Review Bot regarding the usefulness of the analysis. To investigate the e�ectiveness of
Review Bot, VMware conducted a review where a group of developers provided feedback
on 1000 comments generated from Review Bot. Through this process, they found that the
developers agreed to fix more than 96 % of the comments, and only had concerns about 14.71 %

34

4.2 Data-driven Deployment of Program Analysis

of the accepted comments. Unlike Tricorder, which integrated and conducted the experiment
in the normal developer workflow, the Review Bot experiment was conducted by asking
seven developers to provide feedback regarding the 1000 comments from review bot. These
comments were related to code changes made in a previous stage of an ongoing project.

Khasiana is a program analysis system developed by IBM [29]. It was developed to address
the usability problems of false positives that come with the use of static program analysis [2].
Khasiana integrates three analysis tools (FindBugs, SAFE, and Xylem). To use the system,
developers upload code to an online portal, either manually or through a build tool, where
the code will be analyzed. The results from the analyzers can then be viewed directly online,
and the uploader can give feedback by clicking on one of the feedback buttons (“Invalid”,
“WontFix”, “Confirmed”, and “Not Attended”). To evaluate Khasiana, pilots were run for
multiple teams within three di�erent groups at IBM (in total 12 teams). Every team had one
or two persons in contact with the Khasiana developers. At the end of the pilots, feedback was
collected in the form of a questionnaire answered by the contact persons. Via the questionnaire,
the developers of Khasiana found that between 20 % and 75 % of found defects were valid,
depending on the team. In addition to the questionnaire, anecdotal feedback indicates that
the system was well received, and features such as the ability to tag defects and to give feedback
were some of the features of Khasiana that were appreciated by developers.

MEAN is a data-driven meta analysis system, built on similar principles as Tricorder [5],
Tricium [6], and Shipshape [30]. It is made up of several micro-services [7]. These services
communicate via messages, and when a code change is detected, a message is sent to MEAN
detailing which files are changed, so that the appropriate analyses can be started [8]. MEAN
integrates several analyzers, such as Pylint, ShellCheck, and Hadolint, but the system can be
extended with additional analyzers. The results of the analyses are sent as messages, which can
be received by several di�erent services. These messages are also sent directly to the review
system, as in-line robot comments, with the option for developers to mark comments as ’NOT
USEFUL’. The developers of MEAN deployed the system at Axis for seven weeks [7]. Via user
feedback, the MEAN developers found that the main negative user experience with MEAN
was that robot comments were published for whole files. In reality, a lot of the results were
unrelated to the most recent code changes, causing a lot of noise for the developers.

35

4. Related Work

36

Chapter 5

The MEAN System

MEAN is a meta analysis tool which automatically runs relevant program analysis at code
changes. The analysis results are then presented for the developer as robot comments. At the
same time, feedback is gathered from the developer via a ’NOT USEFUL’ button regarding
the usefulness of the analyses. The structure of MEAN is that of several micro-services, which
all perform a specific task. A generic overview of the MEAN system and its integration points
can be seen in Figure 5.1. These micro-services communicate with each other via four di�erent
kinds of messages. For example, it is the job of the MEAN Publisher service to detect code
changes from the review system, and send out a MEAN-Request message. This message is
received by the Main MEAN System, informing it that a code change has occurred, and that
some analyses should be executed. Most of the services are written in the programming
language Go, but the MEAN Publisher is for example written in Python. One advantage
of a micro-service design is that if one service does not fit a certain tool chain, then it can
relatively easy be rewritten, without having to modify any other service.

In the following sections we describe the di�erent services, message protocols, and con-
figurations of MEAN. First we describes how the di�erent modules communicate. Then we
describe the di�erent MEAN modules by following the life of a change event. Where it starts
with a code push to the review system, Gerrit, ending with robot comments with analysis
results being published back to Gerrit.

37

5. The MEAN System

Figure 5.1: Overview of the MEAN system.

5.1 Message Protocols
RabbitMQ is the message broker that is used to transfer messages between the di�erent
MEAN services [24]. RabbitMQ is made up of producers, consumers, queues and exchanges.
Producers create and send messages together with a routing key to an exchange, and then
the routing key determines which of the queues connected to the exchange that the message
should be forwarded to. A consumer receives messages from a specific queue. This means
that in MEAN, the MEAN Publisher service is a producer that produces MEAN-Request

38

5.2 MEAN-publisher

messages, which are consumed by the Main MEAN System. RabbitMQ is explained in more
detail in Section 2.5.

RabbitMQ was chosen as message broker for MEAN because it was already part of the tool
chain at Axis where the original MEAN master’s thesis were integrating it into [7]. However,
the system can of course be tweaked to use another message broker system.

Four di�erent kinds of messages are sent between the MEAN services. These messages are
formatted using JSON. JSON is a stateless human-readable data format. The four types of
messages are detailed below:

• Analyze-Request (red arrow): Sent by the Main MEAN System to the Analyzer
Executor, and contains information about what analysis to run, and what source files
to analyze.

• Analyzer-Event (green arrow): Sent by the Analyzer Executor to the Main MEAN
System, and contains information about the result of the analysis.

• MEAN-Event (yellow arrow): Sent by the Main MEAN System when an event occurs.
This message type encapsulates another message. For example, when the Main MEAN
System receives an Analyzer-Event, it will send out a MEAN-Event encapsulating
that Analyzer-Event.

• MEAN-Request (purple arrow): Sent by the MEAN Publisher to the Main MEAN
System to inform about a code change, and contains information about which source
code files were changed.

5.2 MEAN-publisher
The MEAN Publisher (2 in Figure 5.1) is the first MEAN module to be run when a change
event occurs in Gerrit. It is started in a Docker container via a Jenkins job, which in turn
is triggered by a change event in Gerrit, detected by the Gerrit Trigger Plugin. The task of
the MEAN Publisher micro-service is to inform the MEAN system that a code change has
occurred, so that appropriate analyses can be run. This is done by sending a MEAN-Request
message to the Main MEAN System via a RabbitMQ exchange. With the message containing
information about which source files were changed and what the source context is (for example
which project the changed files belong to).

5.3 Main MEAN System
When the MEAN Publisher sends out a MEAN-Request, it is received by the Main MEAN
System (3 in Figure 5.1). Via the MEAN-Request and some configuration, the Main MEAN
System calculates what analyses are appropriate to run, and sends out Analyze-Requests
based on that information. Other that sending Analyze-Requests, the Main MEAN Sys-
tem is the core of MEAN, and has a lot of other responsibilities. It binds together the other
systems, and is composed of five interfaces and a configuration:

• AnalyzerStates: The analyzer states interface keeps track of the current state of
currently executing analyzers.

39

5. The MEAN System

• AnalyzerExecutor: The analyzer executor interface sends Analyze-Request mes-
sages to inform the Analyzer Executor that some analysis should be done.

• MeanEventStreamer: The MEAN event streamer interface reports MEAN events
from the Main MEAN System to other services.

• AnalyzerEventListener: The analyzer event listener interface handles incoming
analyzer events.

• MeanRequestListener: The MEAN request listener interface handles incoming
MEAN requests.

• Configuration: The Main MEAN System holds the configuration for MEAN. The
configuration determines for example how long an analyzer is allowed to run before
timeout, and which, if any, analyzers are blacklisted and should not be run.

This means that an implementation of the Main MEAN System must implement these
interfaces and the configuration. The Main MEAN System is implemented by two di�erent
services in MEAN, localanalyze.go1 and jenkinsanalyze.go2. The local analyze service
is a very simple implementation of the Main MEAN System which does everything locally
on the machine. It takes command line arguments to determine what files to do analysis on,
sends Analyze-Requests to a local Analyzer Executor, and then prints the resulting
Analyzer-Events to the console.

The Jenkins analyze service is more complex, and uses RabbitMQ to communicate. For
example, it sets up a MeanRequestListener that listens for MEAN-Request messages on a
specified RabbitMQ queue.

5.4 Analyzer Executor
When the Analyzer Executor (4 in Figure 5.1) micro-service receives an Analyze-
Request message from the Main MEAN System, it runs the appropriate analysis, by starting
an analyzer wrapper. This is implemented via a Jenkinsfile with five di�erent stages: create
input files, checkout, run analyzer, publish, and cleanup. First, in create in-
put files, a well-defined directory structure is created, which the analyzer will have access
to. An overview of the directory structure can be seen in Figure 5.2. Then, the Analyze-
Request that the service received from the Main MEAN System will be written to a file in
the input directory. An Analyzer-Event message will then be sent, informing the Main
MEAN System that the analysis has started. In the next stage, checkout, the Analyzer
Executor pulls down the code to be analyzed from the relevant Git repository, into the code
directory. After that, in the run analyzer stage, the actual analysis is run, and the result
is sent as an Analyzer-Event in the publish stage. Last, the cleanup stage removes the
directory structure.

This micro-service is stack-dependent because it pulls the code to be analyzed from Git,
meaning that is has to be re-written if another code storage system is used. However, it is
not dependent on RabbitMQ, because it sends Analyzer-Events indirectly via a supplied
Docker image, which can be implemented to use any type of message sending mechanism.

1Link: https://gitlab.com/lund-university/mean/-/blob/master/cmd/localanalyze/localanalyze.go
2Link: https://gitlab.com/lund-university/mean/-/blob/master/cmd/jenkinsanalyze/jenkinsanalyze.go

40

5.5 Analyzer Wrapper

Figure 5.2: The directory structure created by the Analyzer Ex-
ecutor, which will be available to the analyzers.

5.5 Analyzer Wrapper
The analyzer wrapper (5 in Figure 5.1) service is a wrapper around a static program analysis
tool. It is started in a Docker container by the Analyzer Executor when it receives an
Analyze-Request message. It is the task of this service to use the input provided by the
Analyzer Executor (the analyze request and code files in Figure 5.2) and start the actual
analysis on the relevant files. It is therefore also the responsibility of the Analyzer Wrapper
to not run the blacklisted analysis categories as specified in the Analyze Request. After the
analysis has run, this service transforms the output from the analysis into a well-defined JSON
format. This format contains a list of code violations (called notes) that the analysis found,
and a list of errors, which it saves in the result file (as shown in Figure 5.2). This result file
is then included in the Analyzer-Event message sent by the Analyzer Executor to the
Main MEAN System.

MEAN comes with a number of already written Analyzer wrappers for some well-known
analyzers, such as Hadolint, Pylint, and Shellcheck.

5.6 Robot Publisher
When the Main MEAN System receives an Analyzer-Event from the Analyzer Execu-
tor, it wraps the Analyzer-Event in a MEAN-Event message and sends it out via RabbitMQ
again. These MEAN-Event messages are then picked up by another module, namely the Robot
Publisher. The Robot Publisher (6 in Figure 5.1) micro-service, written in Go, handles
the communication with the code review tool, in this case Gerrit. When it receives a MEAN-
Events on a RabbitMQ queue, it checks if it contains an Analyzer-Event of the type result.
If it does, it will convert the event into a robot comment, which it sends to Gerrit via HTTP.
In addition to this, the service also sends the robot comment via RabbitMQ, in case other
services need it. Also, before sending the robot comment, it queries Gerrit via a HTTP GET

41

5. The MEAN System

request, to find out if MEAN has been disabled for that particular project. If MEAN has
been disabled for that particular Gerrit project, the robot comment is instead only sent via
RabbitMQ with a special routing key. This is so that other services, if needed, can know what
comments were not published.

5.7 Gerrit MEAN plugin
When Gerrit receives a robot comment from the Robot Publisher, it associates the com-
ment with the correct code change and file. However, some additional functionality is needed.
This functionality is implemented by the Gerrit MEAN plugin (7 in Figure 5.1). The Gerrit
MEAN plugin is not strictly speaking a MEAN micro-service, but rather a plugin inserted
directly into Gerrit. The job of this plugin is to add the ’NOT USEFUL’ button to MEAN
robot comments, giving the developer the ability to give feedback to the MEAN system
regarding the robot comments.

When a developer clicks on a ’NOT USEFUL’ button, a HTTP POST request is sent to a
specified host with information about the clicked comment. The plugin also adds the ability
to configure MEAN via a configuration file in the Gerrit repository. In this file, it can be
specified whether or not MEAN is enabled for the project, the host computer to send the ’NOT
USEFUL’ feedback to, and individual configuration for every analyzer, such as the timeout
and blacklist. With this configuration comes three representational state transfer (REST)
endpoints, /meanhost, /meanenabled, and /meananalyzers, which can be queried to
find out the configuration for a certain Gerrit project. For instance, the Robot Publisher
service queries the /meanenabled endpoint to make sure that the project has set MEAN to
enabled before sending robot comments.

5.8 Not Useful Server
When a developer clicks the ’NOT USEFUL’ button on a robot comment in Gerrit, the Not
Useful Server (8 in Figure 5.1) picks them up. The last of the MEAN modules, the Not
Useful Server is implemented as a small python script using the flask framework. When
running, this service listens to HTTP POST requests from the Gerrit plugin. When such a
request is received, it means that a developer has clicked the ’NOT USEFUL’ button on a
robot comment in Gerrit. Upon receiving a HTTP request, the service extracts the data from
the request, and forwards that data to an exchange via RabbitMQ. This means that another
service can listen to the RabbitMQ exchange via a queue and appropriately handle the ’NOT
USEFUL’ messages. For example, storing them in a database, or even dynamically disable
certain analysis categories based on ’NOT USEFUL’ messages.

42

Chapter 6

Integration of MEAN at Bosch

In this chapter, we detail the steps we took to integrate MEAN into the Bosch tool stack.
Figure 6.1 shows an overview of the system components when it was integrated into Bosch.

6.1 Bosch Tool Stack
The production part of the Austrian team mainly used two in-house analyzers. The first, called
the Framework Analyzer was organized by having a large framework, written in Java. This
framework made it easy for any developer to create a new program analysis (called ’plugin’)
which could then be used via the framework, either locally or in Jenkins. A large number of
plugins were already present (about 50), but unfortunately, the output from said plugins were
not standardized. Instead, the output was written out as free text, one line for every defect
message.

The second tool that we decided to wrap was also written in Java, called the Correct
Mappings Analyzer. This tool was unrelated to the framework system that is used for the
Framework Analyzer. The purpose of this analyzer was to make sure that the mappings
of certain dependencies followed a predetermined standard. It also checked that a certain
requirement was properly tagged. This tool only produced one result per build related to the
whole repository. The output of the two above mentioned tools was typically printed to a
large Jenkins log.

43

6. Integration of MEAN at Bosch

Figure 6.1: Overview of the MEAN system integrated into Bosch.
The added and changed pieces are outlined in red.

6.2 Pre-Integration
As a first step, before integration into the Bosch tool stack, we set up MEAN locally on a
computer. This also involved setting up and configuring local variants of the systems that
MEAN communicate with, i.e. Gerrit, Jenkins, and RabbitMQ. In addition to this, we also
installed and configured the necessary Jenkins and Gerrit plugins. Along the way, we created

44

6.2 Pre-Integration

a README file, documenting the di�erent steps that need to be taken to get the system
running. We did this to make the integration easier in the future. Also, we created a few
scripts such as a small bash script that automatically sets up and configures the needed
RabbitMQ exchange, queues and routing keys. The reason for setting up MEAN locally before
integration into Bosch, was that the Bosch integration would hopefully go smoother with
prior integration experience. Also, we could use the local setup as a first testing stage for new
MEAN improvements and analyzer wrappers. This would then allow us to make sure that
everything was working correctly before deploying the changes to Bosch.

While setting up MEAN locally, we discovered a few minor bugs in the system, such as
erroneous output format and parsing negative numbers from JSON files into unsigned integer
types. We documented these bugs, and after the local setup was completed, fixed the bugs
and pushed the fixes to the open source MEAN Git repository.

Besides the README file, we kept some notes about the integration areas where there
would be potential issues, so called integration problems (IPs):

• IP1: Some kind of central repository for Docker images would be needed, so that the
Analyzer Executor module would be able to fetch and run appropriate analyzer
wrapper images.

• IP2: As for the Gerrit plugin, one potential problem was that the plugin is hard-coded
to only accept robot comments for a user named ’svcmean’, which would mean that such
a user would either need to be created, or the plugin code would have to be changed
and re-built.

• IP3: Another potential hardship is RabbitMQ. If Bosch is not already using RabbitMQ
as a message broker, then it would need to be set up and configured, ideally with a
public key infrastructure so that Transport Layer Security (TLS) could be used for
encryption and authentication.

6.2.1 Test Integration
As an intermediate step between the local MEAN setup and the actual integration of MEAN
into the production Gerrit, we set up a Gerrit test instance as the integration point. The idea
was that by first integrating MEAN into the test Gerrit, we could work out the potential
problems that would arise when integrating into Bosch without interfering with the produc-
tion systems. After that the switch to the production Gerrit would be smoother. It was in
this stage we solved most of the problematic integration points mention in Section 6.2.

As for IP1 (finding a central Docker repository) mentioned in Section 6.2, the Analyzer
Executor would always run on the same machine. Therefore, we decided to not use a central
Docker repository for the analysis wrapper images, but instead keep the images locally on
the machine. While there exists a central Docker repository at Bosch, there would still be
some hassle with getting access to it and upload the images. Thus, we decided that keeping
the images locally on the Analyzer Executor machine was the easiest and fastest solution.

IP3 (set up RabbitMQ) was also resolved in this part of the integration. RabbitMQ was
not used previously by Bosch, so we set it up and configured it in this stage. After some
investigation, we skipped TLS, because time was running short. It would also be too large of
a task to set up the whole public key infrastructure that was needed. Since everything was

45

6. Integration of MEAN at Bosch

running on the Bosch VPN, and no real sensitive data is sent via the MEAN messages, this
was a reasonable compromise.

6.3 Integration Stage 1
Unfortunately, when the time came to integrate MEAN into the Bosch tool stack, we discov-
ered that there are very strict rules regarding adding new Gerrit plugins at Bosch. This was
an issue, because the rest of the MEAN system cannot work without the Gerrit plugin. This
is because the plugin is the component that the rest of the system queries to get the current
configuration. A large part of the MEAN modules would have to be rewritten, and the ’NOT
USEFUL’ feedback button would be gone. Without the button, developers would not be able
to give feedback about the analysis results. Fortunately, no rewrites were needed, since we
identified another Bosch team, which had larger control over their Gerrit server. Therefore,
we made the decision to integrate MEAN into their tool stack. However, this setback led to a
delay in the deployment of MEAN.

6.3.1 Production Integration
After we had fully integrated and tested the MEAN system with the Gerrit test instance, we
moved it to the production Gerrit. This meant installing the MEAN Gerrit plugin on the
production Gerrit, as well as adding the appropriate MEAN configuration. To resolve the
problem with the hard-coded Gerrit username, IP2, we changed the username of the Gerrit
service user to an already existing service user in the production Gerrit. In addition to that,
we reconfigured the Jenkins scripts to trigger on the production Gerrit instead of the test
Gerrit. As a final small step before enabling MEAN for the developers, we changed the Robot
Publisher to only publish comments to a special test repository on the production Gerrit.
This would help us to confirm that the switch to production was fully working before enabling
MEAN for everyone.

We discovered in this stage that the ’NOT USEFUL’ button was not working, due to the
plugin complaining about a missing function. It turns out that MEAN was never tested for the
Gerrit version that the production system used. The plugin used a function getAccount()
to get the username of the current user to send with the ’NOT USEFUL’ feedback. This
function was however not added until a later version of Gerrit. We solved this by replacing
the function with another function get("/account/self") which does the same thing.

Another problem that arose was that there were some incompatibilities with Linux and
the Framework Analyzer that was wrapped into MEAN. This was a problem because the
machine which were assigned to us that was running the Analyzer Executor module was
a Linux computer. In the end, we solved this issue by doing a few small modifications to the
source code of the Framework Analyzer. We also notified the maintainer of the Framework
Analyzer to make them aware of the incompatibilities.

46

Chapter 7

Mean Extensions

Before integration into the Bosch tool stack, we needed to complement MEAN with a storage
module addition to collect quantitative data, as can be seen in Figure 6.1. Therefore we
implemented a Storage Publisher micro-service that stores analysis results and ’NOT
USEFUL’ feedback in a database. In addition to this, Figure 6.1 shows the analyzer wrappers
that we implemented to produce robot comments in Gerrit. We also implemented two new
modules, a Filter Module and a Visual Feedback Feature, to find an answer to RQ1

by reducing analysis result noise.

7.1 Storage Publisher
The Storage Publisher is a micro-service written in Go, with the task of publishing data
to a database. Such a module did not already exist in MEAN, because Axis, where MEAN was
originally integrated, already had a solution set up for automatically storing messages sent on
RabbitMQ [7]. Thus, we found a need to create such a module, so that we would be able to
gather data about analysis results and ’NOT USEFUL’ feedback.

It works by connecting to a MongoDB database. MongoDB works well as a database for
storing MEAN messages, since it is a document-oriented database. As such, the messages can
be immediately stored in JSON format, without first translating it to a table format. This
would otherwise be needed for storage in a relational database. The Storage Publisher
listens to a RabbitMQ queue, where it receives messages from the Robot Publisher and
the Not Useful Server services. When it receives a message, it enters it into the MongoDB
database. In the end, we uploaded this module to the MEAN open source repository, where
we improved upon it through several iterations based on feedback from reviewers. Finally,
being approved and then merged into the repository.

47

7. Mean Extensions

7.2 Analyzer Wrappers
Before we integrated MEAN into Bosch, we wrote a few new analyzer wrappers.

7.2.1 Implementation
We implemented the analyzer wrapper for the Framework Analyzer as a single wrapper,
written in Python and contained in one Docker container. This wrapper is responsible for
reading the analysis request message and then starting the framework with the selected plugins.
In addition to the wrapper, we implemented several parsers in python, one for each plugin
that the wrapper starts. These parsers are supplied to the wrapper, which uses the appropriate
parser to parse the output from the plugins into the JSON format that MEAN requires.
We used the plugin names as the category attribute in the analysis results, so that di�erent
plugins could easily be enabled and disabled via the blacklist in the MEAN configuration.
This implementation also allows us to add with ease another framework plugin to MEAN,
by writing a new parser, supplying it to the wrapper, and updating the Docker image. In
the end, we created parsers for six plugins, after having consulted with the maintainer of
the Framework Analyzer. This helped us find out which plugins were most appropriate to
integration into MEAN, taking criteria such as noisiness and usefulness for developers into
account.

Similar to the above implementation of the Framework Analyzer, we wrapped the Correct
Mappings Analyzer with a python script placed within a Docker container. Since the analyzer
produced one result for the entire project, no file existed for the robot comment to be attached
to. We therefore chose to attach the analysis result comment to the commit message.

7.2.2 Alternatives Considered
Below, we detail other implementation approaches we considered for the Framework Analyzer.
Figure 7.1 shows a UML representation of the di�erent approaches.

• Ad Hoc Wrappers: One possible solution would be to have one isolated wrapper for
every plugin, similar to how the current MEAN wrappers are designed. However,
this is only an acceptable solution when wrapping a small number of plugins, since
unnecessary code duplication would otherwise become a large problem. This approach
would also mean one Docker image for every wrapper, which comes with both upsides
and downsides. One upside would be that the Analyzer Executor could potentially
start several wrappers in parallel, which could speed up execution. However, one
downside would be the extra hassle of keeping track and maintaining a large number of
Docker images, as well as have near-identical Dockerfiles for every wrapper.

• Object-oriented Wrappers: An improvement of the previous approach would be to
create an abstract super wrapper, which already implements most of the functionality
that is identical for the di�erent plugins, such as starting the Framework Analyzer
and reading the analysis request. Then, a wrapper for every plugin would be created
that inherits from the super wrapper, so that only the parts specific to the plugin (e.g.
the output parsing) would have to be rewritten for each wrapper. As with the above

48

7.2 Analyzer Wrappers

approach, this would mean one wrapper and image for every plugin, but without the
problem of code duplication. However, unlike the chosen approach, this would still
result in a large amount of near-identical Dockerfiles.

Figure 7.1: UML diagram for the three di�erent implementation
alternatives for the analyzer wrappers. From top to bottom: Chosen
approach, Ad Hoc Wrappers, Object-oriented Wrappers.

49

7. Mean Extensions

7.3 Filter Module
The purpose of the Filter Module is to filter out results that are not connected to the
changed lines of the most recent code change.

7.3.1 Background
Currently, the MEAN system always runs analysis on whole files, regardless of how small
the most recent code change in that file actually was. This means that developers might get
bombarded with analysis results that are not relevant to the specific code change that the
developer wrote. In fact, a large part of the analysis result might pertain to code written by
another developer entirely, which the current developer might not have enough knowledge
about to fix. The advantage of filtering such results would be that the developers can then
focus on the results relevant to their code change, without having to sieve through less relevant
results.

7.3.2 Implementation
We implemented the filtering as a separate micro-service written in python, to reduce the
amount of changes needed to the rest of the system (see Figure 7.2). Since the Jenkins machine
might not have python installed, we opted for the service to be placed in a Docker container.
The container would then be started by the Analyzer Executor, after the analysis was
done running. Our reason for inserting the filtering service at this specific part of the MEAN
system is that the service will then have access to the Git repository of the project that was
analyzed. With this, it could then use, for example ‘git di�’ to determine which lines belonges
to the most recent change. Running a filter service would of course incur some performance
cost, however nothing too dramatic. The Analyzer Executor already starts a number of
containers (for the analysis itself, and every time it sends an analyzer event message). Therefore,
starting a container for the filter would have minimal impact. The filter does not increase
network tra�c either, since it works on the local Git repository, performing the filtering by
manipulating the output file from the analysis, shown in Figure 5.2. In fact, the filter will
reduce the network communication, since it will filter out analysis results, thus making the
final analysis result message smaller. The performance cost of the filtering itself is unlikely to
be a problem. According to the di� manual, ‘git di�’ uses the Myers algorithm together with a
heuristic, and has a time complexity of O(N1.5logN), where N is the sum of length of the two
files that are compared [31] [32]. To keep the changes to MEAN as small as possible, we let the
state management of the Analyzer Executor remain unchanged. This meant that, to the
Main MEAN System, the analysis is still in the ‘started’ state while the filter is running.

Algorithm 1 describes the steps taken in the filtering module to achieve what it is supposed
to.

50

7.3 Filter Module

Figure 7.2: The overview figure of the MEAN system, with the Fil-
ter Module added, highlighted in red.

7.3.3 Alternatives Considered
Other approaches for filtering are possible, some more advanced. Here is a list of approaches
we considered:

• Run the analysis before and after change: By comparing analysis results from before and
after a change, it could be determined with high precision which results are relevant to

51

7. Mean Extensions

Algorithm 1 Overview of steps taken in module to filter analysis results.

Run git di�
Use git di� output to determine changed lines for analyzed files
Parse analysis result file ‘/mean/output/result.json’
Loop through notes in result and filter out based on git di�
Save filtered result again to file ‘/mean/output/result.json’

the most recent change. The problem with this approach is that it is more complicated,
and requires larger changes to MEAN. Another di�culty with this approach is how
to compare the analysis results from before and after. To obtain maximum precision,
not only would the result description and category need to be compared, but also the
location of the result, which is di�cult since the line numbers will have changed when
the file was changed.

• Let analyzers handle filtering: The responsibility of filtering could be on the analyzer
wrappers themselves. However, this would mean that the existing analyzers would have
to be rewritten, and there would likely be code duplication between the analyzers. The
advantage of this approach is that the filtering can be more tailored to the specific
analysis. For example, it could be easier to determine that ‘Unused Import’ defects are
connected to the most recent change, even though it is not near the changed lines.

• Gerrit filtering: By letting the Gerrit plugin handle the filtering, other filtering criteria
could be used, for example filtering based on if the same results is still unresolved from
an older code change. Another advantage with this approach is that it could be possible
for the user toggle between showing/hiding the filtered results. The disadvantage of
this approach is that it would require large changes to the Gerrit plugin.

7.4 Visual Feedback Module
Our purpose for adding this module was to add functionality, such that noise is reduced within
a review by visually reacting to ’NOT USEFUL’ clicks. A background is given describing the
motivation for the addition of the feature, followed by its implementation and concluding
with alternative approaches we considered.

7.4.1 Background
The ’NOT USEFUL’ button is meant to signal to the maintainers of the tool, or the MEAN
service itself, that the specific analysis result is not satisfactory. This type of result can range
from it being a false positive to unsatisfactory guidelines. But even though a developer marks
the result as ’NOT USEFUL’, it will still remain as a robot-comment in the current and future
patch sets of the review context. Hence these “sticky” ’NOT USEFUL’ comments produce
noise to the developer and reviewers as superfluous information. Thus, noisy tools can reduce
the meaningful time the developer and reviewers spend on work. Having to deal with the
“sticky” ’NOT USEFUL’ comments will thus cost e�ective time that would otherwise benefit
the development if spent on meaningful issues.

52

7.4 Visual Feedback Module

Figure 7.3: An overview detailing the scope, highlighted in a light
tone of red, where changes were made to implement the Visual
Feedback Feature.

7.4.2 Implementation
Due to time and workload constraints placed by the scope of this thesis, we decided to
only implement the core functionality. Namely, the mitigating of the above described issue
developers are facing with robot comments. One of our main reasons for this decision was
due to the complexity of tracing analysis results that are caused by the same piece of code.

53

7. Mean Extensions

Another issue that arises when taking one of the approaches we detail in Section 7.4.3, is
configuring the changes done to the robot comment to-be proportional to the multiple users’
actions. The topics we describe in Section 7.4.3 can then be used as starting points for future
work for the core functionality described below.

Thus, we implemented the functionality such that it responds to the ’NOT USEFUL’
button being pressed. When this happens, the color of the robot comment is changed to signal
to all involved that it has been pressed. This change will remain for the rest of the review
process, starting from next patch set, if two robot comments are equal. Robot comments will
only be seen as equal if the code that caused it is identical in the previous patch set. That is, it
has not been modified, had its line number changed or placed in another file.

To implement this feature, we needed to make two changes, one in the Gerrit MEAN
plugin, such that it can modify the color of the robot comment. The other change we made
was to the Robot Publisher, such that it can find out if a to-be published comment has
had its ’NOT USEFUL’ button pressed in a previous patch set. The scope of the changes are
highlighted in Figure 7.3. We chose the Robot Publisher since all the robot comments
pass through this module. This would then help us minimize coupling in the MEAN system
compared to other entry points. To signal that a robot comment was ’NOT USEFUL’, we
added an additional field to the robot comment inputs properties. These robot comment
inputs, encapsulate an analysis result, one for each result sent to Gerrit, where it is then used
to create a robot comment.

Thus, we attached a conditional in the attached function within the mean-feedback-button.js
file from the Gerrit MEAN plugin. It checked whether the value of the "not_useful_pressed" in
the properties field had been set to "true". If so, the color of the robot comment was changed
to gray.

When the ’NOT USEFUL’ button is pressed, a message to RabbitMQ is sent, which is then
stored in a mongoDB database collection. Two collections, not_useful and published_notes,
in this database are used to check whether a robot comment has had its ’NOT USEFUL’
button pressed in a previous patch set. The entries in the not_useful collection contain data
as detailed in Listing 7.1. Since these do not contain enough information to test for equality
between robot comments, we combine the information with the published_notes collection,
containing the robot comment information as seen in Listing 7.2.

Listing 7.1: note_useful
{

" note_id ": "<value >",
" analyzer_name ": "<value >",
" category ": "<value >",
" account_info ": {

" username ": "<value >",
"email": "<value >"

}
}

Listing 7.2: published_notes
{

" request_id ": "<value >",

54

7.4 Visual Feedback Module

" analyzer_name ": "<value >",
"note": {

" category ": "<value >",
" note_id ": "<value >",
" location ": {

"range": {
" start_line ": <value >,
" end_line ": <value >,
" start_column ": <value >,
" end_column ": <value >

},
"path": "<value >"

},
" description ": "<value >"

},
" source_context ": {

" project_name ": "<value >",
"ref": "<value >",
" revision_id ": "<value >",
" change_id ": "<value >",
" host_uri ": "<value >"

}

}

Before the data for a robot comment is compiled in the Robot Publisher, a query to
the published_notes collection is made. This query finds all entries matching with the fields,
"analyzer_name", "path", "category", values in "range" and "project_name", of the to-be published
comment. This then asserts the equality conditions we defined earlier. For each entry found,
a query to the not_useful collection is made to find an entry with the same unique note_id.
If such an entry is found, then the robot comment in a previous patch set has had its ’NOT
USEFUL’ button pressed and thus the not_useful_pressed field will be set to "true".

7.4.3 Alternatives Considered
Most likely the hardest problem to solve is the complexity that arises from tracing robot
comments. The same part of the source code that caused a robot comment to spawn may
move in the source file, hence changing the line number it existed at previously. Variable and
function names may change without a�ecting the behaviour and syntax of the part of code
that caused the analysis result.

Another problem is how we should handle the situation when new reviewers are invited
after a change has been made. The easiest approach is to have the newly invited reviewers
inherit the current settings and treat these as guests. Thus they will not a�ect the changes
made by the proposals described below. Due to this, they will be unable to cause any change
by pressing the ’NOT USEFUL’ button, although, the feedback will still be gathered. Below,
we list the proposals we considered to solve this issue. All proposals are contained within the

55

7. Mean Extensions

scope of a review.

Gradual Color Shift
Gradually shift the color of the ’NOT USEFUL’ button as more users press it. One way is to
increase the opacity of a color such as red to easily distinguish it from the rest. Once all users
have pressed the button, the comment may possibly be filtered out in future patch sets. Thus
overlapping with our proposal to remove the robot comment once everyone has clicked ’NOT
USEFUL’, although, with no color shift.

The mechanism that keeps track of which user has pressed the button, such that one user
cannot continue to press it to further a�ect the color shift, can either forget or remember
each user between patch sets. Remembering users will most likely increase the probability
that a specific robot comment is muted.

Pros

• Democratic, all users need to press it to mute the noise.

Cons

• Cumbersome/time-consuming since all users will need to press the button.

Remove Comment
This alternative proposes that the robot comment be removed in response to the ’NOT
USEFUL’ button being pressed. There are di�erent scenarios for which criteria may need to
be fulfilled for this to take e�ect. Thus, these are detailed below.

Criteria 1: One press on the button to remove the comment. This can be done in several
ways, for instance, only the one pressing the button will have the comment muted. Problems
that can arise due to this is added complexity to discussion between developers. Since what
they see may now di�er, thus adding the risk for confusion. Another approach is that it
requires only one involved developer to press the button such that comment is removed
for everyone involved. The disadvantage to this is that one developer can decide to remove
the comment even though others may find it necessary to keep. Thus taking away from the
purpose of code review being done as a team.

Criteria 2: Require all involved to press the button for comment to be removed. This is
similar to the “Gradual Color Shift” approach, with the gradual shift of color not present, and
instead the button is removed at max “color shift”.

Collect and Isolate Comments
Collect the sticky ’NOT USEFUL’ comments marked as ’NOT USEFUL’ as a separate “chat-
box”. This will thus isolate all unwanted comments to one comment, therefore avoiding
removing the comments. As such, they can still be found and viewed should the need arise,
but still reduce the noise to the developer by placing all the comments in one post, limiting
space taken. An analogy to this is marking email as junk, thus having them be moved to the
“junk” folder.

56

7.4 Visual Feedback Module

Expanding this comment will then show all the sticky ’NOT USEFUL’ comments. This
would most likely only be possible to implement as a change that a�ects all developers and
can therefore be seen as an expanded feature to the two above alternatives. For the color shift
proposal this would have the added e�ect that once the color has been “shifted” by everyone
present in the review, the comment would be moved to the “junk” comment collection. In
the case of the remove comment alternative, the comment would just be moved, as explained
above, instead of being removed.

57

7. Mean Extensions

58

Chapter 8

Results

In this chapter, we present the qualitative data gathered from the interviews we performed,
as well as the quantitative analysis data from the MEAN database.

8.1 Qualitative Interview Data
In this section we present the results found from the conducted interviews. The interview
participants will be referred to as P1-P4.

The attitude towards code analysis in general from the participants was positive:

"In general I think it’s a good idea to have static code analysis, . . . it should make the life
easier for the developers, and detect bugs which wouldn’t be detected otherwise." (P1)

Participants were generally positive about having analysis results show up in Gerrit:

"I think that it is a good idea if you present the issues in the review and not somewhere
in a file on Jenkins and nobody looks at it." (P1)

"Basically, what I liked was that I was directly informed about the location, where to
look to where the problem is." (P4)

Although some negatives were mentioned:

"I think a person can be pretty overwhelmed when there are a lot of errors." (P3)

"This stage is a little bit late. So, I just wanted to have this information earlier, already
in the development stage." (P4)

Something that came up when discussing the published results in Gerrit from MEAN
with P2 and P4 was their general development workflow. Something that might explain the
quantitative results we gathered:

59

8. Results

"Before we start developing, we gives some special developer some time to generally check
if the tools is working as intended. Then we specify which tools we use for delivery, and
then usually no software analyzer issues pop up during development. Because we cannot
a�ord to push the delivery back because of some tool issues that happens frequently
anyway." (P2)

"When you send for review, you are usually finished with the development.. . This is the
requirement for us, before you send something for review, you must verify that you pass
the static code checks already." (P4)

We compared what P4 said with CI in the form of many small changes and found out that
it was not very e�cient for their workflow:

"Initially, we also had these ideas to also make some smaller updates, small pushes to a
review and everything. . . . As reviewer, it’s really hard for you to get the full picture of
the change. . . . We decided to push the complete source code when it’s finished to review.
So the reviewer can also check, is something forgotten, is something to be updated, some
process related and so on." (P4)

Another aspect of low amounts of comments stems from the quick tuning that is performed
by the tools developers:

"The review is blocked anyway if something goes wrong, for false positives, it’s a matter
of days to fix them." (P2)

As for MEAN and the feedback loop via the ’NOT USEFUL’ button, the response was
also positive:

"The benefit of it is of course to give the user the power to give feedback." (P2)

"To not waste time of the developer, to figure out if this [an analysis result] is needed or
not needed and so on." (P3)

An interesting issue came up when talking about the ’NOT USEFUL’ button in the robot
comments, namely that it was very clear what the ’NOT USEFUL’ was for, but confusion
arose when it came to the ’PLEASE FIX’ button:

"The only thing I don’t really get is the button ’PLEASE FIX’, this is also an issue for
other developers. It’s pretty clear that ’NOT USEFUL’ sends that this comment is not
useful, maybe change it in the future, or it’s a false positive. But they generally don’t
know what ’PLEASE FIX’ means." (P2)

"My interpretation was ’NOT USEFUL’ means whatever is written in this comment
is not useful, or it’s not right or something like this. So it’s not useful for me. My
interpretation of ’PLEASE FIX’ was that this should be fixed by myself now... It was a
little bit confusing, what ’PLEASE FIX’ means." (P4)

When we later asked P4 why they pressed the ’NOT USEFUL’ button, some issues with
Cppcheck became apparent:

60

8.1 Qualitative Interview Data

"We have to provide some files for testing purposes. Which are generated by some kind of
tool, we are not allowed to modify them. The CPPchecker then mentions that something
is wrong. But I cannot do something about this, because I am not allowed to modify these
files. If we do, the tests will not complete anymore. They are not part of the software we
deliver." (P4)

When asked about the two new features to MEAN, nobody had noticed it:

"Not sure if I noticed anything." (P2)

"No, I have not seen it actually." (P4)

But when the features were explained, the response was generally positive. For the Visual
Feedback Feature:

"I think graying out potentially ’NOT USEFUL’ comments is a good thing." (P1)

"Maybe it’s good to have this key-visual, and also the gray color always in software
development.. . generally means ’please ignore’." (P2)

And for the Filter Module:

"In general, this is a good idea .. . sometimes if it’s hundreds of comments in one file, then
it generally takes much time fix a lot of those." (P2)

But there were some concerns. For the Visual Feedback Feature:

"I personally would like that maybe only I [the owner of the code change] can press this
button, because then .. . I know that it is not useful." (P4)

And for the Filter Module:

"I think that the developers should be encouraged to fix even unrelated issues, but it
should not be mandatory." (P1)

When we asked what future there is for the MEAN system at Bosch, we discover that
there are some hurdles that would need to be overcome for MEAN to be adopted on a more
widespread basis:

"I mean, if it’s working successfully at our department, why not use it at other depart-
ments, so I think that there is definitely a chance that other departments will adapt it
as well. . . . They might not use Git/Gerrit, and they might use something di�erent, then
of course it’s not so easy to adapt your system." (P1)

"I think it is a very interesting idea. . . . I think our department wastes a lot of time
figuring out what is working, what is not working, and your system could help under-
stand what is what. . . . To be honest, I am not sure, I think you need to have developed
infrastructure to use your system. Because a person have to get Gerrit first so to say.
This is a long time to go for a lot of departments I guess." (P3)

61

8. Results

8.2 Quantitative Data Management
We closely monitored the robot comments produced after the deployment of the MEAN
system into the production Gerrit at the Austrian team. Of which, special interest in ’NOT
USEFUL’ clicks was maintained. Due to the low number of results produced, which was due
to the size of the team, the usage of tuned in-house analyzers, no configurations were done
to the analyzers. As such, no analyzer nor specific categories were disabled compared to the
thesis done at Axis, where they used a 5% threshold to guide their decisions [12]. We opted
out of such methods due to the above limitations as well as an unfortunate timing with the
integration of MEAN at the Austrian team, as they were focusing mainly on other work
outside the scope of Gerrit.

Figure 8.1: The total amount of published analysis results for the
di�erent analyzers.

Figure 8.1 shows the total analysis results count for the three di�erent analyzers enabled in
MEAN over the whole period of time that MEAN was enabled in the production environment.
Cppcheck was enabled 10 days after the other two analyzers, which could account for it having
a fairly low count. The Framework Analyzer has some checks that sometimes give rise to
tens or even hundreds of results per file, which is why it has such a large count. The Correct
Mappings Analyzer on the other hand only gives rise to one (or zero) result for the whole
repository, explaining the low count.

62

8.2 Quantitative Data Management

Figure 8.2: The total amount of ’NOT USEFUL’ clicks for unique
users.

Figure 8.2 shows the ’NOT USEFUL’ clicks for each unique user for the di�erent analyzers.
As can be seen, only three unique users clicked on the ’NOT USEFUL’ button. The names of
the users have been changed to a simple id (0-2) for anonymity.

Figure 8.3: The total amount of ’NOT USEFUL’ feedback for the
di�erent analyzers.

Figure 8.3 shows the ’NOT USEFUL’ feedback count for the three di�erent analyzers.

63

8. Results

Cppcheck has the largest count of ’NOT USEFUL’ clicks, while the Framework Analyzer
garnered zero ’NOT USEFUL’ clicks.

Figure 8.4: The timeline of analysis results while the MEAN system
was running on the production tool stack.

Figure 8.4 shows the number of published robot comments per day for every analyzer. It
also shows an approximation of the total activity per day in Gerrit for the team where MEAN
was running. The activity is measured in number of times MEAN started an analysis, so if
MEAN started both Cppcheck and Framework Analyzer for a specific patch set, it is counted
twice. This means that the activity will generally be higher after we integrated Cppcheck,
around day 10. Also, due to limitations in the data, the figure also includes the times an
analysis was started by us when we tested the system by pushing code to the test repository in
Gerrit. It can be seen that the spike of activity around day 25 also led to a higher amount of
analysis results. On the other hand, the spike of results from the Framework Analyzer just
before day 40 was due to one large code change, explaining the low activity measured.

64

Chapter 9

Discussion

In this chapter, we discuss the results related to the di�erent research questions. In addition
to this, we go through some possible future work for MEAN in the last section of the chapter.

9.1 RQ1: Noise Reduction
We enabled the two modules meant to reduce robot comment noise after MEAN had been
running for about 20 days on the production tool stack. The Visual Feedback Feature,
which grays out ’NOT USEFUL’ comments so that developers could ’mentally filter out’ those
comments. And the Filter Module, which filters out comments unrelated to the most
recent changed lines. Unfortunately, due to the limited amount of time MEAN was running,
together with the fact that the Gerrit activity was relatively low, it is hard to say if these
additions are really improvements. As can be seen in Figure 8.3, the ’NOT USEFUL’ button
was only clicked on 16 comments. This means that it is unlikely that most developers have
seen the grayed out comments. As for the Filter Module, it is hard to see any e�ect from
it in Figure 8.4. In fact, the largest spikes in analysis results were after the Filter Module
was deployed. Although it is possible that the spikes would have been even larger without
the filtering. On the bright side, the interviews revealed that although the changes had gone
unnoticed, the general attitude towards them were positive when it was explained what their
purpose was. They thought that it could help reduce the risk of becoming overwhelmed with
potentially hundreds of robot comments in one file.

9.2 RQ2: MEAN Integration
Regarding RQ2, about the integration of MEAN into the Bosch tool stack, we were fairly
lucky. Both Axis, where MEAN was original integrated, and Bosch had fairly similar tool
stacks, at least from the view of MEAN integration. Both companies uses Gerrit as review

65

9. Discussion

tool, and Jenkins as CI system. This meant to us that we could reuse all original modules from
MEAN, with only a small amount of tweaking, to adapt the system to Bosch. Unfortunately,
Bosch did not use RabbitMQ as message broker. Even so, we concluded that it would probably
be easier to set up a small RabbitMQ server than it would be to rewrite a large amount of the
MEAN modules to use another type of message system.

However, the integration of MEAN into the Bosch tool stack was not completely without
its problems. As detailed in earlier chapters, Bosch is very strict regarding which Gerrit plugins
are allowed. This resulted in a problem, since the MEAN Gerrit Plugin is an important part
of MEAN. It would of course be possible to run MEAN without the plugin, but not without
rewriting some of the modules. Especially so, since a large part of the MEAN configuration
system is received from the Gerrit plugin. The ’NOT USEFUL’ button would also be non-
present, which would mean that the feedback loop would be broken. Fortunately, we did
not need to take these compromises, since another Bosch team with more control over their
systems (notably Gerrit) was found, where we could integrate MEAN.

When we asked about the robot comments in Gerrit that MEAN posted, developers found
the ’NOT USEFUL’ button to be clear and immediately obvious what it meant. Instead,
confusion arose as to what the purpose of the "PLEASE FIX" button was for, and when to
use it. They believed that it had been added by the MEAN system together with the ’NOT
USEFUL’ button. This caused users to question which button to press due to the ambiguity
brought on by the "PLEASE FIX" button.

9.3 RQ3: Perceived Value of Analysis
We gathered that the consensus regarding the value of program analysis results was useful.
Another value they found in the results was that they assisted the developers by taking away
some of the burden with having to detect issues in the code. It was apparent that the Austrian
team valued static analyzers by their diligent use of such tools. They also had a dedicated
group that fixed the issues with the tools within days if possible. Before starting a new project,
they tested out their tools, thus finding and fixing issues with the tools before the developers
started working on the project. If they were unable to fix them, they downgraded them to
older version or disabled some tools entirely. This was due to the high cost that would be
induced if the project in later development stages needed to be paused to resolve tooling
issues.

Then, while working on the code, the developers made constant use of their tools before
pushing for review with a requirement that no warnings or errors were present. Still, mistakes
could happen, unclear issues such as false positives could be postponed to the review phase.
Faults not caught by their local tools could be found during the Jenkins verification builds,
thus passing through the MEAN system and posted to Gerrit. We thus find it clear as to why
the amount of analysis results presented in the graphs in Chapter 8 were so low. Namely, due
to tools being fixed before the project starts and their heavy usage of tools before sending for
review.

The maintainers of the tools often got requests to disable a certain tool or category of
it to avoid having to fix certain problems. In other cases, developers tried to re-trigger the
Jenkins builds in hopes of it passing the second time. Sometimes simply contacting the tools
department, asking why their builds did not pass. Clearly showing the unwillingness to jump

66

9.4 Future Work

to another platform to go through large Jenkins logs to find what the issue was. Thus, we
found that developers and maintainers alike seemed to appreciate the benefits that the MEAN
system brought, thus saving time for several parties. This shows that the value in static analysis
results can depend on how easy it is to come by the results, and how clear the message is. This
is in line with what Johnson et al. [2] found when conducting interviews with 20 developers,
integration problems and result understandability were barriers to utilizing analysis results.

This is where the usefulness of the ’NOT USEFUL’ button comes in, developers and
maintainers of the tools used, found the purpose of the button easy to understand. The
maintainers found that it would save significant time if, by clicking the button, a notification
to a configurable list of maintainers could be issued. Thus, pinpointing the issue of what a
developer does not like, removing the need to spend time investigating build failures.

9.4 Future Work
In this section we discuss a few possible points for future work in this area.

MEAN Integration As discussed in Section 9.2, both Axis and Bosch uses Gerrit and
Jenkins, which made the integration of MEAN fairly smooth. However, there are still several
departments which do not use Gerrit in Bosch. As such, it would be interesting for future
work to integrate MEAN into a more di�erent tool stack, using another review tool than
Gerrit for instance. This would mean that a few MEAN modules would need to be rewritten.
It would also be interesting to see how much the modular nature of MEAN actually helps to
reduce the work needed to fit a more di�erent tool stack.

MEAN Improvements As detailed in the method, our two MEAN improvements
were only running in production for two weeks, due to time constraints. It would be interesting
for future work to run such improvements for a longer time. As such, it would be possible
to gather more data about how these additions a�ect the developers and evaluate if they
are indeed improvements. Other additions would also be interesting to investigate, such as
other kinds of feedback buttons on the robot comments, or automatic enabling/disabling of
analyzers based on ’NOT USEFUL’ feedback etc.

As mentioned in Section 9.2, several developers found Gerrits "PLEASE FIX" button in
the robot comments to be confusing. Thus, a future improvement to MEAN could be to
remove this "PLEASE FIX" button, thus highlighting the more clear ’NOT USEFUL’ button
in more detail. Another topic that came up during the interviews was that the gray color
of the Visual Feedback Feature was not very compatible with the dark mode in Gerrit.
Therefore, a future improvement would be make the feature compatible with this mode.

MEAN Comparison Two research questions that we were considering for this project
in the early stages were ’What is the di�erence in review time before and after the deployment
of MEAN?’ and ’How does the integration of MEAN a�ect usage of analysis results for
developers at Bosch?’. Unfortunately, these questions were scrapped when the project changed
to focus more on MEAN improvements. In addition to that, we were concerned that there
the amount of data gathered would be too low for these questions to draw any conclusions.

67

9. Discussion

However, it would still be interesting for future work to put a larger focus on investigating
exactly how the integration of MEAN a�ects the development process.

68

Chapter 10

Threats to Validity

In this chapter we go through the di�erent shortcomings and limitations of our work, that
might a�ect the generalization of the results.

10.1 External Validity
Short Deployment Period Our original plan was to deploy MEAN into production
early, and keep the system running for several months, to gather as much data as possible.
However, due to several obstacles, detailed in the method, Chapter 3, MEAN ended up only
running on the production system for a little more than a month. This is also in contrast
to the original MEAN developers deployment of MEAN at Axis, which was running for a
total of 11 weeks [7]. This means that the results obtained might not reflect what would
happen if MEAN was deployed for a longer period of time. For instance, it might take some
time for the developers to get used to the robot comments, and start to click the ’NOT
USEFUL’ button. Also, since MEAN was only deployed for one team of about 30 developers,
compared to the over 850 active users during the Axis thesis, the results obtained might di�er
substantially from what would have been obtained from another team at Bosch or another
company altogether.

Analyzers Relatively few analyzers were wrapped and running in MEAN, two in-house
analyzers and the ’of-the-shelf’ analyzer Cppcheck. The in-house analyses were a natural
choice to integrate into MEAN, while we added Cppcheck to prevent the risk of too few
results being generated with so few analyzers running. This means that the results we gathered
are strictly tied to these analyses, and fairly di�erent results can be expected if other analyzers
had been selected.

69

10. Threats to Validity

10.2 Internal Validity
Participant Response Bias Interview participants are more likely to give positive
feedback to a system developed by the interviewer [33]. This means that the qualitative data
might be biased, since we are the authors of the two MEAN extensions. To counter this, we
encouraged the interview participants to also give negative feedback, so that we could use
that feedback to potentially improve the extensions.

Interviews At first, we planned to perform interviews with about six di�erent people
in three di�erent phases. Unfortunately, due to time constraints and di�culty finding willing
participants, we could only interview four developers, in one phase. These developers were
selected by asking our contact person in the Bosch team for appropriate participants. With
such a relatively low number of participants, we cannot be absolutely certain that they are
a good representation of the whole team. Therefore, the results might be biased in certain
ways. In addition to this, we cannot know what criteria our contact person used to select the
participants. It is possible that this selection has introduced additional bias.

70

Chapter 11

Conclusions

Program analysis is a valuable tool that can be used to improve code quality and reduce the
need for manual code reviews. However, it is not without its downsides, such as false positives
and di�cult to integrate into the tool stack. In this master’s thesis, we integrated the open
source data-driven program analysis system MEAN into the tool stack of a team at Bosch.
While doing this, we discovered that MEAN can be integrated into a tool stack that is slightly
di�erent to where MEAN was originally deployed at Axis. However, it was not without its
hardships, which we had to solve on the way, some in the form of bug fixes to the MEAN open
source repository. We incorporated a mix of in-house analyzers and ’o�-the-shelf’ analyzers
into MEAN.

Unfortunately, we could not utilize the data-driven part of MEAN to tweak or disable
analyzers based on the ’NOT USEFUL’ feedback gathered. This was because the activity was
fairly low in Gerrit, and the interaction with the robot comments via the ’NOT USEFUL’
button even more so, to the extent that almost zero clicks were made. However, when
Cppcheck was introduced, more ’NOT USEFUL’ feedback was generated, indicating that the
two in-house analyzers were garnering few ’NOT USEFUL’ clicks due to already being well
tuned.

After MEAN had been up and running for a few weeks, we deployed a couple of im-
provements to MEAN we developed to reduce robot comment noise. However, due to time
constraints, it is hard to draw any conclusions regarding the e�ectiveness of the improvements.
Also, the interviewed developer that had interacted with the robot comments did not notice
a di�erence. All in all, the answer to the question "What is the e�ect of integrating MEAN in
the developer workflow at Bosch?" is that while MEAN was running at Bosch, it had only minor
e�ects on the workflow of the developers.

71

11. Conclusions

72

References

[1] N. Kikuchi and T. Kikuno, “Improving the testing process by program static analysis,” in
Proceedings Eighth Asia-Pacific Software Engineering Conference, pp. 195–201, 2001.

[2] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t software developers
use static analysis tools to find bugs?,” in 2013 35th International Conference on Software
Engineering (ICSE), pp. 672–681, 2013.

[3] N. Imtiaz, A. Rahman, E. Farhana, and L. Williams, “Challenges with responding to static
analysis tool alerts,” in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), pp. 245–249, 2019.

[4] M. Nachtigall, L. Nguyen Quang Do, and E. Bodden, “Explaining static analysis - a perspec-
tive,” in 2019 34th IEEE/ACM International Conference on Automated Software Engineering
Workshop (ASEW), pp. 29–32, 2019.

[5] C. Sadowski, J. Van Gogh, C. Jaspan, E. Soderberg, and C. Winter, “Tricorder: Building
a program analysis ecosystem,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1, pp. 598–608, 2015.

[6] E. Söderberg, “Tricium - tricorder for chromium..” https://bit.ly/
tricium-early-design, 2016.

[7] A. Ljungberg and D. Åkerman, “Data-driven program analysis deployment,” 2020. Stu-
dent Paper.

[8] A. Ljungberg and D. Åkerman, “Mean - meta analyzer,.” https://gitlab.com/
lund-university/mean.

[9] Robert Bosch AB. https://www.bosch.se/om-bosch/bosch-i-sverige/lund/.

[10] Axis Communications. https://www.axis.com/sv-se/contact-us/
axis-experience-center/lund.

[11] Gerrit Code Review, “Gerrit code review.” https://www.gerritcodereview.com/.

73

https://bit.ly/tricium-early-design
https://bit.ly/tricium-early-design
https://gitlab.com/lund-university/mean
https://gitlab.com/lund-university/mean
https://www.bosch.se/om-bosch/bosch-i-sverige/lund/
https://www.axis.com/sv-se/contact-us/axis-experience-center/lund
https://www.axis.com/sv-se/contact-us/axis-experience-center/lund
https://www.gerritcodereview.com/

REFERENCES

[12] A. Ljungberg, D. Åkerman, E. Söderberg, J. Sten, G. Lundh, and L. Church, “Case study
on data-driven deployment of program analysis on an open tools stack,” in Proceedings
of the 43rd International Conference on Software Engineering: Software Engineering in Practice,
IEEE - Institute of Electrical and Electronics Engineers Inc., 2021. 43rd International
Conference on Software Engineering: Software Engineering in Practice, ICSE 2021 ;
Conference date: 23-05-2021 Through 29-05-2021.

[13] Dan Radigan, “Continuous integration.” https://www.atlassian.com/agile/
software-development/continuous-integration.

[14] Sten Pittet, “Continuous integration vs. continuous delivery vs. continuous de-
ployment.” https://www.atlassian.com/continuous-delivery/principles/
continuous-integration-vs-delivery-vs-deployment.

[15] Jenkins, “Jenkins.” https://www.jenkins.io/.

[16] GITLAB, “What is version control?.” https://about.gitlab.com/topics/
version-control/.

[17] git-scm, “Git –distributed-is-the-new-centralized.” https://git-scm.com/.

[18] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern code review,”
in 2013 35th International Conference on Software Engineering (ICSE), pp. 712–721, 2013.

[19] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli, “Modern code re-
view: A case study at google,” in 2018 IEEE/ACM 40th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP), pp. 181–190, 2018.

[20] Gerrit Code Review, “Working with gerrit: An example.” https://gerrit-review.
googlesource.com/Documentation/intro-gerrit-walkthrough.html.

[21] Google, “Containers at google.” https://cloud.google.com/containers.

[22] IBM Cloud Education , “Containerization.” https://www.ibm.com/cloud/learn/
containerization.

[23] Docker, “Docker.” https://www.docker.com/.

[24] RabbitMQ, “Rabbitmq.” https://www.rabbitmq.com, 2021.

[25] Sourceforge, “Cppcheck - a tool for static c/c++ code analysis.” https://sourceforge.
net/p/cppcheck/wiki/Home/.

[26] W. Adams, Conducting Semi-Structured Interviews. 08 2015.

[27] C. Robson, Real World Research. John Wiley & Sons Ltd., 2011.

[28] V. Balachandran, “Reducing human e�ort and improving quality in peer code reviews
using automatic static analysis and reviewer recommendation,” in (ICSE), 2013 35th
International Conference on Software Engineering, pp. 931–940, 05 2013.

74

https://www.atlassian.com/agile/software-development/continuous-integration
https://www.atlassian.com/agile/software-development/continuous-integration
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.jenkins.io/
https://about.gitlab.com/topics/version-control/
https://about.gitlab.com/topics/version-control/
https://git-scm.com/
https://gerrit-review.googlesource.com/Documentation/intro-gerrit-walkthrough.html
https://gerrit-review.googlesource.com/Documentation/intro-gerrit-walkthrough.html
https://cloud.google.com/containers
https://www.ibm.com/cloud/learn/containerization
https://www.ibm.com/cloud/learn/containerization
https://www.docker.com/
https://www.rabbitmq.com
https://sourceforge.net/p/cppcheck/wiki/Home/
https://sourceforge.net/p/cppcheck/wiki/Home/

REFERENCES

[29] M. G. Nanda, M. Gupta, S. Sinha, S. Chandra, D. Schmidt, and P. Balachandran, “Making
defect-finding tools work for you,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ICSE 2010, Cape Town, South Africa, 1-8 May
2010, vol. 2, pp. 99–108, 01 2010.

[30] Shipshape, “Shipshape.” https://github.com/google/shipshape.

[31] “Gnu di�utils (version 3.6, 6 may 2017).”

[32] E. Myers, “An o (nd) di�erence algorithm and its variations.,” Algorithmica, vol. 1, no. 1-4,
pp. 251 – 266, 1986.

[33] N. Dell, V. Vaidyanathan, I. Medhi, E. Cutrell, and W. Thies, “"yours is better!": Participant
response bias in hci,” in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’12, (New York, NY, USA), p. 1321–1330, Association for Computing
Machinery, 2012.

75

 https://github.com/google/shipshape

REFERENCES

76

Appendicies

77

REFERENCES

78

Appendix A: Interview Guide

Continuous Interviews
• Type: semi-structured which means you can clarify things online, within subject design

- using the same group of developers.

• Medium: Microsoft Teams calls.

• Length: 10 to 30 minutes.

• Goals (What information do we want to get out of this interview?): Find out about
“Impact of integration change”

Type of Questions
• Questions about their role

• Examples of when they found/noticed the di�erence?

• Value of analysis results in Gerrit.

Interview Guide
Introduction
"Thank you for agreeing to participate in this interview. My name is Michael and this is my
colleague Mattias. This interview is to gain insight about the e�ects the MEAN System has
had for you, so that we can better understand how the MEAN System performs at Bosch.
Therefore we are interested in your experience with this system and program analysis.

This interview is voluntary and anything said will remain anonymous. What you say
during this interview will only be used for our thesis and eventually help improve Software

79

REFERENCES

development at Bosch. This interview will take about 30 minutes. We would like to record
the audio of this interview with your permission since we don’t want to miss any important
details you share with us.

Nothing recorded will be quoted with your name. Is it okay [name of developer], if we
start recording the audio now?

Do you have any questions about anything that we have just explained?"

Ice-breakers
• Do you still visit the o�ce?

• How is working from home?

Background: Developer
What is your role at the company?

Prompts

• How long have you been working with software development?

• How many years?

• Which parts of the organization?

• Do you have any other background that is relevant in the context of program analysis?

• How long have you been working at Bosch?

Background: Analyzers
Tell us about where you have come across any program analysis results at Bosch?

Alt: Please show us a small example of how you work with the tool stack and how you use analysis
results?

Prompts

• How have you used any of these results?

• (If not) Why is that so?

• How have analyzers been triggered?

• Where have results been published?

• What has been the user response?

• Where do you find these results?

Which analyzers have been used at Bosch? (if many, some important ones)

80

REFERENCES

Prompts

• How has this changed over time?

• Has any analyzer been mandatory?

• In what scale(local dev/team dev) are they used?

• How are in-house analyzers compared to commercial ones?

Robot Comments from MEAN
What di�erence have you noticed in Gerrit in reviews, specifically comments from [“Non-Interactive
User”]?

• Prompts when respondent answers "yes"

• How do you perceive the comments from [“Non-Interactive User”]?

• How do you perceive the comments placed in the di�?

• Examples of when you found/noticed the di�erence?

• How often do you read/view them?

• How has the new addition changed your workflow when inspecting a review?

• Prompts when respondent answers "no"

• "Begin by sharing the screen and presenting a scenario with robot comments in Gerrit."

• Take a look at this scenario where analysis results in the form of robot comments have been
published in Gerrit. What do you think about having the analysis results presented like this?

• How do you perceive the comments from [“Non-Interactive User”]?

• How would this change your workflow?

’NOT USEFUL’
What value do you find in having analysis results in Gerrit?

Prompts

• If you would click ’NOT USEFUL’ on any comment, why would you do so?

• (If pressed ’NOT USEFUL’): Which were the main reasons for comments being ’NOT USEFUL’?

• How would you like ’NOT USEFUL’ comments to be handled?

• (“Replies with not valuable”): Could you elaborate on why you find it not valuable?, What
changes would make it valuable?

81

REFERENCES

Noise Reduction
Have you noticed any di�erence in the latest two weeks?

Prompts

• (Answers "no") We added a color change if ’NOT USEFUL’ has been pressed, how valuable do
you think this addition is?

• (Answers "no") We added so that comments are filtered away if they are related to unchanged
lines, how valuable do you think this addition is?

• (Answers "yes") What changed did you notice? (Continue with above questions)

Conclusion
What future do you see for the MEAN System at Bosch?

Prompts

• Why do you think it’s (not) possible?

• What would be necessary to include MEAN into the workflow at Bosch?

Finishing with a show of appreciation.

82

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2021-06-10

EXAMENSARBETE The Costs and Benefits of Acting on Program Analysis Results
STUDENTER Mattias Leifsson, Michael Pater
HANDLEDARE Emma Söderberg (LTH), Ali Houmani & Robert Lagerstedt (Robert Bosch AB)
EXAMINATOR Görel Hedin (LTH)

Värdet av programanalys

POPULÄRVETENSKAPLIG SAMMANFATTNING Mattias Leifsson, Michael Pater

Automatiska analysverktyg är användbara för att försäkra sig om att programkod håller
hög kvalitet. Men problem som falsklarm och låg användarvänlighet gör verktygen
svåra att använda. MEAN (MEta ANalyzer) är ett system som försöker åtgärda
några av dessa problem.

MEAN är ett system med öppen källkod som är
byggt för att underlätta införandet av automa-
tiska analysverktyg i utvecklingsprocessen. Bilden
nedan till höger ger en överblick av hur MEAN
fungerar. När en mjukvaruutvecklare gör en kod-
förändring, så skickas den automatiskt till MEAN,
som startar de automatiska verktygen som analy-
serar koden. Resultaten av analysen skickas sedan
tillbaka till utvecklaren så att denne lätt kan ta
del av resultaten och justera sin kod baserat på
resultaten. Om utvecklaren anser att ett resultat
är fel, till exempel om det är ett falsklarm, så kan
denne lätt ge återkoppling till MEAN genom en ’ej
användbart’ knapp. Denna återkopplingen sparas
i en databas, och kan sedan användas av MEAN
underhållare för att ändra konfigurationen av sys-
temet utifrån återkopplingen.

I vårt examensarbete tog vi MEAN och integr-
erade det till ett team med ungefär 30 utvecklare
på Bosch. Det innebar att vi behövde göra en del
ändringar och tillägg till MEAN för att anpassa
det till utvecklingsprocessen på Bosch. Dessutom
bidrog vi med några buggfixar till MEANs öppna
källkod som vi stötte på under integreringspro-
cessen. Efter att vi låtit systemet köra på Bosch
i några veckor, så rullade vi ut två förbättringar

till systemet, för att se hur stor skillnad det blev
i beteende för och efter förbättringarna.
Utvecklarna var positivt inställda till att resul-

taten från verktygen var mer åtkomliga medan de
som underhöll verktygen uppskattade ’ej använd-
bart’ knappen. De ansåg att det kunde spara tid
både genom att resultaten blev lättare för utveck-
larna att se, men även effektivisera processen av
identifiering och lagning av fel i verktygen. Re-
sultatet indikerar att MEAN är ett system som
många olika företag kan tjäna på att använda.

	Introduction
	Objectives
	Research Questions

	Delimitations
	Risks
	Difficulties with MEAN integration
	Not enough quantitative data
	Not enough qualitative data
	Data Restrictions
	Infrequent Developer Activity
	Low User Engagement

	Background
	Continuous Integration
	Version Control
	Code Review
	Containerization
	Message Communication
	Program Analysis

	Method
	Review Related Work
	Literature Study
	MEAN System Review
	Study Context

	MEAN Integration
	MEAN Extensions
	Wrapping Bosch Analyzers
	Noise Reduction

	MEAN Deployment
	Vanilla Deployment
	Extension Deployment

	Data Collection
	Quantitative Data
	Qualitative Data

	Data Analysis

	Related Work
	Program Analysis Challenges
	Data-driven Deployment of Program Analysis

	The MEAN System
	Message Protocols
	MEAN-publisher
	Main MEAN System
	Analyzer Executor
	Analyzer Wrapper
	Robot Publisher
	Gerrit MEAN plugin
	Not Useful Server

	Integration of MEAN at Bosch
	Bosch Tool Stack
	Pre-Integration
	Test Integration

	Integration Stage 1
	Production Integration

	Mean Extensions
	Storage Publisher
	Analyzer Wrappers
	Implementation
	Alternatives Considered

	Filter Module
	Background
	Implementation
	Alternatives Considered

	Visual Feedback Module
	Background
	Implementation
	Alternatives Considered

	Results
	Qualitative Interview Data
	Quantitative Data Management

	Discussion
	RQ1: Noise Reduction
	RQ2: MEAN Integration
	RQ3: Perceived Value of Analysis
	Future Work

	Threats to Validity
	External Validity
	Internal Validity

	Conclusions
	Tom sida

