
MASTER’S THESIS 2021

Evaluation of Active Learning
Strategies for Multi-Label Text
Classification
Henric Zethraeus, Philip Horstmann

ISSN 1650-2884
LU-CS-EX: 2021-10

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2021-10

Evaluation of Active Learning Strategies
for Multi-Label Text Classification

Henric Zethraeus, Philip Horstmann

Evaluation of Active Learning Strategies
for Multi-Label Text Classification

Henric Zethraeus
mas15hze@student.lu.se

Philip Horstmann
mas15pho@student.lu.se

August 1, 2021

Master’s thesis work carried out at Sinch AB.

Supervisors: Michael Truong, Michael.Truong@sinch.com
Pierre Nugues, Pierre.Nugues@cs.lth.se

Examiner: Jacek Malek, jacek.malec@cs.lth.se

mailto:mas15hze@student.lu.se
mailto:mas15pho@student.lu.se
mailto:Michael.Truong@sinch.com
mailto:Pierre.Nugues@cs.lth.se
mailto:jacek.malec@cs.lth.se

Abstract

With increasing data flows from cloud communication services, unlabeled data
has become abundant; however, labeled data remains scarce. Commonly in ma-
chine learning, annotators will label a portion of randomly sampled data for the
model to be trained on, which is usually expensive, sub-optimal, and time con-
suming. Active learning is an approach in machine learning where the model
decides which samples are to be labeled from a set of unlabeled instances. In this
thesis, we initially investigate a suitable machine learning model for mutil-label
classification of text messages, and then evaluate di�erent active learning strate-
gies. Our findings show that a logistic regression model with an active learning
strategy based on a minimum confidence, average, non F1 macro score weighting
created the best overall results with a fast learning rate and the highest F1 max
score. This strategy queries samples with the lowest confidence, averaged over all
class labels of each document, along with treating each class label independent
of F1 performance.

Keywords: MSc, Machine Learning, Natural Language Processing, Active Learning, La-
beling, Multi-Label Classification

2

Acknowledgements

We would like to thank Sinch for an interesting topic to our thesis and providing us with
material to complete it as well as a welcoming o�ce space. We extend a big thanks to our
supervisor Michael Truong at Sinch, for constantly going the extra mile to help us in our
project, either with general guidance or intricate programming problems. We would also
like to thank our supervisor Pierre Nugues at the Department of Computer Science at LTH,
who assisted us with great feedback and ideas throughout the thesis, always positive and
solution oriented. Finally we are grateful to experts in the field Andrea Esuli and Fabrizio
Sebastiani, both from the National Research Council of Italy, and Tivadar Danka developer
of ModAL, for contributing with thoughtful insights to our results.

3

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 Goal & Limitations . 8
1.3 Mathematical Notation . 9

2 Data Sets 11
2.1 Sinch Data . 11

2.1.1 Sinch Set 1 . 11
2.1.2 Sinch Set 2 . 12
2.1.3 Labeling . 12

2.2 Reuters Data Set . 13
2.3 Exploratory Data Analysis . 14

2.3.1 Label Distribution . 14
2.3.2 Imbalance Ratio . 15
2.3.3 Lexical Properties . 16

3 Theory 19
3.1 Artificial Intelligence . 19
3.2 Machine Learning . 19

3.2.1 Single- and Multi-Label Classification 20
3.2.2 Binary Relevance . 21
3.2.3 Classifiers . 22

3.3 Deep Learning . 24
3.4 Natural Language Processing . 24

3.4.1 Word Representation . 25
3.4.2 Tokenization . 25

3.5 Transformer . 26
3.5.1 Encoder-Decoder . 27
3.5.2 Attention . 27

3.6 BERT . 29

5

CONTENTS

3.6.1 DistilBERT . 30
3.7 K-Means . 31

3.7.1 Elbow Method . 31
3.8 Active Learning . 31

3.8.1 Scenarios . 32
3.8.2 Query Strategy Framework . 33
3.8.3 Multi-Label Active Learning . 34

3.9 Evaluation . 35
3.9.1 F-score . 35
3.9.2 Exact Match Ratio . 36

4 Approach 39
4.1 Labeling . 39
4.2 Model choice . 40
4.3 Active Learning . 41
4.4 Manual inspection . 43

5 Results 45
5.1 Labeling . 45
5.2 Choice of model . 46
5.3 Active Learning . 48
5.4 Manual inspection . 50

6 Discussion 53
6.1 Labels . 53
6.2 Model choice . 54

6.2.1 Sinch and Reuters comparison . 55
6.3 Active learning . 57

6.3.1 Batch Sizes . 57
6.3.2 Active learning strategy comparison 58
6.3.3 Individual Label Performance . 61

6.4 Data Sets . 62
6.5 Further work . 62
6.6 Conclusion . 63

References 65

A Graphs 69

6

Chapter 1

Introduction

千日の勤学より一時の名匠
“Better than a thousand days of diligent study is one day with a great teacher.”
– Japanese proverb

1.1 Background
The ability to harness the capabilities of data driven decision making is now widely accepted
as central to the success of the tech industry. Tech giants such as Amazon, Google and Face-
book all depend heavily on the continuous input and e�cient utilization of data (Labrinidis
and Jagadish, 2012; Chollet, 2018). This shift towards a larger throughput of data has been
named big data. Big data di�ers from the traditional data analysis environment in that it
focuses on flows of data instead of stocks and because it relies on data scientists instead of
data analysts (Davenport et al., 2012).

However, data flows cannot be handled e�ciently without initially developing models
that are based on stocks of data. In “How is ‘Big Data’ di�erent” in the MIT management Sloan
Review 2012, the authors of the article write that stocks of data are still ”useful for developing
and refining the analytical models used on big data, once the models have been developed,
they need to process continuing data streams quickly and accurately” (Davenport et al., 2012).
Understanding how to develop a model from stocks is thus crucial to the management of
future flows of data.

Sinch is a company that provides cloud communication solutions for its customers, mainly
by o�ering e�cient global distribution of SMS messages. Sinch is an international orga-
nization and has been expanding rapidly over the last years and thus, the volume of dis-
tributed text messages has increased as well. This increase in data flow could help Sinch gain
a deeper understanding about market trends and customer communication habits, which in
turn could help Sinch make informed decisions and to adapt to market change. However,
because of the sheer volume of text messages and the continuous change in data, monitoring

7

1. Introduction

Sinch’s data is not a straightforward task.
Currently, Sinch distributes over 100 billion text messages every year, making it impos-

sible to manually check and label every message. Moreover, the use of Application Service
Providers as customers prevents Sinch from having direct contact with its end consumers
and the messages they send. Sinch thus su�ers from a common modern machine learning
problem. As Settles (2009) puts it, ”unlabeled data may be abundant or easily obtained, but
labels are di�cult, time-consuming, or expensive to obtain.”

A common strategy for annotation of machine learning data sets is to randomly sample
a suitable number of data instances for training. However, this su�ers from two problems:

1. It is time consuming and expensive because the unlabeled instances may not be selected
in the most e�cient way, causing annotators to label more than required.

2. The data instances which the model needs to train on may not be picked and the already
learned categories may be redundantly chosen, thus resulting in a poorly performing
classifier.

The purpose of Active learning is to get around these problems. (Settles, 2009)
Active learning refers to a method where the learner (classifier), given a training set, may

request queries on which additional instances the oracle or teacher (e.g. human annotator)
should label from a set of unlabeled instances. The idea is that the model can achieve greater
accuracy with fewer training examples by making informed decisions on which instances to
label rather than randomly selecting them (Settles, 2009).

1.2 Goal & Limitations
The purpose of this master thesis project is to produce a suitable machine learning model for
the multi-label classification of Sinch’s text messages. By making use of data sets of previously
distributed text messages, the goal is to create a model that can perform satisfactory on the
initial data sets and will be able to interpret and adapt to the changing market.

More specifically, the project will focus on incorporating active learning into the model in
order to reduce the amount of manual labeling required for new data, while still maintaining
satisfactory accuracy and speed of the classification. Di�erent theories within active learning
propose di�erent strategies of the method and our goal is to evaluate which strategy o�ers
the best solution for Sinch; and if active learning is better than random sampling at all.

Our main limitation in the project is the time limit. The short span requires us to limit
the size of the data sets so that labeling does not take up too much time. Moreover, the mod-
els selected must be relatively time e�cient in both training and prediction which narrows
the scope of possible machine learning models. Due to this, the project will not delve very
deep into the finding of the perfect text classifier, but will instead settle for a model with
satisfactory results so that focus can be put on evaluating active learning.

Another limit to the scope of this thesis relates to the data sets we chose to work with. It
must be emphasized that the goal of this thesis was not to create an optimal machine learning
algorithm for the classification of Sinch’s text messages, but rather to investigate the possibil-
ity of using active learning as a technique for adapting to the changes in the communication
data flow. Therefore, the data sets were not overly tampered with and preprocessed, but on

8

1.3 Mathematical Notation

the contrary, consciously kept as close to the actual flow of data as possible so as to let the ac-
tive learning algorithm make itself apparent in a realistic environment; hence, the imbalance
of the data sets.

1.3 Mathematical Notation
Throughout this report some mathematical notation will be recurring. To ease further read-
ing, Table 1.1 contains a summary of the notations used. The notations are inspired by those
used in Zhang and Zhou (2013) to create conformity with the other literature in the field.

It should be noted that the split into test and training sets in the notations in Table 1.1 –
D and S – will only be used in mathematical context. When executing the experiments, we
used a k-fold iteration, so there is no permanent real distinction between train and test sets
in practice. Therefore, when we refer to the data sets in general, it is to be understood asD
and S combined.

Table 1.1: Mathematical notations used throughout the report along
with their corresponding meanings.

Notation Mathematical meaning
X d-dimensional feature space, Rd

Y label space with q possible labels, {y1, y2, ..., yq}

x d-dimensional feature vector (x1, x2, ..., xd)ᵀ, x ∈ X
Y set of labels associated with a feature vector x, (Y ⊆ Y)
D multi-label training set {(xi,Yi)|1 ≤ i ≤ m}
S multi-label test set {(xi,Yi)|1 ≤ i ≤ p}
g(·) binary classifier g : X → y, where g returns prediction

of x belonging to label y
h(·) multi-label classifier h : X → 2Y, where h returns the predicted labels for x
f (·, ·) real valued function f : X ×Y → R, f (x, y) returns the confidence of

x being a member of class y
t(·) threshold function, t : X → R, where h(x) = {y| f (x, y) > t(x), y ∈ Y}
y q-dimensional label vector denoting the proper labels for x
ŷ q-dimensional label vector denoting the estimated labels for x

9

1. Introduction

10

Chapter 2

Data Sets

This chapter will cover the data sets that were used throughout the project. The sections will
specifically go over the di�erent data sets, what they were used for, their characteristics, and
how they di�er. A special attention will be put on a general understanding of the specific data
that Sinch handles and provided to us, which is central to the project. Moreover, this chapter
will also cover the labeling of the Sinch data, since it is needed to provide a comprehensive
exploratory data analysis in the last sections of the chapter.

2.1 Sinch Data

Since Sinch mainly distributes SMS and similar formats (although not exclusively), this project
will focus on a data set composed of short text messages. This type of data is, in many ways,
convenient since the messages usually follow some form of template and are not very complex
in their nature. To protect the privacy of all parties involved, personal and company specific
information have been redacted from the sample messages in this report.

2.1.1 Sinch Set 1

The first Sinch data set – from now on referred to as S1 – is a subset of a collection of text
messages distributed in the US market during three hours. In order to e�ciently train and
evaluate models in reasonable time, the data set was cut to 10k messages using random sam-
pling so that the labeling process would not take up too much time. The primary use of this
data set was to test and train the baseline model.

11

2. Data Sets

2.1.2 Sinch Set 2
The second Sinch data set (S2) is a set of messages distributed in 2019 and was used by Tran
and Truong (2019)1. S2 is similar to S1, however, none of the messages are identical. One
of the main di�erences between this data set and the first Sinch data set is that S2 uses
named entity recognition, which means that some parts of the messages have been replaced
by entities such as DIGITS or REDACTED. The primary use of S2 is to see how well the
model trained on S1 can adapt to S2 using active learning.

2.1.3 Labeling
The labeling process is essentially part of the preprocessing of the Sinch data sets and will be
further explained in the chapter 4 of this study. However, in order to perform a comprehen-
sive exploratory data analysis, information on the labels of S1 and S2 is required.

13 labels in total were selected for the Sinch data sets. Each message belongs to at least
one of the categories. None of the categories are mutually exclusive except for Alert and
Notification (11 and 12, respectively). The labels Alert and Notification relate to the urgency,
need for action or response, and anticipation of the text message. If a message is deemed to
belong to at least two of the subcategories urgent, action required, and/or not expected, it is given
the label Alert. However, if it only fulfills the requirements for one or less of the subcategories
urgent, action required, and/or not expected, it is given the label Notification. See Table 2.1 for
the full list of labels and short explanations of them.

Table 2.1: Labels used on the Sinch data sets.

Number Label Short explanation
0 Banking Personal finances such as transaction or balance inquiries
1 Transportation Transportation information such as flight schedule updates
2 Two Factor Authentication Account login information such as a one time password
3 Marketing Commercial content
4 Finance Financial information such as stock market updates
5 Social Messages referring to social, personal or spare time recreations
6 Non-English Messages in other languages
7 Job and Education Messages with information about jobs or education
8 Service Information about services such as car reparations
9 Security and Monitoring E.g. house alarms or GPS trackers
10 Public Information Information distributed to certain areas such as earthquake warnings
11 Alert If ≥ 2/3 of urgent, unexpected, and action required are satisfied
12 Notification If < 2/3 of urgent, unexpected, and action required are satisfied

To get a better understanding of how the messages are labeled and, in particular, how to
di�erentiate between Alert and Notification, Table 2.2 shows four sample messages and their
labels.

Take message 0 in Table 2.2 as an example. The message is providing a verification code
for an account and is therefore labeled Two Factor Authentication (2FA). Also, although the
message is probably expected, it does require action and is urgent – since the verification code
will only last temporarily – therefore, it is labeled as an Alert. Message 1, on the other hand,

1Michael Truong was our supervisor at Sinch.

12

2.2 Reuters Data Set

is classified as a Notification, because although this message requires action to login, it is not
unexpected, since the customer most likely asked to retrieve login information, and contrary
to message 0, it is not urgent, since a password does not have a time restriction the way a
verification code does. Thus, for message 0, more than 2 out of 3 requirements are satisfied
→ Alert, for message 1, less than 2 out of 3 requirements are satisfied→ Notification.

Similarly, both message 2 and 3 relate to banking. However, message 2 refers to a debit
card being declined, which is probably both unexpected and requires action – if the customer
wants to make the payment at COMPANY (it might even be urgent) – therefore, the message
is labeled Alert. Message 3 is neither unexpected, urgent nor action required and is therefore
labeled Notification.

Table 2.2: Sample messages from Sinch data with corresponding la-
bels. The company names, customer names, and account informa-
tion, have been exchanged for arbitrary entities.

ID Message Labels
0 A-123456 is your COMPANY verification code. 2FA; Alert
1 Account notification: The password for your COMPANY

Account 123456
2FA; Notification

2 Debit Card 1234 A charge of $ 313.86 was declined at
COMPANY on 10/15 02:06 AM ET due to NSF.

Banking; Alert

3 Checking Withdrawal posted for $ 192.84 Banking; Notification

2.2 Reuters Data Set
In order to get a better understanding of to what degree the performance of our models
depends on their inherent capabilities or the properties of the Sinch data, a third reference
data set was introduced for cross evaluation. For this purpose, the Reuters RCV1-v2 data set
was chosen. V2 in RCV1-v2 stands for version 2, which is the version used in this thesis, but
hereinafter the data set will only be referred to as RCV1.

RCV1 is composed of 800,000 news wire stories written between 1996 and 1997. The
news wire stories vary in length between a couple of hundred words to several thousands and
are written in English. Each story has been given at least one label in each of the following cat-
egory sets: Topics, Industries, and Regions. For our comparison, only the set of 103 occurring
Topic codes was used, and Industries and Regions were neglected.

The reason for choosing the RCV1 is that it does not su�er from the weaknesses of many
other data sets, namely: few documents, limited documentation of categorization, incom-
plete category assignments, or limited access. Moreover, Lewis et al. (2004) have provided
benchmark results for NLP research on the set, which could be used for comparison in this
study. (Lewis et al., 2004)

13

2. Data Sets

2.3 Exploratory Data Analysis
The exploratory data analysis will delve deeper into the characteristics of the data sets by
looking at the composition and lexical properties of the messages and the distribution of
labels.

2.3.1 Label Distribution
In order to gain an understanding of the distribution of messages in the di�erent labels, we
performed an exploratory data analysis on the S1 and S2 data sets and created the two graphs
that can be seen in Figure 2.1 below. The figure shows the number of messages in each category
divided by the total number of messages in each data set so that they can be compared to each
other. Note that this is a multi-label classification, meaning that each message can belong to
more than one category. Therefore, the number of labels in sub-figure (a) is larger than the
number of input vectors. The classes Alert and Notification on the other hand are mutually
exclusive, so the number of labels per data set in figure (b) is equal to the number of input
vectors.

(a)
(b)

Figure 2.1: Labeled messages in each category per total messages in
Sinch set 1 and Sinch set 2

One conclusion that can be drawn from Figure 2.1 is that both data sets are imbalanced.
In S1, Banking and 2FA are the most common classes while in S2 Banking, Transportation, and
Marketing are the most prevalent. Furthermore, some categories such as Non-English and Public
Information occur very rarely in both data sets. In sub-figure (b), it can also be seen that S2
has a higher volume of Notification messages than Alerts, while S1 is quite balanced among the
two categories. One way of more accurately quantifying the class imbalance of data sets is to
use the Imbalance Ratio.

14

2.3 Exploratory Data Analysis

2.3.2 Imbalance Ratio
In short, the imbalance ratio of a class label is the ratio between the number of negative
samples and positive samples of that class label. In mathematical terms, the imbalance ratio
can be explained as follows: If Y denotes the set of all class labels Y = {y1, y2, ..., yq}, and
X ∈ Rd denotes the space of possible d-dimensional input vectors, then each feature vector
xi ∈ X , is associated with a set of labels Yi ∈ Y such that the multilabel training set can be
described as D = {(xi,Yi)|1 ≤ i ≤ N}, for all N input vectors. For each class label y j ∈ Y

the set of positive and negative samples of that class label are denotedD+j = {(xi,+1) | y j ∈

Yi, 1 ≤ i ≤ N} andD−j = {(xi,−1) | y j /∈ Yi, 1 ≤ i ≤ N}, respectively.
The imbalance ratio of one class label is then defined as:

ImR j = max(|D+j |, |D−j |) / min(|D+j |, |D−j |) (2.1)

To get the average imbalance ratio Equation 2.1 is just summed over and divided by all class
labels as follows:

ImR =
1
q

q∑
j=1

ImR j (2.2)

By using Equation 2.1, the imbalance ratios of the individual class labels of S1 and S2
could be calculated as seen in Table 2.3.

Table 2.3: Imbalance ratios for individual labels for S1, S2 and the
two data sets combined. The labels have been abbreviated for for-
matting reasons, see Table 2.1 for full list of labels with explanations.

Data Set Bank Trans 2FA Mark Fin Soc N.Eng
S1 2.4 19.8 1.1 61.9 34.5 8.8 155.3
S2 11.2 8.8 52.8 6.6 311.5 127.2 587.2
S1+S2 2.7 8.3 1.6 8.5 43.6 11.7 171.8
Data Set Job Ser Mon P.I. Al Not
S1 19.8 89.9 53.1 146.1 1.2 1.2
S2 54.9 143.9 89.1 311.5 21.9 1.8
S1 + S2 20.2 77.2 46.3 139.0 1.4 1.4

Table 2.3 shows that there is a very strong imbalance in both data sets. The boldfaced
numbers show the most and least imbalanced labels in each data set, and all three show that
Non-English and Notification are the most and least imbalanced labels, respectively. These
maximum and minimum values, along with the average imbalance calculated using Eq. 2.2
are compiled in Table 2.4 below. The table also shows the imbalance values for RCV1, which
are presented in Zhang et al. (2020).

By comparing RCV1 to the Sinch data sets, it becomes even more apparent how imbal-
anced the Sinch data sets are. Moreover, Zhang et al. (2020) compared 13 other multi label
data sets and concluded that the maximum label imbalance ranged from 3.0 to 50.0, and the
average imbalance across the label space ranged from 2.1 to 17.9. As seen in Table 2.4, S1 and
S2 are far more imbalanced in both aspects.

15

2. Data Sets

Table 2.4: Minimum, maximum and average imbalance ratios for S1,
S2 and the two datasets combined.

Data set min max avg
S1 1.1 155.3 45.8
S2 1.8 587.2 133.0
S1 + S2 1.4 171.8 41.1
RCV1 3.5 47.6 15.9

2.3.3 Lexical Properties
In this section, we looked at the lexical properties of the di�erent data sets. This was done in
order to see if there were any patterns that showed correlation between the lexical complexity
of the data sets and their individual classes and the performance of the active learning.

First, we tested the word count of each data sets and their classes. In Table 2.5 below, the
word count for S1, S2, S1 and S2 combined are shown. The table highlights both the highest
word count and standard deviation as well as the lowest word count and standard deviation.

The classes with the highest and lowest word counts and standard deviations for S1 were
Service (22.5 ± 5.5) and Two Factor Authentication (8.7 ± 5.2), respectively; for S2 they were
Public Information (25.2 ± 23.8) and Non-English (10.2 ± 4.9), respectively; and for S1 and S2
combined, they were Marketing (22.5 ± 6.1) and Two Factor Authentication (9.0 ± 5.5).

Table 2.5: Average word count per class label and their standard
deviations for S1, S2, and S1+S2. The class with the highest word
count per data set is boldfaced while the lowest word count per data
set it italicized.

Data Set Bank Trans 2FA Mark Fin Soc N.Eng
S1 16.3 ±6.2 16.7 ±7.5 8.7 ±5.2 20.1 ±6.4 15.7 ±7.3 11.9 ±2.8 16.7 ±5.7
S2 18.6 ±6.1 18.7 ±6.1 16.7 ±7.5 22.8 ±6.0 17.9 ±6.4 18.6 ±10.2 10.2 ±4.9
S1+S2 16.8 ±6.3 18.1 ±6.6 9.0 ±5.5 22.5 ±6.1 16.0 ±7.1 12.4 ±4.2 15.6 ±5.9
Data Set Job Ser Mon P.I. Al Not
S1 13.1 ±6.5 22.5 ±5.5 20.7 ±7.0 12.1 ±5.6 9.9 ±6.4 13.8 ±6.0
S2 17.2 ±12.0 18.6 ±6.6 23.6 ±4.6 25.2 ±23.8 20.0 ±10.7 20.0 ±6.7
S1+S2 14.2 ±8.6 21.2 ±6.0 21.9 ± 6.2 16.6 ±15.6 10.7 ±7.3 16.5 ±7.0

What is immediately striking is that there is a big di�erence between the data sets. Apart
from Two Factor Authentication which occurs as the lowest word count per message twice, the
other categories are unique for each data set.

Figure 2.2 was created to illustrate the di�erence between the highest and lowest word
counts per message out of the six aforementioned class word count distributions – namely
Two Factor Authentication for S1 and Public Information for S2. What can be seen in Figure 2.2
is that there is a clear spike of word count per label at 6 words. This is because of a common
template of verification messages that Sinch distributes which occur frequently in the data

16

2.3 Exploratory Data Analysis

set; the message template can be found as message with ID 0 in Table 2.2. Because of this
common template and that there are no outliers in the distribution, the word count and
standard deviation remains low. For Public Information in S2, on the other hand, there are a
couple of outliers far away from the main distribution, as well as a broader distribution of
word counts around 20 words per message, which drives up the word count and standard
deviation of the class. It should also be noted that the volume of messages on the y-axis are
very di�erent, which illustrates the label imbalance that was discussed in the previous section.

(a) Two Factor Authentication in S1 (b) Public Information in S2

Figure 2.2: Distribution of word count per message for the lowest
and highest out of the classes in data sets S1 and S2

Next, we calculated the lexical diversity of the class labels in the individual texts. Initially,
the messages had to be divided into separate words and stems, which is done using tokeniza-
tion. There are several methods for text tokenization that suite di�erent applications and
tools. For instance, DistilBERT – which was used later in this project – uses one, which is a
separate method than the one used here. The tokenization used here was the one supplied by
Kristopher Kyle specifically for Lexical Diversity analysis (Kyle, 2020). The tokenization used
for subsequent classification is discussed in further detail in Section 3.4.2.

After tokenizing the messages, lemmatization is usually applied for calculating lexical
diversity (Plisson et al., 2004). Lemmatization refers to the task of finding the normalized
form of a word. For example words like compute, computing, and computed would all be nor-
malized as compute. The lemmatization applied here is also the one supplied Kristopher Kyle
(Kyle, 2020). After the lemmatization of the messages, their lexical diversity could then be
calculated using the Text-Type Ration (TTR) defined below

TTRq =
number of types
number of tokens

. (2.3)

E.g. the sentence "We like active learning" would equal 4 tokens and 4 di�erent types,
thus generating a lexical diversity of 1. The addition of the sentence "We like dancing" to
the set, would add 3 tokens, but only add 1 more type, thus generating a lexical diversity of
5/7 = 0.7 The TTR scores calculated using Eq. 2.3 range from 1 to 0, where 1 denotes the
highest possible lexical diversity and 0 the lowest.

For the computation of the TTR, the lemmatized messages of each class label q were
added together to form one large set of words. Another approach would be to compute
the TTR of each individual message and then take the average of them. However, since every
message is composed of a few tokens of almost the same number of types, each message would

17

2. Data Sets

receive a TTR score close to one, and the average value would also be close to 1. Therefore,
we decided to aggregate the words of the messages to compute the lexical diversity of the
whole class. The results of TTR computations can be found in Table 2.6 below.

The table shows that Non-English has the highest lexical diversity in both of the data sets
and the combined data set. Alert and Notification have the lowest scores, closely followed by
Two Factor Authentication.

Table 2.6: Lexical diversity per label for data sets S1, S2, and S1+S2.
The classes with the highest and lowest lexical diversity are bold-
faced.

Data Set Bank Trans 2FA Mark Fin Soc N.Eng
S1 0.176 0.241 0.162 0.325 0.278 0.212 0.409
S2 0.203 0.185 0.279 0.164 0.459 0.361 0.480
S1+S2 0.171 0.197 0.161 0.198 0.269 0.208 0.388
Data Set Job Ser Mon P.I. Al Not
S1 0.240 0.370 0.321 0.404 0.161 0.165
S2 0.282 0.378 0.329 0.459 0.229 0.129
S1+S2 tot 0.221 0.317 0.274 0.379 0.161 0.152

As a final remark to the exploratory data analysis, it can be seen that there is a strong cor-
relation between the most imbalanced classes and the classes with the most lexical diversity.
This is a result of Sinch’s distribution model. Since most messages follow a specific template
and are distributed in high volumes, a higher volume of messages in a class will not result in
a particularly high increase in types of tokens. Therefore, the higher the volume, the lower
the TTR score.

18

Chapter 3

Theory

This chapter will present the theory and related works that we used to complete this the-
sis. The chapter will begin with a brief introduction to artificial intelligence and machine
learning in order to later explain multi-label classification. The chapter will then continue
by explaining the machine learning methods used and further move on to natural language
processing and the theory related to that. It will end by explaining the theory behind active
learning and scoring metrics used to evaluate the methods.

3.1 Artificial Intelligence
Artificial intelligence (AI) can vaguely be described as the field whose objective is to make
computers “think.” More concisely, the field can be defined as “the e�ort to automate intellec-
tual tasks normally performed by humans” (Chollet, 2018, p. 4). Initially artificial intelligence
was performed by hard-coding explicit rules into the computer, which is now referred to as
symbolic AI. However, as the field progressed it was discovered that symbolic AI was insuf-
ficient at solving more complex and vaguely defined problems. As a consequence, machine
learning and later deep learning were developed as sub-fields of AI (Chollet, 2018).

3.2 Machine Learning
The purpose of machine learning is to make computers learn how to perform tasks on their
own, in contrast to symbolic AI, where the rules of the computers are stated explicitly (Chol-
let, 2018). In machine learning, the computer is trained on data instead of explicitly pro-
grammed. The di�erence between classical programming (and symbolic AI) and machine
learning is illustrated in Figure 3.2 below. In symbolic AI and classical programming, the
computer is fed rules and data and then provides answers as output. In machine learning,
however, the inputs of the computer are data and answers (i.e. labeled data), and the output

19

3. Theory

Figure 3.1: Figure of artificial intelligence with machine learning and
deep learning as sub-fields

Figure 3.2: Comparison of classical programming and machine
learning.

is rules. This is called the training phase of machine learning. The machine is given many
solved samples of data and finds a statistical structure in the correct output from which it
can create rules to automate the task. These rules that the machine learns during the training
phase can then be applied to new (unlabeled) data, and thus provide answers without being
explicitly taught how to do so (Chollet, 2018).

3.2.1 Single- and Multi-Label Classification
Classification refers to the task of assigning a set of one or more class labels Yi = {y1, y2, ..., yq}

to an input of feature vectors xi ∈ X. If the feature vector xi can be assigned to one and only
one class label in the label space, the concept is called single label classification. The classifica-
tion is done through a function

g : X → Y : x 7→ y (3.1)

20

3.2 Machine Learning

If the label space only consists of one class label and is strictly binary, i.e. Y = y = {0, 1},
it is called a binary classifier and the function g is then mathematically described as:

g : X → {0, 1} : x 7→ y (3.2)

where 1 denotes member of y and 0 denotes not member of y (Gerniers and Saerens, 2018).
If, however, x can belong to a set of one or more class labels Yi = {y1, y2, ..., yq}, it is called

multi-label classification. In a multi label classification problem, the computational require-
ments are increased exponentially, since every feature vector xi can in theory be assigned to
any combinations of labels y ∈ Y . Or as Gerniers and Saerens put it:

The fact that multiple labels can be associated to one object constitutes a huge
di�erence with respect to the traditional, single-label, classification task. In-
deed, in the latter case, we only need to choose one label among a finite set of
labels. The number of possible outcomes that can be given to an observation is
thus simply the number of class labels present in the dataset. When the num-
ber of labels grows, the number of outputs will grow linearly. This means that
single-label classification is scalable to applications with a huge number of class
labels. This is not the case with multi-label classification. (Gerniers and Saerens,
2018)

The possible output of a multi-label classifier is thus 2Y. If the multi-label classifier is
denoted h the classifier can be defined as

h : X → 2Y : x 7→ Y (3.3)

The function h is trained on a set of labeled instances:

D = {(x1,Y1), (x2,Y2), ..., (xm,Ym)} (3.4)

This problem with exponentially increasing combinations of label sets becomes even
more computationally di�cult if there exists dependence between labels. Therefore, for most
multi label classifiers, the model assumes independence between labels for e�ciency. The
most common method for addressing multi label classification problems is through binary
relevance.

3.2.2 Binary Relevance
Binary relevance or one versus rest can simply be viewed as several single label classifiers stacked
on top of each other. For each feature vector xi ∈ X , the classifier considers the possibility of
xi belonging to label y j and then repeats the process for every class y j ∈ Y. In other words,
the multi-label classifier h is constructed of q independent binary classifiers g so that each
binary classifier determines the possibility of xi ’s membership in y j :

gi : X → {0, 1} (3.5)

Put together, the outputs of all classifiers gi in h creates an output vector ŷ :

h : X → {0, 1}q : x 7→ {g1(x), g2(x), ..., gq(x)} (3.6)

21

3. Theory

Although binary relevance is a common way of solving the problem with multi-label
classification, there are many other frequently used methods. Some of these are: decision
trees, support vector machines and boosting. In the next section we will briefly describe the
classifiers used in this project.

3.2.3 Classifiers
We have used five di�erent machine learning classifiers in this project: logistic regression,
Support Vector Classifier, Linear Support Vector Classifier, RandomForest and XGBoost.
We briefly explain these five methods below. For the enthusiastic reader, we suggest to read
the sources referenced.

Logistic Regression (LogReg)

Chollet (2018) states that the logistic regression model (LogReg) is commonly said to be the
“hello world” of modern machine learning and explains that LogReg predates computing but
because of its uncomplicated and adaptable nature it is still widely used today. In short,
Schein and Ungar (2007) explain the model as follows. Given a set of predictors, Xn, we can
determine the probability of a binary output yn by Equation 3.7 below:

P(Yn = 1|xn) = σ(w · xn) (3.7)

where w denotes the weight for each part of the vector xn and σ is expressed by equation 3.8

σ(θ) =
1

1 + exp(−θ)
(3.8)

mapping any real valued θ into the interval (0, 1).
For multi-label classification, a LogReg model is trained for each individual class y j inY

using binary relevance. These models together create the output vector ŷ.

Support Vector Classifier (SVC)

The aim of support vector classifiers (SVC), also known as support vector machines, is to
classify samples by computing a decision border between samples that belong to di�erent
classes. Once a decision border has been computed a new sample can be classified by checking
which side of the border it is located on.

The classifier computes the boundary border by first mapping the data to a new higher
dimensional space, according to φ, the dimensions in the higher dimension is equal to the
amount of attributes the classifier is to classify on. The classifier then seeks to create a hy-
perplane which is of one less dimension than the space. The hyperplane is then optimized to
be as far away from the closest samples of di�erent classes. Figure 3.3 shows how the SVC
maps the samples in a higher dimension with the use of φ and then creates the hyperplane in
the feature space (Chollet, 2018).

22

3.2 Machine Learning

Figure 3.3: The kernel transformation. The figure shows the
mapping of features from a two-dimensional plane to a three-
dimensional space. (Commons, 2020)

Linear Support Vector Classifier (Linear SVC)
LinearSVC just like SVC seeks to find a boundary that best divides the classes, the di�erence
is that it assumes that the classes are linearly separable. This means that φ(xi) = xi and no
higher dimensional space that handles linearly inseparable data is introduced (Chang et al.,
2010).

RandomForest
This method creates a large amount of diverse decision trees, each tree determines an output
of a predicted class given an instance of input data. By combining the predictions of these
unique and diverse trees, the classifier can create a single consolidated prediction output,
resulting in a more robust result than using the decision trees by their own (Breiman, 2001).

Figure 3.4 illustrates simplified how a classification of an instance is made with Random-
Forest.

XGBoost
XGBoost is a renowned method in the machine learning community and authors Chen and
Guestrin (2016) declare that amongst the winners of Kaggle competitions1 XGBoost is the
most common (2015).

XGBoost stands for eXtreme Gradient Boosting and is a decision tree ensemble method. It
benefits from boosting which is a method to add decision trees to correct errors from previous
decision trees. It is optimized through tree-pruning, cache awareness, e�cient handling of
missing data, paralleled computing and more enhancements on the algorithm compared to
predecessors. It will add decision trees sequentially based on the gradient descent of the

1Competitions on machine learning problems, more information on https://www.kaggle.com/

23

https://www.kaggle.com/

3. Theory

Figure 3.4: Example of a decision by RandomForest. (Koehrsen,
2017)

loss to minimize errors until no more models will further improve the structure. (Chen and
Guestrin, 2016)

3.3 Deep Learning
Deep learning is a sub-field of machine learning (see Figure 3.1) which consists of layers of
representation. Each layer aims to create more meaningful representations of the data until
the model can make a conclusive prediction based on the input data. Thus, the deep in deep
learning refers to the “depth” of the layers, in other words, how many layers the model consists
of. Deep learning is usually carried out using neural networks, which are literal layers stacked
on top of each other, with variations of connectivity between the layers (Chollet, 2018).

Each layer is connected by weighting the output of each layer to create the input of the
next layer. When the model is trained, these weights are optimized to make better predictions.
To do so, a loss function is required between the models prediction and the true label of the
data. The loss function is then used as input to a specific optimizer function, which in turn
optimizes the weights of the neural network.

3.4 Natural Language Processing
Natural language processing (NLP) is a cross-disciplinary field of artificial intelligence and
linguistics that aims to translate human language to the computer, and vice versa. In her
article, Liddy (2001) defines NLP as follows:

Natural Language Processing is a theoretically motivated range of computational
techniques for analyzing and representing naturally occurring texts at one or
more levels of linguistic analysis for the purpose of achieving human-like lan-
guage processing for a range of tasks or applications (Liddy, 2001, p. 2).

24

3.4 Natural Language Processing

The complexity of the problem lies within the amount of information behind a simple
sentence; the word choices, the order of the words, punctuation, etc. all adds up to a moun-
tain of information that the receiver will interpret and take into consideration in the next
interaction. If the receiver is a human this interpretation occurs instantly and almost seam-
lessly, the human has learnt this during years of interactions. The computer, on the other
hand, must process the words into a suitable dictionary of its own.

3.4.1 Word Representation
Chollet (2018) explains two methods of retrieving a dictionary for the computer but with
di�erent approaches: One-Hot encoding and Word Embeddings. One-Hot encoding is done
by assigning each word with a unique index, i, in a binary vector which is the size of the
vocabulary. The word can now be represented by a vector which is filled with zeros except
for element i in the vector which is a 1. The One-Hot word vectors are therefore sparse
(mostly containing zeros), binary, high dimensional and hard coded, the other method, Word
embeddings, is the opposite as shown in Figure 3.5.

Word embeddings, as Chollet explains, are not hard coded but trained on the available
data. By creating an embedding matrix with dimensions M × N , where M is the size of the
vocabulary and N a chosen dimension (e.g. Google BERT uses 768 dimensions), each word
is found in the M dimension being represented by a row in the Nth dimension. The weights
are instantiated random and through backpropagation trained and adjusted with the model
to reach the models objective, for example classifying text documents.

The result of the backpropagated word vectors are that geometric relationships between
the vectors will relate to a semantic relationship between the words. Since the words now
are symbolized as vectors in an N-dimesional space, the relations between the words can
therefore also be explained via mathematical vector operations.

A common example is to show arithmetic similarity by using addition and subtraction
operations on the word embedding vectors of king man and woman. King−Man+Woman
results in a vector that is very similar to the vector representing Queen. Similarly, the vector
operations of Berlin − Germany + France equals a vector close to the one representing
Paris.

As with most machine learning fields, the more training data, the better the model will
perform, therefore when data is not su�cient it is advisable to use word embeddings that
have been precomputed on another task. (Chollet, 2018)

3.4.2 Tokenization
Tokenization is a method to break down the words into a vocabulary used in e.g. the above
explained Word Embeddings. There are several di�erent methods of tokenization and in this
project we used WordPiece created by Wu et al. (2016).

The dictionary of WordPiece is initialized with all the characters available of the corpus
that it is to be trained on. It then generates a new word unit by combining two word units
from the current dictionary that increases the likelihood on the training data the most when
added to a language model of choice. This process is repeated until the dictionary is full
(normally between 8-32 thousand units in the dictionary).

25

3. Theory

Figure 3.5: One hot encoding compared to word embedding.

When tokenizing on the pretrained WordPiece, it splits each word it is given into pieces
until all pieces are part of the dictionary. In addition to the word units in the dictionary, it
also contains all Latin characters and therefore a piece can in worst case be broken down into
a single character (Wu et al., 2016).

As an example to illustrate how tokenization works we look at the sample message with
id 0 from Table 2.2:

[A-123456 is your COMPANY verification code.]

When tokenized with the WordPiece method which is trained with the BERT model with a
dictionary of size 30,000 tokens, the words are split up as shown in Figure 3.6. Two additional
tokens are added in the beginning and the end, [cls] and [sep], which are important to
the BERT model and will be explained in Section 3.6. As seen, the number 123456 is not part
of the vocabulary and is therefore split up into three parts namely; 123, ##45 and ##6. The
symbols indicate that the word piece is connected to the word piece to the left of it.

3.5 Transformer
To create the vector representations of the text messages, we used DistilBERT, which utilizes
transformers. The transformer introduced by Vaswani et al. (2017) received acclaim for its
state-of-the-art results in certain NLP tasks the same year, while simultaneously requiring
less training time than other models. The goal of the transformer is to translate a sequence
of elements into another sequence of elements, based on how the transformer is trained the
elements of input and output are chosen by the user. Commonly is to train it to take as input

26

3.5 Transformer

Figure 3.6: Sample visualization of what the tokenization of an input
sequence looks like.

a sequence of words and produce a continuous representation of the sequence, as suggested
by Allard (2019). As seen in Figure 3.7 is the architecture of the transformer model.

The transformers consists of encoder and decoder blocks that are intertwined as shown
in Figure 3.7, the blocks are powered by Attention mechanisms. Below are the description of
encoder and decoder as well as the Attention mechanism explained.

3.5.1 Encoder-Decoder
In Figure 3.7 of the architecture, the left side in the gray box is the part called the encoder
and the right side in the gray box is the part called the decoder. The number of encoders and
decoders stacked on one another within a transformer may be any given number Nx – e.g.
the paper by Vaswani et al. (2017) used 6. A simplified view of the encoder and decoder and
how they are connected is shown in Figure 3.8.

The encoder takes as input a word embedding of a word from a sentence that first is put
through a self-attention layer. The encoder uses the self-attention layer to view the di�erent
words in the input sentence as it encodes the individual word. The output of this layer is
then fed into a feed-forward neural network.

The encoder has now mapped the input sequence of word embeddings to a continuous
representation denoted z. The decoder also consists of the Self-Attention and Feed Forward
layers, the di�erence is that between the layers is an Encoder-Decoder Attention layer that
helps the decoder focus on relevant parts of the sentence. The decoders object is to decode
the representation z to an output sequence.

(Vaswani et al., 2017)

3.5.2 Attention
Attention helps the computer map what words are connected to each other by weighting
them as more important to one another. An example could be if a computer is to understand
the sentence “The animal didn’t eat the meat, because it was not hungry”. It could be di�cult for
a computer to understand whether the word “it” refers to “the meat” or “the animal”. Here the
attention method would put more weight on “the animal” when encoding the word “it”.

The attention functions by mapping vectors called query (q), key (k) and value (v) to an

27

3. Theory

Figure 3.7: The architecture of the transformer. (Vaswani et al., 2017)

output vector. The output vector is calculated as a weighted sum of the values where the
weight is dependent of the query with corresponding key. Vaswani et al. packs all the values
into matrices Q, K and V to compute them in batches to be more e�ective. The attention is
calculated by Equation 3.9, where we compute the dot product of Q and K and pass it to a
softmax function. This term serves as a multiplier to the V matrix. The result is an output
matrix.

Attention(Q,K,V) = softmax(
Q · KT
√

dk
) × V (3.9)

where dk is the dimension of the key vector.
In the architecture they have used this function in three di�erent ways:

Encoder-Decoder Attention In this layer, the keys and values come from the output from
the encoder and the queries are provided from the previous decoder layer. This way
the weighting to predict the next token is done of previously predicted tokens.

Self-Attention The self-attention layer, usually in the encoder, gets all of its inputs of keys,
values and queries from the output of the previous layer, additionally each position in
the encoder can attend to any position in the antecedent layer of the encoder.

Masked Self-Attention This layer is found in the decoder and is identical to the self-attention
layer except that the tokens that have not been decoded are hidden (also called masked),

28

3.6 BERT

Figure 3.8: A simplified view of the encoder and decoder. After
Alammar (2018).

making it only allowed to attend to all previously decoded positions. This is made to
ensure that no illegal connections are used.

(Vaswani et al., 2017)

3.6 BERT
BERT, Bidirectional Encoder Representations from Transformers, is a language model developed
by researchers at Google and presented by Devlin et al. (2019). The Bidirectional refers to that
BERT unlike traditional language models that reads a sentence left-to-right or right-to-left
(or combined) instead attends to the whole sentence. Encoder Representations from Transformers
refers to the use of encoder blocks in a Transformer structure described in Section 3.5. BERT
is pre-trained on a large amount of text (≈ 3, 300M words) using two methods: Masked
Language Modeling (MLM) and Next Sequence Prediction(NSP).

Masked Language Modeling could be described as a fill in the blank test. Words (tokens) in
the input sequence are masked from the model and the model has to attempt to predict
the value of the word embedding of the masked token. It does this by analyzing the
surrounding tokens that are not masked, which makes it understand the context of the
sentence.

Next Sequence Prediction is used to train the model on sentence classification and how they
are relational. The model analyzes two sentences and has to predict if the second sen-
tence is consecutive to the first sentence or not.

BERT produces embeddings for all token inputs including the classification token. A classifi-
cation embedding is produced from the two methods and is stored in the token called [cls],
see Figure 3.6 for clarification, and added in front of the other tokens. The embedding con-
tains BERT’s prediction of the sentiment of the sentence and it is especially interesting for
this Master’s thesis since it is used to determine the label of the message (Devlin et al., 2019).

As an example, we will look at the tokenized message [A-123456 is your COMPANY
verification code.] used in section 3.4.2 in Figure 3.6. Figure 3.9 displays how the pretrained
BERT model takes as input an entire sentence and produces as output embedding vectors of
768 dimension. The [cls] tokens’ outputted embedding vector is highlighted in blue as its
use will be further elaborated later.

29

3. Theory

Figure 3.9: A simplified view of the BERT language model.

3.6.1 DistilBERT
DistilBERT is the language model used in the Master’s thesis which is developed through the
use of the BERT model. The authors use a knowledge distillation technique reducing the time
and the parameters which reduces the models size while still retaining a very high accuracy.
Knowledge distillation is composed of two participants, a teacher and a student, in this case
BERT and DistilBERT respectively. Instead of solely training a model individually, the results
from the teacher is available to the student and the student optimizes its own parameters to
get as close results to the teacher as possible. (Sanh et al., 2020)

Table 3.1 shows a comparison between results from Sanh et al. paper of DistilBERT and
BERT in two recognized NLP tasks of classifying the IMDb and the SQuAD data sets. Ad-
ditionally there is a comparison of the number of parameters and the inference time of each
model. For more information about the tasks, scores and evaluation we recommend you to
read the Sanh et al. (2020) paper.

Table 3.1: Comparison of BERT and DistilBERT. After Sanh et al.
(2020)

Model IMDb SQuAD Nbr of params. Inference time
(acc. %) (F1 %) (Millions) (seconds)

BERT 93.46 88.5 110 668
DistilBERT 92.82 85.8 66 410

The key take away Sanh et al. (2020) want to present in the paper is that by training a
student model e�ectively with knowledge distillation it is possible to make a language model
60% faster, 40% smaller while retaining 97% of its understanding capabilities compared to
the BERT teacher (Sanh et al., 2020).

30

3.7 K-Means

3.7 K-Means
K-means is a clustering method with purpose of finding clusters of similar data points and
then group them into K groups. Unlike a classification problem where the classes are pro-
vided, clustering methods aim to provide the classes. The K-means method is comprised of
the following steps :

1. Select an appropriate value of K , which is the amount of clusters.

2. Select K centroids in the space that are set to the center of each cluster.

3. Calculate the distance from every data point, x, to the centroids in your space.

4. Each data point is assigned to the closest centroid.

5. Find the new centroid of the cluster by computing the mean of all data points of that
cluster.

6. Iterate through steps 2, 3 and 4 until convergence and the centroids stop moving.

(Yildirim, 2020)

3.7.1 Elbow Method
To decide the best amount of clusters K on the data set, it is possible to parameterize K
and then let the Elbow Method determine the amount. Introducing Within Cluster Sum of
Squares (WCSS), in Eq. 3.10, as an evaluation metric that helps determine a point where the
value of introducing more classes does not greatly decrease the WCSS score.

WCSS =
CK∑

C j=1

(
xm∑

xi inC j

distance(xi,C j)2) (3.10)

where C denotes the centroid, x the data point in each cluster, K the amount of clusters and
m the individual amount of data points in each cluster j .

Plotting the WCSS versus the amount of clusters K in a graph we will get a non linear
decreasing curve, hopefully including an “elbow” - a point in the curve with a significant
angle. The “elbow” signifies that introducing more clusters does not greatly decrease the
WCSS, suggesting the optimum K clusters has been reached (Syakur et al., 2018).

3.8 Active Learning
Active Learning is a sub-field of machine learning, where the learning algorithm can choose
which data it wants to be trained on. In short, the active learning model is trained with a set
of labeled instances after which it can decide whether or not additional unlabeled instances
are informative or not, and thus, whether it should be trained on them or not. By utilizing
active learning the need for manual labeling of data can be reduced, which as stated earlier is a
time consuming and expensive part of machine learning. Moreover, the ranking of unlabeled

31

3. Theory

instances in terms of their informativeness can sift out the unnecessary training samples and
may thus create an even better performing model with less data (Settles, 2009).

A conventional approach to selecting which data to label would be to randomly sample
a subset of the unlabeled data set. However, by not making an informed decision on which
data to be labeled, it is probable that some of the labeled data will be similar and thus the
learning algorithm will just reinforce already learned information and not get the most out
of the selected labeled data.

In active learning, the algorithm can instead choose to query the oracle on which specific
data it wants labeled, and thereby gain more information per labeled instance. The main
objective of active learning is thus to e�ectively rank the set of additional unlabeled examples
in terms of the added information they would carry if labeled by the oracle and added to the
training set of the learner (Esuli and Sebastiani, 2009). In active learning the computer or
program is referred to as the learner while the oracle or teacher is the human (usually) who
supplies the learner with its requested information.

In general, the process of active learning has the following structure:

1. The algorithm is trained on a labeled data set (L) which is a subset of the complete
data set.

2. The algorithm tries to predict results from an unlabeled data set (u).

3. When predicting the labels of the unlabeled data set (u), the algorithm ranks the pre-
dicted data set in terms of the added information they would provide if labeled.

4. The most valuable samples are manually labeled by the oracle.

5. The manually labeled samples are then put in the labeled data set (L) and the algorithm
gets trained once again.

This process is reiterated as many times as necessary in order to achieve a satisfactory
level of accuracy.

To create an active learning program, two main decisions of the learner needs to be made:

1. In which scenarios should the learner be able to ask queries.

2. By which criteria should the algorithm determine the informativeness of unlabeled
instances. This is called the Query Strategy Framework.

3.8.1 Scenarios
When determining which scenarios the learner should query there are three di�erent meth-
ods: member query synthesis, stream-based selective sampling, and pool-based selective sampling.

In member query synthesis the learner can request any instance in the input space. The
instance is usually synthetically produced de novo by the program. In other words, the pro-
gram creates a synthetic instance that it believes it would gain a lot of information from
having labeled. The problem with member query synthesis is that the queries can sometimes
be di�cult for a human annotator to annotate. In the case of text classification, the program
can generate a document that carries no real meaning for a human (Settles, 2009).

32

3.8 Active Learning

In stream-based selective sampling, an instance is drawn from the actual distribution of
unlabeled data, the algorithm then decides whether to ask for the instance to be labeled or
not. The method is called stream-based because each instance is picked one at a time from the
data source.

The final method is called pool-based selective sampling. This method is similar to stream-
based selective sampling in that the query instances are drawn from the actual distribution
rather than synthetically generated. The di�erence between the two methods is that in pool-
based selective sampling the learner goes through the whole selection (or a subset) of unla-
beled instances before determining which instances to query, rather than doing so sequen-
tially (Settles, 2009).

3.8.2 Query Strategy Framework
The query strategy framework determines the criteria by which the learner decides which
unlabeled instances it finds the most informative. Although Settles (2009) highlights several
di�erent methods, this study will limit the scope to variations of one framework, namely
uncertainty sampling. As the name suggests, uncertainty sampling is based on the premise that
the most informative samples are those the learner is the least certain about. In the case
of binary classification problems, the learner would query the instances that are the closest
to 0.5 (where 0 denotes not member and 1 denotes member of the class). This uncertainty
sampling strategy is called least confident and in the case of more than one class, the method
can be mathematically generalized as follows:

x∗LC = argmax1 − Pθ(ŷ|x) (3.11)

where ŷ denotes the class that x most likely belongs to according to model θ. The equation
can be interpreted as the expected loss or cost if the model was to mislabel the instance. Thus,
the higher the loss, the more likely the model is to query the oracle for the true label of the
instance.

However, the least confident strategy only considers the most probable class label of
the instance. Another way of determining the uncertainty of an instance would be to also
consider the next most likely class label of x. Such a method can be expressed as follows:

x∗M = argminPθ(ŷ1|x) − Pθ(ŷ2|x) (3.12)

here ŷ1 denotes the most probable class label and ŷ2 denotes the second most probable
class label, according to model θ. This method is called margin sampling. The method focuses
on the models ability to di�erentiate between the two most likely classes. If it deems the two
classes almost as likely being the label of x, the model will query the oracle on the instance.
The larger the margin between the two classes, the easier it is for the model to di�erentiate
between the two class labels.

Margin sampling only takes the first two class labels into account and does not consider
the probability of the rest. This may be su�cient for classification problems with smaller
label sets, but for situations where the label sets are larger, a fully generalized method might
be necessary. One such method is called entropy. In the case of entropy, the model considers
the probability of x being a member of each of the di�erent classes. If the model is uncertain
about x’s membership to several di�erent classes, the entropy will increase and the learner

33

3. Theory

will query the oracle on the instance. The mathematical expression for entropy based uncer-
tainty sampling is shown below:

x∗H = argmax
∑

i

Pθ(ŷi |x)logPθ(ŷi |x) (3.13)

3.8.3 Multi-Label Active Learning
Although the general theory of active learning is applicable on multi-label classification prob-
lems as well, most research has focused on single-label active learning (Esuli and Sebastiani,
2009). Active Learning Strategies for Multi-Label Text Classification by Esuli and Sebastiani (2009)
presented one of the first published studies in the field. In their paper, the authors state that
determining the confidence value for a single class label cannot be translated to a multi-label
environment in a straightforward manner since multi-label classification generates multiple
di�erent confidence values per document. The problem thus becomes one of deciding how
to value the total number of confidence values for each document.

One way of handling the multitude of class confidence values would be to separately
label each class label as opposed to the set of class labels for a whole document. This method
is called local labeling. By utilizing local labeling each class label is handled separately and the
learner could ask the oracle if document xi , is a member of class y j or not, but does not need
to query the whole set of labels for a document.

The other method is called global labeling and requires the learner to query the full set
of labels for a document. In global labeling the documents are labeled on the confidence of
each document, rather than each class label. In contrast to local labeling, the learner in global
labeling thus asks for the whole set of Yi labels for document xi and not just a specific class
label y j . In Esuli and Sebastiani (2009), the authors decided on using global labeling since it
was deemed to be more time e�cient in practice than local labeling.

After deciding to use global labeling, the authors created a system of three di�erent di-
mensions to vary in order to rank the informativeness or uncertainty of a document. The three
dimensions are: evidence, class, and weight and are briefly described below.

Evidence
The Evidence dimension concerns which type of evidence should be used as basis for the
ranking. The first one is MinConfidence (C) which is based purely on uncertainty sampling
where the idea is that the more uncertain the learner is about the label, the more valuable
it is. In this evidence strategy, negative and positive uncertainty is valued equally. That is,
the label uncertainties that are farthest from being classified as either a positive or a negative
label are valued the highest. Expressed in mathematical terms: | f (xi, y j) − 0.5| = 0 would
theoretically be the most informative.

An alternative evidence dimension is Positive MaxScore (P) where the highest confidence is
valued as most important. The reasoning behind this is that in most multi-label classification
problems positive samples are scarce, while negative samples are common. Therefore, positive
labels should in general be more informative for the learner than negative samples. Thus, if
the uncertainty value of the learner is close to 1 it should query the oracle for the label. In
mathematical terms: f (xi, yi) = 1 would theoretically be the most informative.

34

3.9 Evaluation

Class
The class dimensions is about, given the evidence selected, deciding how to determine a single
uncertainty value for each document. Esuli and Sebastiani (2009) brings up three dimensions,
but we will focus on two, namely: Average (A) and Max (M).

The class dimension is intuitively straightforward. When Average is used, the document is
assigned the average value of the confidence scores of each class label. That is, for document
xi , the classifier values are Ŷi = y1, y2, ..., yq and the confidence score for that document is
c = (y1+y2+...+yq)/q. Whereas, in the case of Max only the highest value of Ŷi = y1, y2, ..., yq
is counted. That is c = y j where y j is the most informative class label according to the
evidence dimension.

Weight
Weighting is the third dimension and the choice here is between Weighting (W) or NoWeighting
(N). NoWeighting implies that all labels should be treated equally while weighting will promote
classes that score poorly on their individual F1-score, the F-score is described in section 3.9.

The learner’s certainty score of a samples is in this case the product of the probability of
membership to a class label multiplied by the F1-macro score of that individual class label.
This skews the priority of the learner towards the poorer performing classes. If a class is scor-
ing zero on its F1-score no distinction will be made between how probabilities are scoring,
therefore a bu�er constant is inserted to protect from this.

3.9 Evaluation
To evaluate results and compare methods we mainly use Fβ-score and Exact Match Ratio
(EMR).

3.9.1 F-score
F-score or Fβ-score is a metric to evaluate the performance of a model and has several benefits
compared to just calculating the accuracy of the model. The accuracy does not di�erentiate
if the error was a type 1 error, predicting a false sample as true, or a type 2 error, predicting
a true sample as false. In cases where the dataset is unbalanced for example only containing
10% positive labels, a classifier that only predicts every sample as negative will get an 90 %
accuracy.

Fβ-score is relative to the precision and the recall, shown in Equation 3.16, which respec-
tively considers the two types of errors in their equations. Precision and recall are expressed
and defined in terms of the following abbreviations:

• TP (true positives): all samples correctly predicted as positive.

• FP (false positives): all samples wrongly predicted as positive.

• TN (true negatives): all samples correctly predicted as negative.

• FN (false negatives):all samples wrongly predicted as negative.

35

3. Theory

Precision is a fraction of the amount of correctly predicted positive samples compared to
all predicted positive samples, shown in Equation 3.14.

Precision =
TP

TP + FP
(3.14)

Recall is a fraction of the amount of correctly predicted positive samples compared to all
samples that are positive, shown in Equation 3.15.

Recall =
TP

TP + FN
(3.15)

By combining precision and recall we get the Fβ score as shown in Equation 3.16.

Fβ(TP, FP, FN) =
(β2 + 1) × Precision × Recall

(β2 × Precision) + Recall
(3.16)

The β is a number set by the user to adjust the balance of the metric if either precision or
recall is more important for the model. In our case, we use β = 1 which inserted in Equation
3.16 gives (Gerniers and Saerens, 2018):

F1(TP, FP, FN) =
2 × Precision × Recall

Precision + Recall
=

2 × TP
2 × TP + FP + FN

(3.17)

Macro and Micro F-score
When computing the F-score for multi-label classification, we need to address the problem
that there is a di�erence between calculating the F-score before or after summing the di�er-
ent labels’ precision and recall. We do this by introducing Fmacro and Fmicro.

Macro , by summing each class F-score and dividing by the number of classes the macro
F-score gives us an average F-score per class as seen in equation 3.18

Fmacro
1 =

1
q
×

q∑
i=1

F1(TPi, FPi, FNi) (3.18)

Where q denotes class.

Micro however computes a “global” F-score by first counting all TP, FP and FN from all
classes. From equation 3.17 we get:

Fmicro
1 = F1(

q∑
i=1

TPi,

q∑
i=1

FPi,

q∑
i=1

FNi) (3.19)

3.9.2 Exact Match Ratio
The second scoring metric we use is Exact Match Ratio (EMR) addresses the problem that
multi-label classification evaluation has since predicted samples may be partially correct or

36

3.9 Evaluation

incorrect. Exact Match Ratio only considers a sample prediction to be correct if every class
label (Yi = {y1, y2, ..., yq}) of the samples has been correctly predicted by the classifier.

EMR =
1
p

p∑
i=1

e(xi) (3.20)

Where e(xi) is defined by Eq. 3.21.

e(xi) =
0 h(xi) /∈ Yi

1 h(xi) ∈ Yi
(3.21)

Where h(·) is the prediction of the sample and p is the amount of samples in the test set.
Sorower (2010) debates that this evaluation might be to harsh in punishing the model for
slight mistakes, especially if there are many labels.

Threshold
In the results chapter we refer to two types of exact match ratio, i.e. EMR1 and EMR2. They
are calculated the same way using Eq. 3.20. The di�erence is how we have predicted the labels
it is to evaluate. In EMR1, we let the classifiers predict labels with their default threshold and
insert that in Eq. 3.20. In EMR2 however, we let the classifier return a probability for each
label, a threshold, t, is parametrized from 0.1 to 0.9 classifying a label as one if its probability
is above the threshold t and zero otherwise. We then search for the threshold t that returns
the highest EMR score and also display the threshold that gave that score.

37

3. Theory

38

Chapter 4

Approach

In this chapter, we present our approach and methodology of the thesis work and how it was
carried out. We also explain the experiments that were executed and what results were hoped
to be produced. The results are presented in the next chapter.

4.1 Labeling

Initially we wanted to see if the labeling process could be expedited and simplified by mathe-
matically clustering the messages before picking the class labels and starting the annotation.
To do this, we sampled a small subset out of the original S1 data set to work with. After using
DistilBERT to embed the messages, we performed the Elbow method with K-means, to see if
there was an optimal number of clusters that the method suggested we should use as classes.
The K was parameterized from 1 to 20 classes and then plotted in a graph versus the WCSS
as outcome. Unfortunately, the results from the Elbow method alone were not satisfactory
and after discussion with experts at Sinch, we decided to settle for a more or less subjectively
chosen number of classes.

We then performed K-means on a small subset of the data set, clustering the messages
into the number of classes decided. The goal of this was to make the algorithm sort the
messages into rough groups which would ease the work of labeling. By reading messages in
the clusters created by the K-means algorithm, we figured out a label name for that class; the
label names were deemed appropriate by Sinch.

We manually labeled 10K messages into the multi-label classes which resulted in the data
set called S1. Later on we further labeled 4K messages, sampled from another time period,
using the same class labels as for S1, which resulted in the S2 data set.

39

4. Approach

4.2 Model choice
The selection of a classification model was made with criteria from both LTH and Sinch in
mind. Both parties wanted robustness and accuracy while Sinch was more interested in the
speed of training and classification. We created and tested five di�erent models, as men-
tioned in the theory section: LogReg, SVC, LinearSVC, Random Forest, and XGBoost. The
model choice was performed using the S1 set, and before training the models, the messages
were embedded using DistilBERT. DistilBERT takes each each message and transforms it
into a 768-dimensional vector. Thus, each model takes an input vector of 768 dimensions
and outputs a vector of 13 dimensions - corresponding to our labels.

To mitigate the risk of making a biased choice of model based on incidental factors such
as favorable train test splits or special characteristics of the S1 data set, two measures were
applied: k-folding and parallel testing:

K-folding refers to the process of reiterating the model K times, shifting the train and test
split so that all data instances gets used as both train and test sets. After K iterations,
the average result is calculated and evaluated on the performance according to Chollet
(2018).

Parallel testing was carried out with the RCV1 which was deemed similar to the Sinch data
set in that it is also a multi-label text classification set. It has the advantage that it is
widely known and tested and contains a lot of labeled data.

The step wise process of the classification is listed below:

• Preprocessing of the data sets, e.g. cleaning up the data from special symbols.

• Feeding messages to DistilBERT which produces a sentiment vector of 768 dimensions.

• Splitting the data into train and test size in an 80% / 20% proportion respectively.

• Training one out of the five models on the dataset.

• Gathering evaluation metrics from the results of the model being tested and inserting
in table.

For clarification: the classifier model only takes the classification tokens vector not the
vectors from the remaining word tokens.

The classifier classifies the message based on the information in the classification token
[cls], translated to a vector xi , and outputs a vector of length 13, referred to as Label Proba-
bility Vector, (LPV). Each dimension in the LPV is representing the probability of the sample
corresponding to a label. In other words, for each xi ∈ D, the LPV is calculated by combin-
ing the output of 13 binary classifier functions f (xi, y j) - one for each y j ∈ Y - that calculate
the probability of each sample being a member of y j .

The probability ranges from 0 to 1, where values in the LPV close to 1 equates that the
model is certain that the message is a member of class y j . Values close to 0 indicate that the
model is certain that the sample is not a member of the class y j . Finally, a value around 0.5
means that the model is uncertain if the sample is or is not a member of y j .

40

4.3 Active Learning

After being put through a threshold function t(LPV), the model then produces its predic-
tion vector ŷi = (y1, y2, ..., yq), in which each position is given a value of (1,0). The evaluation
of the loss of the model is then based on the di�erence between the prediction vector ŷi and
the proper label vector yi of each feature vector xi .

Figure 4.1: A simplified view of the architecture behind classifying
a sample.

The evaluation metrics were collected and calculated and the choice of model are pre-
sented in the Results chapter, section 5.2.

Before continuing to perform the Active Learning on the S2 data set, the chosen model
had its hyper-parameters optimized by iterating through the S1 data set on di�erent combi-
nations of settings.

4.3 Active Learning
To evaluate di�erent Active Learning strategies, we created a flexible testing framework,
where we could easily change parameters to gather results from them and compare them in
graphs. Moreover, the strategy variations were inspired by the work of Esuli and Sebastiani
(2009). We also let one model query random samples to be fitted on, working as a baseline
reference to which the other combinations were compared.

For the Scenarios, we chose pool based selective sampling, because that is how Sinch cur-
rently evaluate their data. For the Query Strategy Framework, we chose to focus on uncer-
tainty sampling, adapted to multi-label classification. The di�erent active learning strategies
were composed of variations of the three dimensions of multi-label active learning mentioned
in the theory Section 3.8.3: Evidence, Class, and Weight. These dimensions have two varia-
tions each resulting in eight possible combinations (23).

The variations for each dimension are: MinConfidence (C), Positive MaxScore (P) for Evi-
dence; Average (A) and Max (M) for Class; and Weighting (W) and NoWeighting (N) for Weight.

41

4. Approach

Together with the Random query selection, the complete number of combinations are: CMN,
CAN, PMN, PAN, CMW, CAW, PMW, PAW, and RAND.

To test the e�ect of batching on the speed and accuracy, we also tested five di�erent batch
sizes. These batch sizes denote the number of queries selected from the pool before each
training iteration. Note that this is not to be confused with the batch size of the machine
learning algorithms. The query batch sizes that each combination was tested on were: 1, 5,
10, 25, and 50. The experiment process is illustrated in Figure 4.2 and described in the next
paragraph.

The classifier was initially trained on the S1 data set of 10,000 samples, then the model
starts the active learning process on the new S2 data set of 4,000 samples. First, a test subset
of 800 samples is taken from the S2 data set, leaving the pool for query selection at 3,200
instances. For each iteration of the experiments, the test split is then circulated using the k-
fold iteration. The classifier makes a prediction of the unlabeled samples in the pool and thus
creates a Label Probability Vector for each message. Next, the active learning algorithm ranks
the Label Probability Vectors of the samples in the selection pool, according to the selected
strategy combination. The model then queries as many of the highest ranked samples as the
batch size specifies, the samples "get annotated" by the oracle, and are then used to retrain
the model. This process is repeated until there are no more samples in the pool. We use
a software library called ModAL, from Danka and Horvath (2018), which implements the
active learning function teach, this function presents the newly acquired samples and labels
and refits the model on them.

Figure 4.2: A simplified view of the architecture of how the iter-
ation of active learning is done. The dotted lines surrounding the
method to choose queries symbolizes that the method is exchanged
depending on the active learning strategy combination.

42

4.4 Manual inspection

4.4 Manual inspection
Both during the training of the model on the data set of 10K samples and later the active
learning model of 4K samples, we gathered incorrectly labeled samples and put them into a
spread sheet for manual inspection. The mislabeled samples could then be used to get a more
detailed understanding of what the model was doing wrong, and which areas were of most
concern.

For the active learner models, we also saved all samples that were queried and in which
order. This let us get a view of what the active learners were querying about and helped us
understand what might be improved.

43

4. Approach

44

Chapter 5

Results

In this chapter, we will present the results gained from the experiments introduced in the
approach chapter by displaying them in plots and tables. The results will be briefly analysed
and commented while a more comprehensive discussion will follow in the next chapter. Ini-
tially we will present the results of our labeling process, followed by the choice of the model,
the active learning, and finally the manual inspection of the queries posed by the learner.

5.1 Labeling
In Figure 5.1, the result from the Elbow method is displayed. As seen, there is no clear “elbow”
and therefore it was concluded that it was not enough to base the choice of the number of
classes on this experiment alone.

Figure 5.1: Result of cluster exploration with the Elbow method.

With discussion with experts at Sinch, 13 labels were decided upon to label the data set.
The labels have already been presented and can be viewed in Table 2.1.

45

5. Results

5.2 Choice of model
The experiments for testing the di�erent models on S1 were carried out as described in sec-
tion 4.2 and the results can be found in Table 5.1 below.

Time 1 and Time 2 denote the training and prediction time, respectively, in seconds.
Furthermore EMR1, EMR2, F1 Macro and F1 Micro are collectively referred to as the perfor-
mance metrics, while Time 1 and Time 2 are grouped together as the time categories. The
boldfaced numbers represent the best results in each category.

Table 5.1: Performance of the di�erent models on the Sinch data
set 1 of 10K samples (with train/test split set to 80/20). The perfor-
mance measurements are: EMR1 (Exact Match Ratio default thresh-
old), EMR2 (Exact Match Ratio with threshold as t), F1 Macro, F1
Micro, Time 1 (training time), and Time 2 (testing time), both in
seconds.

Method EMR1 EMR2 F1 Macro F1 Micro Time 1 Time 2
LogReg 0.926 0.926 (t = 0.5) 0.928 0.973 3.9 0.05
SVC 0.907 0.918 (t = 0.45) 0.908 0.969 303.9 11.3
LinearSVC 0.948 - 0.945 0.980 27.6 0.021
Random Forest 0.928 0.932 (t = 0.35) 0.913 0.976 35.9 0.4
XGBoost 0.939 0.939 (t = 0.5) 0.937 0.977 389 0.28

The results suggest that LinearSVC is the best method in terms of most categories with
best results. Surprisingly, LinearSVC even has better results than regular SVC. The reason
why LinearSVC does not have any EMR2 results is because there is no straightforward way
of getting the probability scores of each label, thus there is no easy way of regulating the
threshold.

The results acquired from the parallel testing of the RCV1 can be found in Table 5.2
below. The table shows the results from the di�erent models after training it on 12,000 and
testing it on 3,000

Table 5.2: Performance of the di�erent models on the Reuters
data set limited to 15K samples (with train/test split set to 80/20).
The performance measurements are: EMR1 (Exact Match Ratio de-
fault threshold), EMR2 (Exact Match Ratio with threshold as t), F1
Macro, F1 Micro, Time 1 (training time), and Time 2 (prediction
time). The unit of Time 1 and Time 2 are seconds.

Method EMR1 EMR2 F1 Macro F1 Micro Time 1 Time 2
LogReg 0.370 0.370 (t = 0.5) 0.374 0.736 3.3 0.13
SVC 0.354 0.459 (t = 0.5) 0.523 0.784 4241.7 145.1
LinearSVC 0.442 - 0.541 0.782 228.3 0.69
Random Forest 0.299 0.380 (t = 0.35) 0.296 0.725 307.9 2.9
XGBoost 0.434 0.447 (t = 0.26) 0.441 0.778 4837 6.6

In Table 5.2, once again LinearSVC is performing best in EMR1 and F1 Macro while only
lacking 0.2 percent units in F1 Micro compared to the best in the category, SVC. LogReg is

46

5.2 Choice of model

scoring worse in the four performance metrics and especially in F1 Macro, though it performs
best in terms of time e�ciency. SVC performs best on overall performance metrics. We can
see that the time for training has increased greatly of all classifiers in Table 5.2 compared to
5.1.

For comparison, we let the LogReg be evaluated on the full set of 800K samples of RCV1
set - with a train/test split of 80/20 - and compared our results to Lewis et al.’s 2004 bench-
mark results of SVC.1 and k-NN, in Table 5.3. Lewis et al. refer to their Support Vector
Classifier as SVC.1 since the kernel function that maps the points into higher dimensions is
of the first degree, which is equal to using a LinearSVC.

Table 5.3: Comparison of our LogReg classifier to the bench marked
SVC.1 and k-NN classifiers on the Reuters data set. After Lewis et al.
(2004)

Method F1 Macro F1 Micro
LogReg 0.647 0.822
SVC.1 0.607 0.816
k-NN 0.549 0.765

In Table 5.3, we can see that our classifier is performing on the same level as the bench
marked results.

In Figures 5.2 and 5.3 below, the learning rates and training times for the two data sets
S1 and RCV1 are shown. In Figure 5.2 (a), we see that the Sinch S1 models all have converged
to a stable number after approximately 6,000 samples. Moreover, it can be seen that none of
the models have converged after 12,000 training samples sub-figure (b). Out of the 5 models,
LogReg seems to have the steepest curve, indicating that the performance of the model could
be increased the most by training on more samples.

(a) Sinch Set 1 (b) Reuters.

Figure 5.2: Learning curves of Sinch data set 1 and Reuters data set
for di�erent models. The y-axis denotes the F1 macro score and the
x-axis denotes the number of training samples in thousands. Note
that the axes are not fix.

The training times of the models on Sinch S1 and Reuters RCV1 are shown in Figure
5.3. In both sub-figures we see that XGBoost and SVC are exponentially increasing when

47

5. Results

(a) Sinch Set 1 (b) Reuters

Figure 5.3: Training times of Sinch set 1 and Reuters data set for
di�erent models. The y-axis denotes the training times in seconds
and the x-axis denotes the number of training samples in thousands.

introduced to more training samples. Of the three remaining methods in Figures 5.3, LogReg
is the quickest one when introduced to more training samples.

Finally, we decided to move on with LogReg as the model for testing active learning
on. The reason was that it was the fastest model with satisfactory performance results. The
decision will be explained in further detail in the discussion chapter.

5.3 Active Learning
All eight di�erent active learning strategies have their F1 Macro and EMR score plotted
over samples queried shown in Figures A.1 and A.2, respectively, placed in Appendix A for
convenience. The total of 16 graphs show the various methods’ individual scores from the
testing of the five di�erent batch sizes.

We can see in both Figures A.1 and A.2 that using a batch size of one gave the best per-
formance in every graph except one of them (PMN). Therefore, we used batch size one as
the main comparison between the eight methods and the random query learner was used as
reference, when comparing their F1 Macro and EMR score in Figures 5.4 and 5.5, respectively.

It is di�cult to draw decisive conclusions from both plots in Figures 5.4 and 5.5, since
the plotlines are very volatile. The best performing strategy at one point will have recessed
compared to other strategies for larger training sets. A few points can be made about the
graphs though, disregarding the Positive MaxScore plot-lines. They all seem to moderately
converge after around 1500 samples – the MinConfidence (C) plot-lines converge even earlier.
Random (RAND) also outputs the same values at convergence.

Weighting (W) seems to significantly improve strategies using Positive MaxScore (P).
The first point in each plot-line is at 50 samples queried and here Random (RAND) is

outperforming all other strategies in both F1 and EMR score.
As said it is hard to summarize the graphs given the volatility, with our supervisor we

decided that 500, 1000 and 1500 are three interesting sample sizes to look into. We summa-

48

5.3 Active Learning

Figure 5.4: Macro F1 score for batch size one.

Figure 5.5: Exact Match Ratio score for batch size one.

rized them into table 5.4 showing F1 macro, EMR and area under F1 respectively EMR in a
range from 500-1000 samples. The area metric can be used to complement the F1 and EMR

49

5. Results

score since it reduces the variation of the metrics by averaging the scores over an interval.
The boldfaced numbers represent the best results in each category.

Table 5.4: Table of results for the eight di�erent methods using ac-
tive learning compared to randomly training the model(rand). Bold-
faced numbers represent the best result in each category

Metric (interval) Rand CMN CAN PMN PAN CMW CAW PMW PAW
F1 (500) 0.647 0.695 0.724 0.363 0.497 0.724 0.710 0.641 0.658
F1 (1000) 0.734 0.747 0.768 0.475 0.574 0.765 0.764 0.722 0.758
F1 (1500) 0.734 0.746 0.770 0.561 0.655 0.777 0.788 0.738 0.752
EMR (500) 0.740 0.771 0.760 0.638 0.585 0.768 0.743 0.671 0.700
EMR (1000) 0.771 0.798 0.798 0.661 0.640 0.792 0.782 0.721 0.739
EMR (1500) 0.780 0.799 0.810 0.670 0.687 0.799 0.801 0.725 0.753
F1 Area (500-1000) 346.6 365.9 375.1 210.4 285.0 376.8 373.6 348.8 357.3
EMR Area (500-1000) 379.7 393.8 391.4 320.4 318.9 392.1 386.1 356.1 364.8

Table 5.5: Table of results for the eight di�erent methods using ac-
tive learning compared to randomly training the model(rand). Bold-
faced numbers represent the best result in each category

Metric (interval) Rand CMN CAN CMW CAW PAW
F1 (500) 0.647 0.695 0.724 0.724 0.710 0.658
F1 (1000) 0.734 0.747 0.768 0.765 0.764 0.758
F1 (1500) 0.734 0.746 0.770 0.777 0.788 0.752
EMR (500) 0.740 0.771 0.760 0.768 0.743 0.700
EMR (1000) 0.771 0.798 0.798 0.792 0.782 0.739
EMR (1500) 0.780 0.799 0.810 0.799 0.801 0.753
F1 Area (500-1000) 346.6 365.9 375.1 376.8 373.6 357.3
EMR Area (500-1000) 379.7 393.8 391.4 392.1 386.1 364.8

To tie the results to the exploratory data analysis, we also recorded the results for each
class. The results are shown in Table 5.6, which specifically show the F1 Macro start, min,
max and increase values for the di�erent labels. The classes with the highest increase are
Public Information (69.7 %), Job/Edu (69.5 %), and Service (59.4 %), while the lowest increases
are Notification (1.2 %), Two Factor Authentication (6.1 %), and Alert (13.3 %).

5.4 Manual inspection
The manual inspection was done by letting the Exact Match Ratio save incorrect predictions
on both the S1 and S2 data set. The saved samples were thus composed of all messages that had
at least one of their class labels incorrectly predicted. Apart from the imperfect predictions
by the classifiers, some of the incorrect predictions depended on one or more of following
reasons:

50

5.4 Manual inspection

Table 5.6: F1 Macro start value, minimum value, maximum value
and increase (= max-start) for the individual classes of CAN. The
boldfaced numbers represent the best and the worst in each category.

Data Set Bank Trans 2FA Mark Fin Soc N.Eng
Start 0.777 0.635 0.823 0.722 0.270 0.054 0.268
Min 0.777 0.453 0.817 0.722 0.0 0.054 0.208
Max 0.958 0.963 0.884 0.905 0.720 0.442 0.831
Increase 0.181 0.328 0.061 0.183 0.450 0.388 0.562
Data Set Job Ser Mon P.I. Al Not
Start 0.069 0.033 0.734 0.0 0.528 0.951
Min 0.069 0.033 0.647 0.0 0.528 0.951
Max 0.765 0.627 0.932 0.697 0.66 0.963
Increase 0.695 0.594 0.198 0.697 0.133 0.012

• Samples were wrongly labeled by the manual labeling. There are two types of errors
here, namely:

– Mistake made by the person labeling.

– Subjective error. That is, making inconsistent choices of labels on similar sam-
ples.

• Labels that are closely related and use similar words, such as banking and finance, get
mixed up.

• Specific details, such as a company name in the message, may have made the person
labeling choose a label, while the detail is to subtle for the classifier to understand.

• Messages not in English have sometimes been labeled Non-English as well as their in-
tended label, e.g. Non-English, Service and Notification. This happened when the
person labeling understood either the message (often Spanish) or recognized the pat-
tern of the message.

Furthermore in our initial experiments of active learning, on querying a single sample, we
manually inspected some of the queried samples. We found that in the beginning the learner
would query relatively similar samples consecutively.

51

5. Results

52

Chapter 6

Discussion

In this chapter, the results from the experiments will be discussed; that is, both the experi-
ments chosen and the output from them. We will evaluate the conclusions and patterns that
can be found in our data as well as the flaws of our experiments. Furthermore, future work
that could complement our experiments will be proposed, and our results will be concluded
in the last section.

6.1 Labels
When the Elbow method gave no conclusive results we decided to make observations and
create labels as we saw fit, rather than relying on clustering algorithms alone. Although the
elbow method did not show any conclusive results (see Figure 5.1), using K-means to optimize
the clustering of messages after deciding on an approximate number of classes around 10-15
helped us with the labeling of the messages. However, our subjective opinions were neces-
sary as a fully mathematical approach to clustering could easily have ignored less frequently
occurring labels such as Non-English and Public Information.

The choice of exploring the Elbow method was made because we were familiar with it. A
more comprehensive survey of similar methods could have produced more accurate results.
For example, Rousseeuw (1987) proposes the Silhouette method for similar purposes. This
method could have been used as an alternative to the Elbow method or as a validation method
for the amount of labels chosen.

In hindsight, the number of labels were not ideal. Especially the addition of Alert and
Notification were possibly a little too vague for our classifiers to distinguish between. What can
be found in Table 5.6 is that the F1 score of Notification and Alert did not increase significantly
with active learning. The reason why we initially chose to add Alert and Notification to the
class labels were to separate the urgent and less expected messages from the more expected
and unimportant ones; notably, a highly subjective task. As explained in the Data Set chapter,
we wanted messages such as e.g. "your card has been declined" to be treated di�erently than e.g.

53

6. Discussion

"this is your receipt from XXX store." However, the subtle di�erences and subjective nature of
the classes showed that even we had a di�cult time distinguishing between them in some
cases. It is therefore not very surprising that the classifiers had the same issues.

If more time had been allocated to the task of annotation, additional labels could have
been introduced. E.g. when annotating the S2 data set, potential classes such as Retailer,
Order Status, Bar/Restaurant, and others frequently occurred. However, because of the time
constraint, we did not want complicate matters by introducing more labels to the classifier
and therefore decided to stick to the original labels of the S1 data set. The labels of S1 were
derived from the characteristics of a data set that was allocated at a specific time in a specific
region, and may therefore not have been fully representative of other Sinch data sets. The
introduction of other classes and other data sets could therefore have improved the labels in
two ways: 1. by being more suited for other data sets, and 2. by evening out the imbalance of
the label frequencies.

6.2 Model choice
After carrying out the experiments and evaluating the performance results of the five di�er-
ent models, we finally settled for LogReg as the model to go on with. The choice was not
completely unambiguous since LogReg was outperformed by other classifiers in several of
the measured parameters. However, to understand our decision, the goal of the model choice
must be emphasized. That is, the goal was to find a model that performed satisfactory and
was time e�cient enough to be used to make multiple iterations of active learning training
on. For this purpose, we found that LogReg was a good model. That being said, most of the
other models could have been used for the same purpose based solely on performance metrics
such as EMR and F1 Macro, but the main reason why LogReg was finally chosen was because
of its time e�ciency. The selection process is discussed in more detail below.

As mentioned, Time 1 is the time it takes for training the model. This is an important
factor in choosing the model for active learning since the model will be trained on queried
samples in several thousand training iterations for each active learning strategy combination.
In the Time 1 column in 5.1 we see that LogReg is the fastest classifier. To further evaluate
Time 1 we plotted the data into Figure 5.3 where the di�erence in training time between the
classifiers is even more apparent. We can see that the training times of SVC and XGBoost
are exponentially increasing with increased samples. Their recorded training times in 5.1
are 303.9 s and 389 s, respectively, far exceeding those of LogReg (3.9 s), LinearSVC (27.6
s), and Random Forest (35.9 s). The long training time of XGBoost surprising since sources
claimed that the algorithm was optimized and scalable (Chen and Guestrin, 2016). The speed
of XGBoost that sources express is likely viewed in relation to more complex models, though,
and a comparison with an elementary model such as LogReg on a simple task may therefore
not be fair.

Time 2 denotes the time to predict the labels of the test set: h(xi), for all xi ∈ S. That is,
the time to predict the probability function of each label f (xi, y j) for each label y j ∈ Y and
then applying the threshold function, t, to acquire the prediction vector ŷi . Time 2 is of value
because it relates to the probability calculation that is later required for ranking the queries in
active learning. This prediction, which gives us the aforementioned Label Probability Vector
LPV, is the product of calculating f (xi, y j) for each label y j .

54

6.2 Model choice

A mistake was made in the recording of Time 2, since we recorded the prediction time
of h(xi), rather than the probability prediction of f . However, since h is obtained by adding
threshold function t to each sample, this threshold function represents nothing more than
a threshold probability applied on each LPV produced. It can thus be assumed to be linear
in relation to feature test size xi ∈ S and therefore almost identical for all of our explored
classifiers. Thus, the Time 2 recorded can be assumed to be directly correlated with the
probability prediction times that we de facto sought after.

The results for Time 2, show that LinearSVC is the fastest at 0.021 s, followed by LogReg
(0.05 s), XGBoost (0.28), and Random Forest (0.4 s). SVC has a far slower prediction time of
11.3 s.

On performance metrics the classifiers displayed fairly similar results. All had an exact
match ratio of above 90 % with default threshold setting as well as optimized threshold.
The best performing classifier in EMR was LinearSVC at 94.8%. Even after optimizing the
threshold for the other classifiers, the highest EMR 2 score (XGBoost at 93.9%) was still lower
than that of LinearSVC. Similarly for F1 Macro and F1 Micro, LinearSVC performed best at
94.5 % and 98.0 %, respectively. What is interesting to note is that LinearSVC performed
better than SVC on all performance metrics. The reason for this may be that a non-linear
kernel for the SVC overfitted the classification, because of the simplicity of the data set. If
more time had been given, this is something we could have investigated further.

6.2.1 Sinch and Reuters comparison
The parallel testing of the models on the RCV1 set was performed in order to tell if the results
discovered on the S1 data set were only circumstantial or if the same conclusions could be
reached on another data set as well.

In the Reuters data set we originally had 800K samples but we only compared the five
models using a randomly selected subset of 15,000 samples. This was because some of the
models were slow and exponentially increasing in training time so training on the full RCV1
set would have been too time consuming. Since we were mainly focused comparing the mod-
els with one another, we chose to limit our training set to 12,000, and test on 3,000 docu-
ments.

By comparing the RCV1 results in Table 5.2 the S1 results in Table 5.1, several inferences
can be made. First, we can see that the classifiers’ performances relative to one another were
fairly similar to those of S1. By looking at Table 5.2 we see that LinearSVC has the best results
in EMR1 (44.2 %) and F1 Macro (54.1%), while SVC this time outperformed LinearSVC in
both EMR2 (45.9 %) and F1 Micro (78.4 %). This may be because of RCV1 is more di�cult
to classify because of the length of the documents and variation compared to S1. Due to this,
the more advanced nature of SVC compared to LinearSVC might have played a role.

The training and prediction times also show similar results to those of S1. However, on
RCV1, LogReg performed far better than the other classifiers with Time 1 and Time 2 being
3.3 s and 0.13 s, respectively. By looking at Figure 5.3 (b) we see that RCV1 plot is almost
identical to sub-figure (b).

Second, we see worse results in every category of RCV1 compared to the S1 performance
results in Table 5.1. There are several reasons for this. One is that there are 103 labels in the
RCV1 data set. With only 15K randomly selected samples there is a chance that there are some
labels that barely get trained on. As discussed in the theory chapter, the complexity of multi-

55

6. Discussion

label text classification does not increase linearly but rather exponentially with a growing
number of classes. The theoretical amount of combinations of labels to classify one document
in RCV1 is 2103 ≈ 1031. S1 on the other hand, has only 213 ≈ 8000 combinations. Moreover,
the articles of the RCV1 set are much longer and more complicated than the messages of
S1. This also complicates the classification. And lastly, most messages in the S1 data set
follow some form of template, which is repeated on other messages in the data set and it
is therefore easier for the classifier to find patterns in S1 than in RCV1. For these reasons,
the classification of RCV1 are more complicated than S1. Regardless, however, the relative
performance of the classifiers proved to be mostly consistent on both of the data sets, which
was the goal of the comparison.

When looking at the results, the training time for XGBoost and SVC proved to be too
long with regards to the little, if any, performance benefits they added. The final evaluation
therefore stood between LinearSVC, Random Forest, and LogReg. Random Forest, though,
was not a good option since it was outperformed in almost every performance category. Lin-
earSVC on the other hand did outperform LogReg and the other models in most categories.
The problem with LinearSVC was retrieving probability from the model on each class. This
was an issue we discovered after we had performed the experiments for choosing the models.
We also discovered that the lack of a simple way of retrieving probability from LinearSVC
was a problem for the software library ModAL used for Active Learning, since its implemen-
tation relies on classifiers with probability integrated in their code. A way of getting around
this problem was tested but could probably have been more thoroughly explored. In the end
we opted to rule out LinearSVC as a nominee to the model choice because of this factor.

With these results in mind, we finally concluded that LogReg was the best option. LogReg
did not score the highest of the models tested in any of the four performance metrics, but
in Table 5.1 it was only missing around 0.02 marks in each score and in Table 5.2 missing
in a range from 5 to 17 marks to the best of the category. Since LinearSVC was ruled out,
LogReg was scoring good enough in the performance metrics and best in the time categories,
furthermore it is a simple model to understand and use and was hence chosen as our model
to evaluate active learning on.

In Table 5.3, we compare the results of LogReg on the entire RCV1 data set with 800,000
samples with the authors (Lewis et al., 2004) models of SVC.1 and k-NN classifiers. We can
see that LogReg is performing better in both F1 Macro and Micro. We believe that the LogReg
is performing better than the bench marked results due to better language models and larger
pre-computations. We used a model based on BERT which is pre-trained on 3,300 million
words, which was not yet introduced in 2004. Our supervisor also proposed the reason could
be that work in the field has resulted in e.g. better float precision and enhanced optimizers
making models more precise.

In the bench mark performed by Lewis et al. (2004), the authors train their models on
23k documents indicating that the models should converge around that number. We could
have trained our classifiers on the same number of samples and thereby probably achieved
convergence. However, since the RCV1 comparisons were mainly performed to see if the
conclusions of the classification of the S1 set were true for another data set as well, the exact
number of training samples was not deemed to be the most important factor.

As a final remark to our choice of model, we can conclude that all our models performed
extremely well on the S1 data set. This is assumed to be because the data set is imbalanced
and labels such as Two factor authentication and Banking are highly represented in both training

56

6.3 Active learning

and test sets as seen in the Exploratory Data Analysis in section 2.3.

6.3 Active learning
The results from active learning experiments indicate that a batch size of one with MinConfi-
dence Average and NoWeighting (CAN) is the best combination for our active learner model.
Furthermore any combination containing the MinConfidence as evidence dimension seems
to outperform random query selection and Positive MaxScore in Table 5.4. In this section we
will discuss the experiments and their results.

6.3.1 Batch Sizes
The main reason for testing di�erent batch sizes is that with the high volume of messages
that Sinch needs to classify every day, the model cannot be retrained on one sample for every
iteration. Thus, a review on the e�ects of batching queries was sought after. Another reason
was that when manually inspecting the query samples by our learner, we found that in our
initial experiments with a batch size of one, the learner had queried similar samples several
times in a row. This created a concern that the learning rate of teaching one sample at a time
was not su�cient for training the classifier. We were hoping that a larger batch size could
bring the model to teach itself a full set of samples it was uncertain about so as to eliminate
the need for querying for similar samples multiple times.

Results in Figures in A.1 and in A.2 show that using a batch size of one gave the best
performance in almost every Active Learning strategy. The reason we believe a batch of one
gave better results is that the model will be updated more frequently. A frequent update of
the model results in that the queried messages are always the most informative according
to the current updated classifier. Using a larger batch size, only the first queried sample of
the batch is certain to be the most informative sample, the rest of the samples in the batch
might be rated less important if the classifier would be able to rank all samples after being
trained on the first sample. The result corresponds with the opinion of an expert in the field
who we were in contact with - Fabrizio Sebastiani - quoted several times in this paper for
coauthoring the paper Active Learning Strategies for Multi-Label Text Classification 2009. He said
that "the smaller the batch size, the better the system should be" (F. Sebastiani 2021, personal
communication, 21 January).

The results we found were therefore in line with the common opinion in the field; larger
batch sizes lead to worse performing active learning classification. However, in our opin-
ions, the increasing of batch sizes severely deteriorate the results and capabilities of the active
learning classifier as can be seen in Figures A.1 and A.2. Therefore, although its impossible
for Sinch to retrain its classifier one query at a time, excessive increase in batch size should
be avoided.

For further work on the batching of queries, measures to distinguish and more optimally
combine samples in batches should be explored. One method we though about implementing
was edit distance, to combine messages that are diverse, in terms of lexical content.

57

6. Discussion

6.3.2 Active learning strategy comparison
The general pattern that can be observed in Figures 5.4 and 5.5 is that the random learner
is scoring best in both evaluation metrics initially (at 50 samples) and then performs similar
or equal to the active learning strategies after around 2000 samples. The superiority of the
active learning strategies is most prominent around 500-1500 samples.

We believe active learning strategies are outperformed by random querying in the be-
ginning of training because a majority of the active learners are sampling from the worst
labels and or the worst sample of the entire data set. The strategies using MinConfidence are
querying about the samples with the worst possible confidence. Naturally, during their first
queries they will receive outliers that might actually worsen the classification on the test set,
because they are not representative of the test set as a whole.

Random sampling, however, is trained on 50 randomly queried samples from the query
pool, averaged over 5 K-folds which decreases its variance if it chooses an outlier at random.
Therefore it is more likely to pick a fair representation of the validation set in the beginning.
We also find that after 2000 samples, the advantage of active learning is decreasing in relation
to random sampling. We believe this is due to the diminishing returns of selecting the most
important samples. As the query pool shrinks and the training set increases, the chances of
random and active learning picking similar samples increase.

To try to validate our ideas, we contacted Tivadar Danka, developer of ModAL as to why
active learning is outperforming random sampling at certain intervals.

“[As far as I know] there is no general theory. The point where an active learning
method outperforms the random sampling depends on the set of course (...) Too
few samples are not enough to cause any improvement (even if they provide the
theoretically optimal improvement), but a large enough sample of new data can
boost the scores even if they are selected suboptimally. So, active learning is
useful when you have the capacity to label some data, but definitely cannot label
all.” (T. Danka 2021, personal communication, 25 January)

Additionally we contacted Andrea Esuli, also coauthor of Active Learning Strategies for
Multi-Label Text Classification (2009), who also confirms the above statement. Esuli elaborated
and explained that in our data set, evaluation values at around 500 samples queried seems
to be of interest as a trade o� point showing how good an active learning strategy is. After
500 samples, the classifier has trained on a large enough set of samples to gain the most
out of picking informative samples yet not to large set to end up in a zone in which all
strategies perform the same because they are forced to select the same samples due to lack of
alternatives. (A. Esuli 2021, personal communication, 25 January)

Since the S2 data set is limited to 4000 samples in total the random sampler will even-
tually choose equally informative samples as the active learning strategies. For Sinch though,
the amount of samples in the unlabeled pool (L) far exceeds the amount possible to annotate.
Therefore, we believe annotating samples at random will not realistically converge with the
performance of uncertainty sampling on larger data sets.

When comparing the active learning strategies to each other, Table 5.4 show that Min-
Confidence (C) is performing better than Positive MaxScore (P) regardless of the combina-
tion of class and weight dimensions.

The reason we explored Positive MaxScore (P) is that positive samples are typically more
informative than negative ones in a supervised learning task. Using this strategy the classifier

58

6.3 Active learning

will certainly increase the influx of positive samples (Esuli and Sebastiani, 2009). The manual
inspection demonstrated that the strategy was indeed getting positive samples, the problem
is that it is already fairly convinced of the label on that sample and will therefore not gain
any additional knowledge.

The weight factor, Weighting (W), had a beneficial impact on the Positive MaxScore.
This encourages the learner to query positive samples from labels performing bad, though
we were hoping that it would have greater impact on the final results.

The best performing strategy using Positive MaxScore (P) is in combination with Average
(A) and Weighting (W). This strategy is promoting samples with a lot of positive informa-
tion and promoting labels that are scoring poorly. Interestingly when looking at Figures 5.4
and 5.5 the PAW and PMW are scoring better in the F1 Macro and then worse in the EMR
compared to the MinConfidence strategies. We believe that this is because the Weighting fac-
tor in the PAW and PMW are optimizing the weak classes by choosing samples from them.
However, while the optimizing of these classes will increase the macro F1 score as it regards
all labels as equal, the more strict EMR score requires all classes to be correctly predicted for
a good score. As weighted P strategies focus more on the weak positive samples, it may be
too skewed towards picking the less frequent samples and consequently not making a lot of
perfect predictions on frequently occurring message templates.

The observations suggest that it is more valuable for the classifier to query for samples
it is uncertain about, we suggest that these indications are enough to confidently disregard
Positive MaxScore as the evidence dimension of choice.

Regarding the class dimensions, it is hard to draw any clear conclusion, especially because
of the volatility of the curves in Figures 5.4 and 5.5.

If we compare the strategies to each other in regards to each other based on the class
dimension only. That is, comparing CAN to CMN, and PAN to PMN etc. We can see that
in that for every strategy in Figure 5.4, the class dimension Average (A) outperforms Max
(M). One exception would be CAW and CMW where CMW is actually performing better in
earlier training iterations, but CAW performs better after 1000 samples. These observations
are confirmed in Table 5.4. In Figure 5.5, we find that the opposite is true for some of the
strategies - e.g. CMN ourperforms CAN and CMW outperforms CAW. Thus, it is di�cult
to make a clear decision about what is the best option for class dimension. But, it seems as
though Max is a better option if stricter prediction precision is required, which is what EMR1
symbolizes.

We follow the same structure for the Weighting dimension. Here, we find that for Positive
MaxScore strategies, Weighting exceed Non-Weighting in all cases. No similar conclusions can
be drawn about the MinConfidence. In Figures 5.4 and 5.5, CAN seems better than CAW for
both F1 macro and EMR, while CMN performs worse than CMW on F1 Macro, but better
on EMR.

Finally, three strategy combinations have emerged as candidates for the best active learn-
ing strategy: CAW, CMN, and CAN. All three of them scored well in terms of overall per-
formance, but they are individually exceeding one another in certain intervals in either F1
macro or EMR.

CAW scores best in one of the results in Table 5.4: F1 (1500). By looking at Figure 5.4,
it appears stable and persistently has the highest results in F1 macro after 1000 samples. It
performs relatively well in EMR as well, but is in general slower than CMN and CAN.

CMN achieved the best results in three places in Table 5.4: EMR (500), EMR (1000), and

59

6. Discussion

EMR Area (500-1000). In particular, the results show that CMN is able to quickly increase
the exact match ratio of its predictions. In F1 macro, it does not perform as well. After 1000
samples, it is only the fourth best strategy, and ends up being the worst after all samples are
trained on.

Lastly, CAN proves to be a little more versatile than CAW and CMN. CAN scores the
best in F1 (500), F1 (1000) and EMR (1000), and EMR (1500). Thereby, making it the most
favorable option judging from Table 5.4. Figure 5.4 show that it learns quickly and performed
best, especially around 500 samples. Regarding EMR in Figure 5.5, it is notably slower than
CMN and RAND, but after 1000 samples it is among the best options.

In short, it is not clear which option is the superior one. If stable performance is im-
portant, CAW is the best option. If quick and training and exact predictions are important,
CMN is better. If more versatility, quick F1 macro increase and stable performance is nec-
essary, CAN would be the choice. Because CAN proved to be the best option judging from
Table 5.4 and because of it doing well in both F1 macro and EMR, CAN would be our final
choice of model.

Weighting constant
In our strategies using Weighting (W) we had to add a constant that served as a bu�er when
the F1 score of a label was zero. This is especially critical in a strategy such as MinConfidence
Max Weighting (CMW). If a class label has zero in F1 macro score, CMW will randomly
query any label of that class since there is no distinction between the actual confidence of
the samples since they are all set to zero.

The constant added was set arbitrarily to 0.001, since we believed such a small number
relatively to the other F1 scores would not a�ect any other weighting than the weight for the
label with F1 score zero. Another possibility would have been to use a LaPlace smoother as
used in the report by Esuli and Sebastiani (2009).

Evaluation metrics
The main performance metrics used were F1 macro, F1 micro, EMR1 and EMR2. Most em-
phasis was put on F1 macro and EMR2 since we chose to implement the optimization of the
threshold in our experiments. Moreover, the micro score turned out to be less valuable for
us than initially expected. The decision to focus more on F1 macro was mainly due to the
preference of our supervisor and conformity with other research papers in which F1 macro
seemed more prominent.

The problem with measuring active learning is that in comparison to regular classifi-
cation optimization, the accuracy at convergence is not important. Therefore, much more
emphasis is put on analysing the plots to see how fast the models are trained. However, be-
cause many of the active learning strategies were di�cult to discern from one another in our
Figures, we wanted to measure exact numbers to get more specific data on performance. But,
this created a problem of choosing which particular points to look at. Our choice to mea-
sure the metrics on 500, 1000, and 1500 samples stemmed from our discussions with experts.
Still, the numbers in Table 5.4 might be misleading since the performance exhibit a lot of
volatility. Therefore, we introduced the area score.

The area score metric used in table 5.4 is an complement to the other metrics when the

60

6.3 Active learning

results are as volatile as ours were. It removes the bias of choosing one single point to compare
our di�erent strategy methods as it averages the result over more training iterations and thus
balances out if a strategy exhibits anomalies in the results of the point chosen. Moreover, the
area metric allows for specifically choosing an interval to measure the performance of. In our
case, we believed 500-1000 samples to be the most interesting interval to look at for active
learning purposes. Although we believe the metric provided us with some insight, we have
not found any other author using it in peer-reviewed articles and therefore consider it of less
importance when evaluating the strategies.

6.3.3 Individual Label Performance
After deciding the optimal strategy - CAN - we compared the individual labels’ macro F1
increase. In Table 6.1 the six di�erent classes of varying lexical diversity and imbalance from
S2 are compiled. This was done using the data from Table 2.3, Table 2.6 and table 5.6.

Table 6.1: Extracted labels F1 macro increase of CAN in S2 in com-
parison to imbalance ratio and lexical diversity.

2FA Mark. Not.
Imbalance ratio 52.8 6.6 1.8
Lexical Diversity 0.279 0.164 0.129
F1 Increase 0.061 0.183 0.012

Fin. N.English P.I.
Imbalance ratio 311.5 587.2 311.5
Lexical Diversity 0.459 0.480 0.459
F1 Increase 0.450 0.562 0.697

In the top half of Table 6.1 we can see that the three labels with low imbalance ratio
and lexical diversity do not improve remarkably in F1 macro. The lower half of Table 6.1
demonstrate the opposite attributes. A large lexical diversity and imbalance ratio seem to
indicate a large increase the individual F1 macro. 2FA is an exception to this, because despite
having a high imbalance and being relatively lexically diverse, it still does not show a signif-
icant F1 increase. Most likely this is a consequence of 2FA having a very low imbalance and
lexical diversity in S1. Thus, the total variation of the two data sets combined show a low
imbalance rather than a high (see Table 2.6 and 2.3). Moreover, the frequent presence of 2FA
messages consequently created a well fitted model for S1. Therefore, there was less room for
improvement when training on S2.

For a classifier, it is easier to make predictions where the lexical diversity is low, for
example if several messages follow similar formats. In those cases, the active selection of
training samples is not as important. Or as our supervisor Pierre Nugues put it about a label
with low lexical diversity and imbalance ratio: “After the model has seen a message once, it
has basically seen all of them [of that label].” (P. Nugues 2021, personal communication, 27
January)

This shows that active learning is a strategy that most favorably should be applied in
imbalanced and complex data sets.

61

6. Discussion

6.4 Data Sets
During this project, have used three di�erent data sets: S1, S2, and RCV1. From the begin-
ning, we wanted the Sinch data sets to be fairly imbalanced, in order to see how well active
learning could select samples. Our reasoning was that in a perfectly balanced data set, with
little variation of class complexity, random sampling should generate a relatively good train-
ing set. With an imbalanced and less uniform class distribution though, it should be more
important to make informed decisions about which samples to train on. This reasoning was
supported by our conclusions in the previous section. The data sets were also rather repre-
sentative of Sinch’s data flow, where the active learning is supposed to be implemented.

However, the Sinch data sets might have proven to be too imbalanced. In Table 2.4 we find
that the di�erence in imbalance ratios for RCV1 and the Sinch sets are very high. Moreover,
S1 and S2 are more imbalanced in total, and for every class, than any of the 13 data sets which
Zhang et al. (2020) investigated in his paper Towards Class Imbalance Aware Multi-Label Learn-
ing. The high presence of labels like Two Factor Authentication, Banking, Alert and Notification,
in relation to less frequently occurring classes such as Non-English and Public Information may
have hindered us from making robust conclusions on the performance of active learning on
the di�erent classes.

The imbalance could have been reduced by e.g more preprocessing. Other approaches are
discussed in e.g. Zhang et al. (2020), where utilizing correlations between classes is presented
as one way of ameliorating the problems of class imbalance. However, we finally opted for
continuing in line with our primary intuition of investigating the imbalanced data sets more
or less ass they were. And, although there would have been benefits with reducing imbalance,
their characteristics lead us to make some conclusions, such as those in the previous section.

6.5 Further work
The most important aspect to further build our thesis would be to expand the tests and ensure
more reliable statistical proof of our conclusions. The small size of the data sets and their
imbalance created an interesting environment for a case study, but the results can hardly be
generalized. For future work, more experiments will need to be carried on larger and more
balanced data sets to validate our results. One way of expanding the data sets would be to
use data from di�erent time intervals to better represent the Sinch data as a whole. Another
way to validate our results would be to run the same tests on the Reuters data set.

Also, the model we used - LogReg - is basic and not likely to be used by Sinch in practise.
It would therefore be interesting to see if our conclusions regarding active learning can be
translated to a more advanced classifier.

Possibly our most interesting conclusions regarded the connection between label imbal-
ance, lexical diversity, and F1 macro increase using active learning. Intuitively it seems rea-
sonable that it is more important to pick the right samples when the data set is imbalanced
and complex, than when it is uniform and simple. It would be interesting to test those con-
nections in more detail - and specifically to look at the performance of individual labels as it
might provide insight as to under what conditions active learning is most favorably utilized.

We would like to have analyzed what would happen if we let samples that the model
is most certain about be directly annotated as the predicted class labels and added to the

62

6.6 Conclusion

training set. This field, called semi-supervised learning, is related, but in some sense the opposite
of active learning. 1. because the model picks the most confident classes and 2. because the
model assumes that its predictions are correct, thus eliminating the need of an oracle. The
strategy is somewhat similar to the evidence dimension Positive MacScore, and thus overfitting
the model is a big risk. What might be interesting is to see what a combination of semi-
supervised learning and uncertainty sampling active learning would accomplish. Intuitively
it would be an interesting combination: querying the oracle on the least confident predictions
and assuming certainty of class membership on the most confident predictions.

Another possibility would be to explore how active learning could aid in learning a newly
introduced label in the training set. In reality this is a situation that is likely to occur at
Sinch, especially with their rapid expansion and new customers that send di�erent types
of messages. Here, maybe a di�erent choice of strategy combination would perform and
adapt better to incorporate the new labels. When labeling the second data set we actually
introduced more labels, preparing to explore this situation but with the time limitation we
were not able to go through with the testing.

Finally, the trade o� between time e�ciency and accuracy should be further investigated.
Our study has shown that active learning does lead to more accurate classification. However,
it is more time consuming. Before incorporating it in commercial applications, it must be
explored whether the gain in precision and accuracy is worth the loss in time. Active learning
is inherently less time e�cient than random sampling. This is especially true for smaller batch
sizes, since more iterations have to be completed by the learner.

6.6 Conclusion
This thesis has evaluated possibilities of improving multi-label classification of short text
messages using active learning. The first part of the project concerned finding a suitable
classifier which was both accurate and fast in making predictions. After training the models
on S1 and parallel testing them on RCV1, we finally settled for LogReg. In the tests on S1,
LogReg was the overall quickest of the options and achieved good performance results in F1
macro (0.928) and exact match ratio (0.926).

The active learning experiments concerned the testing of uncertainty sampling in com-
binations of two variations in three dimensions: MinConfidence (C), Positive MaxScore (P), Av-
erage (A), Max (M), Weighting (W), and NoWeighting (N). The comparisons were done through
experiments for each of the eight combinations and a random sampler. In addition to the
combinations di�erent dimensions, each strategy was also tested on five di�erent query batch
sizes: 1, 5, 10, 25, and 50.

Our findings show that actively choosing samples outperforms random sampling for ev-
ery MinConfidence strategy. Thus, proving that making informed decisions about which sam-
ples to label will substantially improve time e�ciency and performance of the training of a
classifier. Our results also show that batching queried samples decreases F1 macro and EMR
performance. Moreover, the testing of individual labels indicate a correlation between the
imbalance and lexical diversity of class labels and increase of F1 macro in training.

Concerning the best active learning strategy, our results indicate that MinConfidence(C),
Average(A) and NoWeighting(N) is the best combination on the data set. CAN performs well
on di�erent metrics and gets the best overall results, as seen in Table 5.4. We want to be

63

6. Discussion

cautious though and not appoint a single strategy as the best, because the strategies perform
well on di�erent metrics and may display di�erent results on another data set.

As a final remark, it must be reasserted that our findings are not decisive in deciding the
optimal active learning strategy for multi-label classification of short text messages. The data
sets that were used were too imbalanced and small to create any general conclusions. Further
work with larger and more balanced data sets need to be carried out in order to derive more
nuanced and robust conclusions on the matter.

64

References

Alammar, J. (2018). The Illustrated Transformer [Blog post]. https://jalammar.github.
io/illustrated-transformer/. [Online; accessed 2021-02-05].

Allard, M. (2019). What is a transformer?[blog post]. https://medium.com/
inside-machine-learning/what-is-a-transformer-d07dd1fbec04. [Online;
accessed 4-March-2021].

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Chang, Y.-W., Hsieh, C.-J., Chang, K.-W., Ringgaard, M., and Lin, C.-J. (2010). Training and
testing low-degree polynomial data mappings via linear svm. Journal of Machine Learning
Research, 11(4).

Chen, T. and Guestrin, C. (2016). Xgboost. Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

Chollet, F. (2018). Deep Learning with Python. Manning Publications.

Commons, W. (2020). File:kernel yontemi ile veriyi daha fazla dimensiyonlu uzaya tasima
islemi.png — wikimedia commons, the free media repository. [Online; accessed 14-
February-2021].

Danka, T. and Horvath, P. (2018). modAL: A modular active learning framework for Python.
available on arXiv at https://arxiv.org/abs/1805.00979.

Davenport, T. H., Barth, P., and Bean, R. (2012). How ’big data’ is di�erent.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep
bidirectional transformers for language understanding.

Esuli, A. and Sebastiani, F. (2009). Active learning strategies for multi-label text classifica-
tion. In Boughanem, M., Berrut, C., Mothe, J., and Soule-Dupuy, C., editors, Advances in
Information Retrieval, pages 102–113, Berlin, Heidelberg. Springer Berlin Heidelberg.

65

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04
https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04
https://arxiv.org/abs/1805.00979

REFERENCES

Gerniers, A. and Saerens, M. (2018). Maximum entropy method for multi-label classification.
Master degree thesis, EPL, Université Catholique de Louvain.

Koehrsen, W. (2017). Random Forest Simple Explanation. https://williamkoehrsen.
medium.com/random-forest-simple-explanation-377895a60d2d. [Online; ac-
cessed 2021-02-03].

Kyle, K. (2020). lexical-diversity. https://pypi.org/project/lexical-diversity/.
[Online; accessed 28-February-2021].

Labrinidis, A. and Jagadish, H. V. (2012). Challenges and opportunities with big data. Pro-
ceedings of the VLDB Endowment, 5(12):2032–2033.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004). Rcv1: A new benchmark collection for
text categorization research. Journal of machine learning research, 5(Apr):361–397.

Liddy, E. D. (2001). Natural language processing. Encyclopedia of Library and Information
Science, 2nd Ed.

Plisson, J., Lavrac, N., Mladenic, D., et al. (2004). A rule based approach to word lemmati-
zation. In Proceedings of IS, volume 3, pages 83–86.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics, 20:53–65.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2020). Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter.

Schein, A. I. and Ungar, L. H. (2007). Active learning for logistic regression: an evaluation.
Machine Learning, 68(3):235–265.

Settles, B. (2009). Active learning literature survey. .

Sorower, M. S. (2010). A literature survey on algorithms for multi-label learning.

Syakur, M. A., Khotimah, B. K., Rochman, E. M. S., and Satoto, B. D. (2018). Integration k-
means clustering method and elbow method for identification of the best customer profile
cluster. IOP Conference Series: Materials Science and Engineering, 336:012017.

Tran, M. and Truong, M. (2019). Clustering short text messages using unsupervised machine
learning.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y.,
Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Łukasz Kaiser, Gouws,
S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young,
C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., and Dean, J.
(2016). Google’s neural machine translation system: Bridging the gap between human and
machine translation.

66

https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d
https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d
https://pypi.org/project/lexical-diversity/

REFERENCES

Yildirim, S. (2020). K-means Clustering Explained. https://towardsdatascience.com/
k-means-clustering-explained-4528df86a120. [Online; accessed 17-February-
2021].

Zhang, M.-L., Li, Y.-K., Yang, H., and Liu, X.-Y. (2020). Towards class-imbalance aware
multi-label learning. IEEE Transactions on Cybernetics.

Zhang, M.-L. and Zhou, Z.-H. (2013). A review on multi-label learning algorithms. IEEE
transactions on knowledge and data engineering, 26(8):1819–1837.

67

https://towardsdatascience.com/k-means-clustering-explained-4528df86a120
https://towardsdatascience.com/k-means-clustering-explained-4528df86a120

REFERENCES

68

Appendix A

Graphs

(a) MinConfidence Max NoWeighting (b) MinConfidence Average NoWeighting

Figure A.1: F1 Macro of the eight active learning strategies plotted
over queried samples with di�erent batch sizes. Note that the y-axis
is not fixed.

69

.pdf" .png" .jpg" .mps" .jpeg" .jbig2" .jb2" .PDF" .PNG" .JPG" .JPEG" .JBIG2" .JB2" .eps"

(c) MinConfidence Max Weighting (d) MinConfidence Average Weighting

(e) Positive MaxScore Max NoWeighting (f) Positive MaxScore Average NoWeighting

(g) Positive MaxScore Max Weighting (h) Positive MaxScore Average Weighting

Figure A.1: F1 Macro of the eight active learning strategies plotted
over queried samples with di�erent batch sizes. Note that the y-axis
is not fixed. (Continuation)

71

A. Graphs

(a) EMR score of CMN - MinConfidence Max
NoWeighting

(b) EMR score of CAN - MinConfidence Average
NoWeighting

(c) EMR score of CMW - MinConfidence Max
Weighting

(d) EMR score of CAW - MinConfidence Average
Weighting

(e) EMR score of PMN - Positive MaxScore Max
NoWeighting

(f) EMR score of PAN - Positive MaxScore Average
NoWeighting

Figure A.2: EMR of the eight active learning strategies plotted over
queried samples with di�erent batch sizes.

72

(g) EMR score of PMW - Positive MaxScore Max
Weighting

(h) Positive MaxScore(P) Average(A) Weight-
ing(W)

Figure A.2: EMR of the eight active learning strategies plotted over
queried samples with di�erent batch sizes. (Continuation)

73

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2021-03-11

EXAMENSARBETE Evaluation of Active Learning Strategies for Multi-Label Text Classification
STUDENTER Henric Zethraeus, Philip Horstmann
HANDLEDARE Pierre Nugues (LTH)
EXAMINATOR Jacek Malec (LTH)

Kan active learning hjälpa oss att
optimera maskininlärningsalgoritmer i
en till synes oöverskådlig skog av
ansamlad data?

POPULÄRVETENSKAPLIG SAMMANFATTNING Henric Zethraeus, Philip Horstmann

IT företag samlar på sig allt mer data och de allra framgångsrikaste företagen är
de som kan tolka datan och översätta den till värdefulla marknadsinsikter. Prob-
lemet med den nästan gränslösa informationsinsamlingen är att mängden data blir
svårhanterlig. I detta arbete har vi utvärderat active learning, en metod för att på ett
kostnadseffektivt sätt låta maskininlärningsalgoritmer bestämma vilken data som är
mest användningsbar för att optimera klassificering.

Ponera en aspirerande botaniker som vill lära
sig trädarter genom att vandra omkring med en
botanikprofessor som pekar ut träd i en skog och
därmed lär eleven känna igen egenskaper hos dem.
Detta kan liknas vid det traditionella sättet på
vilket supervised machine learning (vägledd mask-
ininlärning) genomförs. Alltså, en kunnig män-
niska (botanikprofessorn) annoterar data (träd)
för en dator (elev) som därefter lär sig att kat-
egorisera objekten.
Det finns dock ett problem med detta tillvä-

gagångssätt. Botanikprofessorns tid är begrän-
sad och att berätta om alla världens träd är kost-
samt, om inte rent omöjligt. I maskininlärning
löses detta genom att skapa ett mindre training set
d.v.s. ett annoterat subset av objekten som önskas
läras. Oftast består denna urvalsgrupp av slump-
mässigt utvalda – i denna analogi träd i skogen –
som sedan annoteras av professorn. Även denna
metod är suboptimal för att det kan vara så att
för få (eller inga) träd väljs av vissa sorter och för

många av andra, vilket leder till att eleven inte får
en optimal inlärningsprocess. Det är ju onödigt
om professorn pekar ut en ek flertalet gånger trots
att eleven redan vet hur en ek ser ut. Och mot-
satt om professorn i sin urvalsgrupp inte har med
en enda björk att lära eleven, så att eleven aldrig
tillskansar sig den kunskapen.
Ett potentiellt sätt att i sin tur förbättra denna

process vore därför om eleven istället för profes-
sorn fick välja vilka träd som hon känner sig osäker
på. Alltså, eleven går först igenom skogen, iakt-
tar vilka träd hon känner sig mest osäker på och
väljer därefter den urvalsgrupp som professorn får
lära eleven. Denna metod inom maskininlärning
heter active learning och vår studie har undersökt
huruvida denna metod är fördelaktig i jämförelse
med slumpmässigt urval av träningsdata.
Problemet med annotering av data i super-

vised machine learning genomsyrar dagens tech-
företag i ett klimat där icke-annoterad data är
lättillgänglig, men annoterad data är svårtillgäng-

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2021-03-11

EXAMENSARBETE Evaluation of Active Learning Strategies for Multi-Label Text Classification
STUDENTER Henric Zethraeus, Philip Horstmann
HANDLEDARE Pierre Nugues (LTH)
EXAMINATOR Jacek Malec (LTH)

lig. Den ickeannoterade datan finns i överflöd
och kan bidra med mycket positiv information om
bland annat användar- och marknadsbeteenden,
om bara effektiv annotering och urvalsprocesser
kan uppnås.

I vårt arbete studeras SMS distribuerade av
Sinch AB. Dessa SMS skickas kontinuerligt till
kunder runt om i världen och uppgår i miljarder
till antal och kan därför omöjligt kategoriseras
manuellt. Vi studerade metoder för multi-label
text classification, där målet är att kategoris-
era varje SMS i en eller flera kategorier sam-
tidigt. Efter val av klassificerare undersökte vi
hur precis vår klassificering blev beroende på om

training-setet valdes slumpmässigt eller genom ac-
tive learning.

För active learning krävs att klassificeraren först
tränas på ett slumpmässigt utvalt mindre dataset.
Därefter väljer klassificeraren ut vilka SMS den
vidare vill tränas på av en större pool av oan-
noterade meddelanden. Det finns en mängd sätt
på vilka klassificeraren kan välja ut vilka SMS
som potentiellt kan ge den mest information. Vi
fokuserade på uncertainty sampling, d.v.s. att
man antar att de mest informativa SMSen är de
som klassificeraren är mest osäker på.

Våra resultat visar tydligt att active learning
med uncertainty sampling är bättre än slumpmäs-
siga urvalsgrupper, både i fråga om precision och
noggrannhet. Specifikt visade sig logistic regres-
sion med CAN (Min-Confidence, Average, Non-
weighting) som active learning strategi vara den
bästa metoden, vilken beskrivs med större nog-
grannhet i vår rapport.

Följaktligen kan det därmed fastslås att, ja, det
är bättre om eleven får välja vilka träd hon vill lära
sig än om professorn pekar ut träd slumpmässigt.

	Introduction
	Background
	Goal & Limitations
	Mathematical Notation

	Data Sets
	Sinch Data
	Sinch Set 1
	Sinch Set 2
	Labeling

	Reuters Data Set
	Exploratory Data Analysis
	Label Distribution
	Imbalance Ratio
	Lexical Properties

	Theory
	Artificial Intelligence
	Machine Learning
	Single- and Multi-Label Classification
	Binary Relevance
	Classifiers

	Deep Learning
	Natural Language Processing
	Word Representation
	Tokenization

	Transformer
	Encoder-Decoder
	Attention

	BERT
	DistilBERT

	K-Means
	Elbow Method

	Active Learning
	Scenarios
	Query Strategy Framework
	Multi-Label Active Learning

	Evaluation
	F-score
	Exact Match Ratio

	Approach
	Labeling
	Model choice
	Active Learning
	Manual inspection

	Results
	Labeling
	Choice of model
	Active Learning
	Manual inspection

	Discussion
	Labels
	Model choice
	Sinch and Reuters comparison

	Active learning
	Batch Sizes
	Active learning strategy comparison
	Individual Label Performance

	Data Sets
	Further work
	Conclusion

	References
	Graphs
	Tom sida

