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Abstract

Some robotic applications require a permanent connection to either electricity
or a communications base. This can be done by using an attached tether to the
robot. This tether adds additional constraints and complexity to the require-
ments of the navigation of the robot. There exist algorithms for achieving this
type of navigation but when implementing these algorithm, several shortcom-
ings are discovered. By implementing my own version, I improve on the existing
algorithms and achieve a more accurate coverage of the target area. The new so-
lution I implemented was very e�cient but had other shortcomings, such as not
being able to cover all corners accurately but deemed as an improvement over
the existing algorithm.

Keywords: MSc, Online, Thethered, Navigation, Motion Paths, Wired, Robot, Motion
Planning
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Chapter 1

Introduction

While the main trend for electronics is to have more and more battery powered devices,
there still exist devices which are not suited for battery power. Among these devices are the
units that consume too much power to be able to be powered by battery, devices that require
some external material as well as devices that cannot communicate properly without tethered
communication such as underwater devices.

A modern solution to this would be more intelligent navigation in order to allow for
robots to use tethers. For the subject of this thesis I will focus on navigation to cover a target
area. A typical application would be a device that cleans a floor area. A tethered floor cleaner
would not be limited by battery power and would be able to use a more powerful cleaning
motor.

The problems of using a tether include the issue of not colliding with your own tether,
not creating too sharp an angle from the robot to the tether and obtaining an e�cient area
coverage.

1.1 Research Goal
My goal is to perform a validation of the claims made in the Shnaps and Rimon’s article[13]
and then improve upon their algorithm. In doing this I want to answer whether their algo-
rithm works, produces useable motion paths and whether it produces an e�cient solution
to cover a room while attached by a tether? And finally will I be able to make improvements
upon their solution?

1.2 Methodology
The first part of my thesis is based upon Shnaps and Rimon’s article on online tethered
coverage[13] and I started by attempting to verify the algorithm and conclusions in their
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1. Introduction

article. The original approach was to implement their algorithm and then to improve their
algorithm to be able to be applied to a more general set of robots.

However, since the result of my verification of Shnaps and Rimon’s article was unsat-
isfactory, I tried to focus more on constructing an alternative algorithm which will be an
improvement of their algorithm.

Just as Shnaps and Rimon did in their article, I assume the tether will be under tension
and therefore create straight lines between corners. Likewise I also assume that the robot will
have a mechanism that will retract the tether when given slack and extend when necessary.
The retraction mechanism is assumed to be circular so the tether can extend and retract in
any direction from the robot.

1.3 Contributions
This master’s thesis contributes by:

• Performing an evaluation of Shnaps and Rimon’s algorithm.

• Developing a new algorithm for tethered robots.
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Chapter 2

Background

The focus of this thesis will be on covering a space, i.e. traversing all the area in a planar
environment. This is very similar to what is done by modern autonomous vacuum cleaner
robots. In paper[7] di�erent algorithms are explored for covering a planar environment as
fast as possible using an autonomous vacuum cleaner. According to the findings in paper[7]
the most optimal route is not produces by a single algorithm but a combination of several.

In the subject of tethered navigation there exists several di�erent approaches to handle
the constraints the tether provides. It is described and suggested in the article by Shnaps
and Rimon[13] a solution to the same issue I have investigated. In the paper a grid-based
approach is used to cover an area with a robot that has an attached tether. The grid’s cells
that need to be covered are stored in a list. The list is ordered by the cells’ distance to the
tether origin and then the robot motion is planned from the cells in the list. Split cells are
also created, which corresponds to my dividers which will be explained below. The split cells
will make sure that the entire area on one side of an obstacle is covered before moving on to
cover the other side of that obstacle.

A interesting solution to the tethered problem is presented in paper[9] where a slacked
tether is used instead of one under tension. This makes it di�cult to know where the tether
is located but does not require the robot to have a tensioning device. Instead the tether is
avoided by making a model of how the tether will behave when moved, and the robot can
then react to its predicted position in order to not run over the tether or get tangled. This is
very di�cult to simulate so I opted to not use a slacked tether.

In my thesis I will use general pathfinding. One of the articles I based my own pathfinding
function on is in article[5] where among other things, A* pathfinding is explained. By using
the A* algorithm in paper[5] in combination with the algorithm presented in the article[14],
I managed to create a pathfinder for flat polygonal environments.

In [15] an algorithm is presented to find the shortest path for a tethered robot between
two points in a planar environment. This is done by first untangling the tether by reversing
the robot from the current position until it can reach the other point.

Similarly in paper [4] an algorithm is explored for pathfinding with a tether. However,

9



2. Background

the possibility of the robot only being able to retract the tether when reversing towards the
tether is also considered.

Shortest paths when connected with a tether is also investigated in paper[12]. However,
the execution time was shortened by optimizing the algorithm by preprocessing the environ-
ment.

In the area of tethered robotics there exists several interesting applications. As an exam-
ple, in paper[2] it is proposed to use a tethered robot on the surface of Mars. In the paper it is
explored the possibility of using a smaller robot which is using a tether attached to a bigger
robot rover, in order to ascend and descend steep terrain. In order to achieve this safely a
geometric model was created of how the tether will behave when extended across the uneven
terrain of the slopes.

Another common application of tethered robotics are underwater rovers. Since water
blocks almost all forms of communication, there are no other options for controlling robots
deep under water than using some sort of tether. An example of such a rover is the Ocean
One rover[8]. It is a human-like robot which is tethered to a large base unit, where the smaller
robot can move almost freely in order do explore underwater environments.

Some robots uses a wire as a fail safe[3], e.g. when inspecting pipes or air ducts, it can be
di�cult to navigate properly around those narrow spaces and in case the robot gets stuck, it
can always be extracted with its attached wire.

In my thesis I used the ROS[1] library as inspiration for many components in my en-
vironment. The ROS library is an open source library and platform for robotics. In ROS,
GMapping is used as one of the options for SLAM (simultaneous localization and mapping)
where it makes use of a Gaussian distribution of particles to estimate the position of the
robot from the scan data. In my implementation I never implemented a full SLAM system,
but used algorithms found in papers on the ROS homepage for inspiration to my simplified
version.

Another basis for SLAM is scan matching which is explained in [11]. In the article it
is explained how to compute the likelihood that a scan was made from all nearby positions
close to the robot. From the those calculation it is then possible to determine the location
and orientation of the robot.

A more modern example is the use of robots for charging other robots. The electric vehi-
cle company Tesla presented a prototype charger capable of finding and connecting to one of
their vehicles. This robot is intended to automatically charge a car without user interaction.
Tesla have not disclosed how the robot will carry energy to the car but one solution is prob-
ably to let the robot navigate with an attached power cord. Similar concepts of robotic car
charging have been researched before with the robots carrying small batteries[10]. This ap-
plication could also be improved with tethered navigation since the robots could use power
cords instead of batteries.
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Chapter 3

Approach

3.1 Algorithm
When designing my algorithm, I based it upon Shnaps and Rimon’s algorithm[13]. In order
to achieve an e�cient area coverage I want the robot not to unnecessarily cover the same
area several times. Therefore I want the motion path to first prioritize the areas closest to
the origin point and then move on to increasingly more distant areas. However when an
obstacle is encountered, the motion path should cover all areas on one side of the obstacle
before it moves on to the other side of the obstacle. Otherwise the robot would have to move
back and forth around the obstacle many times.

The algorithm I created is a combination of a function for finding points of a given dis-
tance from a center point and an algorithm to partition these distances in a hierarchical tree
structure.

To find all the points at a given distance from the origin point, we begin by choosing a
starting point. If there is no obstacle nearby the start, the boundary is a circle. See Figure 3.1.

If an obstacle is close, we need to calculate how the boundary expands beyond it. This is
done by finding all convex corners within range and if the convex corner has an occluded side
we create a new boundary from this corner with the range decreased by the distance from
the origin. This corner is then a node. This new boundary is not circular, instead it only
ranges from the occluded side of the convex corner to the opposite direction to the origin.
See Figure 3.2. This new boundary is then expanded recursively until no other points are
inside the range of the boundary. See Figure 3.3.

To construct the boundary and nodes into a tree structure we need to use dividers, where
the tree structure will be split. To explain a divider we can imagine a graph, see Figure 3.6, of
the distance to the wall from the current point (a node) as function of its angle. Then we can
find the local minima in this graph. These are the points we will use as dividers. These points
are points where the robot will have to come closer to the current point before continuing
on the next boundary, see Figure 3.4 and 3.5.
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3. Approach

Figure 3.1: When no outside edges of obstacles have been encoun-
tered, the boundary is circular.

In order to find the dividers we need to translate the map to a polygonal representation
where all walls and obstacles are described as polygons. We can then get all the points which
are candidates to be dividers. For each node in the boundary, all divider candidates have to
be checked whether they are a divider to that node. Each line in the polygonal representation
has a divider candidate which is the point closest to the node. In some cases these are the
end points of the lines and sometimes they are the orthogonal projection of the node on the
line. The candidates can then be refined by excluding the points which are occluded. These
points are dividers that branch the tree structure in order of distance to the node.

One of the main di�culties in implementing this algorithm is the management of nu-
merical errors. The algorithm uses both a discrete and continues coordinate system, i.e. the
robot is positioned in a continues coordinate system while the map is stored in a discrete
system. This creates several situations where rounding errors causes wrong results if we do
not include these situations as exceptions in the implementation. Let us look at a few of these
situations.

Such a situation arises when checking whether a point can be observed from another
point on the map and one of the points is located on a corner of an obstacle. If we just use
the default way of finding occlusions the corner may occlude itself. We therefore have to
remove the closest cells to the corner in the occlusion algorithm.

Another situation occurs when checking whether a point is inside a circle sector. Several
cases occurs where the point will be situated perfectly on the edge of the arc and depending
on rounding errors it will sometimes be considered inside and sometimes not.

3.2 Environment
When implementing the project I decided to not use existing tools such as ROS[1] or other
robotics libraries because I am more familiar with the Java language and my own already
developed libraries were deemed to be su�cient to implement the proposed project. To
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3.2 Environment

Figure 3.2: When an outside edge is encountered a new circular seg-
ment is produced to continue the boundary.

Figure 3.3: This is then done recursively to find the entire boundary.

have better insight into the internals of the algorithms and supporting functions, I decided
to use my own implementations. As an example, a shortest path algorithm in a polygonal
environment uses functions to extract convex corners and tethered navigation is dependent
on using convex corners. By implementing my own version of a shortest path algorithm
enables me to reuse the part of the algorithm that extracts convex corners with a much higher
degree of understanding than if I had used existing tools.

For the implementation, I used Java and a graphics library supplied by Jacob Canbäck.
The simulation consists of a 3D environment, see Figure 3.7, and a robot able to view the

environment using a 2D lidar. The lidar was used to create a map of the environment.
I did not implement any functions in order to see if the tether imposed a problem. Instead

I simulated the tether and could visually verify if this tether would impose any issues in the
real world and in that way verify my algorithm.

One shortcoming of my environment was the lack of a proper SLAM (Simultaneous lo-
calization and mapping) implementation. I implemented the mapping part and a few basics
of the localization using the algorithm found in [11]. I decided to use the exact location of
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3. Approach

Figure 3.4: The simplest case of a divider. The corner X prohibits
the robot from moving from one side of the rectangle to the other
without moving closer to the center point.

Figure 3.5: Since it is impossible to move from one side of the obsta-
cle to the other without shortening the tether, we have encountered
a divider. The divider is the marked point X. The points Y and Z are
also dividers.

the robot in my simulation since I did not have a fully optimized SLAM stack such as GMap-
ping found in [6] and as this was not deemed necessary for exploring the tethered navigation
problem.

Since I did not use ROS or any other robotics library and therefore do not have an existing
environment in which to implement my control algorithm, I had to construct my own. So
many of the already well known algorithms had to be implemented in order to create my own
algorithms. My algorithm is very complex and thus it would have been di�cult to implement
it in an unfamiliar environment.

To begin with I had to implement a map building system. Since I did not need any ad-
vanced mapping techniques I created my own mapping system from scratch. On top of this
system I built functions for finding shortest paths in my map. Using [14] and [5] I imple-
mented a shortest path algorithm which could be used in my environment after translating
my map to a polygonal representation.
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3.3 Implementation

Figure 3.6: A sketch of a graph showing the distance from walls as a
function of the angle. Here we can clearly see the divider points X,
Y and Z are the local minima in the graph.

Figure 3.7: A view of the 3D environment when fully rendered

3.3 Implementation
When the boundary expansion and divider finder algorithm is finalized, I have an expanded
boundary (a geometrical description of how far the tether can reach with a certain length)
which is divided in a tree structure. Now points can be sampled from the constructed bound-
ary to construct a path, and the points that are occluded from the nodes are removed since
they are either inside or behind an obstacle.

To connect each path, I used a pathfinding algorithm to find the shortest trajectory be-
tween the end of the first to the start of the next path. The algorithm I used was a simple
polygonal pathfinding algorithm as it was deemed enough for the purpose. A more special-
ized shortest path algorithm[15] could have been used to decrease the likelihood of issues,
such as colliding with the tether.
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Chapter 4

Results

4.1 Shnaps and Rimon’s algorithm
When attempting to implement Shnaps and Rimon’s algorithm[13], as described in Chapter
2, several problems occurred. The algorithm is based on a numerical approach and divides
the environment in cells in order to calculate motion paths. The crucial part is planning a
new motion path for a new radius. The algorithm sorts these cells by the distance from the
tether attachment point. This results in a path that will prioritize the new cells in the new
radius in an unstructured way which looks almost random. This is due to that the grid layout
of the cells will make some cells in the new radius closer than others. The algorithm works
on a theoretical basis, the execution of it will make the robot cover the entirety of the space
but will use an unstructured and less than e�cient path to cover the space. See Fig 4.1

Figure 4.1: A simple example where Shnaps and Rimon’s algorithm
produces useless motion paths
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This issue was too large to ignore. The planned path covered the same areas several times
and was insu�cient to build upon. I did attempt to fix this problem by making the algorithm
first sort cells in chunks of similar distance to the attachment point and then secondarily on
angle to latest tether bend. While this did improve the paths a little bit, it did however
still produced bad and jagged motion paths. See Fig 4.2. And the sought after motion of
contouring the distance to the attachment point was still missing.

Figure 4.2: A simple example where Shnaps and Rimon’s algorithm
with my improvements produces jagged motion paths

4.2 My algorithm
In the end, I succeeded in creating an alternative algorithm to the one proposed in Shnaps
and Rimon’s paper. The algorithm produces a path contouring the distance to the attachment
point and manages to cover most of the area in an e�cient way. By looking at the map of
traversed space, see Figure 4.5, recorded after the simulated robot has run, we can see that it
covers most of the area. The spots that it has issues with are the edges and the corners. This
is because according to the algorithm it will increment it search area one robot radius at a
time. If the edge is not directly a factor of the radii away from the tethered point, it will not
plan a path next to that wall. However, much of the space next to the walls still get traversed
since the robot will pass next to them to get to the next part of the room.

My algorithm has been tested on simple spaces such as a rectangle room, see Figure 4.3,
as well as complex spaces with many connecting paths and small branching rooms, see Figure
4.4. While it is not perfect, it does seem to handle most cases very well. A comparison of the
coverage between Shnaps and Rimon’s algorithm and my algorithm for a rectangular room
can be seen in Figure 4.1

My algorithm increases the boundary in steps, and when a corner is passed but not in-
cluded it is never considered for the algorithm again. In my algorithm I assume that the
radius of the robot is small compared to the lengths of the walls. This means that when we
expand our boundary one robot radius, we assume it will not expand it through an obstacle.
If we expand the radius through or beyond an obstacle in one expansion step the algorithm
will expand the boundary beyond corners on the opposite side of the obstacle and in practice
these corners have not been observed and we do not know that they exist. This can cause
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4.2 My algorithm

Shnaps and Rimon’s Mine
Coverage 98% 94.1%

Path length 4743.68 380.27

Table 4.1: A comparison of the coverage and path lengths (unitless)
of algorithms when covering the rectangle room

Figure 4.3: A simple example where my algorithm covers the entire
area

areas of the rooms to be missed. I have not yet encountered this problem in a simulation
since i use a reasonable size for my robot compared to the size of obstacles.

19



4. Results

Figure 4.4: The motion plan generated from my algorithm in
progress in a complex environment.

Figure 4.5: The green area shows the traversed regions by the robot
using my algorithm in a complex room. The image is a snapshot
while the robot is running. The tether origin is marked by the blue
dot.
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Chapter 5

Discussions and conclusion

5.1 Comparison
If we compare the two solutions for navigation, we can see some clear di�erences. The so-
lution proposed by Shnaps and Rimon[13] is not as e�cient as my solution since their path
lengths are much longer. Their motion paths take many unnecessary small turns and traverse
the same spots more than once, thus taking more time. However their paths are better at
reaching corners and get closer to the walls as they will make sure to cover all cells the round
robot can reach. Their solution is also more robust and can handle edge cases better.

A known issue of my solution is that it can miss large parts of the area since it cannot
manage all cases of online motion planning. This can occur when a corner can not be seen
when we try to extend our boundary beyond it. Then when it can be seen we do not retry to
calculate its influence.

Another issue with my solution is that it is not time optimized since it was not important
to the purpose of this thesis. Compared to the algorithm in[13] my algorithm is very slow and
does not scale well with large environments. The algorithm works, but since some parts are
computed relative to all corners within the reaching distance of the tether, it scales poorly
when used for large distances in environments with many corners.

5.2 Real world applications
If using a tethered robot with no constraint on the tether position or direction, my algorithm
should work very well according to my simulation. However, if studying the paths taken by
the robot, there are cases when the robot faces towards the tether. This would cause issues if
the algorithm was used on a robot which had a directional winding mechanism for its tether.

It is also not proven that the algorithm would work in a real world scenario. I did some
basic assumptions when constructing my implementations, such as a wall can never disap-
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5. Discussions and conclusion

pear. If run on a real robot in a room it might not be able to cope with a door being opened.

5.3 Further Development
The most interesting parts to further research are the implementations of more dynamic
systems. For example, can this algorithm be used for a di�erent motion path? My way of
using the algorithm is doing a breadth first traversal of the area graph, but if the motion
paths are adapted it might be possible to do a depth first traversal and find a more e�cient
way of traversing the area.

The problem with a corner within a boundary not being seen, and therefore not being
computed properly is an important issue to solve. Without this problem the algorithm would
be as good online as o�ine and a solution to this problem would improve the reliability of
the algorithm.

The time complexity problem is also one of the issues that would require further research.
It might be possible to optimize the code e.g. by using an acceleration structure to speed up
execution.

If used in a real world application, the directional constraints would be an important
part to improve. If we could ensure the robot always extends and retracts the tether from
one direction, this would enable the tether retracting mechanism to be mounted on one
side of the robot, and be a lot less complicated. As mentioned, the motion path will face
both towards and away from the tether. However, since most of the planning is done with
boundary segments which are equidistant from the tethering point, the only part left to
change to achieve these constraints are the paths between the boundary segments.

5.4 Conclusion
In conclusion, the purpose of the thesis has been reached. The new algorithm, despite its
shortcomings, is an improvement in solving the problem compared to Shnaps and Rimon’s
algorithm and with a little further development it could be applied to a physical robot.
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Även med dagens effektiva batterier så finns det situationer då robotar behöver mer
ström än vad de batterier idag klarar av. I vissa av dessa situationer kan man med
hjälp utav smart vägplanering byta ut batteriet mot en sladd. En lämplig tillämpning
är robotdammsugare, då de idag endast borstar golvet för att en riktig dammsugare
drar för mycket ström för att köras på batteri.

Jag valde i mitt examensarbete att fokusera på
hur man täcker en yta effektivt när man är kop-
plad med sladd. Jag gjorde detta genom att först
utvärdera en existerande algoritm med avsikt att
utöka den. Men då den existerande algoritmen
inte gav det förväntade resultatet, fick jag göra
en alternativ algoritm till den existerande. För
att göra detta använde jag mig utav rörelsemön-
stret som föreslogs ifrån artikeln men valde att
åstadkomma detta mönster på ett annat sätt. I
artikeln skapas en väg för roboten genom att an-
vända ett rutnät som fylls i efterhand som roboten
rör sig över rutorna. Genom att sortera de icke
ifyllda rutorna enligt en viss algoritm kan roboten
beräkna en rutt genom att gå till nästa icke ifylld
ruta. Jag valde istället att skapa robotens väg
genom att på ett geometriskt sätt räkna ut hur
lång tråden blir om man flyttar roboten till olika
positioner. Denna informationen användes sedan
till att räkna ut hur roboten skulle röra sig.

Min algoritm är en kombination som består
utav två delar. Den första är till för att hitta
kurvor som roboten kan följa och fortfarande ha
samma sladdlängd. Den andra används för att
hitta ställen där man kan dela upp rörelsemön-
stret för att inte behöva gå fram och tillbaks runt
hinder för mycket. Resultaten utav dessa två de-

Figure 1: Vägen robotten tar när min algoritm
används i ett rum.

lar är en trädstruktur med kurvor som i tur och
ordning ska följas för att köra över all yta i rum-
met.

I slutändan uppnåddes målet med att skapa en
effektiv väg i rummet och förutom några få situa-
tioner klarade min nya algoritm att täcka området
bättre än den algoritm som jag först testade.
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