
MASTER’S THESIS 2021

Multi-hop Neural Question
Answering in the Telecom
domain
Maria Gunnarsson

ISSN 1650-2884
 LU-CS-EX: 2021-19

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2021-19

Multi-hop Neural Question Answering in
the Telecom domain

Neurala frågesvarssystem med multipla steg
för telekomdomänen

Maria Gunnarsson

Multi-hop Neural Question Answering in
the Telecom domain

Maria Gunnarsson
tfy15mgu@student.lu.se

June 10, 2021

Master’s thesis work carried out at Ericsson.

Supervisors: Fitsum Gaim Gebre, fitsum.gaim.gebre@ericsson.com
Pierre Nugues, pierre.nugues@cs.lth.se

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:tfy15mgu@student.lu.se
mailto:fitsum.gaim.gebre@ericsson.com
mailto:Pierre.Nugues@cs.lth.se
mailto:jacek.malec@cs.lth.se

Abstract

Neural systems for open-domain question answering are often developed for
general domain data, due to the availability of large-scale question answering
datasets. In this master thesis, I investigate how three question answering mod-
els perform within a narrower domain: The telecommunication domain. I also
examine how these models can be adapted for this specific domain. To evaluate
the models, together with the Ericsson research group, I built two telecommuni-
cation domain question answering datasets: one with simple questions and one
with more complex ones. I also used a part of the in-domain dataset with simple
questions to fine-tune neural parts in the question answering systems.

My results show that a significant domain adaptation can be achieved by
fine-tuning pre-trained language models with a relatively small dataset. This
finding should pave the way to more e�ective construction of domain specialized
question answering systems as annotating large datasets consumes a lot of time.

Keywords: Natural language processing, question answering, language model, domain
adaptation

2

Acknowledgements

My Master’s thesis project would have been far from this good and run half as smoothly if
it would not have been for my two supervisors: Fitsum Gaim Gebre at Ericsson and Pierre
Nugues at LTH. I am deeply grateful for all the support they have given me throughout this
project. Due to the circumstances, I have needed to sit a lot on my own while working on
this, and then it has been extra helpful to know that I always can reach out to them.

I also want to thank the rest of the Telecom AI group within team Muon Spruce in GAIA,
Ericsson; Vincent Huang A, Jieqiang Wei, and Henrik Holm. Thank you for the great collab-
oration and feedback during my work. To Henrik, who has also written his Master’s thesis
within the Telecom AI project, I owe a great deal of gratitude for his company and his help.

Finally, I am extremely thankful for all the support I have been receiving from my friends
and family during this semester.

3

4

Contents

1 Introduction 7

2 Previous work 9
2.1 Question answering . 9

2.1.1 Multi-hop question answering . 10
2.2 Datasets . 10

2.2.1 Single-hop datasets . 10
2.2.2 Multi-hop datasets . 12
2.2.3 Evaluation metrics . 13

2.3 Neural open-domain QA systems . 14
2.3.1 Retriever-reader . 14
2.3.2 Reranker . 15
2.3.3 Pre-trained language models . 15
2.3.4 Sparse and dense retrievers . 15
2.3.5 Adaptive retrievers . 16
2.3.6 Answer verification . 16

2.4 Multi-hop question answering systems . 17
2.4.1 Sparse, iterative retrievers . 17
2.4.2 Dense, iterative retrievers . 18
2.4.3 Graph retrievers . 19
2.4.4 Question decomposition . 19

2.5 Domain adaptation . 20

3 Method 23
3.1 TeleQuAD . 23
3.2 mTeleQuAD . 25
3.3 DrQA . 26
3.4 CdQA . 27
3.5 MDR . 28
3.6 Experiments . 30

5

CONTENTS

3.6.1 DrQA and cdQA . 30
3.6.2 MDR . 31

4 Results 33
4.1 DrQA . 33
4.2 CdQA . 35
4.3 MDR . 36

5 Discussion 39
5.1 Retrievers . 39
5.2 Readers . 40
5.3 Single-hop and multi-hop models . 41
5.4 Datasets . 41
5.5 Evaluation metrics . 42
5.6 Future work . 43

6 Conclusion 45

References 47

6

Chapter 1

Introduction

Systems providing answers to natural language questions given only unstructured text have
recently become a popular application of several machine learning techniques. This task is
referred to as open-domain question answering (openQA). More complex questions, that for in-
stance require reasoning over several documents, cannot be answered by regular openQA sys-
tems. Several di�erent approaches have been proposed to deal with these multi-hop questions.
Iteratively retrieving more context documents, building cognitive reasoning graphs, and de-
composing the complex questions into simpler ones are examples of tackling this problem.

However, many of the published techniques are developed and tailored for general do-
main data. This makes them unfit to adapt to one specific domain. In this Master’s thesis,
I show the requirements that need to be met to apply an open-domain question answering
system to a new domain. More specifically, I considered the adaptation of systems to the
telecom domain.

My findings are that published systems could perform reasonably well on a telecom ques-
tion answering dataset. I achieved a significant improvement in performance when fine-
tuning a pre-trained language model on a small domain-specific dataset. My results show
how openQA models can be domain-adapted in a relatively simple manner, without the need
to create a large training dataset.

With much open-domain question answering research focusing on general domain knowl-
edge, I show in this thesis that openQA systems can be useful also in a narrower context. This
fact, along with the systems’ ability to deal with complex multi-hop questions, will make them
useful in a large variety of contexts in the future.

7

1. Introduction

8

Chapter 2

Previous work

Natural language processing is a very hot research area at the moment. The topic is stretched
over a vast variance of tasks, and one of them is question answering. The aim of question
answering is as easy as it sounds: Provide an answer to a question that is posed in natural
language. But as easy as the task is, as hard is the solution.

2.1 Question answering
Question answering dates back to the 1960s. Baseball (Green et al., 1961) is said to be the
first question answering system and could provide answers regarding the US baseball league.
The information inside the system was stored in a well-defined dictionary and included facts
about for example team names, game times, and locations.

Following Baseball, question answering systems did for a long time require information
to be structured in a certain way. Around 2007, large knowledge bases such as DBpedia
and Freebase were developed as well as open-domain datasets such as WebQuestions and
SimpleQuestions, making the knowledge-based QA techniques evolve. The knowledge bases
are constructed according to some predefined structure, which often requires manual work.
Therefore, scaling these systems is di�cult.

Textual QA systems are on the other hand easier to scale. These are systems that pro-
vide answers to questions given only unstructured data. Textual question answering is often
regarded from two di�erent settings: machine reading comprehension (MRC) and open-domain
question answering (openQA). The di�erence is the availability of context data. In the former
setting is the context paragraph given, but in the latter is the context not specified at all.

Open-domain QA can be seen as an extension of MRC, which is why it is sometimes
referred to as machine reading comprehension at scale. Open-domain question answering gained
some public fame when IBM Watson won the Jeopardy! game against human players in 2011.
Watson was created with techniques both from information retrieval, natural language pro-
cessing, and knowledge bases.

9

2. Previous work

The term closed-domain question answering is used for some QA systems. They are con-
structed just as openQA systems, but they are built for questions under a specific domain.

Figure 2.1: A conceptual overview of open-domain question answer-
ing (Zhu et al., 2021).

2.1.1 Multi-hop question answering
Questions that require information from several documents or paragraphs to be answered are
in the NLP world named multi-hop questions or questions that require multi-step reasoning. Due
to the design of most large-scale datasets, general open-domain question answering models
cannot handle questions that need information from more than one paragraph.

This limitation has been addressed by several scientists lately. Publication of multi-hop
question answering datasets has made it possible to further develop question answering sys-
tems to conduct multi-step reasoning.

To distinguish between the questions requiring one, respectively several, paragraphs to
be answered, I will use the terms single-hop and multi-hop questions throughout this report.

2.2 Datasets
Datasets are key components within most machine learning tasks. In question answering, the
research picked up speed after the release of several large-scale question answering datasets
during 2017-2018 (Zhu et al., 2021). Since these releases, the inclusion of one or several neural
parts in question answering systems has become standard practice. This section accounts for
some benchmark datasets that are applicable for open-domain question answering.

2.2.1 Single-hop datasets
A distinction is made between MRC datasets and openQA datasets. In machine reading
comprehension datasets, the system has easy access to the information source, i.e. a para-
graph of text which contains the correct answer. Hermann et al. (2015) published what is
probably the first large-scale dataset for machine reading comprehension. The authors ar-
gued that supervised machine learning techniques had been absent from the field of machine
reading comprehension due to the lack of large-scale training datasets. They proposed a
novel approach to constructing a supervised reading comprehension dataset from the CNN
and Daily Mail websites with over one million question-answer pairs. The approach includes

10

2.2 Datasets

converting summary and paraphrase sentences with their associated documents to context-
query-answer triples by using entity recognition and anonymization algorithms.

The magnitude of the CNN/Daily Mail dataset is a great advantage, but drawbacks have
been noted. Rajpurkar et al. (2016) pointed out that the dataset is semi-synthetic and does not
share the same characteristics as explicit reading comprehension questions. Rajpurkar et al.
(2016) instead presented a new dataset named SQuAD, Stanford question answering dataset. It
consists of over 100,000 question-answer pairs, where the questions are written by crowd-
workers and the answers are text spans from Wikipedia articles.

To ensure high-quality articles Rajpurkar et al. (2016) used Project Nayuki’s Wikipedia’s
internal PageRanks to identify the top 10,000 articles of English Wikipedia. From these, they
sampled 536 articles uniformly at random. Then, they extracted paragraphs from each article.
They removed the images, figures, tables, and paragraphs shorter than 500 characters, and at
last 23,215 paragraphs remained. The 536 articles with their corresponding question-answer
pairs were randomly divided into a training set (80 %), a development set (10 %), and a test
set (10 %).

To address the issue of extractive reading comprehension systems making unreliable guesses
for questions without an answer, Rajpurkar et al. (2018) released SQuAD2.0. This dataset
is an extension of the former version SQuAD1.1. In addition to the answerable questions,
SQuAD2.0 also includes over 50,000 unanswerable ones. As for the answerable ones, the
unanswerable questions were written by crowdworkers to resemble answerable ones. For a
system to perform well on SQuAD2.0, it must both produce correct answers to the answer-
able questions and identify when a question does not have an answer in the provided context.

The two SQuAD datasets were created for machine reading comprehension. However,
Chen et al. (2017) extended SQuAD1.1 to what was later named SQuADopen to evaluate their
open-domain question answering system. The extension meant that the system was not pro-
vided with the associated paragraph when asked a question but the whole of Wikipedia.

Figure 2.2: Ques-
tions and answers
from SQuAD 1.1
(Rajpurkar et al.,
2016).

Figure 2.3: Ques-
tions and answers
from SQuAD 2.0
(Rajpurkar et al.,
2018).

11

2. Previous work

As mentioned earlier, the answers to the questions in SQuAD are a text span from a
certain paragraph. The same answer type is adopted in several other large-scale QA datasets.
Examples of these include NewsQA (Trischler et al., 2016), where the context consists of new
articles from CNN news; SearchQA (Dunn et al., 2017), with context from Google Search and
Natural Questions (Kwiatkowski et al., 2019) which also have Wikipedia as context. Other
answer types used in QA datasets are multiple choices, boolean, and free form.

2.2.2 Multi-hop datasets
The datasets mentioned so far have one thing in common, the questions are answerable, or
unanswerable, with just one supporting paragraph. Yang et al. (2018) point out that this
fails to train question answering systems to perform complex reasoning. Therefore, they
presented HotpotQA, a question answering dataset, where the questions require finding and
reasoning over multiple supporting documents to be answered. At the time of publication
of HotpotQA, the existing multi-hop question answering datasets were constructed using
some existing knowledge base. These were for example QAngaroo (Welbl et al., 2018) and
ComplexWebQuestions (Talmor and Berant, 2018). Yang et al. (2018) mention that these
datasets are limited by the architecture of the knowledge base, which therefore also limits
the diversity of the questions and answers.

HotpotQA is not created around some knowledge base or schema and has been named
the first dataset for the open-domain multi-hop task (Khattab et al., 2021). The content is
manually annotated which ensures natural questions. The full dataset consists of slightly
more than 100,000 question-answer pairs. The answers are text spans, and for each question,
there are two supporting paragraphs, which are required to answer correctly. Two benchmark
settings are presented together with the dataset:

Distractor setting The distractor setting combines the two supporting paragraphs with 8
distractor paragraphs. These 10 paragraphs are shu�ed before sent to a model, and
the task becomes to identify which are the relevant ones.

Full-wiki setting The full-wiki setting is even more challenging. In this setting, the first
paragraphs from all Wikipedia articles are provided along with the question.

While still being the most used dataset for multi-hop question answering, there are lim-
itations to it that have been pointed out. Khattab et al. (2021), among others, mention the
limitation to only two-hop questions. Many of the questions also do not require strong multi-
hop reasoning capabilities. Therefore, Khattab et al. (2021) evaluated their proposed model
on another dataset called HoVer (Jiang et al., 2020) in addition to HotpotQA.

HoVer is a many-hop verification dataset, which requires models to extract relevant facts
from several Wikipedia articles to classify whether a statement is supported or not supported
by the facts. The dataset includes both two-, three- and four-hop examples. Multi-evidence
FEVER is a similar dataset, where facts need to be verified using multiple documents (Thorne
et al., 2018). It has been used by for example Xiong et al. (2021) in their evaluations, along
with HotpotQA.

12

2.2 Datasets

Figure 2.4: Questions
and answers from
HotpotQA (Yang
et al., 2018).

Figure 2.5: Claim
verification example
from HoVer (Jiang
et al., 2020).

2.2.3 Evaluation metrics
The most popular evaluation metrics in question answering are exact match and F1 score. These
were used when Rajpurkar et al. (2016) and Yang et al. (2018) published the datasets SQuAD
respectively HotpotQA to measure the performance on these datasets.

Exact match (EM) When calculated over a whole dataset, it measures the percentage of pre-
dictions that matches the corresponding correct answer exactly.

F1 score A measure of a test’s accuracy, where the test is the performance of a QA system.
In question answering, the F1 score measures the average overlap between the correct
answer and the predicted one.

The F1 score is calculated as:

F1 =
2 · P · R
P + R

, (2.1)

where P stands for precision and R for recall. These, in their turn, are calculated according to

P =
tp

tp + fp
and R =

tp
tp + fn

. (2.2)

tp, fp, and fn, respectively stand for true positive, false positive and false negative. In natural lan-
guage processing, tp corresponds to the number of tokens that are shared between the correct
answer and the prediction. fp measures the number of tokens that are in the prediction but
not in the correct answer. Last, fn describes the number of tokens that are in the correct
answer but not in the predicted one.

13

2. Previous work

Yang et al. (2018) suggest two new settings for calculating the F1 score and exact match
in the multi-hop setting with their dataset HotpotQA. This is to assess the explainability of
the models. The first extra measurement is to evaluate the model’s performance on finding
the right supporting facts. The F1, respectively the EM, are then calculated on the set of
the predicted supporting facts, compared to the correct ones. These are called support F1
respectively EM. The second proposed measurement is a combination of the evaluations on
the answers and the supporting facts. These are called the joint EM and F1. Joint EM is 1
if both the answer EM and supporting facts EM are 1, otherwise, it is 0. The joint F1 is
calculated as:

Joint F1 =
2 · P joint · R joint

P joint + R joint , (2.3)

where the precision and recall of the joint F1 is calculated from the precision and recall from
the answer respectively the supporting fact according to

P joint = Pans · Psup and R joint = Rans · Rsup. (2.4)

Two other metrics that have been used by several authors of openQA systems are precision
at k and recall at k. They are mainly used to evaluate models’ ability to identify paragraphs or
documents that include the correct answer to a given question. Precision and recall at k are
defined as follows:

Precision at k (P@k) Describes the proportion of items in the top-k ones that are relevant.

Recall at k (R@k) Describes the proportion of relevant items that are among the top-k ones.

2.3 Neural open-domain QA systems
Chen et al. (2017) were probably the first ones who included neural techniques in the open-
domain question answering task. Since then, the usage of neural networks in some form has
become the state-of-the-art way of tackling openQA. In this section, I explain some of the
key components and di�erent designs of neural open-domain question answering systems.

2.3.1 Retriever-reader
Chen et al. (2017) proposed a model architecture consisting of two modules, one for retrieving
documents and one for reading the retrieved ones. This retriever-reader design has afterward
been adopted and extended in numerous open-domain QA systems. The retriever in the sys-
tem, called DrQA, uses information retrieval (IR) techniques and retrieves the most relevant
documents according to the TF-IDF metric. The neural technique is only incorporated in the
reader in DrQA, which is a recurrent neural network (RNN). The RNN is applied to each
retrieved paragraph in turn together with the question. It predicts which span in the current
paragraph is most probably the answer and calculates a score of how likely it is the answer.
Finally, the scores of all possible answer spans are compared, and the one with the highest is
returned as the predicted answer.

14

2.3 Neural open-domain QA systems

2.3.2 Reranker
Wang et al. (2017) proposed a new pipeline for open-domain question answering, named
reinforced ranker-reader (R3). Their contributions are mainly two things: they introduced the
ranker component to complete the retriever and reader, and they proposed to jointly train the
ranker and reader model with reinforcement learning. R3’s retriever adopts, just as DrQA,
a traditional IR technique. For each input question, the retriever finds the top-200 articles
according to the BM25 metric. Then these articles are split into sentences and the 200 ones
that best match the question when comparing with TF-IDF are then passed on in the pipeline.

2.3.3 Pre-trained language models
Pre-trained language models have recently become standard to use in at least one module
in open-domain question answering systems. Devlin et al. (2018) published a new type of
pre-trained language model that has been adopted and extended in numerous ways. They
named it BERT, bidirectional transformers for language understanding. BERT is a language rep-
resentation model with a few new features compared to earlier models. First, it has a masked
language model (MLM) pre-training objective. That consists of randomly masking out some of
the input tokens, and the objective is to predict the masked out token based on the context.
Second, the model is bidirectional as mentioned in the name. That means the MLM can make
use of the context both to the left and right of the masked out token.

When released, BERT pushed forward the state-of-the-art score of several NLP bench-
mark tasks. On the SQuAD1.1 test set, the F1 score obtained 1.5 points absolute improve-
ment, and on the SQuAD2.0 test set, the F1 was improved by 5.1 points. Since Devlin et al.
(2018) published BERT, a large number of extensions, as well as applications of the model
have been released. Most open-domain question answering systems include pre-trained lan-
guage models in at least one module since they have shown to be very powerful.

Partly inspired by BERT, Clark et al. (2020) published their pre-trained language model
named ELECTRA. The main di�erence compared to BERT is that instead of masking out to-
kens, ELECTRA replaces them with plausible alternatives. The objective when training this
model becomes then to identify which token that has been replaced. The part of ELECTRA
that handles the replacement of tokens is called the generator, and the part that is supposed to
identify the replaced ones is the discriminator. ELECTRA is mainly used in the reader module
of many recent openQA systems.

2.3.4 Sparse and dense retrievers
Initially, retrievers were implemented with classic IR methods, using sparse vector space
models such as TF-IDF or BM25 (Chen et al., 2017; Kratzwald and Feuerriegel, 2018). In
these models, words in the question and the context are matched with an inverted index. It
can be seen as a representation of the question and the context in a high-dimensional, sparse
vector space. These types of retrievers are therefore generally referred to as sparse retrievers.
While they are both e�cient and easy to implement, they cannot handle semantics beyond
term matching. This means that they cannot handle synonyms in questions or understand
the di�erence between two or more senses of a word.

15

2. Previous work

Di�erent architectures of so-called dense retrievers have been presented in order to obtain a
better semantic representation (Karpukhin et al., 2020; Das et al., 2019). These adopt a dense,
latent semantic encoding of the questions and context, which ideally results in synonyms
being mapped to vectors close to each other since their meanings are the same. The dense
encodings are also more flexible in the way that they are learnable by adjusting the embedding
functions.

Lee et al. (2019) were first to adopt a dense retrieval method that outperformed the ones
based on TF-IDF and BM25 metrics in their open retrieval question answering (ORQA) model.
ORQA’s retriever and reader are jointly trained on the question answering task. The retriever
part is proposed to be pre-trained to solve an unsupervised task that is similar to evidence
retrieval in openQA. In more detail, the task to be pre-trained on is an inverse cloze task (ICT).
In the cloze task, the goal is to predict masked-out text given the context. Here, the inverse
is requested: that given a sentence, the context should be predicted.

A significant di�erence between ORQA and other preceding work on improving re-
trieval in openQA systems is the open retrieval that ORQA adopts, in contrast to retrieving
a closed set of evidence. After pre-training the retriever on the ICT, the joint model is end-
to-end fine-tuned by optimizing the marginal log-likelihood of correct answers that were
found.

However, Karpukhin et al. (2020) pointed out two weaknesses with ORQA:

• First, the ICT pretraining is computationally intensive and it is not clear that regular
sentences are good alternatives to questions in the objective function.

• Second, since the context encoder is not fine-tuned using question-answer pairs, the
corresponding representations could be sub-optimal.

Therefore, Karpukhin et al. (2020) wanted to see if a better dense embedding model could
be trained using only question-passage pairs without extra pre-training. They succeeded in
proving this, by leveraging a pre-trained BERT model, where the embedding is optimized
for maximizing inner products of the question and relevant passage vectors. Karpukhin et al.
(2020) also verified that, in the context of openQA, a higher retrieval precision leads to higher
end-to-end accuracy.

2.3.5 Adaptive retrievers
Kratzwald and Feuerriegel (2018) addressed the fact that the interplay between the retriever
and reader in open-domain question answering is poorly understood. They showed that
retrieving a fixed number of documents su�ers from a noise-information trade-o� which
is suboptimal. Kratzwald and Feuerriegel (2018) proposed a novel design that adaptively
selects the optimal number of documents to retrieve. The retrieval model learns the optimal
number conditioned on the size of the corpus and the query.

2.3.6 Answer verification
With the arrival of datasets including unanswerable questions, demands were put on systems
to handle these. Zhang et al. (2020) suggested that the machine reading comprehension task

16

2.4 Multi-hop question answering systems

including unanswerable questions could be divided into two subtasks: answerability verifi-
cation and reading comprehension. This requires stronger MRC models in openQA systems,
generally implying stronger readers. A common reader consists of two parts: an encoder and
a decoder. Pre-trained language models have recently been dominating as encoders since they
have a strong capacity for capturing the contextualized sentence-level language representa-
tion. The decoder represents the task-specific part in an MRC system, like question-passage
interaction in question answering systems.

One popular solution to handle unanswerable questions was to include some verification
module that could determine answerability. The verification module was generally stacked
along with the encoder or the decoder. This showed to be suboptimal and Zhang et al. (2020)
investigated better designs of the verifiers. Their retro-reader has two stages of reading and
verification: first, sketchy reading that yields an initial judgment, and second, intensive read-
ing that verifies and returns the final predicted answer. The sketchy reading module includes
embedding, interaction, and an external front verification. In the intensive reading module,
there are question-aware matching, span prediction, and internal front verification.

2.4 Multi-hop question answering systems
The retrieve and read approach to open domain question answering is widely used. However,
many systems adopting this approach can only answer questions, where the relevant context
can be obtained in one retrieval step. Several authors have identified the need for systems
that can handle more complex questions, often referred to multi-hop questions or questions
requiring multi-step reasoning.

2.4.1 Sparse, iterative retrievers
Multi-hop open domain question answering is a popular area of research, but it has not been
investigated for very long. Many of these systems are built on the retriever-reader architecture
that is well used in the single-hop setting but with some addition that makes it suitable for
multi-hop questions.

The general solution is to have an iterative retriever, which retrieves relevant documents
in multiple steps. What, in this context, can be considered as early multi-hop QA systems
generally adopted a sparse retriever as their iterative one.

Along with one of the first large-scale multi-hop question answering datasets, HotpotQA,
Yang et al. (2018) released a baseline model. This was in turn a reimplementation of the model
by Clark and Gardner (2017). In addition to this original model, Yang et al. (2018) also in-
cluded character-level models, self-attention, and bi-attention in the baseline.

GoldEn Retriever (Qi et al., 2019) is another early multi-hop question answering system,
where GoldEn is a shortening of Gold Entity. The GoldEn retriever iterates between reading
context and retrieving more supporting documents. It is made up of the following main
parts:

Query generator From the question and available context in each iteration, a natural lan-
guage search query is generated to be able to retrieve more supporting documents. In
the first hop, only the original question is used to generate a search query. The natural

17

2. Previous work

language search query guarantees interpretability to the provided answers. The query
generator is built on the DrQA reader module (Chen et al., 2017) and formulated as
a question answering task. The module consists of a neural network, which in the
GoldEn retriever is trained to select a span from the already retrieved context, given
the original question.

Retriever The document retriever in the GoldEn retriever makes use of an index includ-
ing all introductory paragraphs from the English Wikipedia. When retrieving, the
BM25 ranking function is used, and documents whose titles match the search query
are boosted. This is to obtain a better recall for entities with common names.

Reader The reader component in GoldEn retriever is based on the baseline model from
Yang et al. (2018), where all retrieved documents are processed separately with shared
encoder RNN parameters to obtain paragraph order-insensitive representations for
each document. Possible answer spans are then predicted from each document and
probabilities are calculated for each of them to select the most probable one.

Qi et al. (2019) claim that GoldEn retriever is much more e�cient, scalable, and inter-
pretable at retrieving gold documents compared to its neural retrieval counterparts. This is
because GoldEn does not rely on a QA-specific IR engine tuned to a specific dataset. One
major challenge however is to train query generation models e�ciently.

In the iterative retriever, reader and reranker (IRRR), Qi et al. (2020) included a retrieving
approach that is similar to the one proposed by Qi et al. (2019). IRRR aims at building a
reasoning path from the question, through all the necessary supporting documents, to the
answer. It loops between retrieving, reading, and reranking to expand the reasoning path
with new documents. Just as the GoldEn Retriever, it uses natural language search queries.

These natural language search queries are sent to a text search engine. Elasticsearch is used
to search for relevant documents, to reduce the context size for the transformer encoder in
IRRR. Similarities between both question and paragraph, respectively question and article
are calculated to select the most relevant context. The standard BM25 similarity function,
respectively an extended version, is applied in these calculations. The extended version takes
the square of the IDF term and sets the TF normalization term to zero.

2.4.2 Dense, iterative retrievers
Dense retrieval techniques have also been adapted to the multi-hop question answering set-
ting. Feldman and El-Yaniv (2019) proposed a solution named MUPPET, multi-hop paragraph
retrieval. It consists of two main parts: a paragraph and question encoder and a paragraph
reader.

The encoder generates dense encodings and is trained to encode paragraphs into d-dim-
ensional vectors and questions into search vectors in the same vector space. The maximum
inner product search (MIPS) algorithm is applied to find the most similar paragraphs to a given
question. The selected paragraphs are then sent to the paragraph reader which extracts the
most probable answer, given the posed question.

Xiong et al. (2021) used a similar recursive dense retrieval approach in their multi-hop dense
retrieval (MDR) system. They adopted a di�erent query reformulation technique, where they
concatenate the original question and retrieved documents as input to the query encoder. Just

18

2.4 Multi-hop question answering systems

as Feldman and El-Yaniv (2019)’s work, MDR uses the MIPS method to search for relevant
documents in the retrieval.

Khattab et al. (2021) also argues that multi-hop QA systems need highly expressive query
representations. They point out that multi-hop questions include multiple information needs,
like information from several di�erent paragraphs. However, they mean that earlier systems
like MDR (Xiong et al., 2021) have a limited capacity to model open-domain questions in
general and multi-hop questions specifically. The single dense vector encoding for each sen-
tence that MDR adopts is not su�cient, they argue. Instead, they propose late interaction,
which uses a vector for each constituent token.

2.4.3 Graph retrievers
Graph-based approaches to question answering have been proposed in several systems. These
systems are often made for multi-hop datasets, such as HotpotQA, which encourage reason-
ing based on a chain on for example entities.

Ding et al. (2019) introduced a cognitive graph QA (CogQA), that builds a cognitive graph
by iterating between two systems: one implicit extraction module and one explicit reasoning
module. Given a question:

1. The first system extracts relevant entities and answer candidates from paragraphs.
These are organized in a cognitive graph, where the nodes are either entities or an-
swer candidates. It is implemented with a BERT model.

2. The second system conducts reasoning over the graph and finds clues that the first
system uses to extract next-hop entities.

Iteration between the two systems continues until all possible answers are found, and then
the final answer is chosen based on the reasoning from system two.

Asai et al. (2019) proposed a similar solution in their graph recurrent retriever (GRR) model.
The retriever part in GRR is an RNN that is trained to sequentially retrieve evidence para-
graphs to the reasoning path, conditioned on the previously retrieved information. In each
iteration, the model selects a paragraph based on the hidden state of the RNN. The iteration
continues until an end-of-evidence symbol is selected, allowing the model to create reasoning
paths of arbitrary lengths. When the reasoning is done, the graph is passed on to the system’s
reader module, which extracts possible answer spans from the reasoning paths and then re-
ranks the paths by computing the probability that they include the answer. The reader is a
BERT model that is fine-tuned for this purpose.

2.4.4 Question decomposition
Talmor and Berant (2018) presented a model for answering complex questions through de-
composition. The question is decomposed into a sequence of simpler questions, which are
then posed to a search engine. Answers to each one of the simpler questions are extracted
from the search results, and the final answer is chosen by computing symbolic operations.

Min et al. (2019) adopts a similar approach in their DecompRC model. The questions are
first decomposed and then answered by o�-the-shelf single-hop reading comprehension mod-
els. They identified four di�erent reasoning types in multi-hop questions: bridging, intersection,
comparison and keep the question as originally formulated.

19

2. Previous work

A posed question is decomposed according to the four reasoning types, and each sub-
question is then passed on to a single-hop reading comprehension system. The answers to
the sub-questions are combined based on the respective reasoning type. At last, a decompo-
sition scorer decides which decomposition is the most suitable and returns the corresponding
answer as the final one.

In contrast to the supervised decomposition of questions in DecompRC (Min et al.,
2019), Perez et al. (2020) instead suggested an unsupervised question decomposition pro-
cedure. Perez et al. (2020) point out that labeling questions with decomposition is di�cult,
which motivates an unsupervised approach. They presented an algorithm for one-to-N un-
supervised sequence transduction that learns to map one complex question into N simpler,
single-hop, sub-questions. A recomposition model is trained to combine the answers to the
sub-questions into a final answer, given the original input.

2.5 Domain adaptation
Wiese et al. (2017) published a paper concerning neural domain adaptation for biomedical
question answering. They pointed out that neural question answering systems had not been
applied to more specialized domains due to the lack of large enough datasets to train a neural
network from scratch. To create a dataset for training for a specific domain would be very ex-
pensive because of the need for domain experts. Therefore, they establish that this approach
is not desirable.

The domain adaptation approach Wiese et al. (2017) propose is shortly described to apply
various transfer learning techniques to a neural QA system that is trained on a large open-
domain dataset, such as SQuAD. With transfer learning, or fine-tuning, the system is adapted
to a biomedical dataset.

A little more detailed description of the procedure is that they suggest pre-training the
model on SQuAD, using the token F1 score as the training objective. The result from the pre-
training is referred to as the base model. Next, the fine-tuning is initialized with the model
parameters from the base model, and the optimization of the objective is resumed with the
biomedical dataset BioASQ, but with a lower learning rate.

The architecture is based on a state-of-the-art QA system, which Wiese et al. (2017) ex-
tended with biomedical word embeddings. A brief overview of it is described in figure 2.6.
The system does not rely on ontologies, parsers, or entity taggers that are domain-specific,
since they are expensive to create. With this approach, they manage to achieve state-of-the-
art performance on biomedical QA.

Hazen et al. (2019) also discussed domain adaptation from limited data for question an-
swering. Just as Wiese et al. (2017) also pointed out, they mention that there are few ques-
tion answering datasets in specialized domains. With their work, Hazen et al. (2019) show
that transfer learning techniques as fine-tuning a pre-existing model work surprisingly well.
Their work focus on domain data from car manuals. An example of a question-answer pair
used in their study is shown in figure 2.7. One of their conclusions is that question answer-
ing models based on transformer encoders like BERT, that are trained on large amounts of
general-domain data, can e�ciently be adapted to new domains with limited data.

Qi et al. (2020) mentioned a few properties of open-domain question answering systems
that make them unsuitable for domain adaptation. They identify three assumptions that

20

2.5 Domain adaptation

Figure 2.6: Overview
of model architecture
by Wiese et al. (2017).

Figure 2.7: Question-
answer example used
in domain adapta-
tion by Hazen et al.
(2019).

these systems make:

1. Access to a well-tuned parameterized retrieval system that helps navigate the large
amount of text.

2. Access to non-textual metadata such as knowledge bases, entity linking, and Wikipedia
hyperlinks when retrieving supporting facts is assumed.

3. That every input question in the dataset is either single-hop or multi-hop, and tailor
the approach to one of these either in model design or training.

The mentioned properties work as a motivation for their proposed model, that lacks
these specific attributes.

21

2. Previous work

22

Chapter 3

Method

In this thesis, I implemented and evaluated a telecom domain adaptation on two single-hop
openQA systems and one multi-hop version. To be able to evaluate the performance of the
single-hop systems in the telecom domain, I and a group of people from Ericsson built a
telecom question answering dataset. Besides myself, the group consisted of Fitsum Gaim
Gebre, Henrik Holm, Vincent Huang, and Jieqiang Wei. The dataset is called TeleQuAD,
short for telecom question answering dataset. I also built a smaller multi-hop question answering
dataset, called mTeleQuAD. This was to evaluate the performance of the multi-hop question
answering system on telecom domain data. In this chapter, I will go through these datasets,
the mentioned models, and how I conducted the evaluations.

3.1 TeleQuAD
TeleQuAD is short for telecom question answering dataset, and it is the question answering
dataset that I built, together with the four other people in the Telecom AI project within
GAIA, Ericsson. Our intention with it was to evaluate telecom language understanding.

The data was mainly collected from 3GPP, a partnership project that unites telecom-
munications standard development organizations to produce reports and specifications for
mobile telecommunication. Data were both scraped from their website and their product
specifications. Some data was also scraped from Sharetechnote, a website that gathers infor-
mation regarding di�erent aspects of telecommunication. Fitsum Gaim Gebre, the technical
lead of the project group, took care of selecting a couple of hundred source documents which
he cleaned by removing figures, tables, code snippets, etc. He split up each document into
paragraphs, and also set up a web interface where we annotated the questions and answers.

We did the annotation of the answers in the dataset by marking out text spans in the
di�erent paragraphs. To each answer, we then manually wrote a corresponding question. All
the question-answer pairs were divided into three di�erent types:

Short Phrases only including one cohesive answer.

23

3. Method

List An enumeration of things; answers containing for example commas or the word and.

Multi-hop Questions that require more than one paragraph to be answered.

The annotation of the dataset was arranged so that you would first select one of the
source documents, then read through it and when you found a suitable formulation you would
annotate the answer and question. If you found no relevant content in the document, you
would mark it out as remove.

The full dataset includes 2021 question-answer pairs. The formatting of the dataset fol-
lows the one of SQuAD (Rajpurkar et al., 2016, 2018), to make it compatible with existing
QA systems. Figure 3.1, 3.2, 3.3 show overviews of, respectively, the length of the paragraphs,
the questions and the answers counted in tokens. Figure 3.4 explains the shares of di�erent
answer types in the dataset.

Figure 3.1: Para-
graph lengths in
TeleQuAD.

Figure 3.2: Ques-
tion lengths in
TeleQuAD.

Figure 3.3: An-
swer lengths in
TeleQuAD.

Figure 3.4: Answer
types in TeleQuAD.

Table 3.1 includes the mean value of the number of tokens in context paragraphs, ques-
tions respectively answers for SQuAD1.1 development set and TeleQuAD. The tokenization
for these comparisons is a simple whitespace one, meaning that the text is divided into tokens
by the whitespaces.

24

3.2 mTeleQuAD

SQuAD1.1 dev TeleQuAD
Paragraphs 122.8 158.8
Questions 10.2 8.6
Lengths 3.0 8.2

Table 3.1: Mean length in number of tokens for content in
SQuAD1.1 dev set and TeleQuAD.

To extend the usage of TeleQuAD, we split it into a development (dev) set and a test
set. More specifically, the dev set is supposed to be used when fine-tuning language models
or other neural machine reading comprehension systems. Naturally, the test set is then used
to evaluate with. The idea was to split the total dataset into 50/50 dev and test set. We
did not want text documents to correspond to questions in both subsets and therefore made
the split according to the context documents. Since the documents contained a di�erent
number of questions, the split did not become exactly 50/50. Instead, the dev set has 1018
question-answer pairs and the test set has 1003 ones.

3.2 mTeleQuAD
In addition to the single-hop TeleQuAD, I created a small multi-hop telecom question an-
swering dataset, which will be referred to as mTeleQuAD. The data I annotated come from
3GPP specifications of the same type that were used in TeleQuAD. I annotated the multi-hop
version similarly to HotpotQA (Yang et al., 2018), to make it compatible with other multi-
hop QA systems. I created 50 question-answer pairs in total, where each has two supporting
paragraphs: paragraphs that contain the required information.

Inspired by HotpotQA, there are two di�erent types of questions in mTeleQuAD. These
are bridge and comparison. In the former one, the original questions include one supporting
fact, that leads to a certain paragraph. The original question together with the information
in this paragraph refers to a new entity called bridge entity. In that one, the final answer is
found. The comparison questions instead include two supporting facts, which refer to two
di�erent entities. Information from both needs to be identified and compared in some way
to be able to produce the answer.

Table 3.2 shows some statistics for mTeleQuAD and the comparable numbers for Hot-
potQA dev set. These are the mean lengths in tokens for di�erent parts of the dataset. The
tokenization is made by dividing the strings at the whitespaces.

HotpotQA dev mTeleQuAD
Paragraphs 509.1 65.0
Questions 15.7 14.3
Lengths 2.5 3.3

Table 3.2: Mean length in number of tokens for content in Hot-
potQA dev set and mTeleQuAD.

25

3. Method

Figure 3.5: Conceptual view over DrQA (Chen et al., 2017).

3.3 DrQA
DrQA (Chen et al., 2017) is a well-known system in open-domain question answering. It
introduced a new state-of-the-art design of open-domain question answering systems by in-
cluding neural techniques and the retriever-reader architecture. Since DrQA introduced a
new state-of-the-art way of designing openQA systems, it has many times been used to com-
pare other models. This is one of the reasons why I chose to investigate this model. After
looking into the architecture, I also realized that it would be quite easy to adapt to a new
domain. It does not rely on for example hyperlinks or similar that our telecom data lacks.
In addition, the repository where the code to DrQA is published is quite well commented,
making it easy to understand and run on my own instance.

DrQA consists of two modules: a retriever that adopts a classic IR technique and a reader
in the form of an RNN. Figure 3.5 shows a brief overview of the architecture. The reader
aims to return the most relevant documents for a specific question, i.e. to narrow down the
search space for the answer. The search for relevant documents is made through a simple
inverted index, and the articles and the question are compared as TF-IDF weighted bag-of-
word vectors. The local word order is taken into account with bigram features.

When the retrieved documents are passed on to the reader, each paragraph in the doc-
uments is considered one at a time. All tokens in a specific paragraph are represented as a
sequence of feature vectors before being passed as input to the RNN, which is a multi-layer
bidirectional long short-term memory network (LSTM). The encoding of each token is obtained
by concatenating each layer’s hidden units in the end. The feature vector of each token con-
sists of four parts:

Word embeddings The 300-dimensional Glove word embeddings (Pennington et al., 2014)
are used in the first feature vector part. This embeds a token pi as E(pi). The 1,000
most frequent question words are fine-tuned since they are significant for question
answering, and the rest is kept from the pre-training.

Exact match In the exact match, three binary features are used which show if the token can
be exactly matched to one of the question words in, respectively, its original, lowercase,
or lemma form.

Token features The token features include the token’s part-of-speech, named entity recog-
nition, and normalized term frequency.

26

3.4 CdQA

Aligned question embedding Last, the aligned question embedding is calculated from the
attention score which captures the similarity between the current token pi and each
question word q j . This is supposed to capture similarities between similar but not
identical words as a complement to the exact match. The aligned question embedding
for a token pi is calculated as

∑
j ai, jE(q j). When α(·) signifies a single dense layer

with ReLU nonlinearity, ai, j is given by

ai, j =
exp

(
α (E (pi)) · α

(
E

(
q j

)))
∑

j′ exp
(
α (E (pi)) · α

(
E

(
q j′

))) . (3.1)

The question posed to the system is encoded by using the word embeddings of each re-
spective token q j as input in an RNN. The resulting hidden units q j are then combined into
one single vector q with a weighted sum, where the weights b j represent the importance of
each question word. The weight of a specific hidden units vector q j is calculated as

b j =
exp(w · q j)∑
j′ exp(w · q j′)

, (3.2)

.
where w is a learned weight vector.

When the encoding of the paragraph and question is complete, the span of tokens which
is most probably the answer will be predicted. To obtain this, the paragraph vectors and the
question vector are used as inputs in two classifiers, trained to predict the start respectively
the end of the span. A bilinear term is used to capture the similarity between the paragraph
token pi and the question q. The probability of each token being start and end is computed
as:

Pstart (i) ∝ exp (piWsq)
Pend(i) ∝ exp (piWeq) .

(3.3)

The prediction is chosen such that Pstart (i) × Pend (i′) is maximized, and the span has
a maximum length of 15 tokens. The unnormalized exponential is used to make the scores
compatible between paragraphs in di�erent documents. When all paragraphs in the retrieved
documents have been processed and each has one predicted answer span, the argmax is cal-
culated over all potential answer spans and one final span is returned.

3.4 CdQA
Closed-domain question answering (cdQA) (Farias, 2019a) is an end-to-end open-source soft-
ware suite for question answering. The cdQA system was built to be used by anyone who
wants to have a closed-domain question answering system (Farias, 2019b). The architecture
of cdQA is a retriever-reader, where the retriever is designed just like the one in DrQA (Chen
et al., 2017).

The reader is a Pytorch version of BERT that was published by Huggingface (Wolf et al.,
2020). To adapt the BERT model for question answering, it was pre-trained on SQuAD1.1
before used in cdQA. The reader outputs the most probable answer it can find in each para-
graph that is sent to it. At last, there is a final layer that compares the probable answers
through an internal score function and then returns the most likely one.

27

3. Method

Figure 3.6: Overview of cdQA architecture (Farias, 2019b).

When setting up the cdQA pipeline, a corpus with all the context paragraphs is sent to
the retriever. It trains the TF-IDF matrix from the content. There is a possibility to fit the
language model to a dataset, i.e to fine-tune the reader. A sketch of the design of cdQA is
drawn in figure 3.6.

CdQA has the classic retriever-reader architecture, but with a more elaborate reader than
DrQA. Since pre-trained language models have become very popular to use as readers, I found
it interesting to investigate a model that included one. With the retriever being similar to
DrQA’s, my thought was to make some comparisons among them to understand a bit about
how much a powerful language model could contribute.

3.5 MDR
Xiong et al. (2021) published a model called multi-hop dense retrieval (MDR). The authors
pointed out the issue with multi-hop open domain question answering that the search space
grows exponentially with each retrieval hop. They wrote that usually, recent work deals with
this by constructing a document graph using entity linking or the hyperlink structure in
Wikipedia. Even though these models show great results, they may not generalize to new
domains very well, since links in documents may not exist. This is a strong reason why I
chose this multi-hop model for telecom domain adaptation.

The authors also refer to drawbacks with sparse representations such as term-based infor-
mation retrieval that GoldEn Retriever (Qi et al., 2019) adopts. It does not capture semantics
beyond lexical matching. In a dense representation, on the other hand, words, or tokens, with
similar meanings are mapped to vectors close to each other.

The retriever in MDR will, given a multi-hop question q and a text corpus, retrieve a
sequence of paragraphsPseq : {p1, p2, ..., pn}. The number of retrieved paragraphs is fixed to
a number k, which should be small enough to process the queries in a reasonable time while
maintaining a large enough recall. The probability of selecting a specific paragraph sequence
is modeled as:

P
(
Pseq | q

)
=

n∏
t=1

P (pt | q, p1, . . . , pt−1) . (3.4)

For t = 1, the probability is only conditioned on the question, since no paragraphs have
been retrieved yet. At each retrieval step, a new dense representation of the original question
and the retrieved paragraphs are created. The maximum inner product search (MIPS) is used

28

3.5 MDR

Figure 3.7: Conceptual view of retriever module in MDR (Xiong
et al., 2021).

as the retrieval mechanism over the dense representations of the corpus. With 〈·, ·〉 being the
inner product between the query and paragraph vector, MIPS is calculated according to

P (pt | q, p1, . . . , pt−1) =
exp

(〈
pt, qt

〉)∑
p∈C exp

(〈
p, qt

〉) , (3.5)

where qt = g (q, p1, . . . , pt−1)and pt = h (pt).
g(·) and h(·) are encoders that produce dense representations for the question and re-

trieved paragraphs respectively the paragraph pt . The encoder in this case is a RoBERTa-
based one (Liu et al., 2019) that is shared for both g(·) and h(·). Layer normalization is ap-
plied in MDR over the start token’s representation from the encoder to get the final dense
vectors.

This retriever module is trainable, which is something that is not possible with sparse
retrievers. The goal of the training is to create a vector space, where vector encodings of
questions and paragraphs with similar content will have a small distance. The training is set
up so that each question is paired with a positive paragraph and a number of negative ones to
approximate the softmax over all paragraphs. The positive paragraph is the gold annotated
evidence, and the negative paragraphs are both paragraphs corresponding to other questions
and ones that are not connected to the dataset.

After training the shared encoder to convergence, a copy of the encoder is saved. The
copy is used as a new passage encoder, and a collection of paragraphs from di�erent batches
is encoded with it and utilized as negative paragraphs. With this new setup, the retriever is
fine-tuned from the last saved checkpoint.

The full retrieval procedure is set up by encoding the whole corpus into an index of para-
graph vectors. When a query is given to the system, all paragraphs are scored according to
MIPS formulated in Eq. 3.5. Beam search is then used to determine the sequence of para-
graphs containing the top k ones.

The pre-trained language model ELECTRA (Clark et al., 2020) is used as a reader in the
MDR system. A few di�erent language models were tried out as readers by the authors, both
extractive and generative ones, and ELECTRA showed to perform the best.

When investigating possible multi-hop question answering systems to use for my eval-
uations, I both looked after something that achieved good results as well as would suit to
apply to the telecom domain. As described in the previous work section of this work and
also mentioned by Xiong et al. (2021), many published models do not fit domain adaptation.
I concluded that it would be too di�cult to choose a model that depends on some linking
structure in its context documents. By the recently published multi-hop QA systems that

29

3. Method

competed among the best results on HotpotQA, MDR was one of very few that did not rely
on links.

3.6 Experiments
In the following section I present how I set up my experiments for the single-hop models
DrQA and cdQA respectively the multi-hop one, MDR.

3.6.1 DrQA and cdQA
The evaluations on DrQA and cdQA I made with both TeleQuAD and SQuAD1.1 develop-
ment (dev) set. I used SQuAD in addition to TeleQuAD to make comparisons between the
models’ performance on a general domain dataset and a telecom domain one. Since Tele-
QuAD only includes answerable questions I reasoned that the fairest comparison would be
to use SQuAD1.1, which also only includes answerable questions. In addition, DrQA cannot
handle unanswerable questions. I used the dev set of SQuAD1.1 instead of the test set since
the latter is not publicly available. The dev set includes 10,570 question-answer pairs

When evaluating DrQA with TeleQuAD, a few questions needed to be discarded. This
was due to the design of the retriever, which relies on the TF-IDF metric. Some very common
words are usually not considered when calculating TF-IDF. These are referred to as stop words,
and these can for example be a, an, and the. The discarded questions only included stop words
and could therefore not be processed. These were: What is No?, What is AM?, What is RE?, What
is M? and What is O?.

My experiments with DrQA and cdQA were done with three di�erent setups: the re-
triever, the reader, and the full pipeline. Each one of them had a few di�erent settings:

Retriever I created a paragraph setting where only the paragraphs with corresponding ques-
tions were retrievable and a distractor setting where I added approximately ten times
more telecom data to the retrieval corpus. Here, I used the full TeleQuAD dataset for
evaluations.

I evaluated the retrievers with the metric precision at k, where k was set to 1, 5 re-
spectively 10. k stands for the number of paragraphs retrieved for each question. A
paragraph is considered to be retrieved correctly if it contains the answer span. This
means that it does not necessarily must be the paragraph that was originally annotated
for the current question.

Reader For the reader I used the pre-trained setting where the RNN or language model was
kept at their pre-trained setting. In this setting, I used the full TeleQuAD for evalu-
ation. In addition, I made a fine-tuned setting where the RNN respectively language-
model were fine-tuned with the TeleQuAD dev set, and I used the TeleQuAD test set
for evaluation.

Evaluations for the readers I decided to measure with F1 score and exact match (EM)
since those are used in basically all openQA evaluations.

Full pipeline In the full pipeline evaluations, I combined the two di�erent settings for both
the retriever and the reader in all four possible combinations. For the evaluations with

30

3.6 Experiments

the pre-trained reader, I used the full TeleQuAD, and for the fine-tuned reader I only
applied the test set.

The full pipeline evaluations are also measured in F1 and EM. In these experiments, I
fixed the number of retrieved documents to 5.

For SQuAD I only ran one evaluation for each of the three setups. This was because
I concluded that I would not be able to make fully comparable evaluations. I figured that
my evaluations with SQuAD would only work as an overall comparison to a general domain
dataset, and therefore I did not put more time into extending the settings for that dataset.
So, all experiments that I did with SQuAD are with the corresponding paragraph setting for
the retriever, meaning that only the paragraphs with annotated questions are included. For
the reader part, I have only used the pre-trained settings. An additional reason for that is that
I did not have access to the test set for SQuAD1.1 as earlier mentioned.

3.6.2 MDR
For the multi-hop model MDR I also wanted to compare evaluation results between the tele-
com domain and a general domain. Therefore, in addition to run evaluations on mTeleQuAD,
I used the results that Xiong et al. (2021), the ones behind MDR, obtained on HotpotQA. I
did not achieve any own results for evaluation on HotpotQA due to that the retriever index
was too heavy to load on my instance. The HotpotQA development set that was used for
evaluation by Xiong et al. (2021) contains 7,405 question-answer pairs, where each pair has
two supporting paragraphs.

I ran my evaluations on MDR for three di�erent setups:

Retriever In the retriever evaluation I included all paragraphs that corresponded to ques-
tions in the retriever corpus. The results are measured in recall at k. The encoder in
the retriever module consisted of a pre-trained RoBERTa model.

Reader When evaluating the reader in MDR the two supporting paragraphs are supplied
together with the question. The reader was a pre-trained ELECTRA model. The per-
formance is measured in F1 and EM.

Full pipeline In the full pipeline evaluations there are some di�erent settings for the Hot-
potQA dataset respectively mTeleQuAD. The accessible results for HotpotQA on MDR
is with the fullwiki setting, meaning that the first paragraphs from all Wikipedia arti-
cles are available for retrieval. The ELECTRA reader was fine-tuned for HotpotQA
in advance of the evaluation. For mTeleQuAD, on the other hand, I used a paragraph
setting for the retriever and the pre-trained ELECTRA reader.

To follow the scores that Xiong et al. (2021) presented for the full pipeline evaluation,
I measured the F1 score and EM for both the answer, the supporting paragraphs and
calculated a joint score for these two.

31

3. Method

32

Chapter 4

Results

In this chapter I present the results from my evaluations on the DrQA, cdQA respectively
MDR models.

4.1 DrQA
Table 4.1 shows the results for the tests on the separate modules. The retriever was evaluated
in two settings: paragraphs and distractor and in the two settings pre-trained and fine-tuned.

SQuAD1.1 dev TeleQuAD
Model Module Setting P@1 P@5 P@10 P@1 P@5 P@10
DrQA Retriever Paragraphs 92.1 97.2 97.8 80.9 96.7 98.1
DrQA Retriever Distractor 74.5 91.0 94.2

F1 EM F1 EM
DrQA Reader Pre-trained 73.7 63.4 64.6 40.2
DrQA Reader Fine-tuned 65.9 42.4

Table 4.1: Evaluation results for separate modules in DrQA.

For the retriever part in table 4.1, the precision at k increases when k is changed from
1 to 5 and from 5 to 10, which intuitively seems correct. The scores for TeleQuAD on this
evaluation are lower than for SQuAD, except for k = 10 in the paragraph setting. This
is even though the retrieval corpus for SQuAD is significantly larger. The SQuAD1.1 dev
set includes 2067 di�erent paragraphs, compared to TeleQuAD’s 493 ones. I believe that a
contributing reason for this is that there probably is less overlap between documents and
paragraphs in SQuAD than in TeleQuAD. Meaning that there are more diverse topics in-
cluded in the SQuAD corpus. Even though the corpora in open-domain question answering
consist of unstructured text, you have the fact that the information on Wikipedia is sorted

33

4. Results

into di�erent articles. In the telecom data that TeleQuAD is built from, on the other hand,
the information is focused on a smaller domain. Therefore I find it easy to believe that there
is a higher chance of finding the same information in multiple documents in the TeleQuAD
corpus than in the SQuAD corpus.

The size of the retrieval corpus probably matters at some point. When the number of
retrieved paragraphs is increased with a fixed number, it corresponds to a larger share of a
small corpus compared to a bigger one. Therefore, I do not find it very surprising that P@10
is larger for TeleQuAD in the paragraph setting than for SQuAD.

In the distractor setting for TeleQuAD, the retriever reaches a 16.5 absolute point higher
precision when the number of retrieved documents is increased from 1 to 5. When k is
changed from 5 to 10 the increase in absolute points is less, 3.2 points, but still an increase.
One easy way to improve the retrieval score is to simply retrieve more documents. But, the
more retrieved documents the more work for both the retriever and reader and thus a slower
model. The number of retrieved documents to chose from is a balance between having a
precise and an e�cient model.

The results of the reader module evaluations on DrQA also follow what I expected in
advance. The fine-tuning of the reader achieved a higher F1 on TeleQuAD with 1.3 absolute
points and a higher EM of 2.2 absolute points. The improvement is not huge, but since the
fine-tuning only were conducted with approximately 1,000 examples, I would consider the
improvement to be good. These scores are considerably lower than the ones for SQuAD. The
evaluations on SQuAD1.1 dev set obtained 73.7 in F1 and 63.4 in EM. This is not surprising,
since the reader module is pre-trained on the SQuAD1.1 training set, which one can assume
are considerably more alike to the SQuAD1.1 dev set than TeleQuAD.

My results for the full pipeline evaluation of DrQA are presented in Table 4.2. There, the
setting for each experiment is described along with the produced scores.

SQuAD1.1 dev TeleQuAD
Model Retriever Reader F1 EM F1 EM
DrQA Paragraphs Pre-trained 47.0 41.1 30.5 20.9
DrQA Distractor Pre-trained 34.0 23.2
DrQA Paragraphs Fine-tuned 32.3 25.8
DrQA Distractor Fine-tuned 36.4 29.1

Table 4.2: Evaluation results for full pipeline of DrQA.

In the full pipeline evaluations on DrQA, no experiment with TeleQuAD outperforms
the scores for SQuAD. This comes as expected. What is however a bit surprising is that the
evaluations for the distractor settings obtain higher scores on both F1 and EM than for the
paragraph settings with the same reader. With the pre-trained reader, the F1 score gains 3.5
absolute points and the EM 2.3 absolute points. For the fine-tuned reader the corresponding
numbers are 4.1 for F1 and 3.3 for EM.

This is surprising since the retriever evaluations in Table 4.1 indicated that the distractor
setting caused a lower precision in the retrieved documents. When only the retriever setting
is changed from paragraphs to distractor in the full pipeline evaluation, I did expect the score
to decrease due to this.

34

4.2 CdQA

4.2 CdQA
Here follows the results from the evaluations on cdQA. In Table 4.3 are the scores for the
di�erent evaluations on the separate modules, the retriever respectively the reader.

SQuAD1.1 dev TeleQuAD
Model Module Setting P@1 P@5 P@10 P@1 P@5 P@10
cdQA Retriever Paragraphs 84.5 92.2 94.8 97.4 99.0 99.3
cdQA Retriever Distractor 97.2 99.0 99.2

F1 EM F1 EM
cdQA Reader Pre-trained 88.9 81.3 77.8 54.5
cdQA Reader Fine-tuned 80.7 59.7

Table 4.3: Evaluation results for separate modules in cdQA.

The evaluation results for cdQA yield some interesting observations. If we first take a
look at the results from the retriever performance, I expected to get a larger di�erence in
the scores between the paragraph and the distractor settings. These di�erences of 0.2 points
for P@1 and 0.1 for P@10 are almost insignificant. With the distractor setting of around ten
times as many paragraphs, I supposed that the precision would decrease compared to the
smaller setting.

The reader results for cdQA, seen in Table 4.3, would I deem quite good. The F1 score
of 77.8 and EM of 54.5 with the pre-trained setting are significantly higher than the corre-
sponding ones for DrQA in Table 4.1. Not surprisingly are they much lower than for SQuAD,
especially the EM is 26.8 absolute points lower for the pre-trained cdQA reader. Since this
is pre-trained with the corresponding training set for SQuAD, it could only be expected.

When the reader is fine-tuned on the development set of TeleQuAD and evaluated on
the test share, the results increase with 2.9 absolute F1 points and 5.2 absolute EM points.
Considering that the fine-tuning only have been made with around 1,000 question-answer
pairs I would say that this is really good. I do not think that it is unlikely that these scores
could improve further if the reader would be trained with just a few times more samples.

For the evaluation of cdQA’s full pipeline, I combined the two settings for both the re-
triever and reader. The final results for these experiments are presented in Table 4.4.

SQuAD1.1 dev TeleQuAD
Model Retriever Reader F1 EM F1 EM
cdQA Paragraphs Pre-trained 65.8 59.6 53.8 37.8
cdQA Distractor Pre-trained 55.6 39.1
cdQA Paragraphs Fine-tuned 65.7 49.6
cdQA Distractor Fine-tuned 67.9 51.0

Table 4.4: Results for full pipeline of cdQA.

The full pipeline evaluation of cdQA, with the scores in Table 4.4, is interesting. First,
there is a however expected, but still impressively large, improvement between the corre-
sponding pre-trained and fine-tuned settings. With the paragraph retriever setting, the F1

35

4. Results

score jumps 11.9 absolute points from 53.8 to 65.7 points. The EM score for the same setting
rises from 37.8 to 49.6, which is an 11.8 absolute point increase. For the distractor retriever
setting, the F1 increase is 12.3 and 11.9 for EM. I consider these very large, because of the
small development set as mentioned before. This indicates that a question answering system
can be domain adapted using only a relatively few samples for fine-tuning, supposing that
the reader consists of a strong pre-trained language model.

The second thing is that for both reader settings, all the results for the distractor retriever
settings are better than for the corresponding paragraph settings. The same thing occurred
for DrQA’s pipeline evaluations and is hard to explain also for cdQA. In the retriever evalua-
tions for cdQA, there was only a small di�erence between the two settings. If it is considered
significant, I would consider it to bring lower results for the distractor setting compared to
the paragraph setting.

4.3 MDR
The results for the evaluations on the multi-hop model MDR are presented here. First, in
Table 4.5, are the evaluations on the separate modules in the system.

HotpotQA mTeleQuAD
Model Module Setting R@2 R@10 R@20 R@2 R@10 R@20
MDR Retriever Pre-trained 65.9 77.5 80.2 52.0 80.0 86.0

F1 EM F1 EM
MDR Reader Pre-trained 76.2 63.4 80.3 58.0

Table 4.5: Evaluation results for separate modules in MDR. Results
for HotpotQA by Xiong et al. (2021).

When looking at the performance of the retriever part of MDR in Table 4.5, there are
some interesting di�erences between the results for HotpotQA and mTeleQuAD. The re-
triever is pre-trained on the HotpotQA training set, so I would have expected that both
recall at 2 and at 10 would have been higher for HotpotQA. But recall at 10 is actually 2.5 ab-
solute points higher for mTeleQuAD. One probable reason for that is the size of the retrieval
corpus, which is a lot smaller for mTeleQuAD. The latter includes 100 paragraphs, and the
dev set for HotpotQA includes a couple of thousand. The numbers are therefore not entirely
comparable.

The reader module in MDR is built on the pre-trained language model ELECTRA. The
evaluations on this part have also obtained some notable numbers, see Table 4.5. The general
performance of the retriever on mTeleQuAD I consider to be very good, having in mind that
the reader only is pre-trained. The F1 score of 80.3 and the EM of 58.0 is 0.5 respectively 3.5
absolute points higher than for the pre-trained cdQA reader evaluation.

Since the overall setting in the MDR case is slightly more di�cult due to that there are
two supporting paragraphs to reason over, it is impressive that the MDR reader still performs
better. ELECTRA has performed better as a reader than BERT-like models in several cases,
and my results also indicate that it has a better capacity when it comes to this task.

If these numbers are compared to those for HotpotQA, we see that the F1 score actually
is higher for mTeleQuAD. I believe that a strong reason for that is the much smaller length

36

4.3 MDR

of the mTeleQuAD paragraphs, almost ten times as short as for HotpotQA, see Table 3.2.
Reasonably, it becomes easier to select the correct span in a given paragraph if it is shorter.

Answer Support Joint
Dataset Retriever Reader F1 EM F1 EM F1 EM
HotpotQA Fullwiki Fine-tuned 75.3 62.3 80.9 57.5 66.6 41.8
mTeleQuAD Paragraphs Pre-trained 49.8 30.0 54.1 26.0 35.9 14.0

Table 4.6: Evaluation results for MDR. Results for HotpotQA by
Xiong et al. (2021).

I only did the full pipeline evaluation of MDR in one setting, and the results from this
are shown in table 4.6. The scores for HotpotQA and mTeleQuAD are not very comparable,
since the settings are very di�erent. For example, it is much expected that HotpotQA would
return a lot higher scores since both the retriever and reader are trained on the training part
of this dataset. I would expect this even though the evaluation is made with the fullwiki
setting.

It is interesting to look at the scores that the evaluations on mTeleQuAD got since it
indicates how di�cult this actual dataset is. Would MDR perform almost as good on mTele-
QuAD as on HotpotQA, my conclusion would be that mTeleQuAD is a too easy QA dataset,
rather than that MDR is a great QA system. Therefore, I see it as something positive that the
evaluation scores for mTeleQuAD were not higher than this. At the same time, I did expect
even lower results for the answer F1 and EM, since I personally found the questions that I
annotated to be really hard.

37

4. Results

38

Chapter 5

Discussion

5.1 Retrievers
When I compared the results from the retriever evaluations for DrQA and cdQA, I expected
to get almost the same results. This is since the cdQA retriever was implemented according
to DrQA’s. But, as can be observed when comparing the numbers between Table 4.1 and
4.3, they di�er. The precision for the TeleQuAD evaluations is throughout higher for cdQA.
Notably is P@1 16.5 absolute points higher for the paragraph setting and 22.7 absolute points
higher for the distractor setting. But, the precision for SQuAD is instead higher for DrQA
with a 7.6 absolute points di�erence.

I can come up with several reasons why these numbers di�er, but I am not sure of the
correct reason. The two systems have di�erent ways of creating and handling databases for
context documents. One possible reason for the di�erence could be that the documents are
divided into paragraphs in di�erent ways. If a system creates fewer paragraphs for the same
corpus, it would reasonably be easier for it to retrieve the correct one, at least if you generalize
over a large number of retrievals.

The retriever modules themselves are also implemented di�erently, but if that a�ects
anything is hard to say. CdQA uses functions from Python’s scikit-learn package in order to
generate the TF-IDF vectors. DrQA’s retriever, on the other hand, includes more functions
that Chen et al. (2017) implemented themselves. However, since these retrievers adopt the
same technique, these di�erences should reasonably not cause any di�erences. One more
probable reason is the fact that I implemented the evaluation function for cdQA’s retriever
myself since there were no such in the original repository. There is a risk that I did not make
it work exactly like the retriever evaluation script for DrQA. I did, however, make use of
functions from the DrQA repository when implementing the script to make them as alike as
I could.

Regardless of the di�erence in the performance, these non-neural, TF-IDF-based retriev-
ers did generate good results. One strength of this technique is that it easily can be applied

39

5. Discussion

to a new domain of a corpus, without requiring any training.

For MDR, the retriever performance is measured in the recall at k instead of precision at
k since two paragraphs are required to be retrieved. The scores for this module, which are
presented in Table 4.5, are not fully comparable to the corresponding ones for DrQA and
cdQA. But without drawing any certain conclusion, the retriever in MDR seem to perform
worse than the other two on their respective telecom dataset. However, MDR’s retriever has a
completely di�erent design with its dense representations and trainable architecture, which
I have not been taking advance of. When counting in that the MDR retriever presumably
would perform better if fine-tuned on the telecom domain, I consider these results as quite
good.

In my project, I have both experimented with sparse representation retrievers and dense
representation ones. My impression from the latest research within open-domain question
answering is that there is no consensus concerning whether sparse or dense retrieval tech-
niques are the best ones. Models containing both types are still being released, pointing at
di�erent advantages with the respective one.

For all three models that I have experimented with, the number of retrieved documents
is fixed. A solution that has been proposed by some scientists is to have an adaptive number
of retrieved documents. Depending on the implementation, an architecture like that could
probably increase the overall retriever performance but to a lower computational cost than
just retrieve a higher, fixed, number of documents.

5.2 Readers

When I compare the results of the evaluations on TeleQuAD respectively mTeleQuAD on all
three models’ reader parts it is clear that the readers that utilize a pre-trained language model
achieve significantly higher scores. DrQA’s reader, which is constructed from an LSTM,
achieves an F1 score of 64.6 and an EM of 40.2 on the pre-trained setting. The compara-
ble numbers for cdQA’s reader, which is an implementation of BERT, are an F1 score of 77.8
and an EM of 54.5 when only pre-trained. This indicated that these pre-trained lganguage
models really are powerful, which has been claimed by many sources. I find it also impressive
that the reader module on MDR, an ELECTRA implementation, achieves even higher scores
than cdQA, even though it has a multi-hop setting. The scores for MDR’s pre-trained ELEC-
TRA reader are 80.3 for F1 and 58.0 on EM; a small but significant improvement compared
to cdQA.

This indicates that the pre-trained language model ELECTRA has some properties that
make it better suitable for the machine reading comprehension task than BERT. Interesting
continuations of my project would be to include ELECTRA in some single-hop openQA
system like cdQA and to fine-tune it on the telecom domain. If we have in mind that BERT
and ELECTRA were released in 2018 respectively 2020, I think that it is very likely that we
soon will see even stronger pre-trained language models.

40

5.3 Single-hop and multi-hop models

5.3 Single-hop and multi-hop models
In the full pipeline evaluations for the single-hop models, cdQA outperformed DrQA in all
di�erent settings. This was as I expected since cdQA includes a much more elaborate reader
than DrQA. In the experiments with the pre-trained readers and the paragraphs setting for
the retrievers, the F1 score was 13.3 absolute points higher for cdQA and the EM was 16.9
points higher. Almost the same di�erence had the distractor setting experiments for the
pre-trained reader: 11.6 points di�erence for the F1 and 15.9 for the EM.

cdQA outperforms DrQA, even more, when the respective readers are fine-tuned. This
gives a hint of how much and how fast a pre-trained language model can learn. With the
paragraph setting in this context, the F1 for cdQA is 23.4 absolute points higher than for
DrQA, and the EM di�ers with 23.8 absolute points. With the distractor retrieval, the F1
rose by 21.5 points and the EM with 21.9 points from DrQA to cdQA. I did expect cdQA to
perform better than DrQA throughout, but I was a bit surprised at how much better its final
results were.

The full pipeline evaluation for MDR I only made with a paragraph setting for the re-
triever and a pre-trained reader. The results for this evaluation are shown in Table 4.6. The
presented scores for HotpotQA in the same table are produced under a di�erent setting, and
therefore it is hardly surprising that they are a lot higher than the ones for mTeleQuAD. A
comparison that is perhaps more valid to make is to compare the F1 score and EM for the
answers in mTeleQuAD with the scores from cdQA and DrQA that were received with the
pre-trained, paragraph setting.

MDR obtained 49.8 in answer F1 and 30.0 in answer EM for mTeleQuAD. With Tele-
QuAD, cdQA got an F1 of 53.8 and an EM of 37.8 with the named settings. Corresponding
numbers for DrQA are an F1 of 30.5 and an EM of 20.9. This means that the multi-hop
model performed almost as well as cdQA, even though the former dealt with more complex
questions. In my opinion, this is a good result of MDR’s capability to answer complex ques-
tions. Also, it makes me believe that with some fine-tuning, MDR could perform very well
on questions from the telecom domain.

5.4 Datasets
The creation of TeleQuAD and mTeleQuAD were important steps to evaluate my selected
models in the telecom domain. Also, they enabled training neural parts of the systems on in-
domain data, which adapts them further to the specific domain. TeleQuAD, with its approx-
imately 2,000 question-answer pairs, are not large enough to train any module from scratch.
However, I could show that using half of it to fine-tune a neural-based reader did increase
its performance on telecom domain questions. This is applicable both for the LSTM based
reader in DrQA and the BERT-based one in cdQA. This finding is in line with what earlier
research has found, as accounted for in the section regarding previous work in domain adap-
tation. The fact that a robust, pre-trained system can be adjusted towards new domains with
just a couple of thousand question-answer samples is very useful. Since building a dataset
consumes a lot of resources, a lot of time and money can be saved if just development and
test sets are needed and no training set.

In the multi-hop case, the dataset annotation took considerably more time per annotated

41

5. Discussion

question and answer. The main reason why mTeleQuAD only contains 50 question-answer
pairs is that I did not have time to annotate more. But the findings from the evaluations on the
single-hop models could reasonably be transferred to this setting. Meaning that a relatively
small development set for fine-tuning can result in considerably higher performance for QA
models.

One possible di�culty with both TeleQuAD and mTeleQuAD is the narrow domain
that the questions and answers cover. The documents that the datasets were annotated from
could possibly be redundant, meaning that information related to a specific question can
be retrieved from several paragraphs, and not just only in the annotated one. In the case
of SQuAD and HotpotQA, which both are annotated from Wikipedia, the source informa-
tion is more structured, bringing some guarantee that the same information is not in several
di�erent articles.

This is not an issue when only evaluating machine reading comprehension, i.e. the perfor-
mance of the reader modules when the context paragraph is provided along with a question.
Instead, when investigating open-domain question answering, it can become troublesome
to have similar information in many di�erent documents. The retrieval criteria might not
work as wanted in these cases. But on the other hand, relevant information might be stated
in more places than initially planned. As in the case with the full pipeline evaluation for both
DrQA and cdQA, the distractor documents might possibly include answers to the questions
in TeleQuAD. In cases like these, it becomes less interesting to look at the performance of
the retriever since it does not necessarily need to be the annotated paragraph that is retrieved
in order to answer a question correctly.

The overall evaluation results for both TeleQuAD and mTeleQuAD show that they both
include quite hard questions. To make a reasonable evaluation of how well a question answer-
ing system can handle queries from a specific domain, it is important that the questions are
not too easy. If they are too easy, the evaluation would not yields any valuable information
on how well the system can handle the in-domain questions. My conviction is that these two
datasets fulfill their purpose of evaluating models’ performance in the telecom domain.

5.5 Evaluation metrics
The evaluation metrics used, EM and F1 score, only focuses on the lexical matching and gives
no credit for, for example, synonyms. Since many questions could have some kind of ambigu-
ity, these metrics could possibly punish models that practically provide the correct answers.
With the inclusion of language models in question answering systems, language understand-
ing is improved. These openQA systems have shown to be able to handle more complex
questions, and some of them are able to generate free-form answers. This motivates an in-
troduction of some new metric, that can measure the similarity between predicted answers
and the correct ones.

When an openQA system gets access to a large corpus of possible context to a given
question, the answer can possibly be phrased in several places. However, it might not be
formulated exactly as the annotated answer to the question. How the similarity between an-
swers should be measured is however not easily decided. One possibility is to make use of the
trained dense representations included in some models, for example, MDR. If a module like
this is trained on relevant data it should be able to express similarities between expressions.

42

5.6 Future work

But the way of calculating the similarity between the dense vector representations and some
threshold value for how similar answers are required probably needs to be manually decided.

5.6 Future work
The existing large pre-trained language models could probably be better adapted to the tele-
com domain than what I have achieved in this project. Instead of just fine-tuning the model
with a small QA dataset, the language model could be trained from scratch with in-domain
data. Using telecom data in this training would hopefully make the model better suited for
language understanding within this area. From the experiments that I have made, and from
the literature that I have studied, the ELECTRA model seems to be the better choice over
some BERT model. A smaller, but probably also contributing improvement, would be to
fine-tune a model with more samples. This requires a larger dataset than the one I have been
using.

To extend TeleQuAD and mTeleQuAD would be a great way to further investigate how
well models can be adapted to the telecom domain. A larger TeleQuAD would make better
fine-tuning of readers possible. To annotate additional samples to mTeleQuAD could make
it possible to fine-tune both the retriever and the reader module in MDR, since they both are
trainable. That would be a very interesting experiment, to see how much the scores could be
improved in multi-hop question answering.

Wiese et al. (2017) argues that creating datasets for a specific domain requires domain
experts. That is probably valid in many cases, but for me, it has worked very well to annotate
questions and answers without almost any telecom knowledge. With the data that I used
to annotate, I was able to understand the overall meaning of a paragraph by just reading it.
From this, I found it often possible to write a question regarding the context. Therefore I
believe for anyone who has a developed reading comprehension to annotate more samples
for the two telecom datasets.

The three models that I have evaluated in this thesis have been adjusted for either single-
hop or multi-hop questions. In order to make openQA system more available for use cases,
it would be great if they could handle several types of questions. There are a few recently
published models that are more flexible in what input they can deal with, which would be
interesting to look into if their code will be made public. I also believe that it would be
possible to make adjustments to multi-hop question answering models such as MDR to make
it able to answer single-hop questions too.

43

5. Discussion

44

Chapter 6

Conclusion

This Master’s thesis has focused on the adaptation of neural open-domain question answer-
ing systems to the telecommunication domain. By annotating a single-hop telecom question
answering dataset, TeleQuAD, with around 2,000 question-answer pairs, I was able to fine-
tune an openQA system. This fine-tuning resulted in an improved F1 score as well as exact
match. This indicates that further enhancement of the performance might be possible with-
out requiring more than a few thousand extra samples.

I also annotated a small multi-hop question answering dataset for the telecom domain,
mTeleQuAD. I then applied a multi-hop openQA system with pre-trained language models
as both retriever and reader. Even though the mTeleQuAD questions were complex, I was
able to obtain an F1 score of 50 for the answers. This indicates that this corpus can serve as
a reference point for evaluating question answering performance in the telecom domain.

mTeleQuAD’s size is still limited and further annotation work to extend this corpus
would certainly be beneficial. A larger corpus would enable a better fine-tuning of the re-
triever and reader and presumably increase the scores considerably.

45

6. Conclusion

46

References

Asai, A., Hashimoto, K., Hajishirzi, H., Socher, R., and Xiong, C. (2019). Learning to retrieve
reasoning paths over wikipedia graph for question answering. CoRR, abs/1911.10470.

Chen, D., Fisch, A., Weston, J., and Bordes, A. (2017). Reading wikipedia to answer open-
domain questions. CoRR, abs/1704.00051.

Clark, C. and Gardner, M. (2017). Simple and e�ective multi-paragraph reading comprehen-
sion. CoRR, abs/1710.10723.

Clark, K., Luong, M., Le, Q. V., and Manning, C. D. (2020). ELECTRA: pre-training text
encoders as discriminators rather than generators. CoRR, abs/2003.10555.

Das, R., Dhuliawala, S., Zaheer, M., and McCallum, A. (2019). Multi-step retriever-reader
interaction for scalable open-domain question answering. CoRR, abs/1905.05733.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: pre-training of deep bidi-
rectional transformers for language understanding. CoRR, abs/1810.04805.

Ding, M., Zhou, C., Chen, Q., Yang, H., and Tang, J. (2019). Cognitive graph for multi-hop
reading comprehension at scale. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2694–2703, Florence, Italy. Association for Computational
Linguistics.

Dunn, M., Sagun, L., Higgins, M., Güney, V. U., Cirik, V., and Cho, K. (2017). Searchqa: A
new q&a dataset augmented with context from a search engine. CoRR, abs/1704.05179.

Farias, A. (2019a). Cdqa. https://github.com/cdqa-suite/cdQA.

Farias, A. (2019b). How to create your own question-answering system easily with python.

Feldman, Y. and El-Yaniv, R. (2019). Multi-hop paragraph retrieval for open-domain question
answering. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 2296–2309, Florence, Italy. Association for Computational Linguistics.

47

https://github.com/cdqa-suite/cdQA

REFERENCES

Green, B. F., Wolf, A. K., Chomsky, C., and Laughery, K. (1961). Baseball: An automatic
question-answerer. In Papers Presented at the May 9-11, 1961, Western Joint IRE-AIEE-ACM
Computer Conference, IRE-AIEE-ACM ’61 (Western), page 219–224, New York, NY, USA.
Association for Computing Machinery.

Hazen, T. J., Dhuliawala, S., and Boies, D. (2019). Towards domain adaptation from limited
data for question answering using deep neural networks. CoRR, abs/1911.02655.

Hermann, K. M., Kociský, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., and
Blunsom, P. (2015). Teaching machines to read and comprehend. CoRR, abs/1506.03340.

Jiang, Y., Bordia, S., Zhong, Z., Dognin, C., Singh, M., and Bansal, M. (2020). Hover: A
dataset for many-hop fact extraction and claim verification. CoRR, abs/2011.03088.

Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., and Yih, W.-t.
(2020). Dense passage retrieval for open-domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6769–
6781, Online. Association for Computational Linguistics.

Khattab, O., Potts, C., and Zaharia, M. (2021). Baleen: Robust multi-hop reasoning at scale
via condensed retrieval. CoRR, abs/2101.00436.

Kratzwald, B. and Feuerriegel, S. (2018). Adaptive document retrieval for deep question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 576–581, Brussels, Belgium. Association for Computational Linguistics.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M., Parikh, A., Alberti, C., Epstein,
D., Polosukhin, I., Devlin, J., Lee, K., Toutanova, K., Jones, L., Kelcey, M., Chang, M.-W.,
Dai, A., Uszkoreit, J., Le, Q., and Petrov, S. (2019). Natural questions: A benchmark for
question answering research. Transactions of the Association for Computational Linguistics,
7:453–466.

Lee, K., Chang, M., and Toutanova, K. (2019). Latent retrieval for weakly supervised open
domain question answering. CoRR, abs/1906.00300.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,
L., and Stoyanov, V. (2019). Roberta: A robustly optimized BERT pretraining approach.
CoRR, abs/1907.11692.

Min, S., Zhong, V., Zettlemoyer, L., and Hajishirzi, H. (2019). Multi-hop reading compre-
hension through question decomposition and rescoring. CoRR, abs/1906.02916.

Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association for Computational Lin-
guistics.

Perez, E., Lewis, P. S. H., Yih, W., Cho, K., and Kiela, D. (2020). Unsupervised question
decomposition for question answering. CoRR, abs/2002.09758.

48

REFERENCES

Qi, P., Lee, H., Sido, O. T., and Manning, C. D. (2020). Retrieve, rerank, read, then
iterate: Answering open-domain questions of arbitrary complexity from text. CoRR,
abs/2010.12527.

Qi, P., Lin, X., Mehr, L., Wang, Z., and Manning, C. D. (2019). Answering complex open-
domain questions through iterative query generation. CoRR, abs/1910.07000.

Rajpurkar, P., Jia, R., and Liang, P. (2018). Know what you don’t know: Unanswerable ques-
tions for squad. CoRR, abs/1806.03822.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2383–2392, Austin, Texas. Association for Computa-
tional Linguistics.

Talmor, A. and Berant, J. (2018). The web as a knowledge-base for answering complex ques-
tions. In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 641–
651, New Orleans, Louisiana. Association for Computational Linguistics.

Thorne, J., Vlachos, A., Christodoulopoulos, C., and Mittal, A. (2018). FEVER: a large-
scale dataset for fact extraction and VERification. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 809–819, New Orleans, Louisiana. Association
for Computational Linguistics.

Trischler, A., Wang, T., Yuan, X., Harris, J., Sordoni, A., Bachman, P., and Suleman, K. (2016).
Newsqa: A machine comprehension dataset. CoRR, abs/1611.09830.

Wang, S., Yu, M., Guo, X., Wang, Z., Klinger, T., Zhang, W., Chang, S., Tesauro, G., Zhou, B.,
and Jiang, J. (2017). R3: Reinforced reader-ranker for open-domain question answering.
CoRR, abs/1709.00023.

Welbl, J., Stenetorp, P., and Riedel, S. (2018). Constructing datasets for multi-hop reading
comprehension across documents. Transactions of the Association for Computational Linguis-
tics, 6:287–302.

Wiese, G., Weissenborn, D., and Neves, M. (2017). Neural domain adaptation for biomedical
question answering. In Proceedings of the 21st Conference on Computational Natural Language
Learning (CoNLL 2017), pages 281–289, Vancouver, Canada. Association for Computational
Linguistics.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu,
C., Scao, T. L., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. M. (2020). Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online.
Association for Computational Linguistics.

49

REFERENCES

Xiong, W., Li, X. L., Iyer, S., Du, J., Lewis, P., Wang, W. Y., Mehdad, Y., Yih, W.-t., Riedel, S.,
Kiela, D., and Oğuz, B. (2021). Answering complex open-domain questions with multi-hop
dense retrieval. International Conference on Learning Representations.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W., Salakhutdinov, R., and Manning, C. D.
(2018). HotpotQA: A dataset for diverse, explainable multi-hop question answering. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Computational Linguistics.

Zhang, Z., Yang, J., and Zhao, H. (2020). Retrospective reader for machine reading compre-
hension. CoRR, abs/2001.09694.

Zhu, F., Lei, W., Wang, C., Zheng, J., Poria, S., and Chua, T. (2021). Retrieving and reading:
A comprehensive survey on open-domain question answering. CoRR, abs/2101.00774.

50

Appendices

51

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2021-06-09

EXAMENSARBETE Multi-hop Neural Question Answering for the Telecom Domain
STUDENT Maria Gunnarsson
HANDLEDARE Pierre Nugues (LTH), Fitsum Gaim Gebre (Ericsson)
EXAMINATOR Jacek Malec (LTH)

Neurala fråge-svarssystem tillämpade
inom telekommunikation

POPULÄRVETENSKAPLIG SAMMANFATTNING Maria Gunnarsson

Tack vare storskaliga fråge-svarsdataset har neurala tekniker de senaste åren tillämpats
i modeller för automatisk besvaring av frågor. Genom att ta fram dataset specifika för
telekommunikation har vi i detta projekt finjusterat system för att bli specialiserade
på just detta område.

När sökmotorer på internet används för att ställa
en fråga, får man nuförtiden ibland upp ett färdig-
formulerat svar utan att behöva läsa igenom sök-
träffarna. Detta är exempel på användning av
fråge-svarssystem, som med maskininlärning har
lärt sig att lokalisera svar på frågor som formuler-
ats i mänskligt språk. Utformningen av dataset
som används i maskininlärning styr vad systemen
blir bra på. I de flesta fallen av fråge-svarssystem
så används dataset med allmän kunskap. Inom
specialiserad verksamhet kan det dock vara mer
användbart med ett system som kan besvara frå-
gor inom det berörda området.
I mitt examensarbete har jag undersökt sätt

att anpassa system för frågor och svar gällande
telekommunikation. Tre olika publicerade fråge-
svarssystem har använts; två som hanterar enklare
frågor och ett som klarar av mer komplext ställda.
För att finjustera dessa för det aktuella ämnesom-
rådet har projektet innefattat att annotera två
dataset; ett för de mer enkla frågorna och ett för
de komplicerade. Vardera dataset innehöll frågor
och tillhörande svar som rör telekom.
Först testade jag hur bra de tre systemen sva-

rade på frågorna inom telekom och såg att deras
resultat blev lägre jämfört med för frågor kring
allmän kunskap. Sedan gjordes ytterligare under-

sökningar med de två systemen för enklare frågor.
Halva datasetet med simpla frågor användes för
att finjustera delarna som tränats med maskinin-
lärning i dessa system. Detta i syfte att lära dem
mer om telekom. Därefter användes den andra
hälften för att igen avgöra hur väl systemen kunde
hantera telekomfrågorna.
Resultaten visade att genom finjusteringen

kunde en betydande förbättring av systemens ka-
pacitet att svara rätt på telekomfrågor skapas.
Andelen frågor som besvarades helt korrekt av det
bättre av de två systemen ökade med över 10 pro-
centenheter efter finjusteringen, vilket i samman-
hanget kan anses vara väldigt bra. Dessa resultat
tyder på att kraftfulla fråge-svarssystem kan an-
passas för nya kunskapsområden med relativt små
arbetsinsatser.

	Introduction
	Previous work
	Question answering
	Multi-hop question answering

	Datasets
	Single-hop datasets
	Multi-hop datasets
	Evaluation metrics

	Neural open-domain QA systems
	Retriever-reader
	Reranker
	Pre-trained language models
	Sparse and dense retrievers
	Adaptive retrievers
	Answer verification

	Multi-hop question answering systems
	Sparse, iterative retrievers
	Dense, iterative retrievers
	Graph retrievers
	Question decomposition

	Domain adaptation

	Method
	TeleQuAD
	mTeleQuAD
	DrQA
	CdQA
	MDR
	Experiments
	DrQA and cdQA
	MDR

	Results
	DrQA
	CdQA
	MDR

	Discussion
	Retrievers
	Readers
	Single-hop and multi-hop models
	Datasets
	Evaluation metrics
	Future work

	Conclusion
	References

