
BACHELOR’S THESIS 2021

Predicting price trend reversals
using machine learning
techniques
Nicolo Ridulfo, Li Zhu

ISSN 1651-2197
 LU-CS/HBG-EX: 2021-06

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

KANDIDATARBETE
Datavetenskap

LU-CS/HBG-EX: 2021-06

Predicting price trend reversals using
machine learning techniques

Nicolo Ridulfo, Li Zhu

Predicting price trend reversals using
machine learning techniques

Nicolo Ridulfo
ni0381ri-s@student.lu.se

Li Zhu
li0301zh-s@student.lu.se

June 21, 2021

Bachelor’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisor: Marcus Klang, Marcus.Klang@cs.lth.se

Examiner: Pierre Nugues, Pierre.Nugues@cs.lth.se

mailto:ni0381ri-s@student.lu.se
mailto:li0301zh-s@student.lu.se
mailto:Marcus.Klang@cs.lth.se
mailto:Pierre.Nugues@cs.lth.se

Abstract

The prices of stocks on the stock market are in a constant state of oscillation.
However, these oscillations will peak or bottom out periodically, which we de-
fine as a reversal event. Through the use of machine learning, we can predict
when these events may occur. In addition, these events may be transformed into
buy and sell signals which can be exploited for profit or incorporated into a risk
management framework. Therefore, predicting reversal events might be equally
or even more important than knowing the exact direction the market is going
to move tomorrow. In this thesis, we examined the performance of Logistic Re-
gression (LR), k-Nearest Neighbor (kNN), Deep Neural Network (DNN), Con-
volutional Neural Network (CNN) and Long Short Term Memory (LSTM) in
predicting past and future reversals. The dataset used was all stocks listed in
the S&P 500. Our experiments show that neural networks greatly outperformed
LR and kNN, with our LSTM model "revLSTM" achieving the best performance
in most cases. We also evaluated the performance impact of adding additional
features such as the distance to previous reversals. By incorporating previous re-
versals, the Matthew Correlation Coe�cient (MCC) scores were shown to more
than double. Using revLSTM, a MCC of 0.17 was achieved when predicting
short term future reversals and 0.54 when confirming short term past reversals.
A MCC score of 0.10 was achieved when predicting long term future reversals
and 0.29 confirming long term past reversals.

Keywords: machine learning, logistic regression, k-nearest neighbors, deep neural net-
work, convolutional neural network, recurrent neural network, long short term memory,
stock market, prediction, trend, reversals

2

Contents

1 Introduction 5
1.1 Problem . 5
1.2 Research question . 6
1.3 Outline . 7
1.4 Contributions . 7

2 Technical Background 9
2.1 Related Work . 9
2.2 Baseline model . 10
2.3 Logistic Regression . 10
2.4 k-Nearest Neighbors . 11
2.5 Artificial Neural Network . 12

2.5.1 Forward propagation . 12
2.5.2 Backpropagation . 13

2.6 Convolutional Neural Network . 14
2.7 Long Short-Term Memory (LSTM) . 15

2.7.1 LSTM Cell . 16
2.8 Evaluation metrics . 16

3 Data 19
3.1 Datasets . 19
3.2 Data retrieval . 19
3.3 Features . 19
3.4 Construction of training and test sets . 20
3.5 Defining reversal events . 21
3.6 Data characteristics . 23

3.6.1 Data imbalance . 23

4 Methods 25

3

CONTENTS

4.1 Data processing . 25
4.1.1 Sliding windows . 25
4.1.2 Normalization . 26
4.1.3 BatchNormalization . 27

4.2 Baseline model . 27
4.3 revLR . 27
4.4 revKNN . 28
4.5 revDNN . 28
4.6 revCNN . 28
4.7 revLSTM . 29
4.8 Evaluation . 29

5 Results 31
5.1 Overview . 31

5.1.1 revLR . 32
5.1.2 revKNN . 32
5.1.3 revDNN . 33
5.1.4 revCNN . 34
5.1.5 revLSTM . 35

5.2 Predicting past reversals . 35

6 Discussion 37
6.1 Definition of reversal . 37
6.2 Models . 38
6.3 Importance of distance to price level of previous reversals 38
6.4 Window sizes and reversal sizes . 39
6.5 Predicting past reversals . 39
6.6 Strengths and limits . 39

7 Conclusion 41
7.1 Future work . 41

7.1.1 Better dependent value . 41
7.1.2 Indicators . 42
7.1.3 Concatenating multiple stocks . 42

References 43

A Abbreviations 45

B The profile of this thesis 47

4

Chapter 1

Introduction

Out of the many functions of a stock market, it could be argued that the primary ones are to
enable companies to e�ciently raise capital and to facilitate price discovery. A company is
able to raise money by selling shares. This can in some cases be more advantageous than cor-
porate loans or selling bonds. Price discovery entails finding a fair price for some asset. The
price of an asset is whatever the participants are willing to buy and sell it for. Price discovery
is a continuous process that begins when an asset is listed and does not end until the asset is
unlisted. The movements of the financial systems are therefore the result of an uncountable
number of humans’ beliefs and actions. Despite the e�cient market hypothesis stating that
the current price of an asset reflects all publicly available information and thus making future
predictions impossible. There are today countless studies trying to predict stock prices with
good results (Selvin et al., 2017; Hiransha et al., 2018; Hoseinzade and Haratizadeh, 2018;
Hoseinzade et al., 2019; Kusuma et al., 2019). However, only a small subset of these attempt
to predict reversals (Christo�ersen and Diebold, 2006; Bury, 2014; Jang et al., 1993) and out
of these none have evaluated the performance of di�erent machine learning models.

1.1 Problem
One could in theory exploit these stock market predictions to profit and/or to reduce risk
to protect against unfavorable changes in the price of the asset. Among the ways one could
exploit these predictions is timing the market. Preferably, one should buy at a low price and
sell at a high one. In other words, buy in the beginning of a upward trend and sell at the top
before the downward trend begins. Knowing when reversals are most likely to happen can
therefore be lucrative.

One way of predicting stock market events is to look at historical stock data. As shown

5

1. Introduction

in Figure 1.1, a window of the data from the past m days can be fed into machine learning
models after data normalization (see Section 4.1.2). The prediction could either be for a future
reversal or to confirm a past reversal. The further in the future the prediction is, the more
valuable it is as it allows the trader to act before the mass. In addition, the more accurate the
prediction is the more capital can be committed at a constant risk.

Logistic regression

k-Nearest Neighbors

Convolutional Neural Network

Deep Neural Network

Long Short-Term Memory

Stock

Stock Date Reversal

Apple 20210519 0.81

Tesla 20210518 0.10

Visa 20210517 0.62

Models

Reversal prediction

Data processing

Day 0

Reversal
events at the
following day

Window size of m
days as input
features

Figure 1.1: Conceptual diagram for this thesis

1.2 Research question
The goal of this thesis is to investigate whether it is possible to accurately predict reversal
events. Four research questions have been formulated:

• R1: Which methods are applicable for predicting reversals using the past m days?

• R2: To what accuracy can reversals p days in the future be predicted using the past m
days?

• R3: To what accuracy can past reversals q days in the past be recognized using the past
m days?

• R4: How will the performance of the predictions be a�ected by additional calculated
features?

6

1.3 Outline

1.3 Outline
This report will have following structure:

• Technical Background: Here we introduce the related work, the models and the met-
rics used to evaluate the performance of the models.

• Data: This chapter presents the data: what and how the data was gathered, what fea-
tures it contains and how reversals were defined and found.

• Method: This chapter explains how the experiments were set up, how the models were
constructed and how the performance of the various reversal sizes and features were
evaluated.

• Results: In this chapter the results are presented and interesting observations are men-
tioned.

• Discussion: In this chapter the results are discussed along with the importance of the
di�erent window sizes and reversal sizes. Finally, the strengths and weaknesses of our
approach are discussed.

• Conclusion: Here we present out conclusion along with future work.

1.4 Contributions
This thesis contributes to:

• Knowledge in price trend reversal prediction using historical stock data using deep
learning

• Insights in the relationship between window size, the size of the reversal and how far
into the future the prediction is.

• Understanding regarding the impact of additional features on reversal prediction.

7

1. Introduction

8

Chapter 2

Technical Background

2.1 Related Work
To the best of our knowledge, there are no previous studies evaluating the performance of
di�erent machine learning models on classification of trend reversals. Jang et al. (1993) cre-
ated a model consisting of two shallow artificial neural networks that together predict the
trend of price movement and recognized reversals based on these trend predictions in order
to generate buy and sell signals. Similarly, we intend to apply artificial neural networks in
this thesis in order to predict reversals. However, the neural networks used in this thesis will
only be deep neural networks i.e. have more than one hidden layer (see Section 2.5) and both
future and past reversals will be predicted.

There is previous work on trend prediction that is based on the properties of the distribution
of returns1(Christo�ersen and Diebold, 2006) and pairwise correlation of markets (Bury,
2014). However these only predict the direction (up or down) and not reversals.

Numerous studies have examined the direction of a stock’s price the following day using
deep learning (Selvin et al., 2017; Hiransha et al., 2018; Hoseinzade and Haratizadeh, 2018;
Hoseinzade et al., 2019; Kusuma et al., 2019). In general, deep learning outperformed other
techniques in such tasks. Convolutional neural networks (CNN) achieved the best perfor-
mance, outperforming recurrent neural networks (RNN), long short-term memory (LSTM)
networks and multilayer perceptron (MLP) in predicting stock price movements (Selvin et al.,
2017; Hiransha et al., 2018). These studies showed that deep learning is suitable for stock
price prediction. Considering that, their performance on trend reversal prediction will be
examined in this thesis.

1The distribution of changes from one day to the next

9

2. Technical Background

There were two main types of inputs when applying a CNN. Most studies created charts
such as candlestick charts (Kusuma et al., 2019) using the historical prices and fed them as
images directly to the CNN. An alternative way is to use 2D or 3D tensors. For example,
Hoseinzade and Haratizadeh (2018); Hoseinzade et al. (2019) stacked the 2D data into a 3D
tensor (markets × days × features). Whereas stacking the data into 3D did not enhance the
prediction.

2.2 Baseline model
A baseline is a simple model to create predictions for a dataset. It is normally used to assess
the performance compared to the studied models. An improved performance over the studied
models is expected. A dummy classifier 2 is often used as a baseline. Dummy classifier is a
classifier that uses simple rules. There are three common strategies: stratified, most frequent
and uniform.

Stratified strategy generates predictions based on the classes’ distribution in the training
set. For example, if the proportion of non-reversal events is about 0.88% in one case in this
thesis. The dummy classifier has 88% probability of predicting that a day in the test set is a
non-reversal event.

The most frequent strategy, also termed Zero Rule Algorithm, assigns all days in test set as
the most frequent class in the training set.

The uniform strategy generates predictions uniformly at random. Any day in the test set has
equal chance of being either a reversal event or non-reversal event.

2.3 Logistic Regression
Logistic regression (LR) is a linear model used to explore relationships between independent
variables and binary responses. LR has been widely used in stock market (Upadhyay et al.,
2012; Attigeri et al., 2015). A logistic model can be written as Equation 2.1.

log
p

1 − p
= β0 + β1x1 + β2x2 + ... (2.1)

p denotes the probability when the binary response is class 1 for example, x1 and x2 represent
independent variables while β0, β1 and β2 coe�cients for constant, x1 and x2, etc.

In the training phase, the logistic model is fitted to the input data by estimating the coe�-
cients β0, β1 and β2. The coe�cients together with the input x1 and x2 are used to produce
a prediction. The predicted probability can be converted from the predicted value using a
sigmoid function (Lever et al., 2016).

2https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html

10

2.4 k-Nearest Neighbors

2.4 k-Nearest Neighbors
The k-Nearest Neighbors algorithm (kNN) has been widely used in classification and regres-
sion problems due to its simple implementation. It is able to classify and assign labels by
using the majority rule. That is the class that has the k most similar samples in the training
set.

The kNN relies on similarity between samples. Here, Minkowski distance, a generalization
of both the Euclidean distance and the Manhattan distance, was applied. Minkowski distance
measures similarity between two samples X1(x1,1, x1,2, x1,3, ...x1,n), X2(x2,1, x2,2, x2,3, ...x2,n) as
the Equation 2.2. This is equivalent to Manhattan distance when p is 1 and Euclidean distance
when p is 2.

d(X1, X2) = (
n∑

i=1

|x1,i − x2,i |
p)p−1

(2.2)

As shown in Figure 2.1, the kNN algorithm is based on a dataset of high-dimensional points
where each point has a class. For a class-unknown sample, its class is predicted as the majority
class where the k closest samples belong.

k=3x1

x2

Class 1

Class 2

class-unknown sample

Figure 2.1: An example of applying kNN in prediction. Here, the
three nearest neighbors (k=3) and Euclidean distance is used. The
class-unknown sample is predicted as class 2 based on majority rule.

The performance of kNN are a�ected by the number of neighbors k. The choice of k depends
upon the data. A large k could reduce bias caused by data heterogeneity, but could also worsen
performance. The number of samples this thesis deals with is on the larger side for kNNs.

11

2. Technical Background

Fortunately, Facebook AI have developed a fast implementation 3 of the kNN algorithm using
a new indexing data structure. This implementation was used for all kNN experiments.

2.5 Artificial Neural Network
Artificial neural networks (ANN) are a type of model that is made up by layers of neurons
connected to other layers through weights. These weights enable the network to "learn" to
approximate non-linear functions. As shown in Figure 2.2, an artificial neural network typ-
ically has an input layer, one or more hidden layers and an output layer. If the network has
more than one hidden layer it may be called a deep neural network (DNN). Having more
layers means having more weights which in turn enable the network to approximate more
complex functions.

Figure 2.2: Artificial neural networks architecture

Fully connected layer
A fully connected layer, also known as a dense layer, is the primary type of hidden layer
in ANNs. CNNs and LSTMs both usually include this type of layer, but they also contain
other types of layers. This layer is characterized by having all the neurons of the current layer
connected to all the neurons of previous layer through weights as seen in Equation 2.3.

A = ReLU(I ·W + B) (2.3)

Where A is the activation (result) vector of the current layer, I is the input to this vector (the
activation vector of the previous layer), W are the weights and B are the biases. The bias can
be seen as a constant that shifts the value of the weighted inputs.

2.5.1 Forward propagation
To make an approximation or prediction, the network performs a forward propagation. This
is the process of taking an input and passing it from layer to layer until it reaches the output
layer. The neurons of the first layer assume the values of the input. Then the values from

3https://github.com/facebookresearch/faiss

12

2.5 Artificial Neural Network

these neurons are passed to the first hidden layer. Every neuron of a layer is connected to
every neuron of the next layer through a weight. The value is multiplied by the weight in
order to increase or decrease the value passed to the next neuron. The receiving neuron has
now been passed as many values as there are neurons in the previous layer. These values are
summed, and a bias is added. Finally, the activation function is applied. The purpose of the
activation function is to introduce non-linearity. The activation functions used in the thesis
are tanh, sigmoid and ReLU. Their plots can be seen in Figure 2.3.

Figure 2.3: The three activation functions

Hyperbolic tangent function (tanh(x))
The hyperbolic tangent of x is a function that has property of being continuous and non-
linear with an output in the range [-1, 1].

tanh(x) =
ex − e−x

ex + e−x (2.4)

Sigmoid activation function (σ(x))
The sigmoid function is also a continuous non-linear function, but whose output is in the
range [0, 1]. This function used to be a popular choice as an activation function, but has in
recent years been replaced by ReLU in most cases.

σ(x) =
1

1 + e−x (2.5)

Rectified Linear Unit (max(0, x))
Rectified Linear Unit (ReLU) is a function which returns zero for all non-positive x and
otherwise x. This means that the output range is [0,∞].

2.5.2 Backpropagation
Fitting this model can be done in a number of ways. One common way, and the one chosen
for this thesis, is to use stochastic gradient descent with mini-batches. This is done by finding
the gradient of the loss function (the error) in respect to the weights and then modifying the
weights in order to minimize the loss function. The weights of the hidden layers are updated
from the last layer to the first. The loss function is a function that takes the predicted value
and compares it to the actual value and returns the loss. There are countless loss functions

13

2. Technical Background

that can be used. We chose binary cross entropy as our output is binary. The loss is calculated
as shown in Equation 2.6, where yi is the actual value, p(yi) is the i-th output from the model
and N is the number of values in the batch.

Loss = −
1
N

N∑
i=1

yi · log(p(yi)) + (1 − yi) · log(1 − p(yi)) (2.6)

Mini-batches refers to a technique where the network feeds forward and backpropagates
multiple examples at a time in order to have a stable gradient descent.

2.6 Convolutional Neural Network
Convolutional neural networks (CNN) are also a deep learning algorithm, but have been
created to take in inputs such as images or matrices and extract features. These features can
then be used in order to detect and/or classify objects in images. The CNN is composed by
an input layer, one or more hidden layers and an output layer. The hidden layers of a CNN
typically consist of convolutional layers, pooling layers, dropout layers and fully connected
layers.

Flatten layer Fully connected layer

Reversal

Non-Reversal

Convolution layer Pooling layer Input vector

.

.
.
.

.

.

Figure 2.4: The illustration of CNN1D architecture to classify
reversal/non-reversal

Input layer
Input for CNN is typically 2 or 3-dimension tensor. In this thesis a 2-dimensional tensor was
used.

Convolution layers
Convolutional layers convolve the input and pass it to the next layer. This is achieved through
a matrix multiply operation in order to extract high-level features by taking multiple filters.

14

2.7 Long Short-Term Memory (LSTM)

As shown in Figure 2.5, the output is obtained by sliding the kernel over the input data and
multiplying them. This shrinks the output size. In order to obtain an output with the same
size as the input, padding can be used. The figure shows an example of a convolutional1D
operation with only one filter, whereas multiple filters are used typically.

x
0 1 0 -1

1 0 1 0

0 -1 0 1

convolution kernel

0.9

0.8

-0.4

0 1 0 -1

1 0 1 0

0 -1 0 1

0 1 0 -1

1 0 1 0

0 -1 0 1

Input Output

0.5 0.2 0.8 0.7

0.3 0.1 0.6 0.4

0.9 0 0.3 0.5

0.4 0.2 0.5 0.1

0.1 1 0.7 0.2

features

da
ys

Figure 2.5: The convolutional1D operation for one filter with a 5 ×
4 input data and a kernel size of 3. The stride is one and padding is
zero.

Pooling layers
To reduce the size of the output of the previous layer a pooling step is performed. It can
reduce a 2x2 matrix into a single value. Max and average pooling are the two most commonly
used types. Max finds the largest value, while average takes the average of the 2x2 matrix.
Max pooling was used in this thesis as well as in previous studies on stock price prediction
(Kusuma et al., 2019).

2.7 Long Short-Term Memory (LSTM)
Recurrent neural networks (RNN) are a type of ANN where each cell has an internal state
which is incorporated into the prediction. They are widely used in time series prediction as
the internal state enables the network to remember information from the previous time step.
Through this mechanism inputs of variable lengths can be passed to the model. Common ap-
plications for this type of neural network are time series classification and natural language
processing. However, this type of network has a downside. They are more susceptible to
the vanishing gradient problem. This occurs when the gradient becomes vanishingly small
resulting in vanishingly small updates to the weights and therefore no further learning. An

15

2. Technical Background

LSTM is an improved version of an RNN as it solves this problem by having multiple com-
ponents that choose what data to remember and to forget. Typically this type of model has
been shown to work well for natural language processing and time series classification.

2.7.1 LSTM Cell
Each cell takes the state from the previous cell through Ct−1 and passes it to the next cell
through Ct (See Figure 2.6). But before being outputted, the state is manipulated through
two operations. First it is multiplied by the output of the forget gate ft . Due to the nature
of the sigmoid function used in the forget gate, the value returned may only be between zero
and one. This dictates how much of the previous signal to forget. If the cell were to decide
that the previous state has to be forgotten, then ft would have to be zero. Then the result of
the input gate is added to the state. The state is now ready to be passed to the next cell. The
next hidden state is calculated using the current state and the sigmoid of the concatenation
of the previous hidden state and the data from the current time frame.

X +Ct-1

X

X

σ σ tanh

σht-1

xt

tanh

ht

ht

Ct

ft
it

ct

input gate:Forget gate:

output gate:
ot

~

Figure 2.6: An illustration of a LSTM cell

2.8 Evaluation metrics
As shown in Figure 2.7: A True Positive (TP) is a reversal correctly predicted as reversal, a
False Positive (FP) is non-reversal incorrectly identified as reversal, a True Negatives (TN) is
non-reversal correctly predicted as non-reversal and a False Negatives (FN) is reversal incor-
rectly identified as non-reversal. Precision and recall are two common evaluation metrics for
classification. By themselves, they cannot accurately portray the performance of the model.
For example, if only one point in 100 is a reversal and all the points are predicted as rever-
sals, then the recall is 1.0. While if only 99 points in 100 are reversals and all the points
are predicted as reversals, the precision is 0.99. Combining recall and precision is therefore
crucial.

The F1-score is a geometric mean of precision and recall (Powers, 2015). It is calculated as
shown in Equation 2.7. The highest possible value is 1.0, indicating that precision and recall
are perfect. While the lowest possible value is 0, when either the precision or the recall is

16

2.8 Evaluation metrics

Reversal non-Reversal

True
Positives

True NegativesFalse Negatives

False
Positives

Selected elements

Precision = Recall =

How many selected are
reversals?

How many reversals are
selected?

Figure 2.7: The relationship between precision, recall and confusion
matrix.

zero. Therefore, the F1-score is useful either when data is imbalanced or when false positives
or false negatives have di�erent costs.

F1-score = 2 ·
Precision · Recall
Precision + Recall

(2.7)

In addition, another commonly used metric for imbalanced data is Matthews correlation
coe�cient (MCC). MCC is a reliable statistical rate and defined as Equation 2.8. It has a
high score only if the prediction in all of the four confusion matrix categories obtained good
results (Chicco and Jurman, 2020). Its range varies from [-1, 1], where 1 indicating a perfect
prediction, 0 similar to a random prediction and - 1 means disagreement between prediction
and observation (worse than random).

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2.8)

17

2. Technical Background

18

Chapter 3

Data

3.1 Datasets
The dataset chosen for this thesis was based on the S&P 500 composite index. The S&P 500,
is a stock market index that measures the stock performance of 500 large companies listed
in the United States. It is one of the most commonly followed equity indices. Our dataset is
composed of the components that make up the index. This index was chosen as it contains
a good number of stocks with good data quality. If an index with a larger number of stocks
would have been chosen, then the data from the smaller and lesser traded stock would have
impacted the overall quality of the dataset.

3.2 Data retrieval
The resources required for this thesis are the historical price and volume data for every stock
in the S&P 500 composite index. The dataset is freely available from Yahoo Finance’s API.
Table 3.1 shows a sample of the structure of the data. There was no need for a separate data
cleaning step due to the high-level API the data was sourced from.

3.3 Features
Open, high, low, close (OHLC)
Between the times when the market opens and closes a stock’s price will assume many di�er-
ent values. OHLC describes the opening price, highest reached price, lowest reached price
and closing or final price. By summarizing the time interval, in our case a day, into these

19

3. Data

four values, a lot of the high frequency noise can be filtered out. Yahoo finance includes the
adjusted close value, which is the closing price adjusted for a company’s actions such as splits.
This column was not used.

Volume
Further, a time interval does also have a volume. That is the number of shares that have
been traded. This metric may tell an investor the amount of activity in a particular asset. For
example, if the volume of a trending stock is declining it could mean that the trend’s strength
is declining indicating that a reversal might soon happen.

Table 3.1: Sample of historical OHLCV data

Symbol Date Open High Low Close Adj Close Volume
AAPL 2010-01-04 7.622500 7.660714 7.585000 7.643214 6.547977 493729600.0
AAPL 2010-01-05 7.664286 7.699643 7.616071 7.656428 6.559296 601904800.0

Distance to price level of previous reversals (Prev)
Reversals tend to happen at the same prices. Meaning, if a reversal happened at price A, it is
likely that a trend might some time in the future also reverse at the price A. The probability of
reversals happening at that price increases as more reversals happen at that price. Sometimes
the reversals happen at exactly the same price. However, due to the noise in the market,
they are more likely to happen within a close distance. To add this feature to the dataset,
the absolute percentage distance between the current close to the n.th previous reversal was
calculated. This was done using the Equation 3.1.

prevn =

∣∣∣∣∣∣the n.th previous reversal close price
the current day’s close price

− 1
∣∣∣∣∣∣ (3.1)

3.4 Construction of training and test sets
We split data into training and test sets by date. Training set was restricted between the first
day of 2010 and the last day of 2017 based on stocks listed on the S&P 500 index, whereas
the test set was constructed from the first day of 2018 to the end of 2019. The training
set was further partitioned into training and validation set for training and hyperparameter
tuning using Keras build-in validation split 1. The validation split was set to 10%, meaning
that Keras automatically reserves the last 10% of the data set for validation. Hyperparameter
tuning entails finding values for a model’s parameters that produce the best results on the
validation data. The model is then tested on the test data. The reason why the data set was
partitioned by date is because the testing had to be done on out of sample data. That is, data
that the model has not seen before. It would not su�ce to randomly sample the data set to
create training and test sets as the model might learn to "fill in the gaps".

The number of samples for every size of sliding window can be seen in Table 3.3 in the total
column.

1https://keras.io/api/models/model_training_apis/

20

3.5 Defining reversal events

Table 3.2: The period time of our dataset, separated between the
training and testing data.

Indices Training set Test set
start end start end

S&P 500 2010.01.01 2017.12.31 2018.01.01 2019.12.31

3.5 Defining reversal events
Before defining trend reversals, trends should be defined. There are many ways to define a
trend. Generally, one would say that rising tops and rising bottoms constitute a upwards
trend, also known as a bullish trend. The opposite, lower peaks and lower bottoms, would
be classified as a downwards trend, or rather a bearish trend. A trend reversal can therefore
be defined as the point in which the trend transitions from bullish to bearish or vice versa.
However, the fractal nature of the historical stock price results in trends containing smaller
trends inside themselves as seen in Figure 3.1 and 3.2. Any of the numbers and letters in Figure
3.1 could be classified as a reversal. Yet, one would not want to use all of these reversals. Most
of them might be too small for any practical use. An investor might only be interested in
the one labeled I and II or perhaps the ones with a circle around the label. This would all
depend on what time frame the investor is interested in.

Figure 3.1: Illustration of Elliot Waves

Exactly what should be labeled as a reversal is quite di�cult to know as historical price data
is noisy. Labeling the data manually would both be highly time consuming and subjective.
The labeling might di�er substantially from person to person. A formal way to define re-
versals, and the one that has been chosen in this thesis, is to compare a price point with the
surrounding price points. The number of data points to the left and right of the current data
point define the scale of the reversals (see scipy.signal.argrelextrema 2). Depending on the
number of data points (henceforth referred to as reversal size) checked on either side, dif-
ferent sized reversals can be found. This thesis will examine the following values for reversal
sizes 5, 10, 15, 20, 25, but will focus primarily on 5 and 10 for the prediction in the future.
Intuitively, the greater the reversal size, the less reversals will be found. This makes the data
quite unbalanced as seen in Table 3.3. As seen in Figure 3.2, the greater the reversal size, the

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelextrema.html

21

3. Data

bigger trends are shown by the labeling. A model trained using larger reversals might be used
to trade on longer time frames, while a lower might be used for shorter ones.

Figure 3.2: Di�erent labeling depending on reversal size

22

3.6 Data characteristics

3.6 Data characteristics
We constructed training and test data sets using the di�erent reversal sizes. The final number
of samples was less than the unprocessed number due to data prepossessing. For example, if
the number of previous reversals was set to six, then all the data before the sixth reversal
would have to be discarded as a minimum of six reversals would have to have happened. The
ratio of reversals to non-reversals decreased as the reversal size increase, varying from 12.5%
to 2.4%.

Table 3.3: Training and test sets

reversal
size

Training set Test set

Total Reversal Reversal
percentage

Total Reversal Reversal
percentage

5 929 353 116 570 12.5 247 028 29 833 12.1
10 905 340 56 447 6.2 246 815 15 385 6.2
15 888 251 36 947 4.2 246 721 9 908 4.0
20 870 343 26 688 3.1 246 450 7 560 3.1
25 849 104 20 478 2.4 246 303 6 112 2.5

3.6.1 Data imbalance
As shown in Table 3.3, our data was imbalanced since reversal events were quite fewer com-
pared to non-reversals. Training a model directly on the data without considering this prop-
erly would result in poor prediction for the minority class. To counter this, two common
approaches can be used: 1) sampling and 2) class weighting. Sampling is often referred to
as under-sampling the majority class or over-sampling the minority class. One approach to
doing this is to use synthetic minority oversampling technique (SMOTE) (Wang et al., 2006).
Class weights incorporated di�erent weights for the respective classes into the cost function
of the applied algorithm. In this thesis we applied class weighting for LR and ANN mod-
els. The weights were calculated by counting the number of occurrences of the reversal and
non-reversal events (see Equation 3.2).

wi =
N

nclasses × ni
(3.2)

where wi is the weight for class i, N is the total number of samples, nclasses is the total number
of unique classes and ni is the total number of occurrences of class i.

23

3. Data

24

Chapter 4

Methods

4.1 Data processing
Pre-processing the data in order to make it suitable for the models is crucial. In theory,
models could take raw data directly. There are models that are used for data pre-processing.
However, in our case the data had to be reshaped, normalized and the additional features had
to be calculated. Reshaping is required for the data to match the input requirements of the
models. Normalizing and feature engineering is performed to improve performance.

4.1.1 Sliding windows

Figure 4.1: The processing of sliding windows

Sliding window is a method to feed a model a slice of sequential data. Each slice is seen as an
example and used to make a prediction. We used an m-day long sliding window to slice the

25

4. Methods

data. For example, we constructed features using data from a five-day window as shown in
Figure 4.1. In this thesis, the window sizes of 5, 10, 20, 50 were examined.

4.1.2 Normalization

m days

Input for LR, KNN or DNN Input for CNN or LSTM

...

m
days Shape (n-m+1, 11m)

Shape: (n-m+1, m, 11)

Flatten & normalization

concatenate

Shape (n-m+1, 4m) Shape (n-m+1, m) Shape (n-m+1, 6m)

total n days

Open High Low Close volume prev1. ... prev6
Open High Low Close volume prev1. ... prev6

Open High Low Close volume prev1. ... prev6

Figure 4.2: Schema of data normalization for LR, kNN, LSTM and
CNN. Using a sliding window with m days, the OHLC prices for
a stock were flattened as a vector, and min-max normalization was
performed on this vector. Similarly, flattening and normalization
was performed on the volume and the Prevs (see Section 3.3) respec-
tively. For LR, kNN and DNN the vectors were concatenated hor-
izontally. For the CNN and LSTM they were reshaped back into a
2D tensor.

A common best practice when training neural networks is to normalize the data so that the
range is [0, 1] or [-1, 1] (Begam, 2020; Jimmy Ming-Tai Wu, 2021). This can be done using min-
max normalization, which is a widely used method of scaling the data which does "not only
speed up the optimal solution of gradient descent but also improve accuracy" (Jimmy Ming-
Tai Wu, 2021). A min-max normalization was applied on the OHLC, volume and previous
reversals data points separately as seen in Figure 4.2. This normalization re-scaled the features
to the range of [0, 1] according to the Equation 4.1.

Xnorm =
X − Xmin

Xmax − Xmin
(4.1)

26

4.2 Baseline model

where X is the data point, Xnorm is the re-scaled data point and Xmax and Xmin are the biggest
and smallest values in the window.

Lastly, the normalized features were concatenated together in di�erent shapes depending on
the model as seen in Figure 4.2.

4.1.3 BatchNormalization
BatchNormalization is used to normalize the layers’ inputs by re-centering and re-scaling. It
is examined in both CNN and DNN models.

4.2 Baseline model
The DummyClassifier from sklearn1 was used as baseline. Considering imbalanced data char-
acteristic, parameter "strategy" was set to "stratified". See the stratified strategy in section
2.2.

4.3 revLR
Our logistic regression model named revLR was implemented using sklearn2 with the lbfgs
solver and L2 regularization. Inverse of regularization strength was setting to one. The
sklearn parameters were set as shown in Table 4.1.

Table 4.1: LR parameter settings

Parameter value
penalty ’l2’

dual False
tol 1e-4
C 1.0

fit_intercept True
intercept_scaling 1

class_weight ’balanced’
random_state 2021

solver ’lbfgs’
max_iter 100

multi_class ’auto’
warm_start False

l1_ratio None

1https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
2https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

27

4. Methods

4.4 revKNN
revKNN is our k-Nearest Neighbors based model. To select the best k, we implemented kNN
varying k in the range [1, 31]. The model’s performance for various values of k was evaluated
on the validation dataset.

4.5 revDNN
revDNN is our DNN based model. revCNN and revLSTM are also technically deep neural
networks, but they distinguish themselves from revDNN by having more just fully-connected
layers. The architecture of revDNN is shown in Table 4.2 and is composed of a input layer,
hidden layers and finally an output layer. Between the layer’s dropouts, noise or normaliza-
tion can be added. For this thesis dropouts were used to spread out the learning over the
neurons. Keeping the network from depending on few neurons too much. This had a ben-
eficial result on the performance and probably resulted in better generalization. The model
was able to achieve better results by dropping some neurons between the two dense layers.
The addition of Gaussian noise to the input layer was attempted to reduce overfitting (Reed
and Marks, 1999).

Table 4.2: Our proposed revDNN architecture

Input-BatchNormalization
Gaussian Noise

Dense-256 ReLU
BatchNormalization

Dropout
Dense-256 ReLU
Dense-18 ReLU
Dense-1 Sigmoid

4.6 revCNN
For our revCNN model we chose to use random search (Bergstra and Bengio, 2012) which
is a widely used strategy for hyperparameter optimization. We performed hyperparameter
tuning using a validation data split of 20%. The parameters are showed in Table 4.3 were
examined.

The architecture varies since input matrices have di�erent sizes. The architecture for window
size 5, 10 and 20 are listed in Table 4.4 and the architecture for window size 50 is the same
as the others except that it only has 3 convolutional layers. It shows that our proposed CNN
architecture consist of 4 convolutional layers with kernel size of 3, 1 max pooling layer, 1
dropout, 3 dense layers and batch size of 32.

28

4.7 revLSTM

Table 4.3: The tested values on each hyperparameter

Hyperparameters Tested values
Convolutional layer 2-10
Filter 32, 48, 64, 128, 256
Kernel size 2-11
Dense 8, 32, 64, 128, 256, 512
Pooling max, average
Batch size 32, 64, 128, 256, 512, 1024
Activation function relu, selu, tanh, elu

Table 4.4: Our revCNN architecture

In
pu

t

D
en

se
-8

co
nv

1D
-1

28
,3

R
eL

U

co
nv

1D
-1

28
,3

R
eL

U

co
nv

1D
-1

28
,3

R
eL

U

co
nv

1D
-1

28
,3

R
eL

U

m
ax

-p
oo

lin
g1

D
2

Fl
at

te
n

D
en

se
-3

2

D
ro

po
ut

D
en

se
-1

Si
gm

oi
d

4.7 revLSTM
The LSTM model used had the structure shown in Table 4.5. Hyperparameter tuning showed
that revLSTM performed best when only one LSTM layer was used. This layer was followed
by a dropout layer and three dense layers.

Table 4.5: Our revLSTM architecture

Input
LSTM-256
Dropout

Dense-128 ReLU
Dense-32 ReLU
Dense-1 Sigmoid

4.8 Evaluation
The goal of this thesis is to use historical price data to make predictions on past and future
predictions. As such, we first evaluated the performances of using varying window sizes,
OHLCV and calculated feature (distance to price level of previous reversals) using revLR
and revKNN. Then, the other models’ performance was evaluated for the dataset with both
OHLCV and distance to previous reversals. This was done for reversal sizes of 5 and 10 and
the prediction was for the following day. The performances were evaluated using MCC and
F1-scores.

29

4. Methods

Next, we examined the prediction of larger past reversal sizes (reversal size: 15, 20, 25) by
revLR, revCNN, revDNN and revLSTM using MCC as performance metrics. revKNN was
not examined as it performed poorly in the previous step (see Table 5.1) which was also shown
in previous studies (Cosenza et al., 2020). revLR was used as the reference model in compar-
ison with revCNN, revDNN and revLSTM.

In all the above mentioned evaluations, the MCC score and F1-score were calculated on the
performance of the model on the entire training or testing dataset without any consideration
to which examples came from which stocks.

30

Chapter 5

Results

5.1 Overview

model reversal size of 5 reversal size of 10
window
size

MCC F1-score window
size

MCC F1-score

Baseline 5 0.000 0.126 10 0.000 0.063
revKNN (k=1) 5 0.034 0.155 10 0.023 0.085
revLR 5 0.103 0.268 10 0.105 0.171
revCNN 10 0.173 0.279 10 0.153 0.184
revDNN 5 0.174 0.293 10 0.157 0.198
revLSTM 10 0.171 0.276 10 0.163 0.190

Table 5.1: Performance of future reversals prediction on reversal
sizes of 5 and 10.

Table 5.1 shows the best performance of various models on reversal sizes of 5 and 10 when
predicting if the reversal was going to happen the following day. Figure 5.1 shows the perfor-
mance comparison of all the models. The results show the performance of the models when
using their best performing window size. All the models performed using a window size of
10 days for reversal size of 101. While revLR, revKNN and revDNN used a window size of 5
days and revCNN and revLSTM used a window size of 10 days when predicting reversal size
of 5. As shown in the Table 5.1, the neural network approaches performed better than the
reference models. It is interesting to note that the baseline model got a MCC score of 0 and
a F1-score of 0.126 and 0.063 for reversal sizes of 5 and 10 respectively.

1reversals of size 10 = minimums or maximums compared to the previous and future 10 days

31

5. Results

Among the three ANNs, the revLSTM performed either as well or slightly better than the
revDNN and revCNN when looking at MCC. Although, the training time for the revLSTM
on a CPU was much longer than revDNN and revCNN. One epoch took around 8 seconds
with the revDNN, two minutes with the revCNN and over seven minutes with the revL-
STM.

The actual reversals predictions plotted on a graph can be seen in Figure A.1.

Figure 5.1: Best performances for respective models on reversal sizes
of 5 and 10, respectively.

5.1.1 revLR
First, the logistic regression model was applied. The results are shown in Figure 5.2. The
figure shows the comparison between using OHLCV and OHLCV+Prev. It is clear that by
adding previous reversals, a substantially higher score was achieved. The best window size is
5 days for reversal of size 5, while the best window size is 10 days when the reversal size is
10.

5.1.2 revKNN
Second, the k-Nearest Neighbors algorithm was applied. The results are shown in Figure 5.2.
The performance of this model was the lowest among the models. However, similarly to the
other models, adding previous reversals improved its MCC scores. revKNN performed best
with the same window sizes as revLR.

32

5.1 Overview

Figure 5.2: Performance of revLR and revKNN on reversal sizes of 5
and 10 with varying window sizes (m).

5.1.3 revDNN
The performance of revDNN can be seen in Figure 5.3. Generally, the best window size when
reversal size was equal to 5 was 5. But when the reversal size is increased, a bigger window
size performs better. One more interesting result is that the F1-Score in relation to the MCC
score is higher when the reversal size is 5, and the opposite when the reversal size is 10.

Figure 5.3: Performance of revDNN on reversal sizes of 5 and 10 with
varying window sizes

33

5. Results

5.1.4 revCNN
The performance of revCNN on reversal sizes 5 and 10 can be seen in Figure 5.4. The best
window size was 10 for both reversals sizes of 5 and 10. When looking at MCC for reversal
size of 10, a window size of 10 achieved the best MCC score, while a window size of 20 gave
the best F1-score. This is not the same case for reversal size of 5.

Figure 5.4: Performance of revCNN with di�erent window sizes

Figure 5.5: Performance of revLSTM on reversal size of 5 and 10 with
various window sizes

34

5.2 Predicting past reversals

5.1.5 revLSTM
The performance of revLSTM is shown in Figure 5.5. The best window size is 10 for both
reversal sizes of 5 and 10. Both MCC-score and F1-score decreased slightly when reversal size
increased.

5.2 Predicting past reversals
Prediction of past reversals using revLR, revCNN, revDNN and revLSTM were attempted
and the performance was compared as shown in Figure 5.6. The revLSTM outperformed all
other models.

The number after the S is the shift. If the shift is 0, then the model would be trying to predict
that a reversal will happen today (the same data point as the last available data point). A
positive shift of one or two would mean that the reversal predicted would have happened
yesterday or the day before that. A negative shift means that the reversal will take place in
the future. For practical applications, a shift of zero would require that the trading session has
ended. Otherwise, the close price would not be the actual close. However, an approximation
could be made with the current price just before the market closes.

Figure 5.6: MCC comparison of all models to predict reversals on
various shift

35

5. Results

36

Chapter 6

Discussion

In this chapter we will discuss the definition of reversal and the performance of the var-
ious models. Their strengths and weaknesses of the models will be examined. A discus-
sion regarding the size of the windows and trend reversals will also made. Furthermore, the
model’s performance at predicting past reversals have also been gathered and will be discussed
here.

6.1 Definition of reversal
There are many ways reversals can be defined. For this thesis reversals were defined by look-
ing at the greatest or smallest values in a sliding window (not to be confused by the sliding
window used as the models’ input). One drawback of this method is that reversals are only
defined by being a local minimum or maximum in an interval of time. No consideration is
given to the distance to the previous reversal. For example, if a small reversal size is cho-
sen and the price is flat, multiple reversals might be identified even though it might only be
noise. To prevent this, an alternative method of defining reversals such as the Zig-Zag Indi-
cator 1 could be used. Similarly, this indicator also looks at local minimums and maximums,
but then only recognizes a reversal if the distance to the previous one is greater than a pre-
chosen percentage. The Zig-Zag method can also be adjusted in order to find di�erent sized
reversals. This can be done by changing the pre-chosen percentage. This definition was not
chosen as the results found in the initial research phase were not adequate for this purpose.
Many data points that we subjectively would like to have been classified as reversals were not
selected. The results of the thesis might have looked completely di�erent if this definition
would have been chosen.

1https://www.investopedia.com/terms/z/zig_zag_indicator.asp

37

6. Discussion

6.2 Models
The results showed that the neural network-based approaches performed the best for iden-
tifying reversals. This is inline with previous studies on predicting stock price movement
(up or down) (Selvin et al., 2017; Hiransha et al., 2018). Among the di�erent deep learn-
ing methods, the revLSTM achieved the best performance. This might be because they can
find long-term dependencies between samples. As such, LSTMs may be suggested as a good
method for classifications on time-series data in stock market.

The revDNN came in second among the models when looking at MCC and best when looking
at F1-score. It was also among the fastest models to train and was very flexible in the way they
might be configured. Compared to the other deep learning models, it did not require the data
to be reshaped and was able to use a one-dimensional tensor as input. All of these advantages
may be important when it comes to developing a model for business applications.

It should also be noted that our CNN architecture also performed well. However slightly
worse compared to revLSTM and DNN. This shows the ability of revCNNs at learning to
extract features in a highly noisy dataset. CNN-learned features are well applied and suc-
cessful in many fields including biomedical research and stock market (Kusuma et al., 2019;
Selvin et al., 2017). Our thesis reinforces the applicability of CNNs in time series classifica-
tion.

Logistic regression is a less complicated approach, but well applied in the stock market pre-
diction. Previous studies demonstrated promising performances in forecasting stock return
(Upadhyay et al., 2012), as well as the direction of the next day’s price (Attigeri et al., 2015).
Our thesis also showed that revLR performed well in predicting reversals when looking at
MCC score, but not as good as the deep learning models. And performed comparably to
deep learning when looking at F1-Scores. Given that a reversal event might be more im-
portant than non-reversal event, a good F1-score from revLR is still meaningful. In addi-
tion, revLR didn’t require long training times which enabled us to get an understanding of
features’ importance before implementing the advance models with larger hyperparameter
search spaces.

revKNN did not perform well compared to the other models. Similar studies also reported
bad performances by kNN in the prediction of growing stock volume (Cosenza et al., 2020).
One possible explanation is that the input data is too noisy and not suitable for the model.
More preprocessing of the data might be needed before the model can use it as input. This
could even be done by some other model.

6.3 Importance of distance to price level of
previous reversals

We employed revLR and revKNN to examine the importance of OHLCV and the distance
to price level of previous reversals in predicting reversal events. Windows size of 5, 10, 20
and 50 were applied using a reversal size of 5 and 10. We found that neither revLR nor
revKNN perform well using OHLCV alone. Great improvements on MCCs can be seen from

38

6.4 Window sizes and reversal sizes

Figures 5.2 when the distance to price level of previous reversals was included in the dataset.
Therefore, we included both OHLCV and distance to price level of previous reversals in all
other models.

6.4 Window sizes and reversal sizes
It was expected that the smaller reversal sizes would have better results due to the greater
number of reversals. However, it was surprising that a smaller window size (5 to 10 days)
would often result in better performance compared to larger ones (20 to 50) as one would
think that more information would be beneficial. But the window could not be too small, or
the performance would start to decrease. Having a greater window either confused the model
or did have high relevance for the prediction. It is interesting to note that the window size
often matched the reversal size. This could be due to the likelihood of there being a reversal
of size n in a m sized window when n = m. This symmetry could be mitigated by the use
of an alternative definition for reversals such as the zig-zag indicator mentioned in section
6.1.

6.5 Predicting past reversals
As expected, predicting or rather confirming past reversals resulted in the best performance.
This might be because the model is able to see the price changing direction. As opposed to
only looking at past reversals and perhaps seeing the upwards or downwards momentum dy-
ing o�. Classical stock trading strategies such as "moving average cross over" may also be used
to predict that a reversal has happened. Depending on the market conditions, the prediction
may be made many days after the reversal actually has happened. Our thesis focused on try-
ing to predict that a reversal will happen in the future. However, by altering the prediction
to trying to predict if a reversal has happened interesting results were gotten. Our model
performed much better, for some reversal and window sizes even doubling the MCC score.
Therefore, compared to moving average cross overs, our approach had a substantially smaller
and constant time between the reversal happening and the model predicting such. If this
alternative prediction should be used to create trading signals one would have to increase the
order so that the reversals happen on larger trends. Otherwise, due to the lag, most of the
potential profit might already be lost by the time the prediction is made.

6.6 Strengths and limits
Our research question was novel and may provide new value in understanding the stock
market. One strength was the comprehensive assortment of machine learning models that
were evaluated in this thesis. We applied di�erent architectures of artificial neural networks
and compared their results. Lastly, the significance of previous reversals was also studied and
evaluated.

One weakness is that only three types of features were used as input. We didn’t explore e�ects
of adding more features such as indicators and/or concatenating multiple stocks together in

39

6. Discussion

order to predict multiple stocks at ones. This would be discussed in the Section 7.1. One
other weakness is that the models were only trained and evaluated on the S&P 500. It would
be interesting to replicate our experiments on other stocks to confirm our findings.

40

Chapter 7

Conclusion

In conclusion, we examined the performances of various machine learning approaches in pre-
dicting stocks’ price trend reversals, something not previously studied. The results show that
deep learning outperformed classical machine learning models such as LR and kNN. Among
the di�erent deep learning models, our LSTM model revLSTM achieved the best perfor-
mances in classifying future and past reversal events. The accuracy to which this could be
done was shown to be better than random and highly depended on the size of the reversals
and whether the prediction in the future or the past. We also evaluated the performance im-
pact of adding additional features such as the distance to previous reversals. This resulted in
a significant improvement in performance which indicates that the distance to the price of
previous reversals have a high significance for the prediction of past and future ones. How-
ever, there are more models to try and more feature engineering to be done.

The general trend for all models was that the further into the future the prediction was, the
harder predicting became as shown by the lower MCC scores. Likewise, the larger the re-
versals, the worse the performance. An MCC score of 0.17 was achieved when predicting
small future reversal and 0.54 when confirming small past reversals. An MCC score of 0.10
was achieved when predicting large future reversals and 0.29 confirming large past rever-
sals.

7.1 Future work

7.1.1 Better dependent value
It is better to predict that tomorrow will be a reversal when the actual reversal will happen the
day after tomorrow. Rather than predicting tomorrow while the reversal actually happens in

41

7. Conclusion

5 days. As it stands now, these two scenarios are equally incorrect. To improve the research
question, the dependent value could have been the time to the next reversal in number of
days. This could be seen as a time to failure problem. This might be an interesting topic for
further theses.

7.1.2 Indicators
Besides reverting close to previous reversals, quite often reversals happen on moving averages.
These tend to function as trend indicators and thus determine if the asset is still moving in
an upward or downwards trend. If the price would cross a moving average, then this could
indicate the end of a trend. It is therefore natural for the price to resist crossing a moving
average. The typical number of previous data points used for the moving average are, ordered
from strongest to weakest: 200, 100, 50, 20. Then there are exponential moving averages,
these usually use 12 and 24 past data points. Besides using moving average indicators, one
could also use oscillators. These are a type of indicator that are not necessarily bound to the
price range of the asset. For example, the RSI indicator shows the momentum of a trend and
produces values in the range of [0, 100]. Notable oscillators are RSI, MACD and Stochastic.
All of these indicators could be added to the set of features in the data set.

7.1.3 Concatenating multiple stocks
Using multiple stocks as input for a model and then predicting separately whether a stock will
revert could be worth looking into. The hypothesis to why predicting multiple stocks at once
would be better than one is that there might be some correlation between the stocks. This
approach was used successfully when trying to predict the movement of stocks (Hoseinzade
and Haratizadeh, 2018). Hoseinzade and Haratizadeh (2018) attempted two di�erent ways
of concatenating stocks. The first was horizontally and the second was by stacking the two-
dimensional tensors into a three-dimensional one. It was shown that the latter performed
better. The stocks would however need to be shu�ed in order to reduce overfitting.

42

References

Attigeri, G. V., M, M. P. M., Pai, R. M., and Nayak, A. (2015). Stock market prediction: A
big data approach. In TENCON 2015 - 2015 IEEE Region 10 Conference, pages 1–5.

Begam, S. (2020). Machine learning algorithms for predicting the stock market daily returns.
International Journal Of Multidisciplinary Research In Science, Engineering And Technology, 1.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. J. Mach.
Learn. Res., 13:281–305.

Bury, T. (2014). Predicting trend reversals using market instantaneous state. arXiv,
abs/1310.8169.

Chicco, D. and Jurman, G. (2020). The advantages of the matthews correlation coe�cient
(mcc) over f1 score and accuracy in binary classification evaluation. BMC Genomics, 21.

Christo�ersen, P. F. and Diebold, F. X. (2006). Financial asset returns, direction-of-change
forecasting, and volatility dynamics. Management Science, 52(8):1273–1287.

Cosenza, D. N., Korhonen, L., Maltamo, M., Packalen, P., Strunk, J. L., Næsset, E., Gobakken,
T., Soares, P., and Tomé, M. (2020). Comparison of linear regression, k-nearest neighbour
and random forest methods in airborne laser-scanning-based prediction of growing stock.
Forestry: An International Journal of Forest Research, 94(2):311–323.

Hiransha, M., Gopalakrishnan, E., Menon, V. K., and Soman, K. (2018). Nse stock market
prediction using deep-learning models. Procedia Computer Science, 132:1351–1362. Interna-
tional Conference on Computational Intelligence and Data Science.

Hoseinzade, E. and Haratizadeh, S. (2018). Cnnpred: Cnn-based stock market prediction
using several data sources. arXiv, abs/1810.08923.

Hoseinzade, E., Haratizadeh, S., and Khoeini, A. (2019). U-cnnpred: A universal cnn-based
predictor for stock markets. arXiv, abs/1911.12540.

Jang, G.-S., Lai, F., Jiang, B.-W., Parng, T.-M., and Chien, L.-H. (1993). Intelligent stock

43

REFERENCES

trading system with price trend prediction and reversal recognition using dual-module
neural networks. Applied Intelligence, 3(3):225–248.

Jimmy Ming-Tai Wu, Z. L. e. (2021). A graph-based cnn-lstm stock price prediction algorithm
with leading indicators. Multimedia Systems.

Kusuma, R. M. I., Ho, T.-T., Kao, W.-C., Ou, Y.-Y., and Hua, K.-L. (2019). Using deep learn-
ing neural networks and candlestick chart representation to predict stock market. arXiv,
abs/1903.12258.

Lever, J., Krzywinski, M., and Altman, N. (2016). Logistic regression. Nature Methods, pages
541–542.

Powers, D. (2015). What the f-measure doesn’t measure: Features, flaws, fallacies and fixes.
ArXiv, abs/1503.06410.

Reed, R. and Marks, R. J. (1999). Neural Smithing: Supervised Learning in Feedforward Artificial
Neural Networks. The MIT Press.

Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K., and Soman, K. P. (2017).
Stock price prediction using lstm, rnn and cnn-sliding window model. In 2017 International
Conference on Advances in Computing, Communications and Informatics (ICACCI), pages 1643–
1647.

Upadhyay, A., Bandyopadhyay, G., and Dutta, A. (2012). Forecasting stock performance in
indian market using multinomial logistic regression. volume 3, pages 16–19.

Wang, J., Xu, M., Wang, H., and Zhang, J. (2006). Classification of imbalanced data by using
the smote algorithm and locally linear embedding. In 2006 8th international Conference on
Signal Processing, volume 3.

44

Appendix A

Abbreviations

• LR: Logistic Regression

• kNN: k-Nearest Neighbors

• ANN: Artificial Neural Network

• DNN: Deep Neural Network

• CNN: Convolutional Neural Network

• RNN: Recurrent neural network

• LSTM:Long short-term memory

• MCC: Matthews correlation coe�cient

• OHLCV: open, high, low and close prices and trading volume

• Prev: Distance to price level of previous reversals

45

A. Abbreviations

Reversal
5Reversal
10

Reversal
15Reversal
20Reversal
25

shift-1
shift0

shift1
shift2

Figure A.1: Visualization of defined reversals (blue) and the pre-
dicted reversals (orange). A prediction confidence filtering was
made. The model predicted values between [0, 1] for every time step.
Out of the reversal event predictions (y>0.5), only the 65 percentile
were plotted.46

Appendix B

The profile of this thesis

Figure B.1: Weight on this thesis project

• Analysis: Preliminary studies, discussion, knowledge acquisition, method choice, tool
choice, problem specification, problem solving

• Application/Construction: design, implementation/construction, testing/evaluation

• Other things that are added to the degree project: time planning, meetings, report
writing, prepare and hold presentation as well as opposition

Table B.1: Division of labour between authors

Nicolo Ridulfo Li Zhu
Analysis 50 50
Design 50 50
Implementation/Construction 50 50
Testing/Evaluation 50 50
Report och presentation 50 50

47

	Introduction
	Problem
	Research question
	Outline
	Contributions

	Technical Background
	Related Work
	Baseline model
	Logistic Regression
	k-Nearest Neighbors
	Artificial Neural Network
	Forward propagation
	Backpropagation

	Convolutional Neural Network
	Long Short-Term Memory (LSTM)
	LSTM Cell

	Evaluation metrics

	Data
	Datasets
	Data retrieval
	Features
	Construction of training and test sets
	Defining reversal events
	Data characteristics
	Data imbalance

	Methods
	Data processing
	Sliding windows
	Normalization
	BatchNormalization

	Baseline model
	revLR
	revKNN
	revDNN
	revCNN
	revLSTM
	Evaluation

	Results
	Overview
	revLR
	revKNN
	revDNN
	revCNN
	revLSTM

	Predicting past reversals

	Discussion
	Definition of reversal
	Models
	Importance of distance to price level of previous reversals
	Window sizes and reversal sizes
	Predicting past reversals
	Strengths and limits

	Conclusion
	Future work
	Better dependent value
	Indicators
	Concatenating multiple stocks

	References
	Abbreviations
	The profile of this thesis

