

Department of Automatic Control

Shorten development time
of Functional Testing (FCT) in electronic

manufacturing with smart instruments

Niklas Gustafson

MSc Thesis
TFRT-6151
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2021 by Niklas Gustafson. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2021

Abstract

The development of electrical circuit boards is increasing and the time spent in the
development stage can be quite long. The thesis has tried to shorten the time spent
developing new electrical circuit boards, by first finding a common denominator
for efficiency losses in the development process and then implementing an example
solution. The problem identified was the lack of attention towards production test-
ing early enough in the development process. The testing equipment often comes as
an after though which delays the start of production. Since the product can not be
mass produced before quality assurance can be done using testing equipment, this
will lead to unnecessary time spent with products in development. Another problem
addressed in the thesis is the expenses of acquiring a testing system. Today’s stan-
dard for testing systems is both big and expensive and a better solution would be
beneficial.

To solve these problem the thesis purposes a solution using a micro controller
connected to a small analog to digital converter. This solution is a lot cheaper com-
pared to today’s standard and offer additional benefits described further in the thesis.
The drawbacks of loss of performance compared to the more expensive equipment
is also discussed.

To test said solution, three example implementations of the same smart instru-
ment was done and evaluated. The implementation was then evaluated both on the
possible time saved from using a smarter instrument compared to the same instru-
ment without the smart API implementation and the performance of each of the
three possible implementations.

The example implementation resulted in shorter development times and easier
interaction with the instrument. It also fulfilled most of the requirements set on a
smart instrument in the beginning of the thesis. Performance wise the implemented
example instrument was good enough for most production testing situations and is
therefore able to replace the more expensive versions for some applications.

3

Acknowledgements

Foremost, I would like to express my sincere gratitude to Mikrodust and everyone
at the office for all the help, access to equipment and guidance I have got during
the thesis. To be able to be at the office and get support when things were not going
smoothly was much appreciated. An extra thanks to Mats Iderup, Tobias Petersen
and Linus Hellman for all their efforts in helping me achieve a successful thesis.

I would also like to thank my handler and examiner, Johan Eker and Giacomo
Como for guidance in the directions of the thesis and support during the writing of
the thesis.

5

Contents

1. Introduction 9
2. Background 11

2.1 Need for testing equipment . 11
2.2 Product Development Cycle . 11
2.3 Functional testing platforms . 12
2.4 Need for smarter testing equipment 13
2.5 Smarter automatic test platform 14
2.6 Smart instrument . 16
2.7 Setup of a test sequence . 17

3. Method 19
3.1 Aim of the thesis . 19
3.2 Implementation of smart instrument 19
3.3 Evaluation of the implemented system 20

4. Example Implementation of a Smart Instrument 21
4.1 Problem description . 21
4.2 Project objective . 24
4.3 Nyquist Sampling Theorem . 25
4.4 Coding for micro-controllers and embedded systems 25
4.5 Micropython . 26
4.6 REPL . 27
4.7 STM32 . 27
4.8 Peripheral Interface . 29
4.9 Direct Memory Access . 31
4.10 Implementation Timeline . 31
4.11 Evaluating the API . 33

5. Result 37
5.1 Functionality of the instrument 37
5.2 Sampling capabilities using the API implementation 38
5.3 The API implication on development times 39

7

Contents

6. Discussion 40
6.1 Hardware limitations in the example instrument 40
6.2 Optimization of implementation code 40
6.3 Implications on development times 41
6.4 Performance of the example instrument 41
6.5 Use of Micropython for commercial use 42
6.6 Further work . 42

7. Conclusion 44
Bibliography 45

8

1
Introduction

Electronic devices are getting more and more common in every aspect of our lives.
The digitalization of products which formerly did not use any electronics is growing
at a rapid rate and there are no signs of the transformation slowing down anytime
soon. One example of this is the growth in sales of smart devices such as refrig-
erators, coffee makers and other household appliances. These products are using
electronics, such as micro-controllers, to add smart features and enable appliances
to connect to the internet. Two types of workloads have increased in response to this
phenomena, construction of the electronics boards located inside the devices and the
software development of said devices. By increasing the number of manufactured
circuits boards in the world, the demand for testing equipment is consistently high.
Today the testing equipment used is expensive, big and more difficult than neces-
sary to work with. If there was a smarter way to handle the increasing demand of
testing systems and make them cheaper, smaller and easier to work with, it would
benefit both the customers in lower prices but primarily the developing companies.

The thesis includes investigations of product development cycles and how a
smarter and more efficient testing system would have an impact on the development
times of new testing fixtures. The focus was mostly directed towards shortening the
setup times of test sequences and enable a smarter integration of automatic testing
systems. A smart device is often regarded as a device being able to connect remotely,
send and receive data, and make tasks more easily manageable. The thesis will then
investigate the possibility to use multiple smart instruments connected together and
therefore creating a smart system of devices. When investigating the possibility
of constructing a smarter testing system an implementation of a smart instrument
focused on the problem area was explored.

The implementation was focused on the programming of embedded controllers,
specifically for the purpose of analog-to-digital conversion and to attain a lower
setup time for each programmed micro-controller. This will include both getting
high-level code to run as efficiently as possible and interacting with low level pro-
gramming languages for better performance on the chip. Better performance was in

9

Chapter 1. Introduction

the thesis defined as less clock cycles or time to perform the same task. By using a
high-level programming language for writing board task specific code that utilizes
modules of a lower-level programming language to keep the performance high, the
thesis evaluated the possibility to speed up the configuration process of setting up a
analog-to-digital converter connected to a micro-controller.

The thesis was conducted in collaborations with Mikrosdust AB located in the
norther part of Lund in Sweden. Mikrodust is a small company consisting of around
15 employees and is currently expanding. The company was started in 2011 with the
aim to design and sell radio modules that could be used in a multiple of small remote
low-powered devices. Since then its business has evolved into including project
based consultant work and customized test fixtures for commercial circuit board
testing. The interest for the future of testing instruments and smarter testing platform
gives both parties an interest in collaborating to achieve a smarter testing instrument
and a more efficient way of developing and setting up smart testing platforms. By
having the guidance of a company currently active in the business a more realistic
view on how the functional testing platform scene operates. This also helps the
thesis to focus on the correct bottlenecks of the current standard and what could
potentially be improved up on.

10

2
Background

2.1 Need for testing equipment

The world is using more electronics every year and the production is steadily rising.
When circuit boards are being produced, the units needs to be tested to ensure their
functionality. One of the ways used to test circuit boards, are to manually measure
on pre-specified test points on the boards. The manual testing process can be time
consuming and costly. A person measuring a lot of test points on a board, will take
a long time and the equipment used can be expensive. Both multi-meters and oscil-
loscopes are commonly used and manually operated during small batch production
or prototyping. It introduces a lot of problems to manually test circuit boards when
the production volume increases. For example, a human occasionally makes errors
due to lack of attention to the task and will also take significantly longer time if
there are multiple measuring points on the board. As a direct consequence of the in-
creased number of manual hours, the salary expenses for the company will increase
linearly. Therefore, gains are to be made by automating the testing of commercially
produced boards that will be produced in large quantities. To analyze the develop-
ment of a testing fixtures impact on the total product development times, the current
industry standard will be introduced.

2.2 Product Development Cycle

During the development of a new product there are multiple steps below. Each prod-
uct development cycle is unique and what will be described here is a generalization
of the development of an electrical circuit board for an unspecified use case.

11

Chapter 2. Background

2.3 Functional testing platforms

Hardware
There are already a solution to the problem of manual testing described above.
Using a clam-shell like testing rig, which attaches testing needles onto the circuit
boards testing points. The attached instruments are measuring and evaluating each
test point using a test sequence. The testing instruments are arranged in 19 inch
racks under the testing fixture (see figure 2.1). This is seen as today’s manufactur-
ing standard and manual testing is kept to prototyping or really small batches were
setting up a functional test system would either be too expensive or time-consuming.

Figure 2.1 Displaying a test fixture with instruments inside a 19 inch rack.

As can be seen from the figure, the rack takes up a lot of space and is not
particularly portable to move around. Under the test fixture all the testing equipment
used for this specific case, can be observed. The equipment used is for example an
oscilloscope or similar instruments, which is attached to a computer that handles all
the testing sequences. The equipment is both expensive and takes up a lot of space,
but have the benefit of being precise and able to handle high speed measurements.
These testing rigs are considered the standard for circuit board production testing
today. Offering companies producing electrical products a more effective way of
testing the produced boards compared to doing so manually.

Software
To connect all the testing equipment and measuring instruments of a traditional
Functional Testing platforms, a program called TestStand can be used, which is one
of the most common automated testing platforms. TestStand is one of the most used
software for configuring an automated testing system and is provided by the com-
pany National Instruments. The program is only compatible with computers run-

12

2.4 Need for smarter testing equipment

ning windows as the operating system, and therefore testers running mac and Linux
are left out. Since software developers prefer to use different operating systems for
developing purposes, this is a drawback of TestStand. According to Statista the pref-
erence was, 2020, distributed as 60% Windows, 44% macOS and 50% Linux [n.a.,
2021a]. Noting that the percentages add up to more than 100% reflects that a lot of
software developers using multiple operating systems for development. by combin-
ing macOS and Linux more software developers prefer using another system than
windows. Solving this issue was not necessarily a requirement of the thesis but was
considered an added bonus.

2.4 Need for smarter testing equipment

When developing new electronic devices, the product cycle can be divided into four
stages: Research and development, ascent, maturity and decline. Research and de-
velopment are the first part of the technology life cycle path and it is during this
phase all the prototyping and product development is done. Ascent is the phase
where the product is starting to gain market shares and is introduced to the cus-
tomers. Maturity consists of the period where the product is well known and has a
high and stable demand. And lastly the decline phase when the product starts to get
irrelevant on the market and therefore loses shares of the market space.

Figure 2.2 Technology Life Cycle. Source: [Sahni, 2021]

During all the discussed stages of the technology life cycle, except the research
and development phase, the product is producing an income for the company (see
figure 2.2). The R&D phase is not only losing the company money but actually

13

Chapter 2. Background

costing them money, therefore, to be able to reduce the amount of time spent in this
stage would be highly beneficial. There are many things to focus on when trying to
shorten the R&D period of a products life cycle and the thesis mainly focused on
the last part of the process, namely testing.

Testing of a newly developed product is one of the key things which often is
forgotten during the development of the product. While development time of the
testing system is not as crucial if started at an appropriate time, it still affects the
available resources for product development. When the testing system is forgotten
and must be developed after the product is ready for production, every day spent
on constructing a reliable testing system cost money in terms of being stuck in the
R&D phase. If a more efficient way of developing test systems and a more modular
design was achieved, this phase could be shortened and therefore increase the profit
margins on products needing testing.

Another downside to the current system that would have to be solved with a
smart instrument, would be the possibility to easily configure and control the test-
ing equipment from a remote location. This would enable the programmers for the
testing sequence to be on a different site and not have to travel to the testing fa-
cility. This would not only save the travel times to and from different offices but
also enable a central unit responsible to setup a testing sequence remotely instead
of having multiple units spread across all areas needing testing equipment. It should
be noted that the current standard of using TestStand supports remote control of the
system. However, the process of doing firmware updates remote in the current sys-
tem is seen as complex and time consuming and therefore is an area where a smarter
approach could be implemented.

2.5 Smarter automatic test platform

To make the testing process more efficient, an automatic testing system could, as de-
scribed above, be used. By using a FCT device, see figure 2.1, to attach the connec-
tion for the oscilloscope and multi-meters, manual working hours can be reduced.
Today the standard is to use a full-scale oscilloscope in more advanced testing pro-
cesses. In a lot of testing situations, the equipment used are over-powered for the
precision needed by the testing sequence. This introduces a couple of drawbacks
by having bigger and more expensive equipment than necessary. By introducing
smaller instruments, all the instruments can be mounted inside the the testing fixture
instead of having them mounted under the fixture in a rack. This would significantly
reduce the space needed for a testing fixture and make it easier to move to another
location. By only using smart instruments inside the test fixture it would also enable
remote update of firmware updates and reconfiguration of the testing sequence. An
example use case would be a company with multiple factories spread around the
country, updating all their testing fixtures at once using a web interface. This would

14

2.5 Smarter automatic test platform

save considerable time compared to sending out an employee to update each rig
manually.

An example of a smaller design of a empty Functional Testing Platform can be
seen in figure 2.3 and 2.4.

Figure 2.3 Showing a smaller test-platform design open.

Figure 2.4 Showing a smaller test-platform design closed.

It consists of a clam-shell box which the circuit board to be tested is inserted

15

Chapter 2. Background

into. When the board is placed in the correct position inside the testing platform, the
lid closes to attach the testing needles to the boards testing points. After the lid is
closed, the testing sequence starts and transfers its results to an attached computer.
Depending on the testing results for the circuit board, either a pass or fail can be
given. Then the tested board can be removed from the testing box and be swapped
for a new board to be tested. The workflow is summarized in the picture below (see
figure 2.5).

Figure 2.5 Workflow for testing a circuit board using Mikrodusts’ testplatform

When designing a more automatic testing system many design and component
aspects has to be considered. The system must fulfill all the requirements for the
testing purpose and still be cheap enough to be a compelling option. Since a tradi-
tional oscilloscope is quite expensive, to find another way to measure with adequate
precision and speed would be beneficial. This is where the smart instruments de-
scribed above could be used as a substitute. Using the oscilloscope as an example
of a testing system which could be subsidized for a smaller and smarter alternative,
the use of a Micro controller unit and an analog-to-digital convert will be described
below.

2.6 Smart instrument

In an attempt to save space and cut down on cost, an micro controller unit and small
analog to digital converter could potentially be used instead of an oscilloscope. This
combination is significantly cheaper and smaller compared to a traditional oscillo-
scope and is easier to include in an embedded system.

This approach has some drawback and limitations, not present using an oscillo-
scope. A small micro controller will have limitations in both processing power and
available memory. To achieve optimum performance from a micro controller, it is
important to minimize the effect of these constraints. However, since the functional
testing platform is used to verify the production quality and not the products itself,
the extra performance present in the oscilloscope is in most cases unused.

16

2.7 Setup of a test sequence

2.7 Setup of a test sequence

With a rising demand on testing equipment test fixture companies needs to speed
up their setup time for new testing equipment. In an attempt to make the setup a
more efficient process the workflow of the setup will be described and evaluated.
The thesis focused on speeding up one part of the workflow to try and make it more
efficient.

Workflow of setup
The setup of a new testing box for a client can be split into the hardware and the
software setups. First the hardware will be setup and afterwards the software. These
are not done fully in a serial fashion, but done parallel and the described way is just
a generalisation.

Hardware During the setup of the hardware for the testing box a multiple of vari-
ables has to be taken into consideration. First and foremost, the box has to be large
enough to fit the circuit to be tested. The size is not only determined by the size of
the circuit board, but also needs to take how much testing equipment is needed to
fit inside the test box. If the required testing equipment does not fit inside the box
the testing requirements would not be met. When an appropriate box is chosen all
the necessary testing equipment is fitted inside the box and needles are position to
fit the testing points on the circuit board.

Software When all the hardware requirements are fulfilled and decided, it is time
to set up the software to run the test fixture. It starts by deciding what tests should
be done on each circuit and determine the error margin each test results can have.
After the specifications is decided, the software development can start. The software
consists of three parts, the configuration of all the testing instruments, the testing
sequence and the evaluation of the results. The first two part has to be done on
some kind of controller inside the test fixture and the evaluation part can be done
either inside the test fixture or on an external computer that is attached to the testing
system.

When using the program TestStand for configuring and setting up a test se-
quence, all the configuration is done on a windows computer connected to the in-
struments. The configuration of the instruments is sent from the attached computer
to the instrument which then modifies its parameters.

Even though a smart instrument could use a micro controller unit as described
above, this would not implicate a smart system. By using C-code to setup the test-
ing sequence the micro controller would act as a normal but smaller than standard
measuring instrument. If all the code for the micro-controller inside the test fix-
ture is written in C-code, it has to be compiled and flashed to the chip after each
modification of the code.

17

Chapter 2. Background

A block diagram of the workflow can be seen in figure 2.6.

Figure 2.6 Workflow for the development of the test fixture. Starting with hard-
ware and then software.

To speed up this process the idea of using a more high level programming lan-
guage to keep software development times as low as possible, was purposed in the
thesis as a solution. It also has to consider possible performance losses of using a
more high level programming language and weight them against the time saved in
development times.

18

3
Method

3.1 Aim of the thesis

The aim of the thesis was to shorten the time spent in the development stage of the
Technology Life Cycle and in result, increase the efficiency of product development
of electrical boards. To achieve these goals, a inefficient step in the current devel-
opment cycle had to be identified and improved. Development of new electrical
products can be severely different from company to company and it can therefore
be hard to point out one deficiency which exists in all development cycles. How-
ever, since nearly all circuit boards developed require an efficient way of ensuring
the production quality, the time spent setting up the testing equipment was chosen.
There are, as described in the background chapter, multiple steps when setting up
a functional testing platform for a new circuit board. The thesis has been mostly
focused on the software side of the implementation of new testing sequences, but
some benefits and drawbacks of change in hardware is also discussed. A couple of
goals for the increased efficiency was set of making it easier for the developer to
code, faster deployment times to the system and enable faster deployment of mod-
ified testing sequences. These are the goals the implemented system, described in
the next chapter, tried to solve.

In regard to the identified deficiency of the current development cycle, the aim
of the thesis was extended to evaluate in which capacity the use of smart instru-
ments would improve the way to create automated testing equipment. The use of
smart instruments to create testing fixtures will be discussed both in a time saving
perspective and the possible reduction in complexity involved remotely controlling
the test system.

3.2 Implementation of smart instrument

To test and validate the smart instrument idea, there was an implementation of a
smart instrument. This implementation was conducted in collaboration with Mikro-

19

Chapter 3. Method

dust AB located at Ideon. The instrument to be replaced by a smarter implemen-
tation was an oscilloscope. Its functionality was implemented using a Micro Con-
troller Unit (STM32) connected to an analog-to-digital(AD7606) converter commu-
nicating using a serial interface. The analog-to-digital converter was measuring the
input signal and transfers the sampled value to the microcontroller. To achieve the
goal of making the setup of a testing sequence less time consuming, an API used to
control the interaction between the analog-to-digital converter and the micro con-
troller was developed. The API enables the combination of the ADC and the MCU
to act in a more smart way compared to coding directly using C. The base of the
API was Micropython (see [n.a., 2021d]) and the API was implemented in three
different variations.

Due to the length of the needed implementation background and method, the
reader are referred to chapter 4 "Example Implementation of a Smart Instrument",
for a full implementation description and method. In chapter 4 all implementation
related information will be presented.

3.3 Evaluation of the implemented system

Finding an evaluation method for comparing the industry standard of big and ex-
pensive rack-based testing systems with a smarter and smaller solution is hard. By
just looking at specifications of smaller analog-to-digital convert it is quickly real-
ized that the sampling rate and precision of a small ADC compared to a full-sized
oscilloscopes is much lower. However, this does not necessary means the MCU im-
plementation is worse, if the performance requirements are satisfied with both so-
lutions. This makes the comparison between the oscilloscope and MCU implemen-
tation, in terms of performance, quite uninteresting. Instead, the implementation
was done in three variations, where all three would qualify as a smart instrument
implementation. These three were then be compared against each other, both in a
performance and practical point of view. For performance measure the maximum
sampling frequency was used. Since all three implementations used the same ana-
log to digital converter, the precision of the instrument was the same and therefore
irrelevant to use as an evaluation metric. The time a test sequence takes to code
is difficult to determine, since it varies depending on the coders experience in the
used language, but also from case to case basis depending on the complexity of the
project. To get an estimate of how much time the implemented solution would save,
the setup time was measured from finished code until it was deployed and running
on our test system.

20

4
Example Implementation of
a Smart Instrument

In this chapter a possible implementation of a smart instrument will be done. Three
different implementation methods will be included and evaluated against each other
in regard to usability as a smart instrument and ability to replace the current solu-
tion. First part of the chapter will inform the reader about needed information to
understand the implementation and the latter part will include the actual implemen-
tation idea. The results of the implementation and evaluation of the implementations
will be conducted in the results chapter.

4.1 Problem description

Mikrodust are constructing and selling test-fixtures, used for electrical boards pro-
duction testing. Since every board being tested are different, the testing sequence
has to be programmed from scratch for each testing platform. By using C for cod-
ing the test sequence, the setup times are quite long compared to using a higher level
programming language. The idea is to use different optimization methods, to main-
tain the highest possible performance using micropython instead of regular C code.
By enabling the use of a Python-like language, the setup times could be drastically
lowered and therefore also make the production time shorter. Another problem ad-
dressed is the possibility to update the test sequence without having to re-flash the
micro controller with new software, for every change made to the sequence.

Hardware
Pyboard V1.1 The Pyboard is a development board sold by the creators of mi-
cropython. It provides a good base for this project, since it is one of the development
boards for micropython. The pyboard consists of a STM32F4 microcontroller which
is the same STM32 family that mikrodust’s own board is using. It also has easy ac-
cess to most of the GPIO (General Pin Output Input) of the STM32 controller, with

21

Chapter 4. Example Implementation of a Smart Instrument

female connectors for dupont prototype cables. The board also includes a female
usb (universal serial bus) micro connector and four light emitting diodes to make
the testing of written code easier. It has 1024 kilobyte flash ROM and 192 kilobyte
RAM available to the user and a micro SD card slot in case more storage is needed.
The microcontroller comes preflashed with micropython and is therefore an easy
way of getting used to coding in micropython before compiling a custom version.
[n.a., 2021e]

AD7606-6 AD7606 is an analog to digital converter using 16 bits of precision
with a maximum measurement speed of 200 kSPS. The reference voltage can be set
to two internal voltage references of either 5 or 10 volts and is then able to measure
±5 or ±10 volts. The chip includes different ways of extracting the measured data
using either an SPI connection (Serial peripheral interface) or using a parallel bus
of either 8- or 16-bits at a time. The control of the AD7606-6 is done using different
input pins on the AD7606-6 chip. These input pins has to be pulsed low or high in
correct order to start an conversion and to be able to clock out the data that is being
measured.

Figure 4.1 Timing diagram used to start a sampling of data. Source: [8-/6-/4-
Channel DAS with 16-Bit, Bipolar Input, Simultaneous Sampling ADC 2020]

As seen in figure 4.1, there are five pins in the timing diagram provided by the
datasheet. Four out of this, all except BUSY, has to be controlled by the micro-
controller and toggled with the correct timing to work as expected. Also the setup
parameters such as reference voltage, oversampling rate or data order is set using
the input pins. [8-/6-/4-Channel DAS with 16-Bit, Bipolar Input, Simultaneous Sam-
pling ADC 2020]

Setup
The setup used was built around the Pyboard and it was connected to all other
compontents. The Pyboard was connected to the AS7606-6 using a SPI connection
for data extraction and GPIO pins to set the required control pins. The Pyboard is
also connected to an external computer using an usb cable. The usb connection is

22

4.1 Problem description

used for flashing new firmware onto the STM32F4 chip and to communicate with
the pyboard over a COM port. The port was used to enable the use of a REPL promt,
sending measured values and other communication with the external computer.

Figure 4.2 A block diagram showing the hardware setup communication.

All the connections necessary for the analog to digital converter to communicate
with the STM32 micro controller was made using project wires (see figure 4.3).
Also present in the figure are the potentiometer used to change the input voltage.
This voltage was the one being measured to test the functionality of the instrument.
Also used for creating a input voltage was a function generator, which could make
a variable input to make the test case more close to how the instrument is supposed
to be used.

Figure 4.3 A picture showing the hardware setup used.

23

Chapter 4. Example Implementation of a Smart Instrument

4.2 Project objective

The final objective of the project was to create an efficient and optimized API that
works with the described system. This would enable the use of micropython as a
programming language. By using micropython the API can work with dynamically
imported code and it includes a lot of functionality that will be useful for the pro-
grammer.

Optimization
The code used to create the API should be implemented in a way that it is as opti-
mized as possible. Since the API has to be able to be used from within micropython,
the optimization options are as described in the Theory section. The optimization
used in the project and later also compared are the viper emitter and c-module. The
reasoning for not using the native emitter is that its optimization is the same as the
viper emitter but with less optimization and attention of variable types. The baseline
used was un-optimized micropython code and should therefore indicate the possible
advantages of using the different methods for optimizing the APIs performance and
achieve higher sample rates.

API Requirements
To be able to use the analog to digital converter in an efficient way as possible, a
couple of functionality requirements on API is described below.

• First and foremost there needs to be an easy way to start up the commu-
nication and configuration of the analog to digital converter and establish a
connecting with the micro controller. This includes configuring the SPI bus
but also setting respective pins to either a high or low idle state to make sure
the analog-to-digital converter is set up in the preferred way.

• After the initial setup there has to be a way to configure the sampling to a
desired rate, number of channels used and precision of the returned values.
Therefore a configuration function of some sort should be implemented to
take care of sampling configuration.

• Preferable there should be two types of measuring implemented for testing
purposes. One where the user ask for the current value and one sample is
taken and returned. The other type of sampling functionality needed is the
continuous sampling which was configured using the configuration function.
This function should start a automatic sampling session which stores sampled
values in some sort of buffer.

• The buffers content should then be able to be retrieved through another func-
tion. This function should have a number of different options for which data
that is being returned to the user.

24

4.3 Nyquist Sampling Theorem

Apart from the functionality of the API there is also requirements for the ef-
ficiency of the code. The API should be easy to use and understand to make an
improvement in the time needed to setup a new testing sequence. It should also
not be unnecessarily heavy for the micro controller to run. The codes performance
will be determined by analysing maximal sampling speed in the automatic sampling
case and time from requested single sample to the sampling is retrieved. This will
give a fair representation on the codes efficiency in a realistic use case.

Impact on development times
The use of micropython have several benefits which will be discussed in the result
and discussion part of the report. One of the benefits that will be analysed further in
this report is the impact using micropython instead of C-code have on the develop-
ment times of a project. It will also include a explanation of the different workflows
developing in C-code compared to micropython and how this will effect develop-
ment times. Also, the impact of using a more high-level language (micropython)
compared to using a low-level language (C-code) will be discussed briefly.

4.3 Nyquist Sampling Theorem

To be able to reconstruct the continuous signal it has to be measured at a adequate
sampling rate. According to Shannon [Shannon, 1949], the signal has to be sampled
at a minimum frequency of two times the highest occurring frequency. This sam-
ple frequency is often referred to as the Nyquist frequency. By sampling at strictly
higher than twice the highest signal frequency, it is possible to perfectly reconstruct
the sampled signal. If the signal is sampled at exactly the Nyquist frequency the
sampled signal will have an accurate frequency, but the magnitude of the sampled
signal will be undetermined.

If sampled at a frequency under the nyquist frequency, an aliased signal will
occur in the frequency analysis.

Aliasing occurs when a signal is sampled below the Nyquist frequency. When
a signal is sampled below the Nyquist frequency, the frequencies above will be
folded over the Nyquist frequency and mirrored into the first Nyquist section. This
will result in inaccurate measurements and therefore it is important to make sure the
measurement frequency is high enough for the sampled signal.

4.4 Coding for micro-controllers and embedded systems

Coding programs for micro-controllers and embedded systems can be done using
a multiple of programming languages. The most common language used in micro
controller programming is C [Nahas and Maaita, 2012].

25

Chapter 4. Example Implementation of a Smart Instrument

4.5 Micropython

Micropython is an open-source project to port the functionality of Python 3.x to
different micro-controller boards and embedded systems equipped with a supported
cpu [GitHub - micropython/micropython: MicroPython - a lean and efficient Python
implementation for microcontrollers and constrained systems n.d.] Since Micropy-
thon is an open-source project, anyone can download and compile Micropython
making it possible to alter and modify the source code to suit specific needs of the
user. Micropython is written almost exclusively in C99 [n.a., 2021d] and is there-
fore portable to a lot of micro-controllers. Since it is an open-source project and the
developers are open to adapt new ports, the number of supported devices rise all the
time. If the required micro-controller is not supported the individual is free to make
their own port and share with other users of the same controller.

Optimizing code
By using the Python API instead of C to code for the micro-controller, the number
of required code lines are in most cases reduced. The reduction of needed lines of
code often results in easier and faster programming. The drawback of coding using
an high level coding language is using more clock cycles to achieve the same result,
compared to the same program written in a lower level language. This is due to
the high-level code needs to be converted to low-level instructions for the hardware
to understand. Another reason Micropython is slower than C-code is the fact that
C code is compiled while micropython, as normal Python, compiles at runtime.
The microcontroller then has to translate the code to machine instructions, in real-
time, instead of doing it before runtime. To counter this drawback of Micropython a
couple of optimazation solutions is purposed to the programmer [n.a., 2021c]. The
solutions consists of code improvment, such as avoiding use of certain storage types,
but also inculdes optimizers that precompile Micropython code. These precompilers
will be introduced below.

Native code emitter and Viper code emitter
The micropython library includes two types of code optimizer. Both options have
a lot in common and mostly comes down to how specific the code to be optimized
has to be. The native code emitter accepts almost any type of micropython code and
is therefore preferable if the code to be optimized is already written. In contrast,
the Viper emitter need a more specific micropython code to work. The programmer
has to be more precise in telling the emitter the type (uint, bool, string etc) and size
of each variable. By having this additional information the Viper emitter is able to
optimize the program even further compared to the Native emitter. There is a couple
more restrictions in using the viper code emitter, that does not occur in the the native
emitter. For example the Viper emitter can not use more than four arguments input
to a function and it can not have default values [n.a., 2021c].

26

4.6 REPL

Both emitters are precompiling the micropython code to machine instructions,
instead of using bytecode, and is therefore able to speed up the code execution.
According to micropythons website the speed up of the native emitter compared to
non-optimized code is two times and the viper emitter is even faster [n.a., 2021c].

There are cases where even optimised micropython code is not fast enough or
simply does not provide the required functionality. The next step would then be to
utilize a C-module, which is described below.

C-modules
Micropython is written using the C99 language and then compiled into an *.elf file
to be flashed onto the micro-controller. Since the code is available to everyone to
modify and recompile as they like, the micropython community suggest writing an
external C-module when the functionality and speed of optimized micropython code
is not sufficient. The module will then be compiled together with and included into
the compiled *.elf file. This inclusion will result in a modified version of micropy-
thon. The microcontroller then has to be reflashed with the new modified version of
micropython to be able to use the module.

MPY files
Micropython also has the possibility to use precompiled C code in external files. By
using an included *.mpy file generator, the coder can code a C program and compile
it to a *.mpy file. This *.mpy file can then be imported at run time and therefore the
microcontrollers firmware does not have to be reflashed [n.a., 2021f].

4.6 REPL

REPL stands for Read, Evaluate, Print and Loop. Repl is a command promt for
Python that are able to read input, evaluate the commands, print the results and then
loop all over. This is a great way to interact with Python to test new ideas or print out
results from code [What is a REPL? N.d.] The idea is to test out python functions to
see how to use them in your program or to print out results from your code to debug
and find errors. An example of a REPL terminal executing commands and printing
out returns is shown in figure 4.4.

4.7 STM32

The STM32 microcontroller is a chip developed and produced by ST Microelectron-
ics and could be used in a multiple ways. This is the target micro controller for all
implementations done during the thesis. The reason the ST32 is chosen is because it
is a commonly used chip in micro controller boards. Below, programs and libraries
important to the use of the STM32 microcontroller family will be explained.

27

Chapter 4. Example Implementation of a Smart Instrument

Figure 4.4 REPL terminal executing commands and printing out returns

STM32CubeMX
The STM32cubeMX is a graphical setup helper for the STM32 family of micro
controllers. It can be used to generate a code skeleton with correct pin layout and
setup parameters for the chosen STM32 microcontroller. [STM32 configuration and

28

4.8 Peripheral Interface

initialization C code generation 2020]

STM32Programmer
The STM32 programmer is used to interact with the micro controller chip. It can be
used to manipulate specific registers or erase all data in the chip. The programmer
is also used to flash the STM32 chip with new firmware. [STM32CubeProgrammer
all-in-one software tool 2019]

Hardware Abstraction Layer(HAL)
To make it easier and more straightforward for developers to use the STM32 fam-
ily, ST Microelectronics has created the Hardware Abstraction Layer (HAL) API.
The HAL API features the similar API across all STM32 micro controllers and it
is therefore easy to move code from one STM32 controller to another. The HAL
library features support fur all available peripherals on the STM32 boards. [De-
scription of STM32F4 HAL and low-layer drivers 2020]

Low-layer API (LL)
The Low-Layer API is also provided by ST Microelectronics and supports more
lightweight and closer to hardware API. The LL has less functionality and is using
register based operations which requires more understanding of the targeted micro
controller and therefore offers less portability between different microcontrollers
inside the STM32 family. The upside compared to the HAL library is better possible
optimization. [Description of STM32F4 HAL and low-layer drivers 2020]

4.8 Peripheral Interface

To get the micro controller to communicate with peripheral devices such as an
analog-to-digital converter, a communication interfaces has to be chosen. There
are many ways to communicate between devices and the two relevant and here
described are a parallel and serial approach.

Serial Peripheral Interface
Serial Peripheral Interface, SPI for short, is a synchronous communication interface.
Depending on the use case the interface needs anywhere from two to four wires
connecting the two components that needs to communicate. The four connections
used in spi is shown in figure 4.5. [Dhaker, 2018]

Chip Select The chip select line is used when there are multiple peripherals on the
same SPI bus. By changing it from high to low or low to high (depending on chip
select polarity) the SPI master can choose which SPI slave it is talking to. [Dhaker,
2018]

29

Chapter 4. Example Implementation of a Smart Instrument

Figure 4.5 Pin description for SPI.

Clock The clock is provided by the SPI master and is used to synchronously clock
data in and out of the SPI slave. The clock has two variables that needs to be taken
into account, clock phase and polarity. The clock phase describes on which edge the
data is sent namely on the falling or rising edge. The polarity selects the idle state
for when the SPI clock is not in use. [Dhaker, 2018]

Master Out Slave In (MOSI) The MOSI connection is used to send the data from
the master node to the slave. This is used by cycling the clock and when either
falling edge or rising edge (depending on clock phase) occurs, the value of the
MOSI pin is read by the slave chip. [Dhaker, 2018]

Master In Slave Out (MISO) The Miso pin works in the same manner as the
MOSI pin but in reverse. It sends data from the SPI slave to the SPI master on either
the rising or the falling edge of the master’s SPI clock. [Dhaker, 2018]

Parallel Interface
A parallel interface can be implemented using the same idea as SPI which is de-
scribed above. Instead of using a singular wire connection for MISO and MOSI, a
multiple of connections would be used to be able to send more data at each clock
cycle. This could for example be in size of 8 or 16 connections to send one or two
bytes at each clock pulse.

Configuration of peripheral pins
Since peripheral devices has different purposes and communication needs it is not
always necessary to include all of the connections in figure 4.5. For example in a
measuring device there might not be a need for the master to be able to send data
to the slave and therefore the MOSI pin could be excluded. The same idea could be
used in the case of controlling a led strip where the led strip might not have to be
able to send data to the controller and the MISO is not needed.

Another pin that is sometimes not necessary is the chip select pin. If there is
only one device connected to the SPI bus there is no need for the master to tell the
system which slave it wants to talk to and can be set to static high or low depending
on polarity of the slaves chip select pin.

30

4.9 Direct Memory Access

4.9 Direct Memory Access

Direct Memory Access, DMA, is used for a multiple of reasons such as unloading
the workload of moving data from the Central processing unit (CPU) and to be able
to transfer data even when the CPU is in a low power mode. The idea is to have an
external controller that are able to access to systems main memory and handle reads
and writes to specific parts of the memory. [n.a., 2021b] While it saves clock cycles
from being used to move data it also ensures that data flow is not interrupted by
interrupts that affects the running code. This enhances performance of the process
especially in a low-performance system where every clock cycle has to be used
efficiently to ensure maximum performance.

4.10 Implementation Timeline

Beginning of the project
The project began with different hardware compared to the one used in the final
version of the API implementations. The idea was to develop a API that would
work on Mikrodusts own custom board featuring a lot of similar components as the
final hardware. After a lot of testing and trying to get the custom card working, the
project change hardware to a pyboard and external analog-to-digital converter. The
switch to a pyboard was decided after the attempts to get a stable SPI line working
failed.

After switching to the described hardware, consisting of a Pyboard v1.1 and an
ad7606-6 analog-to-digital converter, the SPI worked as expected. Clean noice free
SPI signals was verified using an oscilloscope and a loop-back test. Then the de-
velopment of the API could begin after attaching everything together using project
cables.

Setting up communication between hardware components
The first objective, after the verification of the SPI signals functionality, was to
set up the measuring and communication between the Pyboard and the analog-to-
digtal-converter. The main task was to make sure the timings on all control pins
on ad7606-6 was pulsed low and high in correct order and with proper timings,
see figure 4.1. The setup of the timings went fairly smooth and the difficult part was
getting all polarities correctly setup and get all the pins toggling in the correct order.

Compiling micropython firmware and flashing the pyboard
The Pyboard V1.1 comes pre-programmed with micropython firmware. Therefore,
it was a great way to get used to micropython. However, there are a multiple of
reasons to compile and re-flash the board. Since micropython is still in beta stage
of its develompent cycle, it frequently gets new updates and added functionality. To

31

Chapter 4. Example Implementation of a Smart Instrument

get the latest software can be beneficial but has its drawbacks of potential changing
APIs. Therefore to be able to flash your preferred version is out most important for
commercial use. Another reason for compiling your own version of micropython
is that it enables import of external C-modules (described more in-depth below).
External modules not only enables the coder to create their own modules but also
including module written by others into their micropython firmware. Micropython
is written with being lightweight in mind and has therefore excluded functionality
the creators does not feel is being used by the general user. By including external C-
code the user can then change what is included in their version of the micropython
firmware. This creates a firmware that is lightweight but still includes the preferred
functionality of the coder. This also works the other way around where users can
disable functionality to make their version smaller in size.

During the project the STM32Programmer software was used to flash the board
with *.elf files. The files being flashed was produced using a C-compiler in a linux
system using makefiles and the make command.

Setting up the API
Setting up the API to work as expected was done three times: one with micropython,
one with micropython optimized with the viper emitter and one using an external
c-module.

Micropython The regular micropython implementation was the first one to be im-
plemented. Most of the API implementation was pretty straight forward, but timers
interrupt handling created some problems. This was due to how micropython han-
dles memory allocation during timer interrupts. The first version of used a variable
containing the most reason sampled value which was updated at each timer inter-
rupt. During the interrupt we also activated a flag telling the main program it had
a new value to add to the array containing samples. This works great if the only
thing the microcontroller is doing is sampling values. In this instance, however, the
microcontroller is suppose to not have to take care of saving samples in the main
loop. Since interrupts in micropython does not allow arrays to be modified or new
memory allocated, a bytebuffer was created and then used as a circular buffer to
store sampled values. After this change the API implementation was able to run
in the background (still interrupting the running code) and not needing any extra
coding in the main loop except setup commands.

Micropython with Viper Emitter A substantial amount of the micropython code
in the non-optimized version, could be re-purposed in this version of the API imple-
mentation. To use the viper emitter to optimize the relevant part of the code, namely
the sampling and memory handling, more board specific libraries had to be used.
Due to how the emitter work, the code has to contain more information of which
type and sizes the variables contains. This resulted in using library with non-existing
documentation and almost all information had to be retrieved from the source code.

32

4.11 Evaluating the API

The stm library is only shown as an example in the inline assembler and viper emit-
ter examples. This lack of documentation resulted in some own testing and trying to
find other projects using the library. After figuring out how all the needed imports
and registers worked, the API was successfully implemented.

External C-module The external C-module had to be implemented from scratch
since it is coded in C instead of micropython. This solves some of the complications
faced when implementing the micropython versions, but also introduces some other
problems. Since the C code is the language normally used to code for the stm32
micro controller family, there is a lot of available documentation provided by ST
Microelectronics. One example is the HAL library described in the theory section.
Setting up the correct timing for toggling of control pins was quite non-problematic.
The issues began when trying to use the SPI or clocks on the board. Since both the
C-module and micropython wants to decide how clocks and peripheral interfaces
should be implemented, there was some code collisions and unexpected errors. This
resulted in the need to modify micropython’s source files to allow for the C-module
to fully control the timer clocks and SPI interface.

4.11 Evaluating the API

When the API was implemented using all of the three described methods it was time
to test the APIs against each other. In this section the APIs will mainly be compared
using measured numbers and concrete results, while more in-depth discussion and
use-case based comparison will be left for the discussion part of the report.

API Description
The API consist of ten different function calls available to the user of the API. A
describtion and name of each function call will be described below.

• turn_on_adc()

The turn_on_adc function is used as a first step to use the adc for sampling
purposes. The function has the purpose of setting the correct idle values of
all the necessary pins and configuring the correct pins for SPI use. All the
required clocks for spi and GPIO are also enabled during this step.

• turn_off_adc()

The turn_off_adc is used when the analog to digital converter should no
longer be active. It makes sure the pin that have had its idle state set to a
specific value are being reset to its default value. It also uninitialize the timer
4 clock which is required so the timer stops counting and also stop triggering
the timer overflow interrupt.

33

Chapter 4. Example Implementation of a Smart Instrument

• set_sampling_parameters(channels, measurement_frequency, decimals)

In set_sampling_parameters most of the configuration of the continuous sam-
pling parameters. There are three parameters to be configured, namely: chan-
nels, measurement_frequency and decimals. The channels parameter requires
a list of the channels to be sampled. Since there are 8 channels available to the
target hardware, the channel numbers available are between 0 and 7. The mea-
surement_frequency are set as an integer and is specified in hertz. Depending
on the implementation method chosen, the maximum attainable frequency
varies. This will be presented and discussed in the result section of the report.
Lastly the preferred number of decimals has to be chosen, by setting the dec-
imals using an integer. The specified number of decimals will be used when
returning the result of the sampling with one of the latter described functions.

• set_size_of_buffer(buffer_size)

To be able to have variable buffer size the function set_size_of_buffer was
implemented. The implementation of this function also varies with which of
the three methods that was used. The buffer_size are specified as an integer
and is on a per channel basis. For example a number of samples of five would
result in a buffer of five samples per channel.

• start_sampling()

To start the continuous sampling of specified channels the start_sampling
function has to be called. The main functionality of the function is to start
timer 4 on the micro controller unit and specify its overflow interrupt func-
tion. By doing so the overflow interrupts will be triggered at the specified
intervals and a sampled will be saved.

• stop_sampling()

To stop the sampling from running by disabling the timer four from running.
The function also disables the the timer interrupt associated with the timer
and therefore prevents the sampling function from triggering if another appli-
cation starts the timer.

• get_buffer(only_new_data)

To retrieve sampled values from the buffer specified in function above two
function can be used. The get_buffer returns the full sampling buffer un-
less the only_new_data is set to true. When the attribute only_new_data is
set to true only the not already read data will be returned. Since the buffer
used are using a circular approach the full buffer will be returned, even if
only_new_data is set to true, when all the old values has been overwritten.

• get_past_nbr_samples(nbr_samples)

34

4.11 Evaluating the API

To return a specific number of samples the function get_past_nbr_samples
can be used. The function returns the number of samples specified by the
n_samples as an integer. In the same fashion as the set_size_of_buffer, the
number of samples are specified for each channel. For example by using the
function by setting n_samples to five, five values from each chosen channel
will be returned.

• get_analog_value(channel, decimals)
The API up until this point has mainly described ways to set up, start and re-
turn a continuous sampling of analog values. The get_analog_value function
provides the user of the functionality of sample once on selected channels
and directly returning the result. The attribute channel is specified as a list
of integers ranging from zero to seven to specified which of the eight chan-
nels to sample from. The decimals set the preferred number of decimals to be
returned on the sampled value.

• get_difference(channel1, channel2, decimals)
The function get_difference shares a lot of similarities with the get_analog_value
function. It samples only once and the accuracy displayed are set using
the decimals function in the same way as before. Where it differs from
get_analog_value is in the number of channels to be chosen and the return.
The channels have to be exactly two and is specified using the channel1 and
channel2 variables using integers between zero and seven to choose two of
the eight channels. The returned value are then calculated as channel1 minus
channel2.

Example of usage
To further give the reader an understanding on how to use the API can be used
an example micropython script where the API sets up an imaginary test sequence
will be described. It will outline all the functionality present in the API and give an
example on how it could be used.
import a d c d r i v e r
import t ime

c h a n n e l s = [0 , 3 , 5]
m e a s u r e m e n t _ f r e q = 1000
d e c i m a l s = 2
b u f f e r _ s i z e = 100

opens t h e adc
a d c d r i v e r . t u r n _ o n _ a d c ()

r e t u r n t h e sampled v a l u e o f c h a n n e l t h r e e
(i n d e x i n g from z e r o) w i t h two d e c i m a l s
one_sample = a d c d r i v e r . g e t _ a n a l o g _ v a l u e (2 , d e c i m a l s)

r e t u r n t h e sampled v a l u e o f c h a n n e l one minus c h a n n e l two w i t h two d e c i m a l s

35

Chapter 4. Example Implementation of a Smart Instrument

d i f f _ c h a n n e l _ s a m p l e = a d c d r i v e r . g e t _ d i f f e r e n c e (0 , 1 , d e c i m a l s)

c o n f i g u r e t h e adc , s e t s b u f f e r s i z e and s t a r t s t h e s a m p l i n g
a d c d r i v e r . s e t _ s a m p l i n g _ p a r a m e t e r s (c h a n n e l s , measu remen t_ f req , d e c i m a l s)
a d c d r i v e r . s e t _ s i z e _ o f _ b u f f e r (b u f f e r _ s i z e)
a d c d r i v e r . s t a r t _ s a m p l i n g ()

t ime . s l e e p (1 0)

S t o p s t h e s a m p l in g a f t e r 10 s e c o n d s o f s a m p l i n g
a d c d r i v e r . s t o p _ s a m p l i n g ()

R e t u r n s a l l t h e da ta c u r r e n t l y i n t h e b u f f e r s i n c e only_new i s s e t t o f a l s e .
l i s t _ o f _ d a t a _ 1 = a d c d r i v e r . g e t _ b u f f e r (F a l s e)

R e t u r n s t h e 10 l a s t samp les o f a l l c h a n n e l s
l i s t _ o f _ d a t a _ 2 = a d c d r i v e r . g e t _ p a s t _ n b r _ s a m p l e s (1 0)

c l o s e s t h e adc
a d c d r i v e r . t u r n _ o f f _ a d c ()

Evaluating the implication on development times
To evaluate the time being saved using the implemented API a baseline has to be
decided. Since the alternative approach to using the API would be to code every-
thing in C-code, compile it and flash the MCU, this will be used as a baseline for
the time saved per code testing. Further, a higher-level programming language will
result in a lower time spent programming [Parthasarathy, 2009], but this will not
be analysed further since that would require a more in depth data collection and is
therefore regarded as outside the scope for this thesis.

Therefore the time saved using the API, will be measured from the coding job is
done and until it is running on the Micro Controller. By doing this an estimation on
the time consumption of the two can be evaluated and compared against each other.

36

5
Result

The full API description can be found in chapter 4, "Example Implementation ofa
Smart Instrument" and only the functionality and performance of the three imple-
mentations will be presented here.

5.1 Functionality of the instrument

The instrument works as expected and is able to sample the correct voltages pro-
vided by the voltage source. The API that was implemented had the required func-
tionality in all three implementation cases and was able to fulfill the instruments
requirements stated in the method. The user interacts with the API only using mi-
cropython which enables dynamic imports of new code, dynamic change of existing
code and sending commands to the instrument using a REPL terminal. This imple-
mentation also enables the user to control the board from remote using a web-based
REPL terminal. The web-based REPL terminal requires a internet connected micro-
controller, which the pyboard is not, and therefore this possibility was not explored
further. Different level of performance, in terms of sampling rate, was achieved and
will be presented below. All the results will be discussed further in the discussion
part of the thesis.

An implementation which was made easier with the use of the API was imple-
mented and was able to produce the same experience of graphical representation of
the measured data. Here the API was used to set up the sampling and extracting of
the samples and then sent over a communication port to the host system. An ex-
ample of a signal measured using this approach and displayed on a host computer
using a python script can be seen in figure 5.1.

37

Chapter 5. Result

Figure 5.1 A measured analog signal transferred to the host computer.

5.2 Sampling capabilities using the API implementation

To compare the different implementations of the API for the example instrument,
the times and maximum sample frequencies were measures (see table 5.1). The
times were measured using an oscilloscope and was measured from start of one
sample to the start of the next one. As can be seen in the table, the C-module was
by far the fastest measuring the whole sampling period, but the SPI bus was only
relying on the SPI master clock frequency and was therefore the same on all three.
The SPI bus time is measured from the start to the end of the SPI clock pulse.

Single
measurement

time (us)

SPI bus
(us)

Theoretical
max frequency

(Hz)

Stable tested
max frequency

(Hz)
C-module 60 54 16666 16500
Viper-emitter 1230 54 813 800
Micropython 2220 54 450 450

Table 5.1 Measurements of the three implementations.

38

5.3 The API implication on development times

5.3 The API implication on development times

The times required to compile, flash and run C-code on the Micro Controller was
measured using an external manually operated timer on a phone.

C-code only
(mm:ss)

Using the API
(mm:ss)

Compile the code 1:20 not needed
Put MCU in DFU mode
and flash new firmware 0:31 not needed

Start up communication
program again 0:22 not needed

Run the code 0:07 0:07
Total time 2:21 0:07

Table 5.2 Times spent on runing C-code compared to using the API

As can be seen in table 5.2 there are a couple of steps which can be excluded
when using the API to implement a test sequence instead of using C-code. All the
steps that was timed was done on a low-powered laptop and should be seen as a
possible time saving measurement and not as absolute times.

39

6
Discussion

6.1 Hardware limitations in the example instrument

The example implementation of a smart system used a Pyboard and an external ana-
log to digital converter which was connected using project wires. This introduces
a couple of possible problems which may or may not be present in the final im-
plementation of a similar intrument. The problem using long project wires for high
speed data transfers is the increased capacitance and resistance in the circuit. When
trying to increase the SPI frequency to decrease the transfer speed, the clock signal
started to deform from its square-wave normal. This is due to the pyboard not being
able to drive the clock signal fast enough and therefore could be a potential problem
if driven at a faster rate. When connecting the two components on the same circuit
board, the clock signal will have less resistance and could potentially be driven at a
faster rate and therefore decrease the transfer time needed.

6.2 Optimization of implementation code

Choice of optimization
Using C or Micropython to implement the API Implemnenting the API using
micropython code is a fast and easier way to implement the API. There are however
some possible drawback with this approach. The micropython library is written
using C code and therefore the in an optimal case the micropython code will only
be as fast as C code. In most cases the C code implementation will be faster and
more efficient than the micropython implementation.

The viper emitter compared to the native emitter The project was implemented
using the Viper emitter and an external c-module. The reasoning behind the choice
of optimizations was based on advantages and diadvantages of each method. The
native code emitter was ruled out because it did not provide any benefits over the
viper emitter for our use case. The native emitter uses the same way of optimization
but requires less for example definitions of variable types which leads to an less

40

6.3 Implications on development times

effective optimization of the code. The perk of using the native code emitter instead
of the viper code emitter is that it offers more freedom of how the coder can write
their code. But since the projects code was fairly easy to implement inside viper
emitter, there was no need to utilize the extended freedom in the native emitter.

C-module compared to MPY files C-module and Mpy files are both written in C
code and the compiled so they have similar if not identical potential to speed up
the code during runtime. The diffrence of MPY files being imported from outside
the micropython firmware does however introduce some potential problems. Since
the original copy of micropython are trying to control a lot of the registers in the
microcontroller, a potential problem with using *.mpy files is that the compiler will
not pick up on certain conflicts in the code which would have been caught if the
module was compiled together with micropython.

C-module compared to an external file C-modules differ from the rest of the cod-
ing solutions for implementing the API in the sense that it from the coders point of
view looks like a native function. The native emitter, Viper emitter and *.MPY files,
are all located on the accessible memory of the micro controller and can therefore be
accessed by a third-party user. This could be preferable in an development stage of
the API since it gives the coder more insight in how the API works. When the API
is well documented and consider to be in its final state, it would be better from the
end users point of view if the API would behave like any other micropython func-
tion and have its files hidden from user. This is more important if Mikrodust decides
to let costumers code the test sequences themselves instead of having a mikrodust
employee code the sequence for them.

6.3 Implications on development times

In the result an example of a program being run on a pyboard using both only
C-code and micropython code. It was apparent that the testing of code written in
micropython instead of C was much faster saving a two minutes and 14 seconds per
test run of code. This could greatly affect the times developers spend testing code
during a development process. Also the ability to dynamically import code make
the process easier to do remotely as a full flash of new firmware isn’t necessary
when updating the test sequences. The ability to remotely control the instrument
would mean less time spent traveling back and forth between the development site
and production facilities and therefore not only save time in the programming step
but also on the overall maintaining of the system.

6.4 Performance of the example instrument

The performance of the implemented instrument was not as good as a full oscillo-
scope. A maximum sample frequency of 16 500 Hz is much lower that most full

41

Chapter 6. Discussion

sized oscilloscopes. This is not necessarily a problem though since most measure-
ments needed in production testing does not require such high sampling rate. In
addition to this there is a possibility to achieve a sampling rate of 200 000 Hz
(maximum for the analog to digital converter) if switching from serial to parallel
communication between the micro controller and the analog to digital converter.
Even though this is a lot faster than the current setup, it is still nowhere near the
oscilloscope standard. In regard to this it is important to know the requirements
of the system when implementing testing equipment and then choose suitable in-
struments that fulfill the requirements. Also by changing the hardware to a more
capable micro controller and analog to digital converter the sampling rate could be
increased further. This is a balancing act that has to be made during the development
of the testing system of choosing cheaper equipment that still full-fills the testing
requirements.

6.5 Use of Micropython for commercial use

Micropython offers a lot of potential for fast development of software to embed-
ded systems and micro controllers. Since it shares a lot of similarities with regular
python, many companies already have the expertise needed. While using micropy-
thon for prototyping or simpler finished products is a valid options. The drawbacks
of micropython for commercial use are more prominent when implementing more
complex programs or need to use more of the non-standard part of the micropython
library. The documentation for these use cases are severely lacking and sometime
non existing. When trying to find documentation on certain board specific libraries
or more advanced, the forums explained to either try to understand the source code,
find someone else who already implemented something using the preferred library
or sometimes just saying it exists but have never been documented anywhere. The
developers are open with the project being in a BETA stage of the development
proccess. This also implies that the micropython API could change over time and
therefore old code could start to be non-functioning. This could introduce unwanted
problems for a company wanting to use micropython for commercial use. However,
since the micropython firmware is flashed onto the micro controller chip, the com-
pany can choose to use an earlier version of micropython for their boards to maintain
consistent APIs and functionality, with the drawback of missing out on new features
and bug fixes.

6.6 Further work

Smart testing systems
The implemented smart instrument is only one small part of building a smart testing
system. To be able to call the system smart a more complete ¨solution would be

42

6.6 Further work

needed. By implementing a multiple of these instruments and connecting them in a
smart way to be able to interact with them over internet or similar would be one of
the key components to easier manage several systems from a remote location. By
having the code being dynamically imported onto all testing equipment no physical
interaction with the device to set it into firmware update mode would be required.
Instead all the testing scripts could be transferred over internet onto the instruments
internal memory and then being run using commands.

This could even enable a drag and drop functionality where the tester does not
have to interact with any code and could setup the whole testing process using a
graphical interface.

Implementation of example instrument
All the different approaches has their pros and cons. In the case of the different
versions of micropython implementations there is not to much further work to be
done. With the C-module there is some future work to be done. To make sure the
micro controller is being used to its full potential the DMA should be implemented
and used by the API. This would enable the Micro Controllers processor to do
additional work while the SPI transfers the sampled data to the memory of the MCU.
Since the SPI signal is 54 us of 60 us of the sampling period in the c-module case
90% of the sampling time the processor is used to only transfer data which could
be handles by the integrated DMA controller. This would increase the possibility of
including more smart features without hindering the maximum sampling frequency.

To further increase the potential maximum sampling frequency a parallel inter-
face could be used instead of the Serial Peripheral Interface. This would enable the
clock to stay at the same frequency as before but by increasing the number of sent
bits per clock cycle from one to for example sixteen the transfer speed would in-
crease with a multiple of sixteen. Since as stated above the SPI transfer is 90% of
the sampling period using the C-module implementation, by increasing the trans-
fer speed by a factor of sixteen the overall sampling frequency could potentially
be increased by over fourteen times. This would give us a theoretical sampling rate
of 231 KSPS (kilo samples per second) and therefore be able to run the analog to
digital converter at full speed without the SPI being a bottleneck.

Also when the c-module is transferred over to the final hardware system as much
as possible should be converted from using the HAL library to the LL library to
optimize the code even further, this was not desirable during the project since it was
not done on the final hardware. Since the LL system is specific to each STM32 chip
and the pyboard and the final target system does not share the exact same chip, this
was not implemented.

43

7
Conclusion

The product development cycle has been analyzed and one problem area in the
end of the R&D phase was targeted. The thesis was able to solve part of the prob-
lem, by shortening the time spent researching and developing a testing platform for
new products. Also the ease of use was discussed and improved compared to the
baseline. Combined this results in less time spent waiting for the test fixture to be
developed.

The implemented solution was an example of a smarter testing instrument,
which could be used to construct a smarter testing system. The possibility to use
the implemented instrument or similar instruments has been discussed and both the
pros and cons of using said system has been analysed. The purposed system has
shown to have a positive impact on both the size of the overall system, but also the
development times of setting up a testing system for new products. The same level
of performance as the instrument to be replaced by the example implementation
was not achieved, but was to be expected. In most scenarios the loss of performance
has little to no impact of the usability of the instrument, since the measured signals
in production quality testing does not require higher performance than the imple-
mented system can deliver.

Most of the goals with the thesis was reached and even tough not everything
desired in a smart testing instrument was implemented, the potential of said system
was shown and demonstrated.

44

Bibliography

8-/6-/4-Channel DAS with 16-Bit, Bipolar Input, Simultaneous Sampling
ADC (2020). Tech. rep. https://www.analog.com/media/en/technical-
documentation/data-sheets/ad76067606−67606−4.pd f .

Description of STM32F4 HAL and low-layer drivers (2020). Tech. rep.
https://www.st.com/resource/en/usermanual/dm00105879 − description −
o f − stm32 f 4−hal −and − ll −drivers− stmicroelectronics.pd f .

Dhaker, P. (2018). “Introduction to spi interface”. URL: https://www.analog.
com / media / en / analog - dialogue / volume - 52 / number - 3 /
introduction-to-spi-interface.pdf.

GitHub - micropython/micropython: MicroPython - a lean and efficient Python im-
plementation for microcontrollers and constrained systems (n.d.). URL: https:
//github.com/micropython/micropython.

n.a. (2021a).
operating systems for software development worldwide 2020 | statista. URL:
https : / / www . statista . com / statistics / 869211 / worldwide -
software-development-operating-system/ (visited on 2021-05-18).

n.a. (2021b). Direct memory access | microchip technology. URL: https : / /
www . microchip . com / en - us / products / microcontrollers - and -
microprocessors / 8 - bit - mcus / peripherals / core - independent -
peripherals/direct-memory-access (visited on 2021-05-04).

n.a. (2021c). Maximising micropython speed — micropython 1.15 documentation.
URL: http://docs.micropython.org/en/latest/reference/speed_
python.html (visited on 2021-05-04).

n.a. (2021d). Micropython - python for microcontrollers. URL: http : / /
micropython.org/ (visited on 2021-05-04).

n.a. (2021e). Micropython store. URL: https://store.micropython.org/
product/PYBv1.1H (visited on 2021-05-04).

45

Bibliography

n.a. (2021f). Native machine code in .mpy files — micropython 1.15 documentation.
URL: http://docs.micropython.org/en/latest/develop/natmod.
html (visited on 2021-05-04).

Nahas, M. and A. Maaita (2012). “Choosing appropriate programming language
to implement software for real-time resource-constrained embedded systems”.
DOI: 10.5772/38167. URL: http://dx.doi.org/10.5772/38167.

Parthasarathy, B. (2009). “International encyclopedia of human geography”. DOI:
10.1016/B978-008044910-4.00180-2. URL: https://doi.org/10.
1016/B978-008044910-4.00180-2.

Sahni, S. (2021). How technology life cycle can give first-mover advantage? - greyb.
URL: https://www.greyb.com/technology-shifts-can-give-first-
mover-advantage/ (visited on 2021-05-18).

Shannon, C. (1949). “Communication in the presence of noise”. Proceedings of the
IRE 37:1, pp. 10–21. DOI: 10.1109/jrproc.1949.232969. URL: https:
//doi.org/10.1109/jrproc.1949.232969.

STM32 configuration and initialization C code generation (2020). Tech. rep.
https://www.st.com/resource/en/databrie f/stm32cubemx.pd f .

STM32CubeProgrammer all-in-one software tool (2019). Tech. rep.
https://www.st.com/resource/en/databrie f/stm32cubeprog.pd f .

What is a REPL? (N.d.). URL: https://codewith.mu/en/tutorials/1.1/
repl.

46

Document name

Date of issue

Document Number

Author(s) Supervisor

Title and subtitle

Abstract

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

