
“output” — 2021/10/4 — 22:42 — page 1 — #1

Automated Layout Porting and Optimization
of digital designs

Karthik Srinivasan Shekar
ka7245sh-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Academic Supervisor: Pietro Andreani

Supervisor: Babak Mohammadi

Examiner: Erik Larsson

October 4, 2021

“output” — 2021/10/4 — 22:42 — page 2 — #2

© 2021
Printed in Sweden
Tryckeriet i E-huset, Lund

“output” — 2021/10/4 — 22:42 — page i — #3

Abstract

The aim of the thesis is to investigate and implement an algorithm that can au-
tomate the porting of the layout from one technology node to another technology
node. The layout optimization of any design block can be implemented for bet-
ter performance. The primary task of the project is to develop a tool that can
optimize and port the complete layout design that reduces the time and effort of
manual work. The optimization algorithm is tested for each block of the design
and nearly 90% of the design is DRC clean. The porting of any design blocks is
also implemented and it has been tested for any DRC issues. By modifying the
length and width of the design blocks using the tool, the analog layout can be
generated in less time based on the design requirements. For each block of design,
the pitch distance between the two poly-silicon was also modified so that we can
generate the layout of the design for different process nodes.

i

“output” — 2021/10/4 — 22:42 — page ii — #4

ii

“output” — 2021/10/4 — 22:42 — page iii — #5

Popular Science Summary

More revolution is happening in 21st century with technological innovation, ev-
ery human being is connected one way or other in latest technology evolution.
We need to learn the concept of new technology and practicing the knowledge in
a meaningful manner to provide better support for the organization and uplift-
ing the individual standard of living through technological means. According to
Moore’s law, the number of the transistor is doubled every 18 months. so the
manufacturing of the fully custom IC is not realistic. Hence most of the IC man-
ufacturing has to be automated to reduce the workload of the manual work hours
and to release the product soon to the market. As the complexity increases the risk
of manufacturing process variations is more likely to affect the system functionality.

The digital design elements such as standard cells are used to implement the
fundamental logic gates such as AND, XOR, NOR, OR into larger hardware
blocks that are used to build a fully custom IC. Every IC has smaller digital
blocks as standard cells and it is very crucial to optimize these elements for better
design metrics such as power, performance, and area. Optimizing these blocks
manually is a very tedious task and it takes thousands of work hours to design.

In this thesis, an algorithm is developed to optimize the layout by the length,
width, and pitch modification and design the layout based on the design require-
ments. Also implemented compiler to port the memory design for different tech-
nology as it saves a lot of manual work. The approach is designed in a way such
that a minimal amount of technology-specific information is needed while still pro-
ducing an efficient layout. Since the design requirements vary from time to time,
these automation scripts are used to extract the desired layout in seconds and save
a large amount of labor cost and time.

iii

“output” — 2021/10/4 — 22:42 — page iv — #6

iv

“output” — 2021/10/4 — 22:42 — page v — #7

Table of Contents

1 Introduction 1
1.1 Background . 2
1.2 Project aim . 2
1.3 Thesis goals . 3

2 Theoretical Background 5
2.1 Introduction to VLSI . 5
2.2 Integrated Circuits . 7
2.3 Read-Only Memory . 10
2.4 Static Random Access Memory and Standard Cell 12
2.5 Analog Layout Design: Bottleneck in the Design Flow 16

3 Layout Modification and Optimization 21
3.1 Length Modification . 22
3.2 Pitch Modification . 26
3.3 Width Modification . 29

4 Layout Porting 33
4.1 Database Creation . 36
4.2 Porting the Layout . 37

5 Conclusion 41
5.1 Future Works . 42

References 43

v

“output” — 2021/10/4 — 22:42 — page vi — #8

vi

“output” — 2021/10/4 — 22:42 — page vii — #9

List of Figures

2.1 Integrated Circuits Die [23] . 5
2.2 VLSI Design Implementation flow 6
2.3 Integrated Circuit [22] . 7
2.4 The Cross-Section view of NMOS [24] 8
2.5 The Layout view of the transistor with Source(S), Drain(D),and Gate(G) 9
2.6 The Schematic of NAND logic gate 9
2.7 The Block Diagram ROM Cell . 10
2.8 The Internal Structure Components of ROM cell 11
2.9 6 Transistor SRAM bit cells . 12
2.10 Memory array matrix architecture 13
2.11 Standard Cell NAND Gate Schematic and Layout 14
2.12 The Mixed Signal SOC [31] . 16
2.13 The Full Custom design flow [32] 17
2.14 The Automation Based Design Flow Model 18
2.15 The Layout Performance Evaluation model 19

3.1 The Layout Modification input GUI 21
3.2 The Input Standard Cell Layout . 23
3.3 The Algorithm flow of Length Modification 24
3.4 The Output Length Modified Layout 25
3.5 The Algorithm flow of Pitch Modification 27
3.6 The Output of Pitch Modified Layout 28
3.7 The Algorithm flow of Width Modification 30
3.8 The Output of Width Modified Layout 31

4.1 The Input Data GUI Application . 33
4.2 The Design Flow of Layout Porting 35
4.3 The Sample layout of Porting Technology 36
4.4 The Input layout to be Ported . 36
4.5 The Output of the Database Creation (Size are normalized) 37
4.6 The Length and Width Modified Layout 38
4.7 The Modified Layout after Database creation 39
4.8 The Final Output of the Ported Layout 39

vii

“output” — 2021/10/4 — 22:42 — page viii — #10

viii

“output” — 2021/10/4 — 22:42 — page ix — #11

List of Tables

2.1 List of Semiconductor scale and Transistor count.[6] 6

4.1 Length and Width value to be modified (Size are normalized). 37

ix

“output” — 2021/10/4 — 22:42 — page x — #12

x

“output” — 2021/10/4 — 22:42 — page 1 — #13

Chapter 1
Introduction

The increasing complexity of the Integrated Circuits(IC) has paved the way for
more advanced developments in recent years. Since the complexity of each devel-
opment is increased, Electronic Design Automation (EDA) has been subject to
research in recent years. Before the development of EDA, all the tasks were imple-
mented by manually laid out. The basic concept was to use reliable, low cost,and
relatively low technology IC processes and pack a large number of projects in a
wafer in a short duration.

To device, an complex digital circuits functionality in current IC, Register
Transfer Level (RTL) language is commonly used. The RTL uses registers as in-
put networks and transistors as switching devices. It provides a high-level abstrac-
tion of the hardware design and the designer uses Hardware Description Language
(HDL) to code the behavioural design with low-level digital circuits components.
Once the behaviour code is implemented, then it is interpreted through the synthe-
sis process that realizes the functionality using the logic gates from the technology
library.

The Standard cells are the interconnected structure of the transistor that pro-
vides the functionality of boolean logic functions such as AND, OR, inverters. The
initial design of the standard cells are developed at the transistor level using the
netlist. The netlist file consists of the transistor information, connection,and cor-
responding ports. We can use SPICE to simulate the netlist behaviour by running
different analysis like transient, DC,and AC analysis. The results of the simula-
tion give the overall idea of the power consumption, propagation delay,and leakage
parameters.

A good layout design lies in the way its visual elements or polygons are or-
ganized and placed to each other. Analog layout design also impacts the manu-
facturability and reliability of the design. The Layout porting, modification,and
migration for each digital design elements such as standard cells is a more time-
consuming task when it is done manually.

For each process technology, manually redesigning is a very difficult and tedious
task. In addition to this, the designer must also abide by the technology-specific
design rules. The vast amount of parameters and constraints to consider forces
the designer to employ automation using an optimal algorithm.

1

“output” — 2021/10/4 — 22:42 — page 2 — #14

2 Introduction

1.1 Background

As the number of transistor in a chip will double for every two years as stated
by Gordon Moore, has been one of the most crucial and revolutionary law that
improved the market for the semiconductor industry. The demand for better
performance, power reduction and cost-effective and compact devices have been
driving the semiconductor industry to change from micrometer scale to nanometer
range in recent years. The size of the transistor is extremely small in 5nm range
and it has been further scaled down for better design metrics, [1].

System on Chip (SoC) integrates most of the components of the electronic
system. These components include a Central Processing Unit (CPU), memory
blocks, input/output ports. For the higher performance of the SoCs, it is paired
with dedicated and physically separate memory chips. An SoC integrates a micro-
controller, microprocessor, and several processor cores such as GPU, peripheral
circuits, and memory. SoCs are rising to prominence in the embedded systems
market. More tightly integrated computer system designs improve performance
and reduce power consumption, as well as semiconductor die area than multi-chip
designs with equivalent functionality. Designers must make practical trade-offs in
performance, power consumption, and die area, or PPA, [12], in virtually every
SoC implementation.

It is important for design teams to choose the right embedded memories and
logic library IP for their SoC designs. This high-performance functionality must
work seamlessly together in a single integrated device and operate with the lowest
possible power consumption to preserve battery life all at a cost that is economical
enough for the consumer market. The trend of memory utilization in typical
SoC shows the increasing importance of memory. Memory currently occupies a
majority of SoC and the utilization is above 70%. Due to the high utilization of
memory, it becomes further important to ensure its functionality and improve the
Power Performance Area (PPA) of the memory layout design.

1.2 Project aim

The main objective of this thesis is to design the layout automatically by reduc-
ing the thousands of hours spent on manual design. To evaluate the performance
of the design, we need to compare the area and the speed of the digital design
elements with the industry-standard alternative. The main goal of this project is
porting the layout to different technology and process nodes. This compiler will
help the designer to reduce the time, labor cost and generate the layout based on
the design requirements.

The setup for the layout automation is in place and it can generate all digital
design elements with ease, but the design has its limitations that can be addressed.
When designing the layout of the digital design elements, we need to consider the
design parameters like leakage, area, and performance of the cell. There is always a
trade-off in optimizing the design for each parameter and the designer must abide

“output” — 2021/10/4 — 22:42 — page 3 — #15

Introduction 3

by all the specific design rules in each technology.

The layout of the memories and standard cells are optimized based on the
design requirements. The layout is modified by the length, width, and pitch of
the polygons in each technology layout cells. The second task of the thesis is to
generate the layout of design layout blocks from one technology node to another
technology node. By generating the ported version of the layout, it will reduce
the hours of manual works and minimize the turnaround. The layout is generated
automatically using the GDSPY module, [16] in python and the design is 90% DRC
clean. Python was chosen as the tool for developing an algorithm and automate
the flow.

1.3 Thesis goals

Chapter 1. Introduction This chapter describes the main objective of the
thesis and why it is important to develop an EDA tool in the current scenario.
Chapter 2. Theoretical Background: In this chapter, all the required back-
ground information required for the task is explained and the algorithm used for
design is also discussed.
Chapter 3. Modification of the layout: In this chapter length, width, and
pitch modification of the layout and implementation methods are explained.
Chapter 4. Porting of the layout: In this chapter porting of the standard
cells and memories are implemented for different technologies and implementation
methods are explained.
Chapter 5. Conclusion: Discuss the final results of the tasks and final thoughts
about the thesis and future works.

“output” — 2021/10/4 — 22:42 — page 4 — #16

4 Introduction

“output” — 2021/10/4 — 22:42 — page 5 — #17

Chapter 2
Theoretical Background

Figure 2.1: Integrated Circuits Die [23]

2.1 Introduction to VLSI

About 40 years ago, the MOS Integrated circuits technology integrated nearly less
than 10,000 transistors in a chip, this paved the way for the VLSI Design of the
chips with more than thousands of transistors in a single chip [29]. Subsequent
advancements added more transistors as individual functions or systems were in-
tegrated over time. The first integrated circuits had only a few devices as many
as ten diodes, transistors, resistors, and capacitors, making it possible to fabricate
one or more logic gates on a single device known as small-scale integration (SSI),
improvements led to devices with hundreds of logic gates, known as medium-scale
integration (MSI). Further improvements led to large-scale integration (LSI), i.e.
systems with at least a thousand logic gates as shown in table 2.1.

Current designs use extensive design automation and automated logic synthe-
sis to layout the transistors, due to higher levels of complexity in the resulting
logic functionality. Certain high-performance logic blocks like the SRAM (static

5

“output” — 2021/10/4 — 22:42 — page 6 — #18

6 Theoretical Background

random-access memory) cells are still designed by hand to ensure the highest ef-
ficiency. Structured VLSI design is a modular methodology originated for saving
microchip area. This is obtained by the arrangement of rectangular macro blocks
which can be interconnected using the wiring. In the early 1980s, the methodology
lost its popularity because of the advent of placement and routing tools wasting a
lot of area by routing because of the progress of Moore’s Law, [2].

Name Year Transistor count
small-scale integration(SSI) 1964 1 to 10
medium-scale integration(MSI) 1968 10 to 500
large-scale integration(LSI) 1971 500 to 20,000
very large-scale integration(VLSI) 1980 20,000 to 10,00,000
ultra-large-scale integration(ULSI) 1984 10,00,000 and more

Table 2.1: List of Semiconductor scale and Transistor count.[6]

Figure 2.2: VLSI Design Implementation flow

The design flow of the VLSI chip has three stages namely behavioural, logic
circuit, and layout implementation, [4] as shown in figure 2.2, At each stage of
the process flow the verification is to be performed at the end of the stage. The
development of the design flow is an iterative and repetitive process.

“output” — 2021/10/4 — 22:42 — page 7 — #19

Theoretical Background 7

Behavioral representation is the first stage of the design flow and it is important
to specify the functionality of the device and how it will communicate with the
other blocks. The design architecture is planned based on the ASMD chart and the
flow is implemented using the hardware description languages such as Verilog or
VHDL to define the behaviour of the device. After the HDL codes are successfully
implemented and simulations are verified , the functional blocks from the standard
cell libraries are used to synthesize the behavioural representation of the design
into logic circuit implementation. After the design is verified, the gate-level netlist
is generated and it will be used for the layout development of the complete design.
The final stage is the physical implementation of the design. The process starts
with floor planning where the pads and routing areas of the chip are specified.
Once the building blocks are arranged properly at the best locations to obtain
the optimized design, this process is called placement. After the placement of the
blocks is completed, the routing process is performed to interconnect the building
blocks of the design.

The logic gates that are used to build the complete design are commonly re-
ferred to as standard cells. These are small logic blocks that implement commonly-
used functionality such as AND-gates, OR-gates, and MUXs. These cells are du-
plicated and frequently used across the chips. Thus the same standard cell is used
for 10000 instances that would have a significant waste in an area that could have
been used for more logical implementation.

2.2 Integrated Circuits

An Integrated Circuit has a set of electronic devices in a semiconductor die ma-
terial made of silicon. The chip contains a large number of transistors and logic
gates that integrate to form smaller circuits, have faster performance, and are
less expensive than the discrete electronic components. ICs are now used in all
electronic equipment and have revolutionized the world of electronics.

Figure 2.3: Integrated Circuit [22]

“output” — 2021/10/4 — 22:42 — page 8 — #20

8 Theoretical Background

Integrated Circuits are made by technological advancement in metal oxide
semiconductor device fabrication. ICs have two main advantages cost and perfor-
mance. Cost is low because the chips and all the components are printed as a unit
by photo-lithography process rather than constructing one transistor at a time.
Performance is high because the IC’s components switch quickly and consume less
power because of their small size. The main disadvantage of ICs is the high cost of
manual work and the time are used to design them. The initial cost is high and the
ICs are commercially viable when the production of the chips in the volume is more.

Almost all modern IC chips are metal–oxide–semiconductor (MOS) integrated
circuits, built from MOSFETs (metal–oxide–silicon field-effect transistors) made
it possible to build high-density integrated circuits, [30]. In contrast to bipolar
transistors which required several steps for the p–n junction isolation of transistors
on a chip, MOSFETs required no such steps but could be easily isolated from each
other. In Figure 2.4 The cross-section of the n-type Metal Oxide Semiconductor
and p-type Metal Oxide Semiconductor is used to develop logic in an IC. For an
analog designer, the layout of the design is seen as a topological view, where all the
polygons are viewed as layers. The layout view of the transistor is shown in figure
2.5, thus the voltage is applied in the gate of the transistor, the path between the
source and drain becomes conductive, similarly, for ground potential, the path will
be resistive.

Figure 2.4: The Cross-Section view of NMOS [24]

Complementary Metal Oxide Semiconductor (CMOS) is used to design an IC,
it is built using the NMOS and PMOS transistors. The source of the PMOS net
is connected to the supply voltage and the source of the NMOS net is connected
to the ground potential. The drain of the two transistor nets is connected to the
output of the logic. Since one of the nets is completely open that gives the CMOS
design for low static power consumption. This is the main reason for using CMOS
design in many building blocks of the logic in Integrated Circuits.

Figure 2.6 shows the schematic view of the NAND gate, If the input A and

“output” — 2021/10/4 — 22:42 — page 9 — #21

Theoretical Background 9

S G D W

L

Figure 2.5: The Layout view of the transistor with Source(S),
Drain(D),and Gate(G)

B is set to logic ’1’, the NMOS transistor will be conducting and the PMOS will
be open. Thus the output voltage will be grounded due to the NMOS conducting
path. If the input of A and B are set to logic ’0’, the PMOS transistor will
conduct and the NMOS will now be open. Thus the output voltage will be the
supply voltage with maximum conducting potential.

VSS

VDDVDD

A

A

B

B

Z

Figure 2.6: The Schematic of NAND logic gate

“output” — 2021/10/4 — 22:42 — page 10 — #22

10 Theoretical Background

2.3 Read-Only Memory

Read-only Memory is a type of non-volatile memory used in all electronic devices.
The Data stored in ROM cannot be modified once the memory is manufactured.
These memories are used to store the software application which is rarely changed
during the life of the system. It refers to memory that is hard-wired as a mask ROM
integrated circuit (IC), which cannot be electronically changed after manufacture,
[19]. Correction of errors, or updates to the software, require new devices to be
manufactured and to replace the installed device. The Erasable programmable
read-only memory(EPROM), electrically erasable programmable read-only mem-
ory(EEPROM), and flash memory can be erased and re-programmed. But usually,
this can only be done at relatively slow speeds, may require special equipment to
achieve, and is typically only possible a certain number of times.

ROM contains special internal electronic fuses that can be programmed for a
specific interconnection pattern. The binary information stored in the chip is spec-
ified by the designer and then embedded in the unit at the time of manufacturing
to form the required interconnection pattern. Once the pattern is established, it
stays within the unit even when the power is turned off. So, it is a non-volatile
memory as it holds the information even when the power is turned off, or you shut
down your computer.

2^n x m
ROM

m outputs

n inputs

Figure 2.7: The Block Diagram ROM Cell

The information is added to a ROM in the form of bits by a process known
as programming the ROM as bits are stored in the hardware configuration of the
device. So, ROM is a Programmable Logic Device (PLD). As shown in figure 2.7,
the block of ROM has ’n’ input lines and ’m’ output lines. Each bit combination
of the input variables is known as an address. Each bit combination that comes
out through output lines is called a word. The number of bits per word is equal
to the number of output lines m. The address of a binary number refers to one of
the addresses of n variables. So, the number of possible addresses with ’n’ input

“output” — 2021/10/4 — 22:42 — page 11 — #23

Theoretical Background 11

variables is 2n. An output word has a unique address, and as there are 2n distinct
addresses in a ROM, there are 2n separate words in the ROM. The words on the
output lines at a given time depend on the address value applied to the input lines.

The internal structure of the ROM consists of two basic components, decoder
and OR gates. The Decoder circuit is used to encode the Binary Coded Decimal
(BCD) to the decimal form. So, the input is in binary form, and the output is its
decimal equivalent. All the OR gates present in the ROM will have outputs of the
decoder as their output.

6:64
Decoder

0
1
2
.
.
.
.
.
.
.
.

63

A0

A1

A2

A3

A4

A5

OR Gates Array

F1 F2 F3 F4

Figure 2.8: The Internal Structure Components of ROM cell

Let us take an example of 64 x 4 ROM as shown in figure 2.8. The ROM
consists of 64 words of 4 bits each. Thus, there will be four output lines and each
of 64 words available in the output lines s is determined from the six input lines
as we need only six inputs for this ROM. For each address input, there is a unique
selected word. For example, if the input address is 000000, word number 0 will
be selected and applied to the output lines. If the input address is 111111, word
number 63 is selected and applied to the output lines.

“output” — 2021/10/4 — 22:42 — page 12 — #24

12 Theoretical Background

2.4 Static Random Access Memory and Standard Cell

Memories are used to load and store instructions and data during computations.
There are three major processes involved in memory namely encoding, storage
and retrieval. To form new memories, information must be changed into a usable
form, which occurs through the process known as encoding. Once the information
has been successfully encoded, it must be stored in memory for later use. The
retrieval process allows us to bring stored memories into a usable form.

Figure 2.9: 6 Transistor SRAM bit cells

Static Random Access memory uses flip flops to store each bit of data in a
memory location. These are volatile memories, where the data is lost once the
power is turned off. The term static means the memory must be periodically
refreshed. SRAM is faster and more expensive than DRAM, it is mainly used as
cache and internal registers. SRAMs are easy to access the data from the memory
location and the performance and reliability are good and power consumption is
low when the memory is in an idle state. SRAM requires more transistors to
design when compared to DRAM, so it occupies more area and a very expensive
and has high power consumption during the read and write operation. The power
consumption mainly varies on how often the SRAM, [18]. The 6 transistor bit cell
version of the SRAM cell is shown in figure 2.9.

“output” — 2021/10/4 — 22:42 — page 13 — #25

Theoretical Background 13

The 6 transistor SRAM bitcell has three input and output lines namely word-
line(WL), bit-line(BL), and inverse bit-line(BLB). These lines are used to read
and write the data into the memory of the bitcell. The inverter in between is used
to store the data and retrieve the data based on the inputs of the lines. The read
operation starts with the fully precharged bit-lines to full potential. The WL is
then made logic high and the value in the nodes Q and inverse Q will be connected
to the bit lines through the transistors M5 and M6. There will be a small change in
the voltage of the bit lines, which can be detected as read value is seen in the out-
put of the peripheral circuits. In the write operation, the input value to be written
in the memory is given in bit lines and the inverse value is given to the inverse bit
line. The transistors M5 and M6 prevent the value from being written to the data
storage Q and inverse Q nodes. WL is then activated high and the values on both
bit-lines are latched into the data storage nodes and a successful write has been per-
formed.

The SRAM bit cell shown in figure 2.9 can store only one-bit data at a time.
Therefore several bit cells are combined as a bitcell array matrix configuration to
increase the storage capacity of the memory as shown in figure 2.10. The col-
umn and row decoders are used to store and retrieve the data from the memory
using the BL and inverse BL lines. The read and write operation is performed
on each row of the bitcell array matrix. To activate each row of the bit cell ar-
ray using the WL lines, the address decoder is used. Thus the memory selects
one row at a time to avoid conflicts between the memory bank. The Layout
design of the SRAM memory blocks has different components like GPIO block,
timing block, decoder block, MCU block, D Flip-Flop Block, and encoder block.

Figure 2.10: Memory array matrix architecture

“output” — 2021/10/4 — 22:42 — page 14 — #26

14 Theoretical Background

A Standard cell is made up of a group of transistors and these are intercon-
nected to form a functional building block such as AND, OR, XOR, inverters, flip-
flop, etc. The cell boolean logic is called the logical view of the function and the
behavior is verified based on the truth table or boolean equation. The design of the
standard cell is developed at the transistor level in the form of a netlist or schematic
view. The logical and the netlist view are used only to perform the simulation of
the cell to check the behavior of the block using the SPICE EDA tool. The physical
representation of the cell needs to be developed and it is represented as a layout
view. The NAND Standard cell layout and schematic are shown in figure 2.11.

For the manufacturing process, the layout of the standard cell is an impor-
tant aspect of the design flow. The layout view has base layers, which correspond
to the different structures of the transistor devices, and interconnect wiring lay-
ers and via layers, which join together the terminals of the transistor formations,
[3]. The interconnecting wires have a specific layer number and the correspond-
ing via layers are used to perform the connection between the layers. The ab-
stract view contains much less information than the layout view, it is present in
the Layout Extraction Format(LEF) file. After the layout is created the design
is validated using the Design Rule Check(DRC) and Layout vs Schematic(LVS)
to check whether the design meets the foundry requirements. Then the Para-
sitic Extraction is performed to generate the parasitic netlist which contains the
parasitic properties of the layout. The PEX netlist can be simulated again us-
ing the SPICE tool to check the power, timing, and noise model of the cell.

Figure 2.11: Standard Cell NAND Gate Schematic and Layout

“output” — 2021/10/4 — 22:42 — page 15 — #27

Theoretical Background 15

The Standard cell library contains a collection of low-level electronic logic
functions that are realized of fixed height and variable width full custom cells.
The key advantage of these cells in the library is to process the complex layout
with ease of automatic layout generation. The standard cell library contains the
main components of the library database that have schematic, symbol, and layout
view. This information is captured in LEF format, which can be used to automate
the place and route EDA tools. This library contains multiple implementations of
the same cell with different area and performance. This gives the designer total
freedom to perform implementation trade-offs. This standard cell description is
called a technology library. EDA tools use the technology libraries to automate
synthesis, placement, and routing of a digital ASIC, [13]. The technology library
is developed and provided by the foundry operator.

“output” — 2021/10/4 — 22:42 — page 16 — #28

16 Theoretical Background

2.5 Analog Layout Design: Bottleneck in the Design Flow

The Analog Layout design can be modified automatically using different optimiza-
tion algorithm. In digital design, the synthesis flow is automized using such an
optimization algorithm. Similarly, the place and route are successfully employed
by placing millions of transistors in a single chip. Encouraged by this success, EDA
keeps a resolute focus on trying to adopt such approaches in the analog domain.
The layout design is the step of the analog design flow with the least support by
commercially available tools.

Due to the rejection of many existing automation approaches, analog layouts
in practice are still designed by human experts in the EDA tools and largely in a
manual fashion, putting up with the downside that the design productivity is sig-
nificantly lower than in the digital domain. This can be addressed in two regards
the effort for creating an analog layout is much higher than for a digital layout and
the number of design components is usually smaller by several orders of magnitude.

Figure 2.12: The Mixed Signal SOC [31]

The optimization algorithms are effectively employed for digital design synthe-
sis, but could not find as much acceptance in the analog domain even though the
conceded lack of automation involves a large economic growth. The overall design
flow is even more worrisome when considering that time-to-market continually de-
creases due to shortening product life cycles. Creating a layout is a very complex
problem, But in terms of this complexity, one should clearly distinguish between
the discrete-valued nature of the digital domain and the continuous-valued nature
of the analog domain.

“output” — 2021/10/4 — 22:42 — page 17 — #29

Theoretical Background 17

2.5.1 Full Custom Analog Design

The Analog section represents the indispensable interface of an IC to its continuous-
valued environment and also serves as the subsystem for powering the chip. In
terms of qualitative complexity, maintaining the integrity of analog signal trans-
mission for an optimal layout that utilizes the entire spectrum and variety of all
available degrees of freedom. For the most part, this in turn opposes modification-
based design automation because an abstraction of the design problem and a lack
of adequate heuristics cause the resulting layout solutions to be insufficient for
practical application. So, the loss of layout quality that is condoned in digital
design is precisely what cannot be tolerated in the analog domain.

The need to exploit all degrees of freedom defies the use of different algorithms
because these require a reduction of the degrees of freedom. For that reason,
analog layout design is still done in a highly manual way and relies heavily on the
knowledge, experience, skills, and inventiveness of human experts. So, the lack
of automation gap is tolerated because of two reasons, the layout quality does
not permit any trade-offs. Thus, opposite to the digital domain. The demand for
automation is overruled by the layout quality requirements and these are intimately
tied to the so-called design constraints [33].

Figure 2.13: The Full Custom design flow [32]

“output” — 2021/10/4 — 22:42 — page 18 — #30

18 Theoretical Background

2.5.2 Automation-based Analog Layout Design

People has proposed different approaches with varying degrees of generality for
different usage scenarios. However, introducing design-dependent strategies and
prior knowledge in the automation flow often benefit the flow effectiveness in the
cost of jeopardizing the generality of flow. Automation-based layout design is to
formulate the layout generation as a constrained optimal problem and tends to
model the layout quality as the objectives.

Figure 2.14: The Automation Based Design Flow Model

Like digital EDA tools, Automation-based analog layout generation often sep-
arates the process into several stages for divide-and-conquer. A common practice
is to have three stages, module generation, placement, and routing. The mod-
ule generator generates the layout of building blocks in a parameterized manner.
The placement stage then places the layout from the module generator. In the
end, the routing stage connects the nets through metal wires and vias. As shown
in figure 2.14, the analog design automation flow depends on different parame-
ters. The Schematic design and the design rule specification file is an important
parameter to generate an optimal layout. Then based on the design constraints
and objective from the analog layout designer, we will start the process of mod-
ifying the layout. The design process is an iterative approach, where the design
algorithm is developed and then it is verified for any DRC/LVS issues. After
the verification, if the generator report contains any issues, then the algorithm
is modified further and verified again. This process continues till all the DRC

“output” — 2021/10/4 — 22:42 — page 19 — #31

Theoretical Background 19

and LVS issues are resolved and the generator layout is DRC and LVS clean [34].

A significant challenge in automatic analog layout design is the lack of an effec-
tive method to model the layout effects on circuit performance. Figure 2.15 shows
a potential flow of performance prediction-assisted automated layout generation
flow. A performance modeling can give feedback to automatic layout generation
and guide the tool to generate high-performance layouts.

Figure 2.15: The Layout Performance Evaluation model

In the analog layout automation, several challenges are remaining unresolved.
First, there lacks a principal method in formulating the design problems. The ex-
isting geometric constraints are distilled from manual layout heuristics, which are
design-dependent and technology-dependent. Second, it takes efforts to label the
correct constraints by hand. Although there are existing works for detecting sym-
metry constraints automatically, the scalability and generality of these algorithms
are concerned. Layout quality is often evaluated through post-layout simulation.
However, as the post-layout simulation requires fully functional layouts, the ex-
tensive efforts on fundamental building blocks such as design rule handling and
module generator make individual research focus on the abstract level problem
instead of real circuit performance.

“output” — 2021/10/4 — 22:42 — page 20 — #32

20 Theoretical Background

“output” — 2021/10/4 — 22:42 — page 21 — #33

Chapter 3
Layout Modification and Optimization

In this chapter, we discuss the various methods to optimize and modify the
Analog layout based on the different design metrics like power, performance,
and area. The automation of the modification in the layout is implemented us-
ing the Python Programming language and the module used is GDSPY, [16].

As in the EDA world, since automation of the layout modification is a bigger
task, we deploy a divide and conquer strategy and try to divide the complete
project into different tasks that would be easier to solve the problems. The first
task of my thesis project is to modify and optimize the different digital elements
like standard cells and memory blocks. we will look into the algorithm used to
modify the length, width, and pitch of the polygons in the layout. The automation
implementation starts with the main python script file that reads the input from
the user. The user input data and the description of the input data are explained
below, the user interface was developed using the Tkinter module to showcase a
GUI that makes the user work on it comfortably as shown in figure 3.1.

Figure 3.1: The Layout Modification input GUI

21

“output” — 2021/10/4 — 22:42 — page 22 — #34

22 Layout Modification and Optimization

Modify_layer : Specify which polygon you want to modify in the layout.
Modify : Select from the drop-down menu what do you want to modify length/pitch/width.
Value : Specify how much you want to modify the polygon. Specify the value on
the micrometer scale.
Input GDS path : Specify the input GDS file path(.gds is GDSII Stream file
format) which you want to modify.
Export Library : Specify the export library name that will be loaded in the
cadence library manager.
Technology Library : Specify the technology library name of the input GDS file.

After filling in all the details in the GUI shown in figure 3.1, there will be three
options to proceed with. The Quit button is used to close the GUI application,
the Help button is used to provide help regarding the inputs to be filled properly
for the user. The Modify button is used to modify the input GDS file based on
which parameter you would like to modify and the value of how much you want
to modify. The input GDS is exported from the cadence tool and the modified
layout is written to the output GDS path file and it is imported to the cadence
tool and the design is checked for LVS and DRC clean.

3.1 Length Modification

The length of the polygons of the building blocks is increased based on the design
requirements. The poly-silicon (Gate Layer) of the technology node is important
to increase and decrease to improve the design metrics in the design. For a simple
block of the design, increasing the length is easy to do manually, but for com-
plex logic blocks increasing the length of the polygon is very difficult and it is
time-consuming. So the automation of the task will increase productivity and
get accurate results than manual work. The Input analog Layout of the Stan-
dard cell for which the modification has to be performed is shown in figure 3.2.

First, the exported input GDS file is flattened and then it is read using the
GDSPY module. The GDSPY module has an inbuilt API function that can
process the cells, polygons, and elements. To increase the length of the poly-
gons we check the coordinates of the polygon boundary. If the polygon bound-
ary x coordinate is greater than the bottom left corner x coordinate of the cur-
rent polygon then moves all the coordinates of the polygons by the value that
needs to be increased. First, we will append the list of polygons that needs to
be increased and based on each list, the other polygons are shifted by the user-
defined value. we need to create a database that can handle the layer map file
of the technology nodes and it contains the layer name, layer id and datatype
of the layers in the technology library to process the corresponding layers in the
cell. The steps to implement the algorithm are explained below. To develop the
optimized algorithm, we used the heuristic algorithm approach by implemented
trial and error logic for each polygons in the layout as explained in chapter 2.

Step 1: Read all the elements, polygons from the cell and initialize them to

“output” — 2021/10/4 — 22:42 — page 23 — #35

Layout Modification and Optimization 23

Figure 3.2: The Input Standard Cell Layout

the list. Loop through the polygon list and initialize the boundary of the polygon
to be modified in the poly boundary list. And check for any duplicates in the poly
boundary list and remove them.

Step 2: Loop through the poly boundary list and modify the polygons by
increasing the boundary points of the polygons as the value specified by the user.

Step 3: Loop through the polygon list and update the boundary of other
polygons in the update boundary list and modify the points corresponding to the
poly boundary list. Here we need to check for different conditions. we need to have
a separate algorithm for metal, via and contacts, and other layers in the design.

Step 4: The First condition is to check for all the layers other than via and
metals, then check if the poly boundary x coordinates are less than the update
boundary x coordinates then modify the update boundary list based on the user-
defined modify value. Otherwise, move to the next condition.

Step 5: Next, check for the polygons which are metal, if the polygon boundary
is less than the update boundary and if there is metal overlap, then the update
boundary is shifted by the user-defined value. Else check for other conditions.

Step 6: Now we check for polygons that are via and similarly if the polygon
boundary is less than the update boundary and it has via overlap then modify
the update boundary. If all three conditions are not satisfied, then don’t do any
changes to the update polygon boundary. We need to check metal and via in
our design because the metal and contacts have different DRC rules for different
technology nodes.

Step 7: After performing the above steps for all the polygons in the cell, we
create a new cell with the updated boundary polygons and add the cell to the
library. Then we need to write the output GDS file with the modified layers and

“output” — 2021/10/4 — 22:42 — page 24 — #36

24 Layout Modification and Optimization

import the GDS using the stream in command in cadence virtuoso. The flowchart
of the algorithm is shown in figure 3.3.

Read all the polygons and add the
boundary of the poly-silicon in the

list and remove duplicates

Read all the polygons and add the
boundary of the modify layer

polygon in the list and remove
duplicates

Increase the modify layer polygon
length by the user specified value

layer is not via and
metal

Loop through all the polygons and
store the boundary of all the
polygons in update boundary

update boundary modified based
on the user value

poly boundary x <
update boundary x

layer is metal and
metal overlap

update boundary modified based
on the user value

layer is via and via
overlap

update boundary modified based
on the user value

Add the updated polygon to the
cell and write to output gds file and

stream in cadence virtuoso

True

False

True True

True

False

False

FalseFalse

True TrueFalse

poly boundary x <
update boundary x

poly boundary x <
update boundary x

Figure 3.3: The Algorithm flow of Length Modification

“output” — 2021/10/4 — 22:42 — page 25 — #37

Layout Modification and Optimization 25

The Output of the modified layout is shown in figure 3.4. The Modified layout
is verified using the DRC tool to check for violations in the design. After checking
for any DRC in the design for the particular technology node, then we check the
LVS of the design and if both are clean.

Figure 3.4: The Output Length Modified Layout

“output” — 2021/10/4 — 22:42 — page 26 — #38

26 Layout Modification and Optimization

3.2 Pitch Modification

The Pitch of the polygons is increased to modify the layout for different pro-
cess nodes. Pitch is the distance between the two poly-silicon polygons in the
cell. For different lengths of the poly-silicon, the pitch distance between them
varies. If you would like to change the pitch between the poly-silicon manu-
ally, it is a very difficult and tedious task. Thus automating it will ease the
job of the designer and finish the work in minutes. The input for modifying the
pitch is the same as the input used for length modification as shown in figure 3.1.

Same as the length modification, the input GDS file is flattened and then
processed by the GDSPY Module in python. To increase the pitch distance be-
tween the two polygons, instead of checking the bottom left corner, we will be
checking the bottom right corner and the same algorithm is implemented to in-
crease the pitch distance. The bottom right corner is checked because we need
to increase the distance between the two poly layers, so concerning the right-
side x coordinates, the remaining polygons are shifted by the pitch distance. For
metal and vias, the separate operation is implemented as it should be placed in
the proper position to avoid any DRC violations. The pitch between two poly-
gons is increased to change the complete design from one process node to an-
other process node technology. At first, the Dijkstra algorithm was used to find
the shortest distance between the two polysilicon and modify the pitch distance
between them as discussed in chapter 2. And tired with different optimization
to calculate the shortest path, but it was not feasible for the design. So I de-
veloped an algorithm that was suitable for the polygon shapes in the layout.

Step 1: Read all the elements, polygons from the cell and initialize them to
the list. Loop through the polygon list and initialize the boundary of the polygon
to be modified in the poly boundary list. And check for any duplicates in the poly
boundary list and remove them.

Step 2: Loop through the polygon list and update the boundary of other
polygons in the update boundary list and modify the points corresponding to the
poly boundary list. Here we need to check for different conditions. we need to have
a separate algorithm for metal, via and contacts, and other layers in the design.

Step 3: Layer modify wrapper file contains all the function modules required
to process the polygons in the cell. This file has all the implemented functions
that need for the design of the algorithm. The first condition is to check for all the
layers other than via and metals, then check if the poly boundary x coordinates are
less than the update boundary x coordinates then modify the update boundary list
based on the user-defined modify value. Otherwise, move to the next condition.

Step 4: Next, check for the polygons which are metal, if the polygon boundary
is less than the update boundary and if there is metal overlap and check for the
move center metal function, then the update boundary is shifted by the user-
defined value. Else check for other conditions.

Step 5: Now we check for polygons which are via and similarly if the polygon
boundary is less the update boundary and it has via overlap then modify the
update boundary by half of the user predefined value. If all three conditions are

“output” — 2021/10/4 — 22:42 — page 27 — #39

Layout Modification and Optimization 27

not satisfied, then don’t do any changes to the update polygon boundary.
Step 6: After performing all the above steps for all the polygons in the cell,

we create a new cell with the updated boundary polygons and add the cell to the
library. Then we need to write the output GDS file with the modified layers and
import the GDS using the stream in command in cadence virtuoso. The flowchart
of the algorithm is shown in figure 3.5.

Read all the polygons and add the
boundary of the modify layer

polygon in the list and remove
duplicates

layer is not via and
metal

Loop through all the polygons and
store the boundary of all the
polygons in update boundary

update boundary modified based
on the user pitch value

poly boundary x <
update boundary x

layer is metal and
metal overlap and

center metal

update boundary modified based
on the user pitch value

layer is via and via
overlap

update boundary modified by half
of the user pitch value

Add the updated polygon to the
cell and write to output gds file and

stream in cadence virtuoso

True

False

True True

True

False

False

FalseFalse

True TrueFalse

poly boundary x <
update boundary x

poly boundary x <
update boundary x

Figure 3.5: The Algorithm flow of Pitch Modification

“output” — 2021/10/4 — 22:42 — page 28 — #40

28 Layout Modification and Optimization

Similar to the length modification, the Output of the modified layout is shown
in figure 3.6. The Modified layout is verified using the DRC tool in the cadence
to check for violations in the design. Then we check the LVS of the design and if
both are clean.

Figure 3.6: The Output of Pitch Modified Layout

“output” — 2021/10/4 — 22:42 — page 29 — #41

Layout Modification and Optimization 29

3.3 Width Modification

By increasing the width of the polygons in the analog layout design, it makes the
layout clean and neat. In some cases for large memory designs, each block should
be interconnected in the top design so it requires an increase in the width of the
polygons in some situations. The input for modifying the width is the same as the
above as shown in figure 3.1.

The input GDS file is flattened to a single cell and then processed. To increase
the width of the polygons we check the coordinates of the polygon boundary. If
the polygon boundary y coordinate is greater than the bottom left corner y coor-
dinate of the current polygon then moves all the coordinates of the polygons by
the value that needs to be increased. First, we will append the list of polygons
that needs to be increased and based on each list, the other polygons are shifted
by the user-defined value.

Step 1: Read all the elements, polygons from the cell and initialize them to
the list. Loop through the polygon list and initialize the boundary of the polygon
to be modified in the poly boundary list. And check for any duplicates in the poly
boundary list and remove them.

Step 2: Loop through the poly boundary list and modify the polygons by
increasing the boundary points of the polygons as the value specified by the user.

Step 3: Loop through the polygon list and update the boundary of other
polygons in the update boundary list and modify the points corresponding to the
poly boundary list.

Step 4: Check for all the polygons in the cell that needs to be updated based
on the poly boundary list and modify the update boundary list as per the user-
defined value.

Step 5: After performing all the above steps for all the polygons in the cell,
we create a new cell with the updated boundary polygons and add the cell to the
library. Then we need to write the output GDS file with the modified layers and
import the GDS using the stream in command in cadence virtuoso. The flowchart
of the algorithm is shown in figure 3.7.

“output” — 2021/10/4 — 22:42 — page 30 — #42

30 Layout Modification and Optimization

Read all the polygons and add the
boundary of the modify layer

polygon in the list and remove
duplicates

Loop through all the polygons and
store the boundary of all the
polygons in update boundary

poly boundary y <
update boundary y

update boundary modified based
on the user width value

Add the updated polygon to the
cell and write to output gds file and

stream in cadence virtuoso

False

False True

False

Increase the modify layer polygon
by the user defined width value

Figure 3.7: The Algorithm flow of Width Modification

“output” — 2021/10/4 — 22:42 — page 31 — #43

Layout Modification and Optimization 31

The output modified layout is shown in figure 3.8. Similarly, the modified
layout is verified for the DRC and LVS clean layout using the cadence tool.

Figure 3.8: The Output of Width Modified Layout

“output” — 2021/10/4 — 22:42 — page 32 — #44

32 Layout Modification and Optimization

“output” — 2021/10/4 — 22:42 — page 33 — #45

Chapter 4
Layout Porting

In this chapter, we will look into the concept of porting the layout from one
technology node to another and how it is implemented efficiently. Porting the
analog layout of any design building block is time-consuming and needs a lot of
manual work. Thus automating the task will ease the job of the designer and
it can finish in minutes. The Automation of the layout porting is implemented
using Python programming and the pitch, length, and width modification of the
layout algorithm is also used in this design as we discussed in the previous chapter.

Similar to the previous chapter, the task is divided into sub-tasks and each
part is implemented separately and tested using the python test cases. We will
look into the different files that are required to implement this task. The main.py
file is the main python file that receives the input from the user. Based on the user
design requirements, the other files are called in the main file and then processed.
There are different technology nodes in the ASIC development. The input data
from the user is received from the Tkinter GUI as shown in figure 4.1 and process
the data in the main python file. The input data and the description of the input
are explained below.

Figure 4.1: The Input Data GUI Application

33

“output” — 2021/10/4 — 22:42 — page 34 — #46

34 Layout Porting

Sample GDS path : Specify the sample GDS file to the technology node
that you want to port the layout.
Layermap path : Specify the path of the layermap file of the sample GDS.
Input GDS path : Specify the path of the input GDS file(.gds is GDSII Stream
file format) which you want to port.
Export Library : Specify the export library name that will be imported in ca-
dence library manager.
Technology Library : Specify the technology library name of the input GDS
file.
Input poly name : Specify the poly-silicon(gate) layer name of the input GDS.
Sample poly name : Specify the poly-silicon(gate) layer name of the sample
GDS.
Excel file path : Specify the path of the layer name mapping excel file that
contains all the polygon layer name pairs of the input and the output layout.

After filling in all the detail in the GUI as shown in figure 4.1, the Help button
in the GUI shows all the input data information and what files need to be included.
All the input in the GUI is important and it needs to fill properly without any
mistake and then we need to click the Port button to start the porting process.
Once the porting is completed, the output GDS file is imported to the cadence
virtuoso layout view and verified for any DRC and LVS issues. The design flow of
the task is explained in figure 4.2.

The first task of the design is to read all the input data from the user using
the GUI. Then the output technology node layermap file is read and all the layer
names, id, and datatype are processed and different function are created to get
the layer name, get the layer id and datatype based on the other parameters. The
third task is to create a database for both the input and sample layout, it contains
all the length, width, and pitch information for all the layers in the technology.
After the database creation, the input layer name mapping excel file is read and
created pairs based on the layers in different technologies. This file contains all
the layer names corresponding to different technologies. After processing all the
inputs, the length, width, and pitch of the layout is modified for each layer in the
input layout. And finally, the design is ported to the new technology node and
the generated layout is imported to the cadence virtuoso layout view.

“output” — 2021/10/4 — 22:42 — page 35 — #47

Layout Porting 35

Read all the input data from the
user using the GUI

Layer name, Layer id and
datatype are extracted from the

Layer map file

Create Database for both the
input and sample GDS file

Layer name mapping excel file
is read and polygon pairs are

created

Modify the length, width and
pitch value of all the polygons

Port the modified GDS and write
to output GDS file and stream in

cadence virtuoso

Figure 4.2: The Design Flow of Layout Porting

“output” — 2021/10/4 — 22:42 — page 36 — #48

36 Layout Porting

4.1 Database Creation

The porting of the analog layout is implemented in a generic manner, by storing all
the data in the database and processing all the implementation steps by accessing
the information from the database. Porting of the design contains all the polygons
length, width and pitch distance between the polysilicon, which are changed to
generate the layout in different technology node as each technology nodes has
its own rules and specification. Hence based on the sample layout of the new
technology node the database is created and it contains all the length, width, and
pitch of the polygons in the layout. Similarly for the input layout of the previous
technology is also created and the information is accessed and processed. The
sample layout is shown in figure 4.3 and the input layout is shown in figure 4.4.

Figure 4.3: The Sample layout of Porting Technology

Figure 4.4: The Input layout to be Ported

“output” — 2021/10/4 — 22:42 — page 37 — #49

Layout Porting 37

Step 1: First the sample GDS file is read using the GDSPY python module
and the cell and their corresponding polygons are extracted from the library to
process them.

Step 2: The function created in the wrapper file is used to get the layer name
based on the id and datatype and stored in the dictionary along with the length,
width, and pitch value for all the polygons.

Step 3: Similarly for the input GDS file, all the layer name, pitch, length,
and width value is extracted and stored in the separate dictionary.

Step 4: After storing all the values in the dictionary, each pair of layer names
are accessed from the database and the value that needs to be changed by length
and width is also updated in the dictionary. Then the pitch value is also calculated
and return as the output.

The output of the database created is shown in table 4.1.

Input Polygons Sample Polygons Length Width
Poly-Silicon Poly-Silicon 1 -35
Oxide Oxide 83 -2
Via Via 2.5 0
Metal Metal 0.5 -2.5
N-Substrate N-Substrate 84 4
Boundary Boundary 85 -25

Table 4.1: Length and Width value to be modified (Size are nor-
malized).

Figure 4.5: The Output of the Database Creation (Size are normal-
ized)

4.2 Porting the Layout

The porting of the digital design elements are implemented to reduce the time to
market for different technology node and deliver the chips faster based on the de-
sign requirements. Semiconductor companies must act faster to create best-in-class
integrated circuits. To get greater performance, analog designers are trained to
take advantage of changes in semiconductor technology with innovative schematic
designs. To expand product offerings and control profit margins, companies need
to assess how their schematic circuits will perform in diverse technologies and cost-

“output” — 2021/10/4 — 22:42 — page 38 — #50

38 Layout Porting

effective fabrication facilities.

After the database creation and initialization, all the pairs of the technology
are created, the length, width, and pitch of all the polygon layers are modified
using the same algorithm as explained in the previous chapter. After modifying
the length and width of the layout, the modified layout gds file is updated and the
output of the design is shown in figure 4.6. After the modification of the length
and width of all the polygons in the input layout, then the pitch of the design is
modified based on the pitch value from the database dictionary, and the modified
GDS file is generated with the updated length, width, and pitch value. The layout
of the modified GDS file in the cadence tool is shown in figure 4.7.

Figure 4.6: The Length and Width Modified Layout

After modification of the length, width, and pitch value based on the dictio-
nary that contains all the layer information. The porting of the design will be
started and the steps involved in the process are explained below.

Step 1: Read all the elements, polygons from the cell and initialize them to
the list. Loop through the polygon list and initialize the boundary of the polygon
to be modified in the poly boundary list.

Step 2: Loop through the polygon list and another loop for accessing the
pairs list of the polygons in different technology.

Step 3: Check for polygon matching from the polygon list and the pairs list
and get the layer id and datatype from the function in the wrapper that returns
the layer id and datatype based on the layer name and assign the new id to the
polygons.

Step 4: After performing all the above steps for all the polygons in the cell,
we create a new cell with the updated polygons and add the cell to the library.
Then we need to write the output GDS file with the modified layers and import the

“output” — 2021/10/4 — 22:42 — page 39 — #51

Layout Porting 39

Figure 4.7: The Modified Layout after Database creation

GDS using the stream in command in cadence virtuoso layout view. The output
of the generated GDS is shown in figure 4.8.

Figure 4.8: The Final Output of the Ported Layout

“output” — 2021/10/4 — 22:42 — page 40 — #52

40 Layout Porting

“output” — 2021/10/4 — 22:42 — page 41 — #53

Chapter 5
Conclusion

The Layout Optimization and Porting of the different design layout blocks have
been implemented in this project. The Layout modification is an important aspect
of the Analog designer. For each design requirement, the layout is modified to meet
the design specification. The main goal of the thesis is to devise a compiler that can
modify the length, width, and pitch of each polygon in the cell of the analog layout.
The automation algorithm is developed to optimize the layout of the digital design
elements such as different design elements based on the design metrics like power,
performance, and area of the digital design. These design metrics are an important
aspect of any ASIC design and it is a primary aspect of the semiconductor compa-
nies to meet these design aspects in developing a product and meet time to market.

In Chapter 3, we were discussing the layout modification by length, width,
and pitch of the polygons. The algorithm for modifying the length, width, and
pitch of the polygons in the design was explained and the generated output lay-
out is also imported in cadence virtuoso layout view and checked for any DRC
in the design. This automation of the layout reduces the time required by man-
ual work and the output layout is generated in minutes. This will ease the work
of the analog designer and improve the time to market the developed memory
chips. The Length modification of the layout is checked for DRC and it’s nearly
80% DRC clean. The Pitch modification of the layout is also checked for DRC
and it’s 90% DRC clean. The Width modification of the layout is 100% DRC
clean. By modifying the length, width, and pitch of the layout blocks, we can
reduce the leakage by nearly 5% and there was an increase in the area of 2%.

In Chapter 4, the porting of the layout was discussed and the implementation
flow was explained. The approach to convert an analog layout of the digital design
layout blocks from technology node A to technology node B. It is separated into
technology conversion to transfer design with the corresponding polygons and an
optimization step for sizing all the polygons and paths based on the technology
rule specification. The Porting of the analog layout was successfully implemented
based on the output technology node specification. To port the design to different
technology takes a lot of time to modify each polygon in the layout if it is done man-
ually, automating this process will generate a ported version of the design in less
time.

41

“output” — 2021/10/4 — 22:42 — page 42 — #54

42 Conclusion

The interactive design optimization and the porting tool show significant po-
tential for optimization algorithms to be used in the early conceptual stages of the
design process to help designers explore solutions and trade-offs. Understanding
the concept of the designer is an extremely important part of the design process,
and it is one that tools typically ignore because of the understood nature of cre-
ativity and subjective judgement. The interactive tool assists the designer with
design generation and evaluation, rather than attempting to automate these pro-
cesses completely. This compiler tool is an interactive environment that processes
the design building blocks based on the design requirements and can modify the
layout in seconds and reduce a lot of manual work.

5.1 Future Works

This project can be expanded to a larger extent. Thus, some of the most impor-
tant points for making this tool competitive in the industrial domain have been
identified and are listed below

• The tool designed will modify and port the analog layout in the proper design
flow. But the algorithm devised will work for most of the polygon shapes,
but for some shapes, the design will give some DRC. So the algorithm can
be optimized further to generate the layout with 100% DRC clean.

• The Input GDS file is flattened and then modified for any optimization, so
it needs to be changed to maintain the hierarchy of each block in the cell
and to maintain the hierarchy after modification.

• The Modified layout generated does not contains the labels, the algorithm
can be improved by transferring the labels from the input layout on the
proper polygons.

“output” — 2021/10/4 — 22:42 — page 43 — #55

References

[1] Simple Exact Algorithm for Transistor Sizing of Low-Power High-Speed
Arithmetic Circuits Tooraj Nikoubin, Poona Bahrebar, Sara Pouri, Keivan
Navi, and Vaez Iravani.

[2] VLSI Routing in Multiple Layers using Grid based Routing Algorithms, May
2014 International Journal of Computer Applications 93(16).

[3] Standard Cell Routing via Boolean Satisfiability, 1Nikolai Ryzhenko, 2Steven
Burns, Strategic CAD Labs, Intel Corporation, 1Moscow, Russia.

[4] S. K. Karandikar and S. S. Sapatnekar, “Fast comparisons of circuit implemen-
tations,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 13, no. 12, pp. 1329–1339, 2005.

[5] C. H. Chang, J. Gu, and M. Zhang, “A review of 0.18-µm full adder perfor-
mances for tree structured arithmetic circuits,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 13, no. 6, pp. 686–694, 2005.

[6] Production Layout Optimization for Small and Medium Scale Industry Yosra
Ojaghia, Alireza Khademia, Noordin Mohd Yusofa,*, Nafiseh Ghorbani Re-
nania, Syed Ahmad Helmi bin Syed Hassana

[7] An interactive optimization tool for architectural floorplan layout design.
https://www.cmu.edu/me/ddl/publications/2001-Michalek-MSThesis.
pdf

[8] Analog IP Porting by Topology Conversion and Optimization Udo Sobe,
Achim Graupner, Enno Böhme, Andreas Ripp and Michael Pronath ZMD
AG, MunEDA GmbH

[9] H.Graeb, S.Zizala, J.Eckmueller, and K.Antreich, “The sizing rules method
for analog integrated circuit design,” in IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 343–349, 2001.

[10] G.Stehr, M.Pronath, F.Schenkel, H.Graeb, and K.Antreich, “Initial sizing of
analog integrated circuits by centering within topology-given implicit specifi-
cations,” in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2003.

[11] Heuristic Algorithms Maad M. MijwelUniversity of Baghdad May 2015

43

“output” — 2021/10/4 — 22:42 — page 44 — #56

44 References

[12] Power, Area, and Performance Optimization of Standard Cell Memory Arrays
Through Controlled Placement May 2016 Adam Teman, Bar Ilan University,
Davide Rossi, Pascal Meinerzhagen, Luca Benini University of Bologna

[13] Performance driven FPGA design with an ASIC perspective An-
dreas Ehliar https://www.diva-portal.org/smash/get/diva2:158202/
FULLTEXT04.pdf

[14] Path Planning Algorithm Using the Particle Swarm Optimization and the
Improved Dijkstra Algorithm Hwan Il Kang, Byunghee Lee, Kabil Kim

[15] Introduction to VLSI systems January 1980, Carver Mead, California Insti-
tute of Technology, Lynn Conway, University of Michigan

[16] https://gdspy.readthedocs.io/en/stable/

[17] https://www.elprocus.com/how-integrated-circuits-work-physically/

[18] Review on Performance of Static Random Access Memory (SRAM) February
2015, Santhiya. V, Mathan Natarajamoorthy

[19] Read-only memory (ROM), January 2003, Michael J. Flynn Stanford Univer-
sity

[20] https://www.redblobgames.com/pathfinding/a-star/implementation.
html

[21] https://en.wikipedia.org/wiki/Simulated_annealing#:~:text=
Simulated%20annealing%20(SA)%20is%20a,space%20for%20an%
20optimization%20problem.

[22] https://www.andersdx.com/ic-integrated-circuit/

[23] https://en.wikipedia.org/wiki/Very_Large_Scale_Integration

[24] Evaluation of SPICE P-N Junction’s, BJT’s and MOSFET’s Model Parame-
ters, October 2013, Ankara, Turkey, Mohammad Maadi.

[25] A Review of Optimization Techniques in Artificial Networks, September 2016
International Journal of Advanced Research 4(9):1668-1686, Omid Ghasemal-
izadeh, Meysam Khaleghian, Saied Taheri

[26] https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/

[27] https://www.101computing.net/a-star-search-algorithm/

[28] https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/

[29] Introductory Chapter: VLSI, By Kim Ho Yeap and Humaira Nisar, Submit-
ted: September 29th 2016 Reviewed: April 12th 2017 Published: February
28th 2018, DOI: 10.5772/intechopen.69188

[30] https://en.wikipedia.org/wiki/Integrated_circuit

[31] https://semiengineering.com/mixed-messages-for-mixed-signal/

[32] https://asic-soc.blogspot.com/2013/06/full-custom-ic-design.
html

“output” — 2021/10/4 — 22:42 — page 45 — #57

References 45

[33] Layout Automation in Analog IC Design with Formalized and Nonformalized
Expert Knowledge, Daniel Marolt, Tag der mündlichen Prüfung: 04.06.2018,
Institut für Halbleitertechnik der Universität Stuttgart 2018 https://core.
ac.uk/download/pdf/186747795.pdf

[34] Challenges and opportunities toward fully automated analog layout de-
sign,Hao Chen, Mingjie Liu, Xiyuan Tang, Keren Zhu, Nan Sun, and David
Z. Pan, 2020 http://www.jos.ac.cn/fileBDTXB/journal/article/jos/
2020/11/PDF/20070021.pdf

