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Abstract

Data science development largely revolves around working in notebooks, and
these usually run in a cluster environment. These cloud notebooks do however
come with limitations. Support for tools like version control, testing, refactor-
ing and linting is limited, which negatively impacts developer experience and
software quality.

We propose a networked file system for sharing local files and directories
with a remote cloud server. This allows the developer to work in a cloud note-
book without having to upload files to an external storage provider, and enables
the use of traditional development tools since all files are stored on the local ma-
chine. The networked file system is implemented as a FUSE file system and is
made available to Kubernetes as a custom volume driver.

We show that it is possible to build a widely compatible file sharing solution
for any Kubernetes workload. It is easy to use and has reasonable performance.

Keywords: file system, fuse, kubernetes, docker, notebook, container, cowait
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Chapter 1

Introduction

Contemporary data science revolves around working in computational notebooks, an envi-
ronment based on interactive code interpreters in web browsers that allow quick, iterative
development. The notebooks themselves are usually running on a remote machine or cluster,
allowing the user to leverage additional compute resources available in data centers. Popular
notebook software is slowly evolving towards full-fledged development environments, but
still lag far behind more typical integrated development environments (IDE) available for lo-
cal use. Since most development tools developed in the past decades expect to work on files
located in the user’s local file system, they would need to be reinvented to work in a cloud
setting. The result is that support for version control software, static analysis, linting and
other widely used tools is currently very limited.[1]

The idea for this thesis project was born out of the realization that, perhaps, some of these
problems could be solved or at least partially mitigated if the user’s local files were accessible
though a networked filesystem that was shared with the cloud notebook. That way, the user
could still work in their favorite editor and use all the tools available for local development,
while still being able to use the cloud notebook for the things it excels at - data exploration
with the advantage of distributed cloud computing.

Such a filesystem could potentially have other use cases related to working with cloud
servers, and ideally it wouldn’t be tied to a specific application. The goal of this thesis is to
design a user-friendly, reliable and widely compatible solution to sharing files residing on
a local machine, such as a developer laptop, to a cloud server. The user’s files and folders
will be available to applications running on the cloud server through a custom file system
implemented using FUSE1.

In order to achieve compatibility with as many di�erent applications as possible, the
network file system will be implemented as a custom storage driver for Kubernetes. Kuber-
netes is a popular open source cluster orchestration software that is widely used to deploy
and manage modern applications. It is available as a managed service from all major cloud

1File System in Userspace, https://github.com/libfuse/libfuse
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1. Introduction

providers, but it can also be used for on-premise servers. By building on Kubernetes, the file
system becomes a generic component without any ties to any specific application.

To evaluate whether the implementation is useful in a real-world setting, it will be inte-
grated and evaluated as part of Cowait2 Notebooks, an experimental cloud notebook solution
developed at Backtick Technologies.

1.1 Research Questions
In this thesis, we seek to answer the following research questions:

1. RQ1. Could a custom Kubernetes volume driver facilitate file sharing between cluster
nodes and developer machines?

2. RQ2. Would the performance of such a system be acceptable? Which factors impact
the performance of such a solution?

3. RQ3. Does a shared filesystem improve developer experience when working in cloud
notebooks?

1.2 Related Work
In this section we present some of the related work. First a brief history of computational
notebooks is given, followed by problems related to working in notebooks. The suitability
of FUSE-based file systems is then covered, with focus on network file systems. Finally, an
example is given of how notebook persistence has been solved with a method similar to the
one presented in this report.

1.2.1 Computational Notebooks
The history of computational notebooks began with an article written by Knuth in 1984 [8] in
which Knuth introduced the term literate programming. This term referred to the combination
of computer code and documentation into a single document, which could be seen as a work
of literature. A more general version of literate programming is literate computing, where the
computer code and documentation is accompanied by content like tables, graphs and images.
This computing paradigm is covered in an article written by Fog et al. [3]. The computational
notebook can be seen as a special case of literate computing.

Throughout the years countless notebook solutions have been developed, and in an article
by Lau et al. [11] 60 di�erent notebook solutions were categorized using 10 dimensions of
analysis. Two of the dimensions most relevant to this report were execution environment and
data sources. The solution presented in this report enables Cowait notebooks to execute code
in a remote multi-process execution environment using local files as data sources. This can be
compared to Jupyter notebooks where both code execution and data is local, and Databricks
where code is executed in a remote multi-process execution environment but the data sources
may not be local.

2Cowait: distributed python framework, https://cowait.io
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1.3 Contributions

Computational notebooks have evolved far since the article by Knuth, but there are still
problems associated with working in notebooks. These problems were investigated in an ar-
ticle by Chattopadhyay et al. [1] where nine pain points were identified. The most important
yet di�cult notebook activities were identified as: refactoring code, deploying to produc-
tion, exploring notebook history and managing long-running tasks. To mitigate these issues
several tools [6, 7, 4] and notebook environments [11] have been developed, but more work is
still needed. Similar problems were discovered by Singer [14].

1.2.2 File Systems
In an article by Tarasov et al. [15] the authors study the performance impact of user-space file
systems to answer the question of whether or not these types of file systems are practical for
modern use cases. Findings show that while kernel-space designs are indeed much faster, the
real-world performance of a user-space file system is indeed enough for many applications,
including networked file systems similar to the one presented in this thesis.

The original paper outlining the design of the widely used Ceph file system [18] describes
the use of a FUSE-based file system for their client application. The paper also discusses
some of the performance issues that commonly occur in networked file systems, some of
which are highly relevant to possible future improvements of the implementation presented
in this report.

1.2.3 Cloud Notebook Persistence
While the solution presented in this report uses the user machine for persistence, there are
also solutions where cloud storage is used. One such solution was presented in an article
by Teslyuk et al. [16]. They deployed JupyterHub on a supercomputer and used CephFS to
manage 75 TB of storage distributed on 64 hard drives. The Ceph file system was connected
to Jupyter using a Kubernetes CSI driver. Users could then connect to the supercomputer and
use Jupyter Notebooks with all files stored on the supercomputer. They concluded that it was
not straightforward to set up, but worked well once it was running. The solution presented
in this report is more light weight which makes it easier to get started.

1.3 Contributions
Implementation
The design and implementation project was performed collaboratively by both authors in a
pair-programming fashion. The primary responsibility for the evaluation work was divided,
with Martin responsible for the performance evaluation and Johan responsible for the us-
ability evaluation.

Thesis
Similarly to the implementation of the system, both authors have been involved in writing the
Introduction, Background, Approach, Implementation and Conclusion chapters. Johan had
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primary responsibility for writing the evaluation and discussion parts regarding the usability
study, and Martin was primarily responsible for the performance study. Both authors were
present during all of the usability interviews.
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Chapter 2

Background

This chapter provides a summary of the core concepts and technologies used in this thesis.

2.1 File Systems
In most modern operating systems, the data is presented to the user as a tree-like hierarchy
of files and directories. When an application interacts with a file or directory, the operating
system kernel forwards the operation to the appropriate file system driver, which, in turn, is
responsible for controlling how the data is stored and retrieved.

On UNIX-like systems such as Linux, the file and directory hierarchy can be composed
of multiple file systems. File systems can be mounted to any empty directory in the hierarchy.
This path is referred to as the mount point. The mounted file system’s file and directory hi-
erarchy then appears as a sub-tree in the global directory structure with its root attached at
the mount point. [5, 13] This can be seen in figure 2.1.

It is important to note that a file doesn’t necessarily represent a block of data on a physical
hard drive. There are file systems designed for storing data on other computers over a net-
work, in volatile memory and in many other ways. The kernel can also use the file hierarchy
to expose information about the system itself, such as files representing devices commonly
found in /dev. These files do not exist on any physical storage medium, they are virtual files
whose contents are dynamically generated when reading.

11



2. Background

root

hdd/

A.txt

B.txt

ext4

net/

1.txt

2.txt

nfs

global

Figure 2.1: Example filesystem hierarchy. Two di�erent file systems
are mounted at hdd and net. hdd is a physical hard disk formatted
as ext4, and net is a network share provided by the Network File
System (NFS). Each file system contains two files.

2.1.1 FUSE
FUSE1 is an acronym for "File system in User space" and enables file systems to be imple-
mented as regular userspace programs. [5] This means that a file system can be developed
independently from the Linux kernel, and be distributed like any other program. All FUSE
based file systems share a single kernel module which forwards all system calls related to file
and directory operations to the correct userspace file system implementation. This can be
seen in figure 2.2.

FUSE greatly lowers the barrier to entry for creating new file systems by allowing the de-
veloper to avoid all the complexity of kernel development and providing a simplified API for
the userspace implementation. However, forwarding all file operations to user space incurs
additional overhead, which results in lower performance compared to kernel space imple-
mentations. For some types of file systems this overhead would be of great concern, but for
network-based file systems the overhead would be negligible. [15]

1FUSE website: https://github.com/libfuse/libfuse
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2.2 Containers

Kernel

Userspace

Virtual
File System

FUSE

cat hello.txt

read libfuse

Filesystem
Implementation

Figure 2.2: FUSE overview. System calls are forwarded to the file
system implementation by the FUSE kernel module.

2.2 Containers
When developing software it is common for the application to depend on external packages.
These packages need to be installed for the application to run. A developer may install these
packages on their computer to get the application to run, but if the application is to be
deployed to a server the developer needs to ensure that the same packages are installed on
the server machine. This is a cumbersome and error prone process, and a popular way to
alleviate these issues is to use containers.

A container is a unit of software that packages code and all its dependencies, so that the
application can run reliably from one computing environment to another. Docker is a widely
used system for creating, managing and running such containers. A Docker container image
is a lightweight, standalone, executable package of software that includes everything needed
to run an application: code, runtime, system tools, system libraries and settings [2].

Containers provide similar isolation as to virtual machines, with some important di�er-
ences. Virtual machines allow multiple operating systems to share the same hardware, con-
tainers allow multiple applications to share the operating system kernel in a secure fashion.
Sharing a single kernel reduces the overhead cost of process isolation.

2.3 Kubernetes
It is not uncommon to deploy an application to a group of servers, a cluster as opposed to
a single machine. There are many benefits to a clustered setup, such as redundancy and the
ability to scale to larger workloads, but maintaining such a setup manually can be di�cult
and error prone. It is therefore common to use a cluster orchestrator, the most popular being
Kubernetes.

As stated on their website, Kubernetes is an open-source system for automating deployment,
scaling, and management of containerized applications. [9] Kubernetes divides the cluster into
di�erent types of resources, most importantly Pods, Deployments, Services and Volumes.

13



2. Background

• Pods are groups of one or more containers that form "deployment units". Pods can be
thought of as a group of processes that must always run alongside each other on the
same cluster node. For example, a web server running in a single container, serving
files from some underlying storage solution, and exposed to the internet on port 80.

• A Deployment manages Pods, ensuring that the desired number of pod instances run
at all times. Deployments are also responsible for rolling updates of Pods, allowing
updates without downtime.

• Services are used to load balance network requests to a group of pods. They provide a
known hostname and divide incoming requests among the worker pods.

• Volumes allows us to request persistent storage from the cluster. Pods can attach and
use these volumes to store data across restarts. Many di�erent storage drivers are sup-
ported, but their di�erences are invisible to the pods.

2.3.1 Container Storage Interface
Previously, storage drivers for Kubernetes where merged directly into the Kubernetes source
code. However, this quickly became cumbersome as Kubernetes exploded in popularity and
many organizations wanted to integrate new storage solutions.

This prompted the creation of the Container Storage Interface (CSI)2. In a way, CSI is to
Kubernetes what FUSE is to the Linux kernel - a low level component that provides a means
for external, higher level applications to integrate new storage options. CSI is itself a volume
driver that delegates file system operations to a CSI driver implementation.

CSI drivers are implemented as two separate components, a Controller and a Node. The
CSI node application runs on each cluster node, and is responsible for managing volume
mounts and connecting them to Kubernetes pods on that particular host machine. CSI Con-
trollers are responsible for managing the volumes themselves. In a typical case, it might
involve provisioning and attaching disks to a virtual machine, and then mounting that disk
into a pod.

2.4 Computational Notebooks
Data science development largely revolves around working in notebooks, an environment
based on interactive code interpreters in web browsers that allow quick, iterative develop-
ment. The idea behind a notebook is to have an interpreter running in the background,
preserving state for the duration of the programming session. Code is organized into cells,
which can contain one or more statements. The cells can then be executed independently
of each other, in any order, but they all mutate the shared interpreter state. This gives the
programmer the ability to re-run portions of the program while keeping some of the previ-
ously generated state, which can be very useful when iterating on a problem. On the other
hand, it can quickly become di�cult to trace the path of execution that led to the result, and
subsequent executions of the notebook may yield di�erent results or even errors.

2CSI specification: https://github.com/container-storage-interface/spec
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2.5 Cowait

Figure 2.3: A Jupyter notebook running in JupyterLab

Notebooks usually have support for displaying various types of interactive output, such
as graphs or tables. This makes them very suitable for working with and exploring datasets.
An example of a Jupyter notebook can be seen in figure 2.3.

2.5 Cowait
Cowait3 is a framework that aims to make it easier to execute Python code on Kubernetes.
It consists of two core parts: a novel workflow engine built directly on top of Docker and
Kubernetes, and a build system to easily package your code into containers. Together, they
form an abstraction of containers and container hosts that allows developers to leverage the
power of both containerization through Docker and cluster deployment using Kubernetes
without having to know their ins and outs. This is achieved by hiding the complexity behind
simple concepts that should be familiar to developers of varying experience.

Cowait provides a user-friendly way to:

• Develop and test distributed workflows on your local machine, with minimal setup.

• Manage dependencies for Python projects.

• Unit test your workflow tasks.

• Easily deploy your code on a Kubernetes cluster without any changes.

Like most workflow engines, Cowait organizes code into Tasks. A Task is essentially
nothing more than a function, and just like a typical function, it can accept input arguments
and return values. Similarly they may also invoke other tasks, with one key di�erence: a call

3Cowait website: https://cowait.io
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2. Background

Root TaskCowait CLI

Child B

Child A

Kubernetes Cluster

Spawn
Task

Figure 2.4: Cowait Tasks example. The user creates the root task
using the Cowait command line tool. The root task in turn creates
two more sub-tasks, Child A and Child B.

to invoke another task will be intercepted by the Cowait runtime and executed in a separate
container - potentially on a di�erent machine. The idea that makes Cowait di�erent is that
the tasks are allowed to interface directly with the cluster orchestrator. This means that tasks
can start other tasks without having to go through a central scheduler service. Instead, tasks
create other tasks on demand, and they communicate with their parents using web sockets,
as illustrated by figure 2.4.

Tasks are automatically bundled into container images along with all their dependencies
by the build system. They can then be distributed using container registries.

2.5.1 Cowait Notebooks

Cowait’s task management system is based on running containers, and lends itself well to
running arbitrary software. Additionally, it has support for automatically generating sub-
domains and routing web tra�c to a specific container. These features form the basis for a
notebook-on-demand hosting system.

The idea is to run a JupyterLab instance within a Cowait task. JupyterLab is one of the
most popular open source notebook applications used widely in the industry. It is written in
Python, which makes it easy to integrate into Cowait. Once the Jupyter task is started in a
cluster, it is automatically assigned a public URL that the user can connect to. This allows
on-demand hosting of notebooks in any Kubernetes cluster, without any additional setup
required.

Running within a Cowait task allows the notebook to access the underlying task sched-
uler and allow sub-tasks to be launched directly from the notebook cells. This allows the user
to easily execute background tasks on the cluster.

Since each JupyterLab instance can run multiple notebooks simultaneously, the custom
kernel acts as if it were a separate task running in its own container. Cowait has a concept of
virtual tasks for exactly this purpose. By introducing a virtual task representing each running
kernel, the virtual task can act as the parent for all sub tasks launched by that kernel, which
helps to direct the flow of information to the correct place. This can be seen in figure 2.5.

16



2.5 Cowait

Jupyter task

Subtask 1

Kernel 1 Kernel 2

Container A

Container B

Figure 2.5: An example task hierarchy for a JupyterLab instance run-
ning two kernels, one of which has an executing Cowait subtask.
Both the Kernel tasks connect to the Jupyter host task, identifying
themselves as virtual tasks. Subtask 1 is started by the user from
within the notebook, and it connects to the web socket server pro-
vided by Kernel 1. Note that the Jupyter Task, Kernel 1 and Kernel 2
execute in the same container, while Subtask 1 resides in a separate
container, potentially on a di�erent machine.

Notebook Execution

In addition, the build system can be used to package these workflow-integrated notebooks
into task container images. This provides a path for migrating existing notebook software
and make it easier to get started with Cowait, reaping most of the benefits such as depen-
dency management, reproducible executions and ease of deployment. Cowait has a custom
notebook executor module, that can parse and execute saved Jupyter notebook in an environ-
ment compatible with the custom Cowait kernel. The executor module communicates with
the workflow engine to provide input parameterization, return output values and allow child
task scheduling. The executor module can run tasks in headless mode and has no dependence
on Jupyter.

17



2. Background

2.6 Remote Procedure Calls
A Remote Procedure Call (RPC) is a request from a client to a server to perform a procedure,
typically transmitted over a socket. The procedure can accept parameters and return a value
that is passed back to the calling client. It works in a similar way to a function call, except that
the caller and the function reside in di�erent processes, and possibly on di�erent physical
machines.

One of the most widely used RPC frameworks is called gRPC4. It is open source and was
initially developed by Google in 2015. The gRPC framework is commonly used for communi-
cation between microservices in backend systems, and to connect clients to backend services.
It is also used extensively throughout the Kubernetes ecosystem.

The gRPC system is a client-server system, meaning that there is a client and a server and
the client initiates requests to the server. It is not possible for the server to initiate requests
to the client. This is mainly a design decision of the gRPC system, and not a limitation by
the underlying HTTP/2 connection, which will be mentioned again later in this report.

4gRPC website: https://grpc.io
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Chapter 3

Approach

This chapter describes the overall approach used to design a shared file system between a
local machine and a Kubernetes cluster pod. The first section presents an overview of how
file storage typicall works in a cloud notebook. In the second section, a list of requirements
that the file system needs to uphold in order to solve the problem in a satisfying manner.
The third section explains how a networked file system enables the local machine to act as a
storage provider for a remote system. The fourth section the FUSE file system is introduced as
the backbone of the solution, and the fifth section explains how the system is integrated into
Kubernetes. Finally, an overview of how the solution is fulfills the requirements is presented.

Additional implementation details can be found in chapter 4.

3.1 Cloud Notebook Storage
In traditional notebook development the notebook software is initially run on the local ma-
chine, as seen in figure 3.1. When the need for compute power increases, a natural solution is
to move the notebook to a more powerful machine rented from a cloud provider, and to use
a storage provider for file storage. This setup can be seen in figure 3.2.

A common problem with this setup is the need to transfer files to and from the cloud
storage provider. This task would be less of a problem if the files could instead be streamed
directly from the user’s machine, which is exactly what the file system presented in this report
enables, as described in figure 3.3.

With the file system presented in this report, the files are stored on the user machine
but the cloud notebook can access them as if they were stored on the machine serving the
notebook. The user’s machine acts like a temporary storage provider.
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User machine

User

Notebook

Files

Figure 3.1: Notebook usage locally. All files are located on the same
machine as the running notebook.

Cluster machine Storage Provider

Files

Notebook

User machine

User

Figure 3.2: Notebook usage on a cluster using a storage provider for
file storage. The file system on the cluster machine asks the storage
provider for files when needed.

Cluster machine

Notebook

User machine

User

Files

Figure 3.3: Notebook usage on a cluster using the file system pre-
sented in this report. The user machine acts as a storage provider.
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3.2 Requirements
In order to allow the developer to use standard tools designed for use on a local file system, we
must devise a way to bridge the gap between the file systems one the cloud notebook server
and the developer’s local machine. Currently, most cloud-hosted notebooks expect the user
to upload all files related to their project to cloud storage which is then accessible through
the notebook web interface. When the files leave the local machine, the ability to use tools
like real editors and version control systems is lost.

It follows that the optimal solution would be one where the files simply never leave the
user’s machine. Since code files are small, content and changes could be streamed to the cloud
server directly from the user as needed. A setup like this resembles a traditional networked
file system, but where the files are stored on the users machine rather than a server. Having
the master copy of each file on the user’s machine limits the e�ect of possible data loss due
to lost connections or synchronization problems. This way, there is also no need to transfer
files until they are actually needed.

A potential file sharing solution for this purpose would need to fulfill the following require-
ments:

• The shared files are stored on the user’s machine. A client application connects to the
remote server, and provides access to files for use by applications running on the target
server. This is the opposite of most networked file systems, where the user normally
accesses files stored on the server machine.

• File access should be provided to the target machine using regular POSIX filesystem
APIs. This ensures compatibility with all existing software.

• Must be compatible with Kubernetes, ideally without any dependencies required in
the target Pod.

• End users must not be required to have open ports reachable from the public internet.

• User-side setup must be straight forward. The client application should be a single
binary without external dependencies that can be shipped along with other software.

3.3 Networked File Systems
Using a remote machine as a storage provider is not a novel concept, in fact, operating sys-
tems have had support for network storage in various forms for decades. However, they are
typically designed in a way that makes them unsuitable for the task presented - where the user
wants to share files to a remote server machine. In a traditional networked file system, the
user’s machine connects to a server machine which stores the files and makes them available
to the user.

In order to solve the problem of sharing files located on the user’s machine to a remote
server, the system would need to work in reverse. To make matters worse, the user’s machine
is almost never open to connections from the public internet, which means that the user
can not easily act as a server in a traditional sense. Rather, the target server must listen for
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incoming connections from users o�ering to serve files. Requests to the file system on the
target machine can then be forwarded to the user.

3.4 Client Application
The solution needs a component to carry out requests to perform file and directory operations
on the user’s computer. This piece of software will be referred to as the client application,
and its responsibility is to accept network requests from the target machine, and translate
them into file operations on the user’s end. The client application should be implemented
as a simple command-line utility that can be executed in the background by other processes.
Ideally, it should support all major operating systems: Linux, Mac OS, and Windows (through
the Windows Subsystem for Linux).

The Go programming language was chosen for the implementation of the client appli-
cation for several reasons. Go is a modern systems programming language with a focus on
networking, which makes it a good candidate for our purposes. It o�ers a large ecosystem of
libraries, and it compiles to native binaries for all of the major platforms. All dependencies
are statically linked, which means that the resulting binary does not have any external library
dependencies.

3.5 File System
In order for the file sharing solution to be successful, it must be compatible with any existing
software. The best way to achieve this is by implementing it as a custom file system driver,
since that immediately makes it compatible with any software that is using the traditional
file and directory API o�ered by the operating system.

A file system is typically implemented as a core part of the operating system, which makes
it di�cult to create, distribute and install new file systems. On Linux such a file system
implementation would have to be implemented as a kernel module, comes with all sorts of
extra complications related to writing and debugging kernel software, as well as the risk of
compromising the overall stability of the system.

The easiest way to implement a custom file system is to leverage FUSE. While userspace
filesystems have some disadvantages in terms of performance, it should be negligible com-
pared to the costs of transferring data over a network connection. The FUSE kernel module
is also widely available in most cluster settings, whereas a custom kernel module would have
to be pre-installed on the cluster nodes to achieve compatibility with Kubernetes.

3.6 Networking
The idea is to create a simple networked filesystem by intercepting file and directory opera-
tions on the target system, and then forwarding them over the network to the user’s computer,
where a client application carries out the actual file operations and returns the results.
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Figure 3.4: Illustration of how clients reach target nodes through the
gateway.

3.6.1 Protocol
The network protocol defines the rules of communication between the di�erent components
in the system. gRPC was selected as the communication framework, which brought several
advantages, the most important being a simple way to define the protocol messages and au-
tomatically generating code for message serialization. However, gRPC is designed around a
client-server model where calls are always originating from client to server, with limited op-
tions for server-to-client communication. This design is not perfectly suited for the needs of
this project, but the benefit in terms of ease of development were deemed worth the necessary
sacrifices for the purposes of the thesis.

Because the primary goal of the protocol is to transfer file system operations between the
user and target machine, a majority of the messages are designed as close approximations of
the FUSE operations they are meant to represent. A more detailed description of the protocol
messages is available in section 4.2.1.

3.6.2 Gateway
For the client to be able to communicate with the target machine, the target must be acces-
sible at a well known address reachable through the internet. Because it is also di�cult to
know exactly which cluster node will host the workload when setting up the filesystem, and
the cluster nodes might not even be reachable from the internet, the solution to all of these
problems became to introduce a proxy server, referred to as the gateway. The gateway facil-
itates communication between client applications and the cluster nodes, as shown in figure
3.4.

3.7 Kubernetes CSI Driver
Applications running on Kubernetes access persistent storage through a concept called Vol-
umes. Volumes represent storage systems mounted into the application container at a given
path. The best way to develop a widely compatible storage solution for Kubernetes is to im-
plement a custom Volume driver. This allows the Kubernetes cluster orchestrator to take on
the responsibility of mounting and unmounting the file system to the target container.
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The Container Storage Interface is designed to streamline the process of creating custom
volume driver by allowing them to be built as external applications instead of having to be
merged in to the Kubernetes source. Using CSI to build a proper volume driver for Kuber-
netes decouples the file system implementation from a particular application. The driver can
be used as a storage provider for any deployment running on the cluster.

An additional benefit is that the driver and the file system integration run in separate
pods that are granted additional privileges and access to the host systems /dev/fuse driver.
This greatly improves security since each pod using the file system would otherwise have to
run in privileged mode, and the running program could potentially escape its container.

Building a standardized Kubernetes component also streamlines the process of deploy-
ment and configuration for future users of the file system.

3.8 Solution Overview
Together, these parts make up all the required components required to create a custom vol-
ume type for Kubernetes that allows pods to mount directories from remote machines.

• Creating a proper file system implementation using FUSE ensures compatibility with
all existing applications that interact with files and directories.

• Implementing a CSI driver allows native integration with Kubernetes, enabling the
solution to act as a storage provider for any type of application.

• A client application written in Go allows us to compile native binaries for all major
operating systems, and static linking ensures that there are no external dependencies.

• The gateway service ensures that users can connect and provide files to the cluster
without them having to be reachable from the public internet.

If successful, such a system would fulfil all the defined requirements. This would answer
RQ1 by showing that it is indeed possible to create a Kubernetes volume driver that solves
the problem of sharing files between the user’s machine and a remote cluster.

3.9 Cowait Notebook Integration
The original idea for the file system stems from the problem of sharing files with cloud note-
book software. To test if the file system mitigates these problems, and if it is useful in a real-
world scenario, the filesystem will be integrated into the Cowait notebook software. This
will help answering RQ3, i.e. to see if a shared filesystem can improve common workflows
when working with cloud notebooks.

A successful integration will need to automatically set up a Kubernetes volume repre-
senting the user’s local directory, and connect the client application to this volume prior
to launching the notebook. When the user closes the notebook, these resources should be
cleaned up.
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Chapter 4

Implementation

This chapter provides additional details on the implementation of the networked file system
and the custom volume driver. Section 4.1 describes the starting point for developing the
custom file system and a naive approach to implement the networking. Section 4.2 expands
on this, introducing a viable network architecture and providing an overview of the protocol.
The third section describes the implementation of the client application, and the rest of the
chapter outlines the development of the Kubernetes volume driver.

4.1 Starting Point
An implementation of a networked filesystem that fulfils our requirements outlined in sec-
tion 3.2 will have to be composed of a number of separate components. At the very least,
there has to be a program that interacts with the files available on the users machine, and
another program that facilitates access from the target machine.

The easiest way to build custom file systems is to use the FUSE driver. FUSE is a kernel
module that forwards file-related system calls to a userspace process, which is then responsi-
ble for carrying out the actual file operations. In order to make a networked file system, the
implementation forwards these system calls to a di�erent machine over the network, and re-
turns the result. Creating a FUSE file system is fairly straight-forward, as there are high-level
libraries available for most languages, and examples are widely available.

The naive approach is to run the file system implementation on the target machine and
have it act as a server that accepts incoming connections from user clients. Clients can then
o�er to provide the backing volume (the local folder on the user’s machine) that is then
mounted to the target. Once a client is accepted, subsequent file and directory operations
to the mounted directory is forwarded to the user’s filesystem over the network. A write
operation is illustrated in figure 4.1.
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Figure 4.1: Initial design of the networked FUSE filesystem. In this
design, the client and server communicate directly. Requests to the
file system are forwarded and handled by the client application.

4.2 Network Architecture
Since one of the design requirements is that the user must not be required to expose their
computer to the internet, the naive design presented in section 4.1 does not work, since it
assumes that the user can act as a server. If one wishes to avoid this, there are only two suitable
options for the network architecture. Either the target machine acts as a server (as shown in
figure 4.1), which would mean that any target machine must be exposed to the internet, or
there has to be a third component acting as an intermediary that both the client program
(on the user machine) and the target program can communicate through. This design is
illustrated in figure 4.2.

Because the intended target machines are Kubernetes pods, it became apparent that the
intermediary solution was the most practical. It would be unreasonable to require all cluster
nodes to have publicly accessible IP addresses, and even if it were a requirement, additional
complexity would have to be introduced to discover the IP address of the target pod once it
is created. By introducing an intermediary service, henceforth known as the gateway, we can
set up a well known public endpoint for the entire cluster that clients can connect to.

As a side benefit, the intermediary gateway service can keep track of which volumes have
been requested by cluster nodes. By giving each volume a unique identifier that is hard to
guess, we can add limited security to the system by forcing connecting clients to provide the
identifier for the volume they wish to provide. In Kubernetes, volumes have unique identi-
fiers that are hard to guess and only accessible by someone with access to the cluster itself.
Using these volume identifiers as shared secrets should provide adequate protection, since an
attacker with access to them most likely have direct access to the target pods anyway.

4.2.1 Protocol
The networking protocol largely mimics the FUSE API, since its purpose is to forward FUSE
operations to the user machine. Communication is based on gRPC, and the messages are
defined using Protocol Bu�ers. This simplifies the process of writing new client applications
in di�erent languages.
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Figure 4.2: An overview of the file system components.

The most important file system messages:

• LOOKUP: Resolves a path to an inode. Returns information similar to what is returned
by the fstat syscall, such as its inode number, file size, permissions, owner, time of
creation and time of last modification.

• CREATE: Create a new file with the given file modes (such as O_APPEND or O_TRUNCATE).
Returns a handle to the created file.

• OPEN: Open a file or directory for reading. Returns a file handle.

• RELEASE: Close an open file handle.

• UNLINK: Delete a file by name.

• GETATTR: Get file attributes. Returns information similar to an fstat syscall.

• SETATTR: Set file attributes such as permissions, owner or the time of last modifica-
tion.

• RENAME: Rename a file or directory.

• READ: Read data from an open file handle. Returns an array of bytes containing the
data.

• WRITE: Writes an array of bytes to a previously opened file handle at a given o�set.
Returns the number of bytes written.

• READDIR: List all files in a directory. Returns names and inode numbers.

• MKDIR: Create a new directory at a given path.
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• RMDIR: Remove a directory by name.

In addition to the file system messages, there are also a number of messages related to
keeping track of the clients:

• HANDSHAKE: Sent by the client upon connection. Provides the unique identifier of the
volume the client wishes to serve.

• PING/PONG: Periodic health check messages to monitor the connection.

4.3 Client Application
A client application is required to actually carry out filesystem operations on the user’s com-
puter. The client application connects to the gateway and signals that it is ready to provide
a certain volume by providing the unique volume identifier. If the identifier is recognized by
the gateway, the client is accepted and it begins to serve requests to read and write files and
directories. If the identifier is invalid, the connection is dropped.

4.3.1 Permissions
A common problem in networked filesystems is how to reconcile users between the client
and server machines, since the set of users on both machines are not necessarily the same.
The design presented in this thesis solves this problem by o�ering configuration settings
that allow the user to configure an owner user ID and group ID (root by default) at startup.
These values will be presented to the target machine when requesting file metadata through
GETATTR or READDIR. Files and directories created on the target machine will be assigned
to the owner of the filesystem client process running on the users machine. Operations that
modify file permissions will be ignored by the client. File permissions always appear as 775
to the target machine.

Hard- or symbolic links are not supported by the filesystem to avoid any risk of acciden-
tally allowing access to files residing outside the directory exposed by the user.

4.3.2 Cross-platform Compatibility
In order for the solution to be truly useful, it has to work on the most common platforms
used by developers. Initially, the authors hoped that filesystem related system calls would be
consistent across POSIX-compliant systems like Linux and Mac OS (Darwin). In the end, this
turned out to be almost true, and with some small fixes, Mac OS compatibility was achieved.
Windows is supported through the Windows Subsystem for Linux (WSL).

Several filesystem operations include a set of mode flags. While the system calls appear
similar between Linux and Darwin, there are some inconsistencies among the flags, and thus
they need to be translated if the client and server run di�erent kernels.

In addition to the flags, file information structures returned by the stat family of system
calls also have slight di�erences in the way they store timestamps, so they are transferred over
the network in a platform independent representation. stat is used to implement several of
the FUSE operations such as LOOKUP, GETATTR, SETATTR and READDIR.
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The design assumes that the filesystem target will be running Linux, so the compatibility
layer has been implemented in the client application. File mode flags are translated upon
receiving related RPC calls, and a cross-platform abstraction of stat is used to return a
Linux-compatible structure from any system.

4.4 Kubernetes Integration
Another advantage of the intermediary design is that it’s similar to what is expected from
a custom Kubernetes volume driver that implements the Container Storage Interface (CSI).
CSI is what will allow us to integrate our file system into Kubernetes, and have the cluster
orchestrator do much of the heavy lifting for us. By basing our file sharing solution on CSI,
it becomes a stand-alone Kubernetes component that can be used by any Kubernetes pod.
The driver can be used in any cluster and as a part of any kind of deployment, potentially
providing utility in other situations where it could be useful to access local files on a remote
machine.

CSI implementations, usually referred to as drivers, consist of two main parts - a single
controller service, and a node service that runs on each machine in the cluster. It is the
responsibility of the node service to handle volume mounts on the cluster nodes, and attach
or detach them to target pods.

In our case, the node component of the CSI driver also connects directly to the controller,
and when the node is asked by the cluster orchestrator to mount a certain volume, it requests
this volume from the controller. The client program also connect directly to the controller
and advertises itself as the provider of a certain volume. If a node has previously requested a
volume with a matching identifier, a connection is established between the two. Otherwise,
the client connection is dropped.

4.4.1 CSI Node
The node software runs on each cluster node. Its purpose is to manage mount points on the
host, and expose them to the correct pods. When a pod is created with a CSI-based vol-
ume attached, the cluster orchestrator asks the corresponding CSI driver node on the pod’s
host machine to mount it into the target container. At this point, our node implementation
mounts our custom FUSE filesystem at the requested mount point. The file system applica-
tion connects to the controller, notifying it that a volume has been requested.

4.4.2 CSI Controller
The controller acts as the central coordinating service. According to the CSI specification,
a controller is responsible for managing the volumes themselves. CSI is intended to allow
Kubernetes to be extended with custom volume drivers, so in a more typical driver, the con-
troller might be responsible for provisioning and attaching disks to the virtual machines
which make up the cluster. In our case, there are no physical disks to manage, so the con-
troller serves a slightly di�erent purpose. Instead, it runs a server that accepts incoming
connections from both file system clients and cluster nodes.
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Figure 4.3: Illustration of the volume mount process. When a new
PersistentVolumeClaim is created, the orchestrator executes the fol-
lowing steps. 1) CreateVolume is called on the CSI controller. 2)
StageVolume is called on the CSI node on the target host. 3) Node
creates a volume mount on the host. 4) PublishVolume is called, the
volume is bind mounted into the target pod.

Clients must have a single endpoint to connect to that is accessible from the public inter-
net. Since we can not assume that each cluster node has a reachable public address, we need
an additional service to provide the single endpoint and then proxy requests to the correct
cluster node.

4.5 Cowait Notebook Integration
For the purposes of evaluation, the finished file system was integrated into Cowait Note-
books. Several steps were added to the notebook launcher:

1. A Kubernetes volume is defined, with our custom filesystem as the storage driver.

2. Once the volume is created, its unique identifier is kept.

3. The file system client application is launched in the background, passing the volume
identifier. It is set up to share the current project directory with the notebook.

4. Cowait creates the notebook pod. When the volume becomes available, the notebook
starts up.

Then, the user can interact with the notebook as usual, but the working directory of the
notebook is now linked with the working directory on the user’s local machine.
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Once the work is done, the user exists the Cowait notebook by pressing Ctrl+C in the
terminal. This triggers the tear down process:

1. Notebook pod is deleted.

2. Client application process is killed.

3. The Kubernetes Volume is deleted.

The necessary changes were implemented by the authors and contributed to the Cowait
open source project.
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Chapter 5

Evaluation

The evaluation seeks to answer the research questions below:

• RQ1. Could a custom Kubernetes volume driver facilitate file sharing between cluster
nodes and developer machines?

• RQ2. Would the performance of such a system be acceptable? Which factors impact
the performance of such a solution?

• RQ3. Does a shared filesystem improve developer experience when working in cloud
notebooks?

While RQ1 has been largely answered by the outcome of the implementation of the
filesystem, it remains to be seen if the resulting system works well enough for real world
use. RQ2 and RQ3 are intended to evaluate whether the solution is useful in practice. The
evaluation has been divided into two parts: one quantitative part which seeks to answer RQ2
using various performance metrics, and one qualitative part which seeks to answer RQ3 us-
ing a usability study in which a sample of relevant developers interact with the system and
present their feedback.

5.1 Performance Evaluation
To evaluate the performance of the file system an experimental methodology was developed.
The methodology was inspired by the process described by Wohlin et al. [19] and can be seen
in figure 5.1. In the following sections the scoping, planning and operation stages are covered,
followed by the results of the experiment. The discussion can be found in chapter 6.
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Figure 5.1: Experiment process for the performance evaluation.

5.1.1 Experiment scoping
The goal of the experiment was to verify that the shared file system presented in this re-
port has acceptable performance in a set of realistic cases. This was done by measuring the
response time1 when performing common file system operations. These operations were per-
formed by a program running on a Kubernetes cluster.

5.1.2 Experiment planning

Context selection

The experiment was conducted on three di�erent Kubernetes clusters, which are listed in
table 5.1. Each cluster was configured to support the shared file system, as well as Cowait
notebooks. All measurements were conducted from a Cowait notebook executing a Python
script, where time was measured using the time.time() function and file system operations
were performed using the os.system() function. Since the Cowait notebook is designed
to utilize a shared file system, the script could use that file system as the measurement target.

The latency for each cluster can be seen in table 5.1, and was measured by running the
shell command ping ten times on the same day for each of the clusters.

1response time refers to the time elapsed between the start and finish of a file system operation
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Cluster location Network latency (ms)

Lund (LAN) 3.1 ± 2.6
Amsterdam 23.8 ± 2.4
Singapore 296 ± 35

Table 5.1: Clusters used for the performance evaluation, along with
the approximate round-trip network latency. For the latency the
mean and standard deviation are given.

Variable selection
When the experiment was performed there were three independent variables in focus: the
network latency2, the file size and the number of files in a directory. Network latency was
chosen since the shared file system operates over the network. File size was chosen since
reading and writing files takes more time for larger files. Finally, the number of files in a
directory was chosen since it takes more time to list the files in a directory if it contains more
files. The independent variables are listed again below for brevity:

1. File size

2. Number of files in a directory

3. Network latency to the cluster

The experiment used a single directory for the measurements. This directory contained
one or more files and the files could have di�erent sizes. The measurements were conducted
by performing certain file system operations on these files.

Defining use cases
To investigate the performance of the system four di�erent use cases were defined. They were
chosen to give a clear view of the overall file system performance without having to measure
every possible file system operation. The use cases were based on the following file system
operations:

1. Transferring files:

(a) Reading from a file

(b) Writing to a file

2. Listing the files in a directory:

(a) Regular listing, only returning file names

(b) Long listing, returning file names and metadata
2network latency refers to the round-trip time to the cluster, commonly known as the ping time
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These file system operations formed the basis of the four use cases seen in table 5.2. In
the table there are two columns describing the directory used for the measurements, namely
the number of files in the directory and the size of these files. The variations column shows
how many points within the range were used for the measurements. In this case the points
were chosen as the powers of two.

Case Operation Number of files File size (kB) Variations

1 Reading from a file 1 1→ 65536 17
2 Writing to a file 1 1→ 65536 17
3 Regular listing 1→ 256 0.1 9
4 Long listing 1→ 256 0.1 9

Table 5.2: Use case specifications.

All four use cases were performed by measuring the time needed to execute a shell com-
mand, and these commands can be seen in table 5.3. In the table the dir directory is located
in the shared file system, and is the one used for the measurements. The /tmp directory is
located outside the shared file system, and file is the name of the file being transferred.

Case Operation Command

1 Reading from a file cp dir/file /tmp
2 Writing to a file cp /tmp/file dir
3 Regular listing ls dir
4 Long listing ls -l dir

Table 5.3: The command associated with each use case.

5.1.3 Experiment operation
In order to perform the experiment some preparations had to be made. The clusters (listed
in table 5.1) had to be configured to support the shared file system. This was achieved by in-
stalling the CSI volume driver from chapter 4. Since the experiment was conducted through
a Cowait notebook, the clusters were also equipped with a Traefik reverse proxy [17].

After the preparations the experiment could be executed on the three clusters. Measure-
ments were made for the di�erent directory setups, as described in table 5.2, and for each
directory setup the experiment was performed 16 times. The order of these runs was ran-
domized in order to reduce the risk for biases. All measurements were orchestrated from the
same computer on the same network within two consecutive days.

Once the experiments were completed the data was analyzed and validated. The data
validation was performed to ensure that the data was correct, and that the measurements
were consistent over time. The results of the analysis are presented in the sections below.
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5.1.4 Experiment results
Transferring files
The time needed to transfer a file can be seen in figure 5.2, where both read and write times are
shown for all three clusters. It is clear that file transfer takes the most time for the Singapore
cluster and the least time for the LAN cluster. This is not surprising, considering the network
latencies listed in table 5.1. The figure also shows that writing files takes more time than
reading a file.
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Figure 5.2: Time needed to transfer files of di�erent sizes through
the file system. Read and write times are shown for the di�erent
clusters.

From the transfer times it is possible to calculate the transfer speed, which can be seen
in figure 5.3. The transfer speed is lowest for the Singapore cluster and highest for the LAN
cluster. For files larger than a megabyte the speed is close to constant, and the read speeds
are higher than the write speeds.

Listing files
The time needed to list the files in a directory can be seen in figure 5.4. Similarly to the
results above, the Singapore cluster takes the most time and the LAN cluster is the fastest.
There is also a di�erence between the regular and long listing times, with the long listings
taking slightly more time than the regular listings. For the Amsterdam cluster there is a sud-
den division between the listing types. The origin of this phenomenon has not been further
investigated, but it could be related to the small increase the LAN cluster is showing for 256
files.

From the listing times it is possible to calculate the listing speeds. These can be seen in
figure 5.5, where it is clear that the listing speed is the lowest for the Singapore cluster and
the highest for the LAN cluster.
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Figure 5.3: Transfer speed when transferring files of di�erent sizes
through the file system. Read and write speeds are shown for the
di�erent clusters.
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Figure 5.4: Time needed to list the files in a directory as a function
of the number of files in the directory. Both regular and long listing
times are displayed for the di�erent clusters.

5.1.5 Analysis
The performance evaluation was performed to find the situations where the performance of
the shared file system was acceptable. Thus, there needs to be a definition of what counts as
acceptable performance. We define the shared file system to have acceptable performance if
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Figure 5.5: Speed achieved when listing the files in a directory as a
function of the number of files in the directory. Both regular and
long listing speeds are displayed for the di�erent clusters.

it takes less than one second to list the files in a small directory and less than one second to
transfer a small file. A small directory is a directory containing only a few files.

The choice of one second as the time limit was based on a book by Nielsen [12, p. 135]
where three limits were identified for the response time of a user interface. These limits were
0.1 seconds, 1 second and 10 seconds and they were based on human perceptual abilities. The
1 second limit is the most relevant in this case since it marks the limit of the user’s flow of
thought. If an action is expected to be fast but takes more than one second to complete, the
system will be perceived as slow and the user experience will be reduced.

To find the situations where the shared file system has acceptable performance, two tables
have been created. In table 5.4 the time limit has been applied to file transfers, with the table
showing the size of the largest file possible to transfer within the time limit. Similarly, table
5.5 shows the largest directory that can be listed within the time limit. The numbers in these
tables were found by looking in figure 5.2 and 5.4.

Time (s) File size (MB)

Singapore Amsterdam LAN

Write Read Write Read Write Read

1 - - 1 2 6 10
3 0.25 0.4 4 8 20 30
10 1.8 2.5 15 30 70 100

Table 5.4: Maximum size of a file transferred in a certain amount
of time. Both reading and writing times are shown for the di�erent
clusters. Numbers in italics are extrapolations.
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Time (s) Number of files

Singapore Amsterdam LAN

Long Regular Long Regular Long Regular

1 - - 20 25 140 180
3 5 7 50 80 400 700

Table 5.5: Number of files listed in a certain amount of time. Both
long and regular listing times are shown for the di�erent clusters.
Numbers in italics are extrapolations.

In table 5.4 it is clear that the Singapore cluster does not provide acceptable performance,
since no file transfers complete within one second. A similar situation can be seen in table
5.5. Even if the user waits three seconds the performance is very low. The Amsterdam cluster
and the LAN cluster do however appear to provide acceptable performance.

It should be noted that if the user is using e.g. a notebook to interact with the server
the user will experience an extra delay equal to the round-trip latency to the cluster. This
is because the requested operation needs to be sent to the cluster, and the result needs to
be sent back after the completion of the operation. This discrepancy is however negligible
in most cases, especially when the operation itself takes over a second to perform. For this
reason the numbers in table 5.4 and 5.5 do not include the extra round-trip time. If they did,
the numbers would be slightly lower for the Singapore cluster.

In conclusion, the performance was acceptable for both the LAN cluster and the cluster
in Amsterdam for small files in small quantities, but due to the high latency the performance
was not acceptable on the cluster in Singapore.

5.2 Usability Evaluation
To evaluate the usability of the system a study was performed according to the process in
figure 5.6. In the following sections the three parts of the process are covered, followed by a
section presenting the results of the study.

5.2.1 Study Design
The usability evaluation was primarily designed to answer RQ3 (Can a shared filesystem improve
the developer experience when working in cloud notebooks?) and to ensure that the performance
of the system is indeed adequate for real-world use by actual developers.

A group of developers with relevant work experience was recruited to carry out an eval-
uation exercise and an accompanying interview. The exercise was designed to demonstrate
the capabilities of the filesystem implementation in a real world setting.

In the following sections the interview guide and sampling strategy are covered, followed
by a few sections about the exercise.
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Study design

Data collection

Analysis and
interpretation

Interview recordings

Interview guide

Sampling strategy

Figure 5.6: Usability evaluation process

Interview Guide
The interviews were semi-structured using the following organisation:

1. The interviewer briefly introduced the subject to Cowait notebooks and the shared
file system

2. The subject performed the exercise, and could ask questions and submit feedback to
the interviewer in a think-aloud manner [10]

3. The interviewer asked the subject three questions:

(a) What is your overall impression of working with Cowait notebooks?

(b) Do you think cloud notebooks with a shared file system could help improve the
data science workflow in your organization?

(c) Do you see any other advantages/disadvantages in having access to your local file
system when working in a cloud notebook?

Sampling Strategy
A total of ten subjects from seven di�erent companies were chosen to perform the evalua-
tion exercise and the accompanying interview. They were sampled using convenience sampling,
which in this case means that they were known by the authors or their colleagues. Demo-
graphic information about these subjects can be seen in table 5.6 including approximate age,
experience using cloud notebooks, role in the company and company size.

The opinions and feedback given by the subjects are their own and does not necessarily
reflect the o�cial stance of the company they work for.

Evaluation Exercise
The exercise involved working with a Kubernetes cluster. For this purpose the interview
subjects received access to a cluster located in Amsterdam, The Netherlands. The location
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ID Experience Role Age Sex Company Domain

A High Data Scientist 20 - 29 M Large Hardware
B High Data Scientist 20 - 29 M Large Retail
C High Data Scientist 20 - 29 M Small Consultant
D Mid Software Engineer 20 - 29 M Small Consultant
E Mid Software Engineer 20 - 29 M Small Consultant
F Mid Data Scientist 20 - 29 M Medium IT Security
G Mid Data Scientist 30 - 39 M Small Consultant
H Mid Data Scientist 20 - 29 M Large Retail
I Mid Software Engineer 40 - 49 M Medium IT Security
J Low Data Scientist 20 - 29 M Small Consultant
K Low Software Engineer 20 - 29 M Large Hardware

Table 5.6: Interview subject demographics. Sorted by self-reported
notebook experience.

was chosen to be reasonably far away so that the network latency would be realistic. The
cluster was prepared with an installation of the custom CSI driver, as well as a Traefik reverse
proxy [17] necessary for Cowait Notebooks.

Before starting out, subjects were given a brief introduction to the thesis project and an
outline of the steps and goal of the exercise. The expected time to finish the exercise and
interview was around one hour.

The subjects were asked to set up a Cowait notebook with a shared filesystem client on
their computer, and then follow a series of steps that guided them through a toy problem set
up to simulate a typical problem that a user might solve using a cloud notebook. The exercise
was divided into three parts, each serving a di�erent demonstration purpose.

The full exercise is available in Appendix A.

Assumptions
The following assumptions were made when designing the exercise:

• The filesystem is primarily intended for sharing source code, not datasets. Source code
is assumed to be distributed in relatively small files of less than 100 kB. The evaluation
does not involve transfers of any large files. Studying the behaviour of the system when
dealing with large files has already been covered by the performance evaluation.

• Performance evaluations have shown that the filesystem in its current state is not suit-
able for working with folders with large amounts of files. It is assumed that this prob-
lem would be largely solved by a simple metadata caching scheme (elaborated on in
section 6.2), and thus the evaluation does not involve any such folders.

The Exercise Parts
In the first part, the subject was asked to start up a notebook and write code to download
data from the internet and perform a simple computation. Then, the subject had to write a
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test for the notebook code and run it on the local machine instead of the cloud notebook.
After the test passed, the subject used their local git client to commit the work completed
so far. The last two steps were intended to showcase the fact that the shared filesystem did
indeed enable the use of local tooling even when working in a cloud notebook.

The goal of the second part was to create a new notebook that runs code from the first
part in parallel. Running multiple notebooks concurrently allows us to gather a larger dataset,
while demonstrating some of the other benefits of Cowait notebooks. The section ended with
the user writing the result of the parallel computations to disk. Because of the shared filesys-
tem, the results file was actually stored on the subject’s computer. Part two demonstrated
that the shared filesystem made it possible to use a cluster to perform computations on large
datasets while simultaneously being able to read and write smaller files on the developer
machine.

The third and final part revolved around executing the notebook code from the command
line as a Cowait job instead. When leaving the notebook behind, there was no longer a shared
filesystem with the cluster. Thus, a Docker image had to be rebuilt with the latest version of
the code, and in the end, the written result file was actually lost when the container exited.
This part served to remind the subject of what it was like to work without real-time file
sharing.

5.2.2 Data Collection
During the interviews both authors of this report were present, with one acting as the driver
and the other ensuring that the interview guide was followed. Some interview subjects per-
formed the interview individually. In total there were 11 interview sessions.

The interviews were performed in Swedish using the Zoom video conference software,
and the interviews were recorded with the consent of the interview subjects. These record-
ings were collected for the interviewers to know what was said during the interview without
having to take extensive notes at a high speed. There were however some notes taken during
the exercise to capture any insights acquired from the think-aloud protocol.

5.2.3 Analysis and interpretation
The data analysis consisted of listening to the interview recordings, collecting the answers to
each question, and then combining the answers from all subjects. These answers could then be
used to perform a synthesis, where both common answers and alternative view points could
be identified. These interpretations are presented in the next section, along with insights
acquired from the think-aloud protocol used during the exercise.

5.2.4 Interview Feedback
During the exercise, the subjects could ask questions and were encouraged to provide feed-
back in a think-aloud manner. Once the exercise was completed, a short interview was con-
ducted. The gathered feedback has been divided into 4 categories.
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Overall Impression

Overall, the interviewees found the Cowait notebook easy to use. The filesystem connection
was automatically set up in the background without any problems in each session.

Once the subjects realized that they could really access files on their own computers from
the cloud notebook, most subjects were curious about how the shared filesystem worked and
how it was set up. While the reason for the question was often curiosity about the technical
details, the question itself indicates that the process of setting up the shared filesystem was
transparent to the end user.

While most interviewees found the experience of using Cowait Notebooks with a shared
filesystem enjoyable, the interest in actually using it was somewhat disappointing. The data
scientists who were the most used to working in cloud notebooks were already very used to
their workflows, and hesitant to introduce such a radical change. Setting up a completely new
working environment to integrate the shared file system was perceived to be more trouble
than it’s worth.

Almost half of the interviewees showed di�erent degrees of worry over the stability of
the network connection, and brought up concerns over what would happen to their work in
case of a lost connection. Respondents agreed that this could have been largely mitigated by
receiving a more thorough explanation of the behaviour of the file system prior to performing
the exercise.

In four of the interviews, the interviewees noted that the system feels like too much
"magic" and will need to be very well documented in order to give the user a solid enough
understanding that they would feel confident using it.

Advantages

In general, most of the interview subjects found it advantageous to be able to seamlessly share
files with the cluster. The primary reason given was that it would be great to avoid having to
manually upload and download files to the cloud notebook, but not everyone agreed. Some
of the interviewees stated that any advantage in this regard would be outweighed by the
advantages of having a completely managed cloud notebook system.

The ability to use local software for remote development was commonly brought up as an
advantage, however, not everyone agreed that this is a problem that they currently experience.
It was also noted that this benefit may be less relevant to users without prior development
experience who are not used to these tools.

One interviewee was excited about the idea of avoiding the complicated SSH environ-
ments they were currently using in order to work on shared compute resources. Employees
would access powerful machines on the local network by a combination of Kubernetes port
forwarding and SSH access. Problems included each user having to set up an entire develop-
ment environment, including credentials for tools like git.

Several subjects mentioned the possibility that avoiding file upload to cloud machines
could potentially be a benefit when dealing with highly confidential data, since the informa-
tion in question never actually resides on a physical disk outside of the user’s control.
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Disadvantages
A common concern that was raised in multiple interviews is that of security, both concern-
ing the security of file transfers but most importantly the feeling of having their computer
"exposed" to the outside world. While running unknown software is common, the nature of
a situation where a remote machine has such obvious access to the users local hard drive does
raise concerns. It is perhaps worth noting that this feeling would most likely be mitigated
by the user putting themselves in the situation out of their own needs, rather than being
unwillingly put in it by the evaluation exercise.

Another disadvantage that was mentioned by multiple subjects who primarily do a lot
of work in managed cloud notebooks in larger organizations, was the di�culty of sharing
or collaborating with other people who are not necessarily developers. Managed cloud note-
books allow users to easily share links to hosted notebooks, something that is considerably
more di�cult in the evaluation setup. While the notebook URL can be shared, the shared
filesystem notebook requires the author to be online and actively serving the files.

Regarding the issue of handling confidential data, not everyone agreed that local storage
was preferable. Some of the participants instead preferred storing the confidential data on
cloud servers. The reasoning being that an employee computer is inherently less secure than
a server located in a guarded data center. Some employers even prohibit data from being
stored outside of their cloud environments.

Performance
None of the interview subjects reported any discomfort related to the performance of the
file system. When asked, users reported that the performance seemed to be adequate for the
demonstrated use case. A few subjects did, however, raise concerns that it might be easy to
accidentally use the system in other ways than intended, which could negatively a�ect the
performance. An example would be using the filesystem to share large data files with the
cloud server, which would be slower than if the notebook was running locally.
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Chapter 6

Discussion

This chapter attempts to answer the research questions based on the implementation out-
come and the results of the two evaluation studies. The implementation of the proof-of-
concept system is discussed in section 6.1. Results of the performance evaluation is analyzed
in section 6.2. Interpretation of the interview results are presented in section 6.3.

6.1 Implementation (RQ1)
The proposed solution design was turned into a working proof-of-concept implementation
that fulfils all of the initial requirements. Users can easily share a sub-tree of their local file
system with an application running on a remote cluster. The user’s files appear to the remote
application as regular files and directories, further ensuring compatibility with any software
that operates on a standard file system. It is implemented as a custom volume driver, which
decouples the implementation from a specific application and provides compatibility with
any Kubernetes workload. Building on Kubernetes, the most popular cluster orchestrator
and quite possibly the standard way of deploying software going forward, ensures that the
file sharing solution can be used with virtually any application.

By introducing a central gateway service, cluster nodes and user machines have a well
known endpoint to communicate through. This allows users to connect and provide vol-
umes without exposing any ports to the public internet, greatly simplifying the set up on the
user’s end. However, in the current design, the gateway service is a single point of failure. If it
crashes, all active file sharing sessions will be lost, with no option but to restart the applica-
tions that were using them. The gateway service is also a potential performance bottleneck,
since all file system tra�c flows through it. While this is a problem in the proof-of-concept
system, there are multiple ways to go about solving it. A better design would be to separate
the gateway from the CSI controller, which would open up the possibility to independently
replicate and balance load over multiple gateway services.

Overall, the design of the system has led to a fairly simple implementation, and while it
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could use improvements in several areas, it works surprisingly well in its current form. With
some additional work and testing, it could become a useful way to interact with cloud servers
in the future.

Modularity
While the file sharing solution is not tied to any specific application, the implementation of
the FUSE filesystem is currently intertwined with the CSI volume driver, specifically the CSI
node. Besides limited modularity, this design has a few drawbacks.

Firstly, the FUSE file system runs in the same process as the CSI Node. Because of this,
the entire CSI node (which could be serving multiple pods simultaneously) could be brought
down by an unrecoverable error in any of the running file system mounts. If FUSE ran in a
separate process for each mount, the CSI node would be isolated from any crashes.

Secondly, there is no way to run the file system outside of Kubernetes, which makes it
much harder to properly test the individual components. Thus, separating the FUSE file
system to a separate process would bring multiple benefits.

Thirdly, the CSI Controller service is sharing a process with the gateway service, causing
similar interdependence problems. A crash in the CSI controller will bring down all active
file system sessions, and vice versa.

All of these problems can be quite easily mitigated by separating the FUSE file system
implementation into its own separate process.

Communication Security
One of the most serious problems with the file system is that the network tra�c to and from
the gateway is currently not encrypted. The system is therefore vulnerable to eavesdropping
and man-in-the-middle attacks. Since the gRPC implementation used for network commu-
nication has built-in support for Transport Layer Security (TLS), this is mostly a matter of
configuration. However, the additional complexity of handling certificates was considered
outside the scope of this thesis.

Another issue is that anyone with access to the unique volume identifier can connect to
the target pod and provide the volume. If the filesystem were to be deployed as part of a
real software-as-a-service solution, it would need an improved authentication system. The
gateway service would be a natural place to implement user authentication, considering that
it already acts as a central coordinator for the system.

6.2 Performance (RQ2)
The goal of the performance evaluation was to verify that the performance of the shared
file system is acceptable. Three clusters were used for the evaluation, and the clusters were
located in di�erent parts of the world in order to cover a wide range of network latencies.
During the evaluation both file transfers and directory listings were tested.

The performance of the file system can be analyzed by considering the following setups:

1. Small number of small files
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2. Small number of large files

3. Large number of small files

In the first case the file system only contains a small number of files and the files them-
selves are small in size. This case was analyzed in section 5.1.5 where a file system was deemed
to have acceptable performance if both file transfers and directory listings could be finished
in less than one second. The result was that the cluster in Singapore (with a latency of around
300 ms) was too slow but the other clusters were fast enough. This shows that as long as the
cluster is not too far from the user the performance can be acceptable.

In the second case the files are large but few. Here the file size is in focus, and especially
the transfer speed. Figure 5.3 shows that the transfer speed when reading or writing large files
levelled out for files larger than 1 MB, but the speed was di�erent between the clusters. The
transfer speeds ranged between approximately 0.1 and 10 MB/s, but these di�erences could
likely be reduced with some future work on the file system implementation.

In the third case the files are small but numerous, which means that there is a directory
which contains a large number of files. Here the directory listings are the most relevant, and
in figure 5.4 the time needed to list the files in a directory is shown. If a directory contains
for instance 200 files, the time needed to list the directory contents is over a minute for the
cluster in Singapore. This is clearly not acceptable performance, but luckily there are several
possible improvements that can be made. These include caching and prefetching of metadata,
which are explained in the sections below.

Caching
The empirical evaluation of the filesystem demonstrated that a lot of time was spent on listing
directories, fetching file attributes, opening and closing handles and other operations which
are not directly related to reading and writing data.

These operations take very little time to execute on the client side, but are typically run
sequentially, and each operation incurs the cost of a network round trip. For large directories,
these round trips add up quickly, especially in high latency environments. [18]

However, since the file system is designed for two machines operated by a single user,
conflicting operations are unlikely to occur simultaneously on both sides. This means that
it should be possible to cache most of the results of the metadata operations on the server
side. The client application could subscribe to filesystem notifications and send messages to
invalidate the cache as necessary.

By replacing network calls with memory look ups one can expect a performance im-
provement of several orders of magnitude for the most common operations, such as listing
the contents of a directory.

Prefetching
Caching can only ever hope to increase the performance of repeated requests, but the user
will still experience long delays initially. According to the performance evaluation, large
directories with many files have the most negative impact on user experience.

The only way to reduce this initial latency is to pre-fetch data into the cache before the
user needs it. The client could start streaming file metadata in the background immediately
upon an established connection.
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Another approach is to predict future file system operations and prefetch the data needed
for those operations. For instance, if the user lists the files in a directory, the operating system
might perform a READDIR operation followed by a LOOKUP operation for each file in the
directory. When the READDIR operation has been received the LOOKUP information can be
prefetched into the cache. This would greatly reduce the time needed for listing directories.
This approach has been used before, for instance by the Ceph filesystem [18].

6.3 Interview Feedback (RQ3)
The main purpose of the interviews was to evaluate whether a shared file system could im-
prove the overall experience of working with cloud notebooks. Participants were asked to
consider the benefits of being able to use software installed on their local machines (such as
version control systems) in combination with the notebook, and to think of possible draw-
backs.

Respondents can be roughly divided into three groups, ordered from most common to
least common:

1. Data Scientist, primarily using cloud notebooks. They tended to prefer the managed
solutions, either due to not experiencing any di�culties that could be mitigated by the
file system, or citing the importance of other advantages such as ease of collaboration
with non-technical colleagues.

2. Data Scientist, primarily using local notebooks. These participants were usually pos-
itive towards the idea, probably because it closely resembles the environment they are
used to working in. However, this group had little need for any extra resources o�ered
by cloud notebooks.

3. Software Engineer, sporadic use of notebooks Although a small group, they were the
most positive towards the shared file system. This was likely due to them being the
most experienced in working with more traditional development tools.

Out of all the participants, the group that was the most positive to the presented solution
was the ones who were primarily software engineers but who occasionally work in notebooks
(group 3). Perhaps this is an unsurprising result, considering that the idea for the thesis itself
originates from people similar to this group, and that the solution aims to bring the data
science workflow closer to that of traditional software development. Unfortunately, this is
also the smallest group, which indicates that the solution might not be well received by its
intended audience.

Group 2, data scientists primarily working in local notebooks, were generally positive to
the idea of having a shared file system with a cloud server. The main reason given was that
it closely resembles their current workflow, which leads them to believe that a transition
to a cloud solution based on a shared file system would be easy. This group currently has
little need for the extra compute resources provided by cloud servers, but they make up an
important target demographic since they might need access to more powerful machines in
the future.

The largest group, consisting of data scientists who primarily work in managed cloud
notebook environments in larger organizations (group 1), were the most hesitant to the idea.
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Participants in this group were generally happy in their current environment and the majority
did not currently experience problems that could be easily mitigated by access to local tooling.
It is worth noting that part of this group had spent most of their working careers in cloud-
based tools and because of this, could have a more di�cult time seeing the benefits from the
simple demonstration presented in the evaluation exercise.

Issues related to collaboration options were brought up frequently. For example, a note-
book based on a local file system is not very well suited for simultaneous use by multiple
developers. Such a notebook is by definition only reachable by others while the software is
running on the author’s machine, which could be a big disadvantage compared to a hosted
solution where any notebook can be reached via a permanent URL at any time. However, this
criticism is tied to the particular notebook implementation. It is possible to envision ways
in which a snapshot of the file system at a particular time could be published to a managed
service where it would be available to others.

None of the participants reported any discomfort related to the performance of the file
system, indicating that the system is fast enough to provide a good user experience for small
scale projects such as the one demonstrated during the interview. This result is in line with
the performance evaluation.

It is di�cult to conclude whether or not the overall experience of working in cloud note-
books was improved based on the results of the interviews. Because of the way the evaluation
exercise was set up, any feedback was heavily biased by the particular notebook implemen-
tation used, and this likely a�ected the results. All of the interviewees could see at least some
advantage to having a shared file system with the notebook, so it is probably fair to conclude
that o�ering it as a storage option could improve the notebook experience.

6.4 Threats to Validity
When performing a study there will always be threats to validity. The validity of a study can
be divided into three types: internal validity, external validity and reliability.

Internal validity concerns the relation between cause and e�ect, and it is threatened if
there are confounding factors a�ecting the result. In the performance evaluation the per-
formance of the system could be a�ected by the environment in several ways. Firstly the
network latency and bandwidth could vary over time, as well as the packet size used for the
TCP connection. Secondly both the user machine and the cluster machine could be running
other programs, which could a�ect the performance. Lastly the performance could have been
a�ected by the measurement setup itself. The authors believe that none of these factors have
enough influence to change the conclusions presented in this report, but they could certainly
alter the measurements slightly.

External validity concerns the generalizability of the results, both for the performance
evaluation and the usability evaluation. Since the performance evaluation only considered
four of the most basic file system operations, there could be other operations with a di�erent
performance profile. Regarding the usability evaluation, the exercise was designed to be re-
alistic, but there is still a risk that the interview subjects would act di�erently when working
with their own data, which could change their need for a shared file system. There is also a
risk that the chosen participants are not representative of the target audience, in this case
data scientists. This risk was reduced by sampling participants with a wide demographic
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range, but the range could certainly be wider.
The reliability of a study concerns the similarity in interpretation between the authors

and other scientists. For the usability evaluation this would mean that another scientist could
listen to the interviews and arrive at the same conclusions as the authors. To ensure reliability
of the study both authors were present during the interviews, with the intention of reducing
the risk for single researcher bias.

6.5 Future work
While the implementation presented in the thesis is a fully working proof-of-concept, there
are many ways in which it could be improved. The most important enhancements have been
discussed extensively in sections 6.1 and 6.2.

• Improve directory listing performance by caching file metadata.

• Improve read/write performance by caching files on the remote system.

• Implement proper transport layer security to ensure data confidentiality and integrity.

• Decouple the gateway service from the CSI controller to improve scalability.

• Decouple the FUSE filesystem implementation from the CSI node to improve testa-
bility and modularity.

• By introducing a proper way to persist the state of currently active volumes, it might
be possible to recover from CSI controller crashes.
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Conclusions

This thesis presents a working proof-of-concept implementation of a general solution to shar-
ing files between a user’s computer and software running on a remote cloud machine. The
complete solution consists of a custom networked file system based on FUSE, a client ap-
plication and a gateway service. Compatibility with any Kubernetes workload was achieved
by implementing the solution as a custom volume driver leveraging the Container Storage
Interface, an open standard for developing new storage options for Kubernetes.

To evaluate whether the solution provides any value for real-world use cases, two separate
studies were conducted. A quantitative performance study was carried out to verify that the
system is fast enough to meet minimum requirements set by prior user experience research,
as well as to study how the performance varies with di�erent file sizes, number of files and
network conditions. Engineers with relevant working experience were recruited and asked
to perform an exercise designed to highlight the benefits of a shared file system, and their
feedback was gathered to see if the file system improves the overall experience of working
with cloud notebooks.

The performance evaluation showed that even a naive implementation of a networked
file system, such as the one presented in the thesis, can perform well enough for streaming
code between developer machines and cloud notebooks. Assuming reasonable latency, small
files and small folders, response times stayed within the acceptable limit of 1 second.

Interviews showed varying interest in a cloud notebook with a shared file system. Data
scientists who were comfortable using managed cloud solutions were hesitant to use such a
system, citing convenience or collaboration concerns. The group that was the most positive
were developers with a software engineering background, who were excited to be able to use
familiar tooling for local files.

While the system performs reasonably well for small scale projects, much work remains to
be done in order to achieve acceptable performance for larger code bases. On the bright side,
there is a clear path towards reducing response times, greatly improving the user experience.
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Appendix A

Evaluation Exercise

Introduction
Cowait is a system for packaging a project with its dependencies into a Docker image, which
can then be run as a container either on the local machine or on a Kubernetes cluster. It allevi-
ates several problems in data engineering such as dependency management, reproducibility,
version control and parallel computation. Cowait runs code as containerized tasks, and a
task can start subtasks with parameters and return values. These subtasks run in parallel as
separate containers, which enables parallel computation.

A Cowait notebook is essentially a Jupyter notebook running with a Cowait kernel. This
enables the notebook to act as if it was as Cowait task, which means it can start new Cowait
tasks in the background. The notebook can run either locally or in a Kubernetes cluster, and
the notebook works in the same way in both cases.

One of the defining di�erences between Cowait notebooks and other cloud notebooks
is the access to the local file system. When starting a Cowait notebook from the command
line it will automatically receive access to the current working directory, using a networked
file system set up in the background.

In this lab you will learn how to use Cowait Notebooks by creating a simple, yet realistic,
project. The notebooks will run on a Kubernetes cluster, but all the project files will reside
on your computer. The lab takes around 20 minutes.

Preparations
Please complete the following steps before proceeding.
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A. Evaluation Exercise

Prerequisite Software
• git

• Docker

• Python 3.7

Initial Setup
1. Install Cowait:

$ pip3 install cowait

If you already have Cowait installed, make sure it is at least version 0.4.23.

2. Clone the demo repository:

$ git clone https :// github .com/backtick -se/cowait -notebook -eval
$ cd cowait -notebook -eval

Docker Registry
You will need an image registry to distribute your code to the cluster. The easiest way is to
sign up for a free account on Docker Hub at https://hub.docker.com/signup

After signing up, ensure your Docker client is logged in:

$ docker login

Cluster Configuration
Participants of the evaluation study should have received a kubeconfig.yaml file that can
be used to access the evaluation cluster. If you are not participating in the evaluation, you
will have to set up your own Cowait cluster. A traefik2 reverse proxy deployment is required.

Put the provided kubeconfig file in the current working directory. Then, set the KUBECONFIG
environment variable:

$ export KUBECONFIG =$(pwd)/ kubeconfig .yaml

Lab
Part 1: Your first Notebook Task
The goal of part one is to create a notebook that computes a value we are interested in. Then,
we turn the notebook into a Cowait task, so that it can be executed as a batch job.
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1. Open cowait.yml and update the image setting to <your dockerhub username>/
cowait-notebook-eval. This configures the name of the container image that will
contain all our code and dependencies.

2. Create a requirements.txt file and add pandas

3. Build the container image, and push it to your registry:
$ cowait build --push

4. Launch a Cowait Notebook using your newly created image:
$ cowait notebook --cluster demo

It might take a few minutes for the cluster to download the image. Once the task is
running, a link will be displayed. Open it to access the notebook.

5. Create a new notebook called volume.ipynb. Make sure to select the Cowait kernel.

6. Download some data into a pandas dataframe. The dataset contains every trade ex-
ecuted on the Bitmex cryptocurrency derivatives platform, divided into one file per
day.
import pandas
date = ’20210101 ’
df = pandas . read_csv (f’https ://s3 -eu -west -1. amazonaws .com/

public . bitmex .com/data/trade /{ date }. csv.gz ’)

7. We want to compute the total US dollar value of Bitcoin contracts over the course
of the day. Bitcoin Perpetual Futures contracts have the ticker symbol XBTUSD. To
do this, use pandas to find all the rows containing XBTUSD transactions, and sum the
size column.
volume = int(df[df. symbol == ’XBTUSD ’]. size.sum ())
print( volume )

8. Parameterize the notebook by changing the date variable to an input parameter:
date = cowait .input(’date ’, ’20210101 ’)

In Cowait, inputs allow us to send arguments to tasks. Later, we can substitute the
input value to execute the notebook code for any date we like. If no input is set, the
default value 20210101 will be used.

9. Return the total volume from the notebook using cowait.exit():
cowait .exit( volume )

Similarly to inputs, tasks can also return outputs. Returning an output allows us to
invoke the notebook and use the computed value elsewhere.

10. Write a simple sanity test for the notebook that verifies the computation for a date
with a known volume. Create a file called test_compute_volume.py with your
favorite text editor:
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# test_compute_volume .py
from cowait .tasks. notebook import NotebookRunner
async def test_compute_volume ():

vol = await NotebookRunner (path=’ volume .ipynb ’, date
= ’20210101 ’)

assert vol == 2556420

The NotebookRunner task executes a notebook file and returns any value provided
to cowait.exit().

11. Open a new terminal in the same folder and run the test. Make sure it passes.
$ cowait test

Contrary to the notebook, the tests will run in a Docker container on your computer.

12. Now is a good time to save your progress. Since the files are available on your local
machine, use your git client to create a commit.
$ git add .
$ git commit -m ’Volume notebook ’

Part 2: Going Parallel
We now have a notebook for calculating the volume for one day. But what if we want to
know the volume for several days? While we could create a loop and download each day in
sequence, it would be much more e�cient to do it all at once, in parallel.

1. Create a new notebook with the Cowait kernel, and call it batch.ipynb.

2. First, we will create two input parameters and create a range of dates that we are
interested in.
from helpers import daterange
start = cowait . input (’start ’, ’20210101 ’)
end = cowait .input (’end ’, ’20210104 ’)
dates = [ date for date in daterange (start , end) ]
dates

3. Then, we can create a NotebookRunner for each date in the list. This will start four
new tasks, each calculating the volume for one day. While these are running the note-
book can perform other calculations.
subtasks = [ NotebookRunner (path=’volume . ipynb ’, date=date) for

date in dates ]

4. To get the results of the calculations we need to wait for each task to finish:
# just for reference , dont try to run this
result1 = await task1
result2 = await task2

Since we have a list of pending tasks, we can use cowait.join. Create a new cell with
the following code:
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results = await cowait .join( subtasks )

5. Finally let’s print the results:
print ( results )

6. Write the results to a JSON file on your local machine.
import json
with open(’result .json ’, ’w’) as f:

json.dump(results , fp=f)

7. Use the Run All Cells feature in the Run menu to try out the notebook. This will
run a tasks for each day in the date range, in paralell, on the cluster.

8. Now is a good time to save your progress.
$ git add .
$ git commit -m ’Volume batch notebook ’

Part 3: Production
We now have a runnable notebook, and it is time to put it into production. We can run the
batch notebook without Jupyter using the command line.

1. Open a terminal in the same folder and make sure the ‘KUBECONFIG‘ environment
variable is set:
$ export KUBECONFIG =$(pwd)/ kubeconfig .yaml

2. Before we can run tasks on the cluster we have to push an updated container image to
a docker registry. This image will bundle all the code you’ve written along with any
dependencies required to run it. It will continue to work as written, forever.
$ cowait build --push

3. The notebook can now be executed on the cluster as a batch job for a range of dates.
$ cowait notebook run batch.ipynb \

--cluster demo \
--input start =20210201 \
--input end =20210207
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Fildelning genom en portal till molnet

POPULÄRVETENSKAPLIG SAMMANFATTNING Martin Jakobsson, Johan Henriksson

I takt med att världen blir mer datadriven flyttas allt fler stora beräkningar till molnet.
Då tillkommer ofta problem med filhantering. Detta examensarbete bidrar med ett
nytt sätt att dela filer med molnet, där molntjänsten får tillgång till filer som lagras
på användarens dator.

En forskare sitter och genomför vetenskapliga
beräkningar på sin dator, men i takt med
att mängden data som ska beräknas växer tar
beräkningarna mer tid att genomföra. För att
snabba upp processen bestämmer sig forskaren
för att flytta arbetet till molnet. Flera datorer
kan då samarbeta för att snabbare genomföra
beräkningarna, och forskaren kan då arbeta ef-
fektivare. Detta leder dock till ett nytt prob-
lem: beräkningarna är definerade i kodfiler som
forskaren skapar på sin dator, men nu måste de
skickas till molnservern. Om forskaren vill ändra
något i dessa filer så måste den manuellt ladda
upp filerna igen för att molntjänsten ska ha den
senaste versionen. Detta blir snabbt en omständig
process, eftersom man ofta går igenom många it-
erationer av ändringar i sin kod innan man når ett
färdigt resultat.
För att underlätta överföringen av filer har vi

skapat en portal som sätts upp mellan använ-
darens dator och en molnserver. Användaren kan
då ge molnservern tillgång till utvalda mappar
och filer på sin dator. Genom att strömma läs-
och skrivoperationer över internet kan molntjän-
sten arbeta direkt mot filer som lagras på använ-
darens hårddisk. På så vis undviks problemet
att manuellt behöva flytta filer fram och tillbaka.

Dessutom finns den mest aktuella versionen alltid
på användarens dator, vilket ger användaren full
kontroll över sina egna filer.

Molnet

Beräkningar

Användarens dator

Användare

Filer

Man kan dock undra om den här lösningen verk-
ligen fungerar så bra som det är tänkt. Portalen
skickar trots allt information över internet, vilket
tenderar att vara långsamt. Efter noggranna mät-
ningar har det dock visat sig att prestandan duger
i de allra flesta situationer. Prestandan förväntas
dessutom kunna förbättras ytterligare genom att
introducera bland annat cachning.
Att dela filer genom en portal till molnet visade

sig vara en lösning med stor potential. Portalen
gör att steget till molnet blir kortare och använ-
darens filer blir lättare att hantera.
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