
MASTER’S THESIS 2021

Identification of Technical Debt
in Code using Software Metrics
Erica Schillström, Dan Wahlin

ISSN 1650-2884
LU-CS-EX: 2021-22

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY





EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2021-22

Identification of Technical Debt in Code
using Software Metrics

Identifiering av teknisk skuld i kod med
mjukvarumätvärden

Erica Schillström, Dan Wahlin





Identification of Technical Debt in Code
using Software Metrics

Erica Schillström
er8884sc-s@student.lu.se

Dan Wahlin
da8647wa-s@student.lu.se

June 21, 2021

Master’s thesis work carried out at IKEA IT AB.

Supervisors: Sandra Åström, sandra.astrom1@ingka.ikea.com
Martin Höst, martin.host@cs.lth.se

Examiner: Ulf Asklund, ulf.asklund@cs.lth.se

mailto:er8884sc-s@student.lu.se
mailto:da8647wa-s@student.lu.se
mailto:sandra.astrom2@ingka.com
mailto:martin.host@cs.lth.se
mailto:ulf.asklund@cs.lth.se




Abstract

The metaphor Technical Debt describes the consequences of taking shortcuts
in the software development process for short-term benefit, at the expense of
higher maintenance in the future. Every large software system contains Technical
Debt in some way or another, the di�cult question is to know when, where, and
how to repay the debt.

To answer this we conducted three main steps. A literature study on how
to identify, measure, and manage Technical Debt (i), interviews (ii), and finding
key software metrics based on the Goal-Question-Metric paradigm to build a
Technical Debt Model with a visualisation dashboard (iii). This was used for
a case study at an organisation where files from two projects were analysed and
the model was evaluated by comparing the results with opinions from developers
who created the system.

The final model used 8 metrics as input and had a total success rate of 80%
when comparing the model’s ranking with mutual opinion of the developers.

The dashboard was seen to be a useful tool for discussion and a quick way
to identify areas in the code with Technical Debt. It was also discovered that
measuring Technical Debt with only software metrics is a hard to impossible task,
and many sources of information must be used in conjunction. To circumvent
this, an implementation model for the organisation using several information
channels together with the dashboard was created.

Keywords: Software Development, Technical Debt, Software Metrics



2



Acknowledgements

Firstly, we would like to thank IKEA Retail for the opportunity to complete our master’s the-
sis with them. Specifically, a big thank you to Sandra Åström for helping us throughout the
project and always making us feel welcome, and to Magnus Pettersson for valuable feedback
and encouragement.

Secondly, we would like to send a big thank you to the rest of the team for their partici-
pation in the interviews and the evaluation.

Finally, we want to thank Martin Höst for being a supportive supervisor and giving us
great advice with his expertise in the area.

3



4



Contents

1 Introduction 11
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Distribution of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background and Related Work 13
2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Technical Debt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Software Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Agile Software Development . . . . . . . . . . . . . . . . . . . . . 17

2.2 Technical Debt Management . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Working with Technical Debt . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Best Practises to Reduce Technical Debt . . . . . . . . . . . . . . . 24

2.3 Case Company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Method 29
3.1 Literature Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Informative Interview . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 In-depth Technical Debt Interviews . . . . . . . . . . . . . . . . . . 32

3.3 Identification of Key Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Product Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Process Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Technical Debt Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.1 Weighing the Parameters . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.2 Adjusting for File Size . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.3 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5



CONTENTS

3.5.4 Technical Debt Index . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Evaluation of Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Implementation of Visualisation . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Result 39
4.1 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Types of Technical Debt in the Organisation . . . . . . . . . . . . . 39
4.1.2 Reasons for Acquiring Technical Debt . . . . . . . . . . . . . . . . 40
4.1.3 Best Practises Already Used by the Organisation . . . . . . . . . . . 40
4.1.4 Improvement Suggestions by the Organisation . . . . . . . . . . . 41

4.2 Identification of Key Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.1 Goal-Question-Metric . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Desired Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Actual Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.4 Code Smells Approximation . . . . . . . . . . . . . . . . . . . . . 44

4.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Technical Debt Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Evaluation of Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.1 Validation of Identified Files . . . . . . . . . . . . . . . . . . . . . 47
4.6 Technical Debt Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Implementation in the Development Process . . . . . . . . . . . . . . . . . 53

4.7.1 Technical Debt List . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.7.2 Training of Developers . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Discussion 57
5.1 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Selection of Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Technical Debt Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Model Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.2 Model Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.3 Model Shortcomings . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Evaluation of Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5 Technical Debt Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.6 Implementation in the Development Process . . . . . . . . . . . . . . . . . 62
5.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Conclusion 65

7 Future Work 67

References 69

Appendix A Interview Questions 75

Appendix B In-depth Interview Questions 77

Appendix C Results from Goal-Question-Metric 79

6



CONTENTS

Appendix D Metric Definitions 83

7



CONTENTS

8



Abbreviations

API Application Programming Interface. 33, 41, 43, 48, 60

ATD Architectural Technical Debt. 27, 65

CSV Comma Separated Values. 33, 34, 37, 45

GQM Goal Question Metric. 17, 32, 42, 43, 61

JS JavaScript. 33, 40, 42, 43

LOC Lines of Code. 20, 25, 34, 37, 45–47, 50–52, 58, 61

SM Software Metrics. 12, 13, 15, 16, 19–23, 31, 41, 42, 53, 59, 61, 65, 67

TD Technical Debt. 11–15, 18, 19, 21–36, 39–41, 43, 45–47, 50–53, 55, 57–63, 65, 67

TDM Technical Debt Management. 14, 15, 18, 24, 28, 32, 42

TS TypeScript. 33, 40, 42, 43

9



Abbreviations

10



Chapter 1

Introduction

Technical Debt (TD) is a metaphor used to describe the consequences of taking a shortcut
in the software development process. The shortcut gives the team benefits in the short term
with faster releases to the customer and decreased time-to-market (Yli-Huumo et al., 2016).
However, debt does not come without a cost, and the long-term consequence of taking too
many shortcuts and never paying them back can eventually lead to software bankruptcy.

When developing software and delivering features at a high pace, there is the risk of
creating TD. TD is usually caused by the need of cutting corners and making somewhat
easier or limited solutions with poor architecture, automation, and quality assurance. If the
TD grows too big, there is a high risk that a team has to spend most of the time maintaining
and fixing issues, instead of being able to build new functionality.

1.1 Problem Statement
In order to enhance the way of working and address the TD, there is an urge to have proper
monitoring, both of the code itself but also how the teams are delivering the software. That
is, there is a need to measure and visualise the TD, to make appropriate decisions on how to
improve and balance between continuous improvements and developing new features.

1.2 Research Questions
The overall vision of the master’s thesis was to identify and understand how a large soft-
ware organisation can succeed when working with TD and develop a strategy to know when,
where, and how the TD should be repaid. The goal was therefore to investigate best practices
around working with TD and finding a way to measure and visualise TD in code. The thesis
shall also include implementation of these measurements in a team. Four research questions
related to these steps were formed:

11



1. Introduction

• RQ1. What are the best practises to manage and visualise TD according to literature?

• RQ2. What software metrics can be used in this type of organisation to measure TD?

• RQ3. How can these software metrics and best practices be implemented in the de-
velopment process of a large software organisation?

• RQ4. How well does the measurements mirror the perceived TD in a project at the
case company?

1.3 Contribution
This thesis contributes with knowledge and experience from applying Software Metrics (SM)
to measure, visualise and prospectively reduce TD at an organisation of this type. The thesis
also contributes with concrete examples of metrics and how they can be used to find which
files in a project contain the most TD. Finally, this thesis contributes with examples of how
the data collection for these metrics can be implemented and further introduced in an or-
ganisation of this type.

1.4 Distribution of Work
The work has been distributed equally between the two authors. Some parts of the thesis
have been conducted in pair and some has been divided due to time limits and the fact that
a PC was required, which we only had one of. Dan Wahlin has therefore been responsible
for the implementation of measurements and visualisations, while Erica Schillström had re-
sponsibility for data collection and data analysis.

1.5 Outline
The report begins with a background and related work description in Chapter 2, where the
term TD is presented together with topics related to it and best practices on working with
TD in an organisation. The chapter further describes work done in the software metrics
subgroup of TD identification as well as work on visualising TD.

Chapter 3 presents the method used in the thesis including how the literature study and
interviews were conducted as well as how the TD model was formed, visualised and evaluated.
The results from the interviews, the TD model, visualisation and evaluation are presented in
Chapter 4. The method, the results and the threats to validity are discussed in Chapter 5.
Finally, the thesis will be wrapped up with conclusions about the results in Chapter 6 and
suggested future work in Chapter 7.

12



Chapter 2

Background and Related Work

The metaphor TD is a complex concept that can not be described with only one example,
nor can it be measured in only one way. Furthermore, it is a concept that not everyone is
familiar with and the questions regarding TD and how to manage it are many. This chapter
provides an overview of the theory with a deeper description of TD, best practices to consider
when working with TD and relevant information about the case company, needed to fully
understand the background of the thesis.

2.1 Theory
This section serves the purpose of providing a theoretical background to the reader about
TD, SM and agile software development. Each concept description includes a background,
examples, and benefits of adapting the concepts in the software development process.

2.1.1 Technical Debt
The term TD was first coined by Cunningham (1992):

“Shipping first-time code is like going into debt. A little debt speeds develop-
ment so long as it is paid back promptly with a rewrite... The danger occurs
when the debt is not repaid. Every minute spent on not-quite-right code counts
as interest on that debt.”

Time saved from releasing a feature with lower quality earlier will be lost when the main-
tenance is greatly slowed down due to, for example, undocumented and nonreusable code.
However, it is di�cult to prioritise long-term benefits that have no immediate customer
value, making it a common problem.

Since Cunningham coined the TD term it has been further researched, especially in recent
years (Yli-Huumo et al., 2016; Seaman and Guo, 2011). Cunningham had more focus on the

13



2. Background and Related Work

code but nowadays the general consensus is that TD can appear in all parts of the software
development (Tom et al., 2013). Some examples of TD types are:

• Code Debt such as duplicated code.

• Design and Architectural Debt such as needless dependencies.

• Knowledge Distribution Debt such as lost developer knowledge.

• Documentation Debt such as outdated documentation.

• Testing Debt such as lack of test coverage or excessive manual testing.

Li et al. (2015) performed a systematic mapping study on TD and Technical Debt Man-
agement (TDM) by collecting studies and creating a classification and thematic analysis on
these studies. The main goal was to get a broad understanding of the concept of TD and an
overview of the current state of TDM. The systematic mapping study contains 94 di�erent
studies about TD and TDM. Eight TDM activities were identified, presented in Table 2.1.
The study showed that these TDM activities received di�erent levels of attention and that
TD identification, TD measurement and TD repayment have each been mentioned in more than
50 per cent of the 94 selected studies.

Table 2.1: TDM activities. * Activity is mentioned in more than 50
per cent of the studies

TDM activity
TD identification *
TD measurement *
TD prioritisation
TD prevention
TD monitoring
TD repayment *
TD representation/documentation
TD communication

Table 2.2: Non-TD types

Non-TD
Defects
Unimplemented features or functionalities
Lack of supporting processes
Unfinished tasks in the development process
Trivial code quality issues
Low external quality

As a way of defining the metaphor TD, six things that should be regarded as non-TD have
been identified (Li et al., 2015) and are listed in Table 2.2. There are several studies identifying

14



2.1 Theory

Figure 2.1: The Technical Debt Quadrant

defects as a type of TD and some as non-TD. According to Li et al. (2015), there is a need for
more empirical studies with evidence on the TDM process along with more dedicated tools
for managing TD.

The acquirement of TD is mostly a factor of time constraints, i.e. a deadline needs to
be met (Cunningham, 1992), but it can also be acquired as a factor of other reasons or un-
consciously. Another aspect of the acquirement is if it is done recklessly or if there is some
afterthought to it. The Technical Debt Quadrant in Figure 2.1 is commonly used to exemplify
these reasoning (Fowler, 2018).

On the other hand, not acquiring any TD is also substandard as it slows down the de-
velopment and requires an enormous workload to achieve since everything has to be done
perfectly from the start (Kniberg, 2013). Deliberately acquired TD that later can be repaid
will speed up the software development while also keeping it maintainable. In other words,
working with TD is about managing the balance between acquiring and repaying it.

2.1.2 Software Metrics
SM are measurements of software characteristics which has become an essential part of good
software engineering (Fenton and Bieman, 2014). The measurements can be made during any
part of the software development process and are used to get a better insight into the software.
This includes, for example, measuring quality or performance and visualising the results to
help understanding, or as a basis to make decisions. In software, metrics are classified into
three categories based on entities and wanted attributes. These categories are process metrics,

15



2. Background and Related Work

product metrics, and resource metrics.

Process Measurements

Process metrics describe the characteristics of methods, techniques, and tools used in the
software development process. There are many metrics that can be measured in agile software
development to visualise how the process is evolving. These metrics are widely used in the
industry (Altvater, 2017). Some examples are presented in Table 2.3:

Table 2.3: Process attributes and metrics

Attribute Metric

Speed
Lead Time
Cycle Time
Sprint Burndown

Customer Satisfaction
Number of Bugs Reported
Customer Rating

Product Measurements

Product metrics describe characteristics of a product. There are large amounts of SM (Fen-
ton and Bieman, 2014; Lanza and Marinescu, 2007) that can be used to measure di�erent
attributes of the product. Some examples are presented in Table 2.4.

Table 2.4: Product attributes and metrics

Attribute Metric

Size
Kilo Lines of Code
Number of Attributes
Number of Methods

Complexity
Cyclomatic Complexity
Depth of Inheritance Tree
Lack of Cohesion of Methods

Quality
Number of Defects
Code Duplication

Resource Measurements

Resource metrics describe the characteristics of the entities required by a process activity and
help us to understand and control the process. There are many important metrics related to
di�erent activities of software development. Some examples are presented in Table 2.5.

16



2.1 Theory

Table 2.5: Resource attributes and metrics

Attribute Metric

Teams
Team Size
Productivity
Communication Level

Software
Reliability
Usability
Size

Personnel
Price
Experience

Determine What to Measure
A single metric value is not very useful for visualising or basing decisions on, nor is it possible
to measure and analyse everything due to time and money restrictions. One way to determine
what to measure is to use the Goal Question Metric (GQM) paradigm (Fenton and Bieman,
2014). If the project has clearly defined goals, it is possible to know the state of the project
and its processes. To use GQM, one or more major goals for the project are formulated.
These goals are used to formulate questions to determine if the goal has been achieved or
not. Finally, it is decided what metrics need to be measured to answer these questions. An
example of GQM is shown in Table 2.6.

Table 2.6: Example of GQM

GQM
Goal Analyse the software quality
Question How much unwanted behaviour is in the code?
Metrics Defects per Kilo Line of Code & Amount of Code Duplication.

Another way to have proper monitoring is to both use several metrics in di�erent parts of
the software development process and to combine related metrics to get a better perspective
or normalise the metric regarding, for example, size.

2.1.3 Agile Software Development
Agile software development is a framework with four core values:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

Further, Scrum is one type of agile software development framework that values cross-
functional teams to rapidly deliver features while also being adaptive to change (Alliance,

17



2. Background and Related Work

2017). The Scrum framework adapts the core values by using teams that work in short cycles,
so-called sprints, that usually are between 1 to 4 weeks long where a backlog (a list) of tasks
are to be completed in this time. At the end of each sprint, an evaluation is made, called
a retrospective, where lessons learned and the sprint result is discussed. These short cycles
allow quick changes to requirements and adaptions to evolving markets with fast feature
releases.

A Scrum team generally contains a Scrum Master, Product Owner, and a smaller team
of developers, testers, quality assurance, and more. There are however no set rules on how a
Scrum team should be organised, meaning that many variations exist.

Technical Debt in Agile Teams
The agile software development way of working introduces a lot of TD (Bavani, 2012). Teams
working in an agile development process are delivering business value frequently while con-
stantly adapting to changes during the process and still following the schedule . While trying
to maintain this steady work tempo, teams will most likely introduce TD and the software
becomes much harder to maintain. This is a result when less focus is put on creating readable
and reusable code and documentation (Alliance, 2017) as it brings no direct customer value.

Eisenberg (2012) presents that awareness and management of TD are especially crucial
for projects employing agile methods. This is motivated due to the characteristics of agile
development with the expectations for continual refactoring and frequent change with con-
tinuous integration. All parts of an agile team need to learn and experience the various types
of TD and TDM. For the agile team to understand and manage TD better, they need to not
only be aware but also aligned to successfully deliver business value. A team is aware when the
same understanding of the meaning of TD is shared among the team members and they are
aware of it. On the other hand, a team is unaware when the team members do not share the
same understanding of the meaning of TD nor are they aware of it. Agile teams are aligned
when the same understanding on how to coordinate and manage TD is shared among the
team members and the reduction of TD brings business value to the stakeholders. A team
is not aligned when the team members are unable to jointly coordinate and manage TD and
become reactive when it comes to paying o� TD and may eventually disappoint in delivering
business value (Bavani, 2012).

2.2 Technical Debt Management
This section is a result of the literature study done as a part of the thesis and serves the
purpose of answering RQ1 about best practices to manage and visualise TD. The section is
presented in this chapter to give the reader all information needed to grasp the future parts
of the thesis.

2.2.1 Working with Technical Debt
The main steps to reduce, visualise and work with TD found in the literature study are iden-
tification, measuring, and managing. These steps will be examined and di�erent approaches
to working with them are presented in this section.

18



2.2 Technical Debt Management

Identification Methods
The first step in being able to manage and visualise TD is to decide what methods to use
to identify it. As stated in Section 2.1.1, TD can be created in all parts of the software de-
velopment and can be identified in di�erent ways depending on where it emerges. The TD
term is vaguely defined, making identification of it a di�cult task, and it is often the most
costly step in reducing TD (Guo et al., 2016). Di�erent individuals will identify di�erent TD,
and so will di�erent tools (Zazworka et al., 2013). The performed literature study resulted in
defining the more useful and essential identification methods as:

• Code smells

• Agile metrics

• Version control and commit evaluation

• Developer knowledge

• Backtracking system defects

Di�erent techniques should be used in conjunction to form a more complete picture of
the extension of TD in the software development (Zazworka et al., 2014). Combining both
metrics and human evaluation will also increase the understanding since there are TD that
tools can’t e�ciently measure in contrary to humans, and vice versa. An example of TD that
would be easier for a human to spot than a tool is the quality, not amount, of documentation
(Seaman and Guo, 2011).

Code smells, introduced by Fowler (2018), is one way to identify TD in the code and code
architecture since it can be measured with SM directly in the source code and is closely linked
with hard to maintain code. Some of the most common and quality-related code smells,
defined by Lanza and Marinescu (2007) are:

• “God Class”: A class that centralises the intelligence of the system and performs too
much work on its own. This reduces both the maintainability and readability of the
system.

• “Data Class”: A class containing data that has no own complex functionality itself but
rather holds data for other classes to do work on. The class is a sign of related data not
being kept together nor in the right class.

• “Brain Method”: Just like how the God Class unevenly centralises a system into a single
class the brain method contains most of a class’s functionality. It is often very long and
complex making it hard to maintain and understand.

• “Significant Duplication”: With significant duplication of the code finding errors is
much harder, you can no longer say “Class X does this so the error should be there”.
Significant Duplication also clutters the code making it less readable and unnecessary
time is spent writing code that already exists.

• “Shotgun Surgery”: An e�ect where changing a single operation leads to having to do
small changes to a lot of operations and classes. It is the result of undesirable coupling
where large amounts of other classes and methods are calling a certain operation.

19



2. Background and Related Work

Own combinations of metrics and their thresholds to identify di�erent code smells can
be defined since the code smells and the threshold values will vary from project to project,
but also between di�erent coding languages. There has been a lot of work done in this area
to establish di�erent definitions, two examples of metrics (described in Appendix D) and
thresholds to define a God Class are:

• Figure 2.2 shows a definition using the metrics Access to Foreign Data (ATFD),
Weighted Methods for Class (WMC) and Tight Class Cohesion (TCC) (Lanza and
Marinescu, 2007).

• Figure 2.3 shows a definition using the metrics Lines of Code (LOC), Weighted Meth-
ods for Class (WMC), Coupling Between Objects (CBO) and Lack of Cohesion in
Methods (LCOM) (Mori et al., 2018).

The first definition, by Lanza and Marinescu (2007), uses easy to grasp thresholds such
as one third and few but also the relative threshold very high, which was found by computing
WMC for several projects and selecting the upper limit. The second definition, by Mori et al.
(2018), solely uses relative values, high, for the di�erent parameters that also were acquired
by analysing the SM for di�erent projects. The high thresholds are varying for each SM.

ATFD > FEW

WMC > VERY HIGH

TCC < ONE THIRD

AND GOD CLASS

Figure 2.2: Definition of a god class using three software metric pa-
rameters.

LCOM > HIGH

CBO > HIGH

WMC > HIGH

LOC > HIGH

OR

AND GOD CLASS

OR

Figure 2.3: Definition of a god class using four software metric pa-
rameters.

20



2.2 Technical Debt Management

TD can also be identified by analysing the agile development process, as the characteris-
tic high speed of the agile development decreases, this can be an indication of growing TD
causing problems. In an article interviewing development leads about the best metrics for
measuring software development productivity (Altvater, 2017) the following agile metrics,
among others, were named:

• Lead Time

• Time Spent on a Subtask

• Sprint Burndown

• Cycle Time

• Standup Meeting Length

• Production Issue Fix Rate

These metrics can be used to identify the existence of TD in general as it can be the
reason for the decreased productivity, but also specify the location of the TD depending on
the metric.

Version control and commits can also be analysed to identify TD. In some cases, using
SM to find code smells in very large systems is time-consuming and ine�cient (Tornhill,
2019). There is also the risk that a lot of the code smells are found in areas of the code that
are hardly or never used or changed, making the refactoring of this code needless. Instead,
commit frequency can be analysed since methods and classes with high commit frequencies
are being changed more often which could be because they are too centralised or complex,
meaning that they contain a lot of TD.

Another study analysing commits, by Alfayez et al. (2018) discovered that developers with
frequent commits to a project introduced less TD than those who committed less frequently.
It was also seen that a developer with more seniority to the system introduced less TD than
a developer new to the system. Finally, it was seen that the longer the interval between
commits the more TD was introduced for each commit. These results can be used as a way
of identifying or preventing TD, allowing developers fulfilling these criteria to work on less
critical areas of the system.

The use of developer knowledge of the code is also a resource that can be used for TD
identification. Developers are aware of some of the TD they introduce, and often leave com-
ments on code they have just written containing TD to remind themselves to go back and fix
it later. This TD can be identified by giving the developers time each sprint to go back and
find it, and especially use their insight to find the most system-critical TD. Yli-Huumo et al.
(2016) found that a few of the teams they interviewed had a 20 per cent of development time
for improving internal quality-rule in action.

If using the developers who wrote the system is not possible, Natural Language Processing
can be used to search for terms in source code comments associated with bad code to identify
this self-admitted TD (da Silva Maldonado et al., 2017).

Backtracking system defects is also a good indicator of TD (Seaman and Guo, 2011), it
directly relates to faults in the code and backtracking to the defect origin can give hints
of minor faults or the presence of widespread TD. Defects can easily be measured with SM
both from customer feedback and failed requirement tests. The number of reported or found
defects per sprint can be measured to picture what direction the project is moving.

21



2. Background and Related Work

Measuring
The second step in working with TD is to track the TD over one or several projects in a time
context. For example, the number of released features per sprint, amount of God Classes,
and number of defects can be measured at di�erent times in the project. This would allow
trends to be seen, if the amount of TD is quickly increasing di�erent managing actions can
be taken. Consistently measuring the di�erent metrics is an important part of taking care
of TD in a project. Measuring once and taking action and not verifying the result of these
actions will not give any feedback about the managing procedure. It will neither give hints
about how the project is moving.

Jabangwe et al. (2015) conducted a systematic literature review to find which SM were
most closely related to maintainability and reliability in the literature. The study found that
size, complexity, cohesion, and coupling metrics were the best to assess quality for object-
oriented systems.

As a way of estimating the severity of di�erent TD items that can appear in the devel-
opment many studies recommend using the principal and interest analogy from the finance
sector (Guo et al., 2016; Martini et al., 2016; Seaman and Guo, 2011). Principal in the TD
domain represents the cost and e�ort needed to remove the TD item right now, while the
interest represents the extra cost and e�ort that is being accumulated over time as a direct
reason of not removing the TD, for example, larger maintenance costs.

The interest can further be divided into two parts: rate and probability. The rate repre-
sents the severity and the amount of interest if it is not removed by looking at the negative
aspects. While probability represents the risk of the interest becoming a problem in the fu-
ture. There are some TD that will exist but never cause problems. An example of such TD is
the lack of documentation of a system, if the developers working on the system know its ins
and outs, no documentation will be needed as long as they stay on the project for its entire
life cycle. However, if one or all of the developers quit for some reason before this, the lack of
documentation will instantly be a large problem for the developers taking over the project.
An example of a TD item description including these parameters is presented in Table 2.7.

Table 2.7: An example of a TD item description

TD item Description
TD Type: Lack of test coverage
Location: Method example_method in module Example.
Description: The method example_method from last sprint has not been tested thoroughly
Principal: Medium (medium level e�ort to unit test the method)
Interest rate: High (the risk of bugs and possible extra e�ort needed will be costly)
Interest probability: High (this is an important method that the system heavily relies on)

The list of TD items can be used for measuring the total principal and interest for the
whole project. By doing these measurements during a fixed time, the data can show if the
TD in the project is increasing or decreasing.

Several studies suggested using this type of TD list as a visualisation of the current TD.
On the other hand, Eisenberg (2012) suggested basing the TD visualisation on estimating the
cost of fixing each debt that was found through static and dynamic code analysis. These costs
should be summarised into a total dollar value that could be analysed.

22



2.2 Technical Debt Management

Martini et al. (2016) found, by interviewing 226 developers from 15 di�erent software
organisations, that only 28 per cent of the respondents were individually tracking some kind
of TD by, for example, writing up TD items in an Excel spreadsheet or use some kind of
code analysis tool to find bad code. 7.2 per cent had their organisation’s management recog-
nise the importance of TD and had a budget (around 10-30 per cent) directed for manual
tracking and repaying of debt. None of them had measuring tools fully integrated into the
development process estimating TD and especially TD interest and principal to visualise the
consequences of repaying, or not repaying TD. None of them neither had the measuring in-
stitutionalised in the entire organisation. According to the study, these were important steps
that the organisation should strive to achieve to improve their TD measurements.

Yli-Huumo et al. (2016) interviewed 8 di�erent development teams from the same or-
ganisation and found that if they were measuring TD, it was done by either measuring the
amount of TD items on the backlog or by using the code analysis tool SonarQube1 to measure
and compare di�erent metrics. This type of tool uses a method called SQALE for calculations
(Letouzey, 2012). The method was intended to objectively measure and manage the quality of
the delivered source code. It was also designed to be generic and applicable with any coding
language. The method is based on the fundamental principles of the measurement theory
as well as the representation condition. With SQALE, measuring the quality of a product
means measuring its amount of TD. The method uses a remediation index to measure the
cost of actions correcting non-compliance in the product which is similar to measuring the
distance between its current state and its quality target for each component of the code.

In a research article by Eisenberg (2012), it is suggested to measure higher-level SM such
as the number of God Classes in the system after each sprint and lower-level SM such as
duplicated code or other violations in the code that is to be committed at each contribution
time. This is due to large system evaluations being very time consuming, which would slow
down the development.

There are several tools for measuring TD through, for example, identifying code smells
with metrics, finding violations of code conventions or analysing version control commits. A
few of the tools also o�er estimations on the principal cost to refactor the found TD and the
interest of not removing it. Some of them also allow their metrics to be defined and measured.
The earlier mentioned open-source tool SonarQube is the most used in the industry followed,
in no particular order, by SonarGraph2, CAST3 and NDepend4 (Avgeriou et al., 2020; Bogner
et al., 2018).

When selecting a tool it is important to be sure of what is expected from the tool. A few
questions to help this selection are (Avgeriou et al., 2020):

• Does it measure what we want it to measure?

• Can own metric definitions be defined?

• How is principal and interest defined?

• Which coding languages are compatible?

• How easy is it implemented into the development process?
1www.sonarqube.org
2www.hello2morrow.com/products/sonargraph
3www.castsoftware.com
4www.ndepend.com

23

www.sonarqube.org
www.hello2morrow.com/products/sonargraph
www.castsoftware.com
www.ndepend.com


2. Background and Related Work

Managing

The final step once the TD has been identified and measured, is to take decisions on when
and if to remove it, which there are several approaches to. Most of them require some kind of
approximation of cost or time required to fix a specific TD item. These approximations are
hard to make without previous experience, what item requires more e�ort? Reducing code
duplication from 30 per cent to 10 per cent or increasing the documentation coverage from
50 per cent to 60 per cent, and what are their monetary costs? Consequently, there is quite
a steep learning curve when introducing TDM, it will however become easier as knowledge
and experience are built.

A few of the TDM approaches found with the literature study are closely related to strate-
gies found in finance. The first approach, introduced by Guo and Seaman (2011), is the port-
folio approach that uses the portfolio management theory from the finance domain to create
a portfolio containing TD items. The principal, expected interest rate and interest standard
deviation for each item are estimated. The portfolio’s return is calculated to decide which
TD items should be resolved first. The second approach is the highest interest first method,
where the TD item that is estimated to have the biggest negative impact on the project in the
future is repaid first (Seaman and Guo, 2011). The earlier the high interest item is removed
the shorter time its high interest is accumulated, and the repayment will be less expensive.
The third approach includes calculating a break-even point (Seaman and Guo, 2011) between,
for example, the value of newly implemented functions versus the negative value of higher
maintenance. When the positive value of the induced TD no longer outweighs the negative
value it must be repaid.

Decisions can also be made directly from software metric values (Eisenberg, 2012). One
approach is to first select relevant metrics for the organisation, and for each metric create
three thresholds: Green - desirable, Yellow - average, Red - bad. The values for these thresh-
olds must be found empirically for each company, this can be done by determining the desired
green metric values from projects that are deemed successful and have few maintenance is-
sues. The opposite can be done to set the values for the yellow and red thresholds. False
positives received from the measuring tool(s) can also be used to adjust the thresholds to
increase their e�ciency. The current debt, and especially the cost to move into the desired
threshold can be calculated by estimating the cost for the di�erent metrics and their changes,
for example, the cost of lack of automated test coverage or, cost of improving test coverage.

When managing it is also easy to forget, and hard to put a monetary value on the human
aspect of TD when making decisions (Dietrich, 2016). Deciding to repay some TD will in-
crease the morale of the developers, no longer having to manufacture endless explanations
why implementing new features take three times the estimated time and vice versa. This has
to be taken into account when deciding to repay or not to repay some TD.

2.2.2 Best Practises to Reduce Technical Debt
Within software development, we have identified six areas that need to be covered in TDM
and in each of these areas, we present approaches to reduce and prevent TD in a project. The
findings are based on best practices from the literature study and are intended to be used as
a complement to the three steps of working with TD.

24



2.2 Technical Debt Management

Code
In order to write code to reduce TD, some afterthought must be applied while writing it. Who
is going to read the code? The complexity must be adjusted to fit the readers level (Cline,
2018). A coding convention should be followed and e�ort should be put to follow the idioms
of the language the code is being written in. For instance, Google uses language-specific style
guides that all engineers are to follow which has proven to be successful (Morgenthaler et al.,
2012).

Several philosophies have their theories regarding the maximum level of if-statement in-
dentation, maximum LOC per method etc. for each coding language. They all have their
strengths and weaknesses and it is hard to say which philosophy is the best. The important
thing is to select one and try to adhere to it (there will always be situations where exceptions
must be made), consistency is key for maintainability.

The value of constants, enumerations and describing parameter names and order to ease
the code’s readability should also not be underestimated (Cline, 2018). Methods and classes
should not be too long to improve maintainability and to reduce code smells. It will also
increase the codes testability and especially the automation of the testing.

As mentioned in Section 2.2.1, Significant Duplication is one very common Code Smell.
Zhang et al. (2011) found that systems containing duplicated code are much more fault-prone
compared to systems containing other code smells. This is supported by Fontana et al. (2012)
who also draw the conclusion that duplicated code is one of the worst Code Smell and the
removal of it will improve software quality greatly. Therefore attention should be directed
at generalising the code by removing duplication and instead, for example, create generic
methods.

Refactoring
One way to reduce TD and make a system more maintainable is to refactor the code, although
there are some guidelines when going about this. Refactoring is both expensive and time-
consuming, and it is therefore important to identify the parts of the code that needs to be
refactored the most (Fontana et al., 2012). This identification could be done by, for example,
analysing which parts of the code is the most complex, is being used the most, or has the
highest commit frequency (Tornhill, 2019). Refactoring a module that is currently working
and will not receive further changes or a�ect other modules is essentially a waste of resources
(Guo et al., 2016). However, having a very high or low commit frequency is not always seen
as negative or positive. The decisions should be based on a combination of di�erent metrics.

It is also suggested to prioritise refactoring of duplicated code since it is a big indicator
of low maintainability (Fontana et al., 2012). Refactoring duplicated code leads to a less
complex and more cohesive system which improves its usability .

One suggested way of working when developing to prevent the need for large refactoring
of the entire system is to work in smaller increments (Kniberg, 2013) :

1. Write tests to confirm all requirements.

2. Implement the feature so that the tests passes without too much regard to quality.

3. Directly refactor the newly written code while using the tests as confirmation that the
feature still works.

25



2. Background and Related Work

Another suggested way of working is to incrementally refactor code to avoid large costly
code refactoring (Je�ries, 2014):

1. Implement features as usual.

2. When coming across chunks of bad code, instead of avoiding it like before, refactor
each bad chunk that the new feature passes through.

3. Eventually paths of good code that can be used will form, and the previous big refac-
toring will no longer be necessary.

Documentation & Comments
Lacking or nonexistent documentation of the software is one common type of TD that is
widely recognised by software developers (Tom et al., 2013). Having someone unfamiliar
with the system make changes to it will require a lot of e�ort just to know where to begin.
Su�cient system documentation will reduce this required e�ort. It is also important to
update the documentation when extensive changes to the system are made. A survey sent out
to practitioners in the industry found that the most reported symptom of low maintainability
was outdated documentation (Bogner et al., 2018).

Another way to reduce the documentation TD is through value-adding code comments.
Comments should not be used to describe what the chunk of code is doing but rather what it
should be doing and why the current approach to tackle the problem was taken (Cline, 2018).
This will give relevant information to the person trying to understand or fix the current code,
while not being redundant.

Writing what the code should be doing will work as a fail-safe for the maintainer trying
to find errors. The maintainer can quickly realise if the code is implemented according to
what it is supposed to be doing. Explaining why the current approach was taken will also save
time when, for example, fixing errors since alternative solutions that the original developer
already tried, that did not work for some reasons, can be quickly ruled out. Comments that
do not add value will only make the reading of the code slower and have a reverse e�ect.

Testing
Testing is a great way to discover e�ects of TD such as defects. However, there is also a great
deal of TD that can be created during testing (Wiklund et al., 2012). Automated testing is one
way to save time and resources, it allows testing to be done more often since the developers
do not have to manually test all of their produced code. The saved time can be used on
implementing new features or writing more maintainable code. Automating tests is however
not the easiest task and can create a lot of TD if not done carefully.

Wiklund et al. (2012) investigated TD in test automation and found that software design
principles are often forgotten when working with test automation systems. These forgotten
principles include things like systematisation and documentation which would allow the
automation to easier be implemented in new projects or understood by new users. They also
found that using the same automation tool for di�erent products would give many benefits
such as re-usability and better knowledge transfer between di�erent products. The study
however also recognised that putting restrictions on tool usage could harm the organisation

26



2.2 Technical Debt Management

since each tool has its limits and will have di�culties adapting to some products required
tests.

Kasurinen et al. (2009) found in their study on testing problems in practice that taking
test design into account early in the project, even at product planning would improve the
testing process. With a defined system architecture, and especially a standardised architec-
ture following an organisational model, the test automation process becomes easier enabling
greater test coverage and less implementation time required.

In general, the testing should be held to the same standards as normal software develop-
ment, cheating with standardisation, maintainability and quality of the testing will introduce
equal TD as when doing the same with code. Doing this will require a larger upfront e�ort
but it will also be worth it in the long run.

Architecture
When shortcuts are made in the architecture of a project, the TD is called Architectural
Technical Debt (ATD). ATD regards taking a shortcut while designing the architecture of a
software system (Verdecchia et al., 2018). A poor design decision a�ects the software struc-
ture and the interaction between objects.

Many code smells are a direct result of poor software architecture, for example, God
Classes and Data Classes. This type of ATD can be reduced by having this knowledge so that
when implementing new features it is done sustainable and generically.

27



2. Background and Related Work

2.3 Case Company
The case company this master’s thesis is written for is IKEA Retail, where the investigated
teams are working in an agile way using the Scrum development process. Each team has a
product owner and a responsible engineering manager. The teams are working on several
projects and consist of a varying amount of engineers whose assignments include front-end
and back-end development, testing and deciding on software architecture. Requirements for
new features for the products are mainly determined by the di�erent national markets that
use the product. Decisions regarding priorities between implementing new software features
and refactoring old code takes place in dialogue with the product owner and within the team
itself. These discussions are conducted daily. The team is currently not working with TDM
but are aware that their products contain TD in di�erent forms.

The software architecture is created by the team itself through discussions in the begin-
ning and throughout the project when new features are added to the code. The software
architecture is intended to be consistent in all projects. The team is working with an open
mindset without any hierarchy. Close teamwork gives the team ability to work with a lot of
freedom and to utilise known and possessed techniques. In addition to this, the team uses
naming conventions to be consistent in writing code as well as code review for each commit.
The current code is di�cult for an outsider to understand and be familiarised with due to
its complexity. In terms of testing, the team uses automated tests regularly and manual tests
when preparing for software deployment.

The product investigated in the thesis is a web application whose main functions are
creating a membership account and finding existing memberships. The web application is
intended to be used on screens located inside the department stores. It is released to actual
customers and no other system is dependent on the product’s functionality. However, the
product depends on other systems’ and data platforms’ functionality. This means that the
team needs close communication with other teams.

28



Chapter 3

Method

In this chapter, the methodology used to answer the four research questions and complete
the goals of the thesis will be described. This includes a description of each step and the
motivation of the chosen method. The initial approach includes six steps to be conducted in
the order shown in Figure 3.1. The steps are further described in the following list:

• A literature study of technical debt, software metrics and best practices, including
research on how to tackle technical debt in large software organisations.

• Interviews with stakeholders about where and why technical debt appear in their de-
velopment.

• Identification of key software metrics to measure and visualise TD in code.

• Proposing data collection from the company’s system, needed to elevate their software
delivery and operational performance awareness.

• Implementation of visualisations and applying our Technical Debt Model in a project.

• Evaluation of the software metrics regarding how well the measurements mirror the
perceived TD in a project from relevant stakeholders in the organisation.

29



3. Method

Identifying Software 
Metrics

Data collection
+

TD Model

Evaluation of 
software metrics

Implementation of 
visualisation

Start

Interviews  Literature studyRQ1 Best practices
Limitations &
current situation

Key metrics used to measure TD

RQ2

RQ3

RQ4

Metrics that could be collected

Dashboards &
TD- activities

Evaluation data

GQM

RQ1. What are the best practises to manage and visualise TD 
according to literature?
RQ2. What softare metrics can be used in this type of 
organisation to measure TD?
RQ3. How can these software metrics and best practices be 
implemented in the development process of a large software 
organisation?
RQ4. How well does the measurements mirror the perceived TD 
in a team at the case company?

Limitations & current situation

Data from SonarQube &
repository

Files identified
from dashboards

Code
Best practises

Figure 3.1: Overview of the approach to solve the research questions

3.1 Literature Study
To build knowledge about the rather vague and wide term Technical Debt, it was decided
to conduct a literature study. The study provides credible knowledge from a lot of various
sources in a reasonable amount of time. The literature study intended to explore several
subjects regarding TD to get enough knowledge to answer the research questions and to
continue with the following steps. These subjects were:

• Defining TD

• Di�erent types of TD and its attributes

• Reasons for the existence of TD

• Identification methods for TD

• Measuring TD

• Managing TD

• Actions to avoid creation of TD

• Visualising TD with software metrics

30



3.2 Interviews

During the literature study, the focus was to read peer-reviewed literature and relevant course
literature. The literature was mainly found in the online databases Google Scholar and Lund
University’s LUB-search. We used a combination of keywords to find relevant and broad in-
formation. The keywords were “Technical Debt” on its own and together with “Manage”,
“Measure”, “Software Metrics” or “Identify”. When interesting and relevant papers were
found, information about the paper was added to a document. When the document con-
tained a list of about 50 sources, the literature study was paused and the sources in the doc-
ument were sorted into categories to confirm that there was enough information about each
category. Thereafter, each paper was read in the following order: Title, Abstract, Introduc-
tion and Conclusion. If the article was considered relevant enough, the full paper was read
and later discussed between the researchers. Some snowball sampling was also done when
other relevant articles were referenced in the articles from the original list. These papers
were summarised in another document to highlight their key findings. The less relevant pa-
pers were also summarised, but with less depth, in case they were to become more relevant
further down the line of the project.

Roughly 60 papers of various length from both journals, conferences as well as a few books
made it into the document and were analysed during the literature study. Finally, around 50
of these were read thoroughly and about 35 made it into the report.

3.2 Interviews
In parallel with the literature study two types of interviews were performed, one informative
interview and three in-depth interviews. The informative interview was done to get infor-
mation about the case company and get an overview of how the team currently was working.
The three in-depth interviews were held with two software developers and one Dev-Ops1

engineer to get a general view of the team’s TD knowledge, where they run into the most TD
problems and how they are currently dealing with it.

3.2.1 Informative Interview
This interview was held during week 4 of the thesis together with our two supervisors and a
consultant from their team who is working with SM. The interview gave us valuable infor-
mation about how the teams are working within the organisation and to identify potential
interviewees for the in-depth interviews.

The interview was discussion-focused and had 16 planned questions, although some were
skipped if the answers had already been given during previous questions. One researcher was
assigned as interviewer and the second one took notes and verified that all questions were
answered. The interview questions can be found in Appendix A. The interview was recorded
to give the researchers more time to focus on the interview and asking supplementary ques-
tions instead of only taking notes. The interview was originally held in Swedish and the
answers were translated into English during the transcription. The duration of the interview
including discussion about the in-depth interview was about one hour.

The transcript of the recorded interview was done shortly after the interview. Most of

1https://theagileadmin.com/what-is-devops/

31

https://theagileadmin.com/what-is-devops/


3. Method

the gathered information was used in Section 2.3, but it was also used as a guideline when
creating the questionnaire for the in-depth interviews.

3.2.2 In-depth Technical Debt Interviews
After the first interview, we decided on having three in-depth interviews. These were carried
out as a part of providing information about where and why TD existed in the team’s prod-
ucts, and to answer RQ1 and RQ2. Two of the interviews were with software developers and
one with a Dev-Ops engineer. The three candidates were contacted after a discussion with
our supervisor since the candidates had shown interest in the thesis project. The three candi-
dates that agreed to participate were from two di�erent teams. The interview was performed
similarly to the informative interview except that the focus was on receiving answers to the
questions without a discussion. There were 19 prepared questions, although some additional
questions were asked when the answers were not fully covering the questions. The duration
of the interviews was about an hour each including an introduction and a discussion. All
in-depth interviews were held in English and recorded with the consent of the interviewee.
The questions used for the interviews can be found in Appendix B.

The interviews were transcribed shortly after they were held. To sort out and categorise
valuable information it was decided to perform a coding of the transcription. This resulted
in five di�erent categories that were most relevant and can be seen below. Each sentence was
read and analysed between the two researchers before it was placed in one of these categories.

• Why TD appears

• Di�erent types of TD

• Improvement suggestions

• How is the TD found

• Why is the TD not refactored

• Miscellaneous

The few sentences placed in miscellaneous were seen as irrelevant for the thesis and was ig-
nored. When the coding of the three transcriptions was done, each category was summarised
and the results discussed with our supervisors. The key findings are presented in Section 4.1.

3.3 Identification of Key Metrics
The GQM paradigm that was presented in Section 2.1.2, was used to identify what metrics
to gather. The approach was made with the insights from the literature study together with
the goal of measuring TD as a basis. Instead of only using one goal for GQM, we defined
one main goal and three sub-goals. The main goal was identified from the thesis’ problem
statement in Section 1.1 and the three sub-goals covers three di�erent areas of TDM.

Some code smells mentioned in Section 2.1.1 were later on approximated using other met-
ric combinations than those defined in Chapter 2 due to limitations in the actual gathering
of metrics.

32



3.4 Data Collection

3.4 Data Collection
The data collection was conducted in di�erent ways depending on the software metric cat-
egory. One of the greater limitations was that the analysed projects were private, hence no
tools with only Open-Source licenses could be used. The software also had to be secure and
able to process JavaScript (JS) and TypeScript (TS) and preferably free, which narrowed the
tool scope further. Since the organisation already had a licence for SonarQube and it ful-
filled the previously specified requirements, this software was selected. The product that was
analysed consisted of two projects, a front-end project and a back-end project.

3.4.1 Product Metrics
The two projects were manually downloaded from Github at 12 di�erent points in time, from
April 2020 to March 2021. The multiple downloads were to be able to see how the project
size had evolved from month to month. They were scanned one by one with SonarQube’s
SonarScanner which saved the measurement data locally on the PC. The data could be viewed
by connecting to localhost. SonarQube also has a Web Application Programming Interface
(API) that could be used to collect the scanned data depending on di�erent query parameters.
The API was used with a Python program written by us to collect total project metrics for all
measurement points, and file-level metrics for the most recent one, which was March 2021.
This data was stored in two Comma Separated Values (CSV) files, which would later be used
for the visualisation.

Since SonarQube did not measure coupling, a Python script to measure this metric was
written. The script browsed through all files in the projects that could couple to other files
(JS and TS files). The import rows of each file were parsed and matched to existing files
counting the number of occurrences. These values were added to the file level CSV file.

3.4.2 Process Metrics
In the process metrics category total commits per file in the previously specified time frame
were collected using GitHub’s REST API. Repository and file paths were specified respec-
tively. The file paths were retrieved from the SonarQube API using the previous program.
The commit data per file was added to the file level CSV file.

Two agile metrics, tasks completed and tasks started, were collected by searching in the
team’s issue tracking software with a search query of “name contains *project name*” and
“task completed”. The results containing a lot of di�erent information were exported to
Excel and further processed to count tasks started and completed during the specified time
frame.

3.5 Technical Debt Model
To measure the TD in each file and project some kind of model had to be created. The
model had to be able to take in many parameters and allow comparison between files of very
di�erent sizes and complexities. It also needed to be easily adjusted so that more parameters

33



3. Method

could be included in the future, and the importance of each parameter could be changed
depending on the type of project being analysed.

Finally, each parameter was analysed for independence with a correlation test using the
Pearson method. This test was done on the file data stored in the CSV files using a Python
module.

3.5.1 Weighing the Parameters
The parameters used as input in the model were weighed in three ways:

• Based on the understanding of the severity of di�erent code smells and metrics gath-
ered in the literature study. Number of occurrences of each metric and code smell
in the literature, the authors opinions and the results from their work. For example,
Fontana et al. (2012) drawing the conclusion that duplicated code is the worst code
smell or god classes being mentioned in the majority of the studies.

• Based on how the metrics are related to di�erent code smells. For example, what com-
bination of metrics would describe a God Class or Significant Duplication closest?

• Adjusting for false positives. Metric values and importance vary greatly between dif-
ferent projects and sectors, and the preliminary weighing had too much weight on
some metrics outputting very large TD values for sector-specific files. For example,
files containing market-specific text were first heavily favoured.

If a larger value of the parameter was seen to increase or decrease TD was also analysed,
some metrics were seen as positive. For example, a larger comment value was seen as positive
since explaining comments increase the maintainability. However, some verification was also
done to see that the positive metrics did not go too far.

3.5.2 Adjusting for File Size
Some of the parameters were divided by the file LOC size. This step was done to be able to
compare files of di�ering sizes. Each parameter was evaluated on the basis if a larger file most
likely would lead to a larger value on that parameter. The parameters that were not divided
by LOC were perceived to have a low correlation to file size.

3.5.3 Normalisation
After adjusting for file size, the parameters were normalised between 0 and 1. This was made
to both more easily compare files with each other and to have the parameter values ranging
in the same interval. Before the normalisation, for example, the parameters divided by LOC
had very low values compared to the parameters that is not divided.

The parameters were first normalised per project since it was found from the literature
study that metrics could di�er very much from project to project. An example of this nor-
malisation can be seen in Table 3.2. However, after receiving feedback that the case company
would like to be able to compare several of their projects in the future. The projects were

34



3.6 Evaluation of Model

also normalised based on both projects, with the possibility of adding more projects to the
normalisation. An example of this normalisation can be seen in Table 3.1

Table 3.1: Example of a normalisation based on both projects. There
is only one max (1) and min (0) value per metric.

Project File Metric 1 Metric 2 ... Metric N
Front-end File-fe-1.ts 1 0.200 ... 0
... ... ... ... ... ...
Front-end File-fe-n.ts 0.450 0.280 ... 0.500
Back-end File-be-1.ts 0 0 ... 0.500
... ... ... ... ... ...
Back-end File-be-n.ts 0.333 1 ... 1

Table 3.2: Example of a normalisation based on the project itself.
Each project has its own max (1) and min (0) value per metric.

Project File Metric 1 Metric 2 ... Metric N
Front-end File-fe-1.ts 1 1 ... 0.278
... ... ... ... ... ...
Front-end File-fe-50.ts 0.333 0 ... 0.900
... ... ... ... ... ...
Front-end File-fe-n.ts 0 0.723 ... 1
Back-end File-be-1.ts 0.235 0 ... 0.221
... ... ... ... ... ...
Back-end File-be-50.ts 0.556 1 ... 0
... ... ... ... ... ...
Back-end File-be-n.ts 0.921 0.322 ... 1

3.5.4 Technical Debt Index
To realise the possibility of comparing TD for di�erent projects further, beyond the visuali-
sation, a technical debt index was calculated. This index was deemed good enough showing
the average TD per file in the project. This approach would allow projects of di�erent sizes
to be compared.

3.6 Evaluation of Model
To evaluate the accuracy of the model, feedback from the organisation was used. This feed-
back involved di�erent stakeholders from the organisation that had a valid amount of insight
into the code itself and also how the team delivers the software. By having this insight it was
possible for the stakeholders to approximately estimate the amount of TD at di�erent points
in the project and di�erent places in the codebase.

35



3. Method

The chosen evaluation method consisted of two steps where the stakeholders used their
system knowledge to identify the files with the most TD and rank these files further using
the “Hundred Dollar Test” (Cumulative voting).

The Hundred Dollar Test is a way of scoring using imaginary money instead of points
(Straker, 2021). The idea of spending money tend to grab more attention to the scoring and
the money are allocated more carefully. The test is done in three steps:

1. Assuming that you have $100 to spend on di�erent options

2. Allocate your $100 across the di�erent options based on the criteria

3. Review your decision and look at how the money is spent so that the money is not
spread too evenly.

Before the first step of the evaluation, the participants received a presentation file with
the information found in the literature study regarding TD and its best practices. They were
sent an email containing a link to a repository holding 15 files from two of the projects they
work on (front-end and back-end). These 15 files had been selected by the researcher’s identi-
fication method. Five of them were considered to have “low”, five “moderate” and five “high”
amounts of TD according to the researcher’s method and understanding of TD. The files were
also selected to make sure that each category had files of similar sizes.

The email also contained the following instructions:

“In the linked repository, there are 15 files from your projects. You are to se-
lect the five ones that you feel contain the most Technical Debt based on your
intuition.

Technical Debt is defined as the debt that is accumulated when shortcuts are
taken in the development process to, for example, reduce time-to-market. If
this debt is not repaid the risks of future problems with maintainability, release
speed etc. is greatly increased. Two examples of Technical Debt are the lack of
testing and writing unmaintainable code, to meet an upcoming deadline.”

Once each participant had selected the five files they perceived to contain the most TD,
they were summoned to a meeting. In this meeting, all participants were to discuss their
selections. If everyone selected the same five files, the participants would move on to the
Hundred Dollar Test. If there were some di�erences in the selections the participants would
have to discuss their decisions and mutually come to an agreement which five files that were
considered to contain the most TD and would be used in the test.

With the five selected files, the participants would mutually conduct the test on the files.
Their selection criteria would be based on how much e�ort it would take to remove the TD
in the code.

Finally, the first file selection data from every participant as well as the data from the test
would be collected. If the selections from the developers were similar to the selection made
through the researchers’ identification method, the model would be considered valid.

36



3.7 Implementation of Visualisation

3.7 Implementation of Visualisation
The data was visualised using Plotly Dash which is a tool for the programming languages
Python, R and Julia, that can create interactive web pages and include several di�erent vi-
sualisation possibilities. The CSV files including the collected data were read in a Python
program that was using the Dash tool. Some files were filtered by setting a minimum LOC
size and Cyclomatic Complexity. This was done to filter outliers or files with no complexity
that would cluster the visualisation. The visualisations of the data were done using di�erent
plots and text boxes.

37



3. Method

38



Chapter 4

Result

The following chapter presents results from the interviews, outcome and evaluation of the TD
model, implementation, and visualisation of software metrics to identify TD in the current
projects. The results from the literature study are presented in Section 2.1 as they are a part of
the theory. The remaining parts of the results are presented in the same order as the activities
were presented in chapter 3.

4.1 Interviews

In order to get a better understanding of the current situation in the team and what challenges
they face in the aspect of TD, three interviews were conducted. The main findings from the
interviews are divided into four sections and provide information about TD in the projects,
precautions that have been taken and ideas for further improvements.

4.1.1 Types of Technical Debt in the Organisation

During the three interviews, a deeper understanding of the most common types of TD that
the teams were struggling with was built. These types are listed in Table 4.1 and are all in
line with the types that were presented in Section 2.1.1.

39



4. Result

Table 4.1: TD Types Identified at the case company

Debt category Type

Knowledge Distribution debt
Junior developer sub-par coding
Lack of knowledge and expertise
Dependency on one key person

Code debt
Duplicate code and similar functions
Features added in market specific code instead of templates
Too many lines in one method

Testing debt
Too little unit testing
Test redundancy
Lack of test coverage

Design and Architectural debt
Design loopholes
Low quality architecture

Documentation debt
Not enough code-explaining comments to some extent
Missing project documentation

4.1.2 Reasons for Acquiring Technical Debt
The developers had several ideas of the main reasons for the acquirement of these debts.
Firstly, it was due to a combination of lack of knowledge and expertise which resulted in
shortages in both architecture, testing and code. When the developers implemented new
features without fully understanding the requirements it resulted in taking shortcuts in the
future to meet the requirements.

Secondly, it was acquired both willingly and unwillingly due to time pressure from the
markets and deadlines within the team. Quick development of new features to catch cus-
tomers were implemented with less perfection. The developers skipped steps that were con-
sidered less important in order to start coding and deploy earlier. The focus was more on
deploying and delivering the applications than on quality. The implementation of more tests
to increase test coverage was identified as a solution to an improved development process
and product. However, this was not prioritised by the product owner at the beginning of the
project. The architecture was identified as a critical part and creating a good architecture
from the start lead to much fewer problems in the future.

4.1.3 Best Practises Already Used by the Organisa-
tion

The interviews also resulted in the realisation that the interviewees’ teams, to some extent,
were already using some of the best practice procedures found in the literature study. The
teams had a positive culture regarding TD and other problems, where raising issues was en-
couraged. They were also doing a few things on code level: Attempting to stick to standard
JS and TS notation and formatting with the help of di�erent tools and IDEs. Code reviews
were also done on each pull request where one or two developers would need to approve it.
Finally, they were commenting code of lesser quality as a reminder to return and fix it.

40



4.1 Interviews

Some automation was also used in the teams for both testing, integration and deployment
as well as measurements of some SM to get an overview of the health of the product.

4.1.4 Improvement Suggestions by the Organisation
Some further plans had not yet been put in motion to reduce TD in their projects. For
example by containerising their application, remaking the system architecture to improve it
or standardising the way of calling external API’s. One interviewee also noted the importance
of increased communication in the organisation and said:

“At the moment it is like everyone is doing their own thing. Every team is working in-
dependently without talking to other teams, the wheel is getting reinvented over and over
again. Sharing knowledge will save time and money and make it more secure.”

Another improvement suggestion was to introduce a “perfect prototype”, with all possible
TD preventing methods and analysing it to learn key lessons about TD based development.

41



4. Result

4.2 Identification of Key Metrics
The scope of possible code metrics was heavily limited due to the organisation developing
in TS and JS. There are several available free code analysis tools for languages such as Java
and C++ but much fewer for JS and TS. Most of the analysis tools for JS and TS also report
on stylistic errors, possible null pointers etc. but do not provide any SM. The few who does
are behind a paywall unless the project is Open source software. The analysed projects are
private and a few companies provide tools for retrieving SM in JS and TS for payment, but
do not publicly describe which metrics they retrieve.

4.2.1 Goal-Question-Metric
The main goal of the GQM paradigm was summarised into the following sentence: Get a
better insight and have a proper monitoring, both of the code itself but also how the team delivers the
software. Based on this main goal three new goals were derived, which covers di�erent areas of
TDM; Identification, Measuring and Managing. Nine questions were generated to determine if
the goals were met, and to answer these questions a large amount of metrics were identified.
The metrics were divided into the three metric categories; process, product and resource
metrics. The results from the GQM paradigm can be seen in Figure 4.1.

Get a better insight and have a proper 
monitoring, both of the code and how the team 

delivers the software

Identify TD 
and the 

reasons for it 
to incur

Measure and 
visualize 
technical 

debt

Prioritizing 
between 

maintenance and 
development of 

new features

How complex is 
the code?

How often does 
the code change?

 How well is the 
code working? 

(Customers and 
developers)

How much time is 
spent on 

maintenance and 
fixing issues?

How organized is 
the test coverage?

How large is an 
average 

method/class?

 How is the 
feature- release 

speed developing?

Repay TD now or 
later?

How much 
duplicate code 

exists?

Product 
metrics

Resource 
metrics

Process 
metrics

Figure 4.1: Goal Question Metrics

42



4.2 Identification of Key Metrics

4.2.2 Desired Metrics
The metrics found in the literature study that were desired to be collected and included in
the TD model as well as being deemed the most relevant by the researchers based on the
GQM paradigm can be found in Appendix C.

4.2.3 Actual Metrics
Not all desired metrics were able to be retrieved due to the reasons stated in Section 4.2. The
actual list of obtained metrics is presented in the following sections.

Product Metrics
SonarQube had a free version for private projects that could process JS and TS files and
provide some metrics. The drawback however was that the free version could not be coupled
with Git, so all projects, at di�erent points in time, had to be manually downloaded and
scanned. From SonarQube the following metrics from the desired list as well as a new metric
that was deemed relevant could be collected:

• Cyclomatic Complexity

• Cognitive Complexity (new)

• Lines of Code

• Number of Functions

• Number of Duplicated Blocks

• Number of Comment Lines

Where Cognitive Complexity is a metric of how hard it is to understand the code’s control
flow compared to Cyclomatic Complexity which is calculated based on the number of paths
through the code (S.A, 2021). Finally, one code metric had to be measured with a self-written
script to identify how closely connected a file is with other files:

• File Coupling

Process Metrics
To obtain commit metrics Github’s API was used for the projects and with the help of the
issue tracking software, task data could be collected. The following metrics were obtained:

• Number of Commits per File

• Number of Started Tasks per Month

• Number of Completed Tasks per Month

43



4. Result

4.2.4 Code Smells Approximation
Code smells were approximated in the files using the collected metrics and this approxima-
tion can be seen in Table 4.2.

Table 4.2: Code smells approximation for the files using the col-
lected metrics.

Code Smell Metric(s)
God Class Lines of Code, Cyclomatic Complexity, Cognitive Complexity, Commits
Brain Method Lines of Code, Cyclomatic Complexity, Cognitive Complexity, Number of Functions, Commits
Significant Duplication Duplicated Blocks, Lines of Code
Shotgun Surgery Coupling

44



4.3 Data Collection

4.3 Data Collection
Metrics for hundreds of files with thousands of LOC in the front-end project were collected.
The same was done for the smaller back-end project. Retrieving metrics for a given amount
of projects takes around 10 minutes and once it has been done, the data being stored in CSV
files can instantly be visualised in the future. Based on our experience, it is recommended to
analyse 1 or 2 projects at a time.

The collected data was analysed using Pearson’s correlation analysis. This was done in
order to see how independent the metrics were compared to each other, so that all of them
had a reason to be in the coming model. A positive values close to 1 shows that there is a
strong positive correlation between the two metrics. A negative value close to −1 shows that
there is a strong negative correlation between the two metrics. Values close to 0 show low
or no correlation between the metrics. The results for the front-end project can be seen in
Table 4.3 and for the back-end in Table 4.4.

Table 4.3: Pearson’s correlation test for the front-end files

Cyclomatic
Complexity

Cognitive
Complexity

Lines of
Code

Comment
Lines

Duplicated
Blocks Functions Commits Coupling

Cyclomatic Complexity 1.000 0.695 0.316 0.156 0.159 0.786 0.216 0.076
Cognitive Complexity 0.695 1.000 0.204 0.217 0.157 0.384 0.269 0.023
Lines of Code 0.316 0.204 1.000 0.026 0.151 0.300 0.117 0.019
Comment Lines 0.156 0.217 0.026 1.000 0.024 0.113 0.124 -0.019
Duplicated Blocks 0.159 0.157 0.151 0.024 1.000 0.169 0.182 -0.125
Functions 0.786 0.384 0.300 0.113 0.169 1.000 0.123 0.154
Commits 0.216 0.269 0.117 0.124 0.182 0.123 1.000 0.154
Coupling 0.076 0.023 0.019 -0.019 -0.125 0.019 0.154 1.000

Table 4.4: Pearson’s correlation test for the back-end files

Cyclomatic
Complexity

Cognitive
Complexity

Lines of
Code

Comment
Lines

Duplicated
Blocks Functions Commits Coupling

Cyclomatic Complexity 1.000 0.966 0.732 0.635 0.588 0.342 0.402 -0.039
Cognitive Complexity 0.966 1.000 0.691 0.660 0.581 0.124 0.465 -0.041
Lines of Code 0.732 0.691 1.000 0.518 0.392 0.488 0.373 0.047
Comment Lines 0.635 0.660 0.518 1.000 0.500 0.063 0.298 0.064
Duplicated Blocks 0.588 0.581 0.392 0.500 1.000 0.031 0.113 -0.118
Functions 0.342 0.124 0.488 0.063 0.031 1.000 -0.103 -0.082
Commits 0.402 0.465 0.373 0.298 0.113 -0.103 1.000 0.276
Coupling -0.039 -0.041 0.047 0.064 -0.118 -0.042 0.276 1.000

4.4 Technical Debt Model
TD was first calculated on file level using the TD model equation in 4.1, but before calculating
the TD value with the collected metrics, they had to be processed. First, some of the process
metrics were divided by the file’s LOC. The values of all metrics were normalised in two
ways, either with respect to both projects or separately. The metrics normalised values ranged
between zero and one.

45



4. Result

The normalised data was put in equation 4.1 where each metric was weighted after how
important the researchers had perceived each metric based on the literature study and the
interviews as well as adjusting for false positives. The metrics were also analysed to see if they
positively or negatively a�ected the TD in the file. How each metric was weighted, e�ected
TD and if it was divided by the file’s LOC can be seen in Table 4.5, and for this case study,
eight metrics were collected hence m has the value eight. TDi is the calculated TD for file i
where Wk is the weight for metric number k and Mk is the value for metric number k for this
file, i.

TDi =

m∑
k=1

WkMk (4.1)

To be able to compare di�erent projects, a Technical Debt Index (TDI) was calculated.
This index showed how much TD on average was located in each file and used the calculated
TD values using the normalised data based on both projects. The TDI formula can be seen
in 4.2, where n is the amount of files in the project and TDi is the calculated TD for file i in
the project.

TDI =
∑n

i=1 TDi

n
(4.2)

Table 4.5: Data processing for TD calculation

Metric (M) Weight (W , %) Divided by LOC? E�ect on TD
Cyclomatic Complexity (CC) 12.5 yes increase
Cognitive Complexity (CoC) 17.5 yes increase
Lines of Code (LOC) 15 no increase
Comment Lines (COM) −7.5 yes decrease
Duplicated Blocks (DUP) 12.5 yes increase
Functions (FNC) −7.5 yes decrease
Commits (CMT ) 15 no increase
Coupling (CPL) 12.5 no increase

46



4.5 Evaluation of Model

4.5 Evaluation of Model
The evaluation of the software metric based TD model was done with the method presented
in Section 3.6. The 15 files were selected using the TD model and LOC as there should be
files of similar size in each category. The results from the two steps of the evaluation are
presented below. Once the evaluation was done the developers’ selection criteria used during
the evaluation was retrieved, presented in Table 4.6.

Table 4.6: Individual developer selection criteria for the first step of
the evaluation.

File selection criteria

Developer 1

Number of developers working on the file?
How large is the file?
How many commits has the file received?
How much code is copy pasted?
Gut feeling

Developer 2
Is the file rushed and sloppy?
How important is the file?

Developer 3
Gut feeling
Knowledge built from being a developer

4.5.1 Validation of Identified Files
The results from the first part of the evaluation is presented in Figure 4.7 for the front-end
files and Figure 4.8 for the back-end files. Each file has been given a new, anonymous name
based on LOC and if it belongs to the front-end or back-end in this thesis. The original
names were used for the developers during the evaluation. The files are presented with a
rounded LOC and its estimated amount of TD from the model calculation. The cells con-
taining the developers’ motivation (if any) has been given the colour grey if that file was voted
on, otherwise white. Each file’s total number of votes is presented at the end of each LOC
section.

The results from the second part of the evaluation are presented in Figure 4.9. The five
files that the developers chose for the Hundred Dollar test and the respective amount of given
dollar is presented together with the calculated amount of TD using the two normalisation
techniques. The actual rank the files should have been placed in according to the model is
also shown in the table.

47



4. Result

Table 4.7: Results from developer feedback for the front-end files.

Amount of TD Low Medium High
LOC: 500-700 LargeFile1-fe.tsx (LOC: 500, TD: 5.41) LargeFile2-fe.ts (LOC: 700, TD: 14.56) LargeFile3-fe.tsx (LOC: 500, TD: 22.60)

Developer 1

Contains content that
we receive from the markets.
This is not a file we make changes
to unless the markets have made a change.

Large file with a lot of logic
and many developers have been
involved.
The file has also been rewritten
and there is a V2.

Developer 2
LargeFile1-fe.tsx was not picked as
there’s no real tech debt in this file.

LargeFile2-fe.ts was not picked as
there’s no real or extremly small
tech debt in this file.

LargeFile3.tsx was picked due to
its implementation first time around
was a rushed MVP. It’s since had
2 revisions, making it slightly better
each time, but due to the project
getting major revamps its still left in
some need of rework.

Developer 3
A copy of this content is not
something we should maintain
- it should exist in some centralised repo.

Redux boilerplate, could probably
be reduced but no big deal.

Number of votes 1 0 2
LOC: 200-400 MediumFile1-fe.ts (LOC: 200, TD: 8.16) MediumFile2-fe.ts (LOC: 300, TD: 10.53) MediumFile3-fe.tsx (LOC: 400, TD: 16.60)

Developer 1

MediumFile2-fe contains parsed
data that we retrieve from an API.
We then use the data to retrieve
translations and the like and thus
no file that we tinker with much as
developers.

Relatively large file that contains
a lot of logic.

Developer 2

MediumFile1-fe.ts was not picked
since it is working as it should currently.
There are 2 markets that have been
out-commented due to testing, but its
a an extremly small issue to correct.

MediumFile2-fe.ts was not picked as
there’s no real tech debt in this file.

MediumFile3-fe.tsx was picked & is
a large remnant from the project version.
Originally it was catered for several
markets as a way to alter & show
your profile. The code was messy and
the UX hasted. This got broken down
into several new views & pages in the
new version, instead of 1 large file trying
to do it all. Theres only 1 market left
using this page/view today and
once they are rolled out with the new
project version it’ll be removed compleatly.

Developer 3 This is configuration generated by a script. Too much code in one place.
Number of votes 0 0 3
LOC: 100-200 SmallFile1-fe.ts (LOC: 200, TD: 7.18) SmallFile2-fe.tsx (LOC: 200, TD: 10.48) SmallFile3-fe.tsx (LOC: 100, TD: 19.99)

Developer 1
Contains all countries, languages and
area codes. A file that is pretty
straight forward I would say.

Many developers have contributed to
this file even though it is relatively small.

Many developers have contributed to
this file and I guess there are many
commits as every time a new market
is added there is a commit.

Developer 2
SmallFile1-fe.ts was not picked as
there’s no real or extremly small
tech debt in this file.

SmallFile2-fe.tsx was picked & is a
remnant from the old project version
and subject to be deleted as soon as
all markets have been migrated to
the new project version.

SmallFile3-fe.tsx was not picked as
there’s no real or extremly small
tech debt in this file.

Developer 3
Just some data that should very
rarely change.

Hard coded market rules should
not be placed in this button component.

Number of votes 0 1 2

48



4.5 Evaluation of Model

Table 4.8: Results from developer feedback for the back-end files.

Amount of TD Low Medium High
LOC: 100-200 MediumFile1-be.ts (LOC: 200, TD: 2.59) MediumFile2-be.ts (LOC: 100, TD: 7.14) MediumFile3-be.ts (LOC: 100, TD: 17.70)

Developer 1
Contains only a number of di�erent
country and language codes.

Not many developers contributed to
the code. Well structured code.

Developer 2
MediumFile1-be.ts was not picked as
there’s no real or extremly small
tech debt in this file.

MediumFile2-be.ts was picked due to
it being a vital part of the application,
which is used often and could easily be
broken down for a slimmer implementation.

MediumFile3-be.ts was picked.
Its not an essential file to the project
but theres a lot of repetitive code in
there, which could easily be re-written
to be smarter.

Developer 3

Bad file name, it does actually not do
any validation. It is overhead caused
by TypeScript and can probably be
solved in some better way.

Looks much like repeated code.

Number of votes 1 1 3
LOC: 0-100 SmallFile1-be.ts (LOC: 50, TD: 3.47) SmallFile2-be.ts (LOC: 50, TD: 5.58) SmallFile3-be.ts (LOC: 50, TD: 17.67)

Developer 1
Many developers who contributed
to the code.

One developer who made the file,
easy to read code, not many lines.

Relative static code that does not
change if nothing changes in the
system we send the payload to.

Developer 2
SmallFile1-be.ts was not picked as
there’s no real or extremly small
tech debt in this file.

SmallFile2-be.ts was not picked as
there’s no real or extremly small
tech debt in this file.

SmallFile3-be.ts was not picked.
It is working as intended and theres
no ’real tech debt’ in this file, theres 2 rows
that could be removed but in comparison
to other files its a tiny job.

Developer 3
This is just mapping from one data
structure to another

Number of votes 1 0 0

Table 4.9: Results from the Hundred Dollar Test.

File MediumFile3-fe.tsx LargeFile3-fe.tsx SmallFile3-fe.tsx MediumFile3-be.ts SmallFile1-be.ts
Given Dollars 45 30 15 7 3

Comments

* Barely used by markets.
* Unnecessarily complex.
* Very large and important
for project.
* Some functionality
already broken out.

* Already replaced
with V2.
* Even new one can
be improved and
rewritten.

* Contain market-specific
logic that should be in
other places.
* Low value for project
to fix.

* A lot of copy
paste.
* Should be rewritten

* ts-ignore
* Decoder token
without verifying
signature

Project normalisation made using both projects
Calculated TD 16.60 22.60 19.99 17.70 3.47
Calculated Rank 4 1 2 3 5

Project normalisation made separately
Calculated TD 21.02 27.43 22.89 15.82 6.03
Calculated Rank 3 1 2 4 5

49



4. Result

4.6 Technical Debt Visualisation
The dashboard created for visualisation showing the Open-Source project Excalidraw1 will be
presented in Figures 4.2 to 4.7 going from the top to the bottom of the dashboard. This project
was selected in order to keep the privacy of the case company’s source code and because of
its similarities in structure and programming languages. The graphs in the dashboard are
fully interactive meaning you can zoom, hover over data points to see more information and
click on data points to hide and show them while the plot resizes to best fit the current data
points. It is also easy to set parameters limiting min or max file size and complexity and to
remove files that are not relevant for the visualisation. For this visualisation the minimum
file size is set to 25 LOC.

Figure 4.2 shows the top view of the dashboard where the project which should have
its metrics visualised is selected. Below the drop-down menu, a text box shows the current
projects TD index and compares its ranking with other projects that have been scanned.

Figure 4.2: Top view of the dashboard.

Figure 4.3 shows file-level metrics. The y-axis shows the number of commits per file in
the last 12 months while the x-axis shows cyclomatic complexity per LOC. The circle size
depends on the LOC of the file while the colour ranges from red to green depending on the
number of functions per LOC in the file. This graph showcasing the more important metrics
can be used to find outlier files as a first step in deciding where to start a refactoring.

Figure 4.3: File level metrics visualising commits, complexity, size
and functions per line of code for each file in the project.

1https://github.com/excalidraw/excalidraw

50

https://github.com/excalidraw/excalidraw


4.6 Technical Debt Visualisation

Figure 4.4 shows an example of total project metrics to get a better overview of how the
project has been evolving. The graph includes both the codebase’s size and tasks started and
completed in the last 12 months. These are simulated values as tasks completed and started
could not be collected for Excalidraw. Finally, the cyclomatic complexity per LOC can also
be toggled on.

Figure 4.4: Total project overview showing how the project size,
tasks started and tasks completed has evolved the last 12 months.

Figure 4.5 shows a treemap graph of the files in the project and their structure, where the
file rectangle size depends on the file LOC and the rectangle colour ranges from green to red
depending on the amount of calculated TD in the file. This graph is used to quickly show
what areas of the system that has the most TD.

Figure 4.5: Tree graph showing the project structure and which files
contain the most TD.

51



4. Result

Figure 4.6 shows the calculated TD per file where the files are sorted depending on the
calculated TD. They also range in color depending on the file LOC. This graph can be used
to easily parse through the files with the most TD working your way down. It also shows how
the TD is divided in the project; exponentially, linearly etc.

Figure 4.6: Bar chart showing the files ranging from left to right
depending on calculated TD.

Figure 4.7 shows spider diagrams of the five files with the most TD in order, from left to
right with the file names displayed above. The spider diagrams do not include the weighing
used to calculate TD and instead show the normalised values. This graph can be used to see
what metrics made the files rank in the top five and to simplify potential refactoring.

Figure 4.7: Spider charts of the five files containing the most TD.

52



4.7 Implementation in the Development Process

4.7 Implementation in the Development Pro-
cess

As a way of combining the findings from the literature study and the results from the TD
visualisation, we have proposed an approach for the organisation to implement in order to
manage TD. The implementation approach includes several activities and the full flow chart
of these are presented in Figure 4.8. The approach includes three parts: measuring, visualis-
ing, and information sharing. The first two parts includes measurements of SM and visuali-
sation using dashboards, and the third part includes a TD list, knowledge sharing within the
team, defect data about the product and other relevant information.

GitHub Repository

Online SonarQube Server

Sonar API

Developer 
Knowledge

Dashboards

TD- list

Other Relevant 
Information

Make decision on 
when and where

 to start repaying TD

Information SharingMeasuring & Visualising

+
+

Defect Data

TD Model
Python Script 

Calculation of 
Coupling & Commits

+

Figure 4.8: Implementation of TD in a team

4.7.1 Technical Debt List
The first activity is the tracking of TD items using a list where the proposed approach is
through the already used issue tracking software. As presented in Section 2.2.1 and Table 2.7,
each TD item will be provided with a description and ratings of principal, interest rate, and
interest probability. The principal and interest rate are measured in person-hours and inter-
est probability is measured in per cent. The TD list has been tested in the team, see Figure 4.9
and 4.10, by introducing it in the teams issue tracking software. When the developer finds a
TD item, it should be added as a sub-task inside the task called Technical Debt and provided
with a correct description as seen in the red box in Figure 4.10. For each sub-task, historical
data and developer experience is proposed to be used as the basis to estimate principal and
interests. The list of all sub-tasks is inside the red box in Figure 4.9 along with guidelines in
the green box for how to add a new TD item.

53



4. Result

Figure 4.9: The full TD list in the issue tracking software with one
item added (red box), and guidelines for how to add a new TD item
(green box)

54



4.7 Implementation in the Development Process

Figure 4.10: Example of a TD item in the issue tracking software

4.7.2 Training of Developers
As a part of the implementation, we have conducted several presentations to stakeholders
from di�erent teams at the case company. The purpose of the presentations was to share
acquired knowledge about TD and as a part of making the teams more aware and aligned and
to show how each team could use and take advantage of the thesis work. The presentations
were held digitally and lasted for one hour each. The presentations included both theoretical
information about TD and findings from the literature study as well as information about
the proposed implementation of working with TD and visualising it. The presentations were
appreciated by the employees and there was an interest from several teams to implement the
measurements and visualisations on more projects.

55



4. Result

56



Chapter 5

Discussion

In this Chapter, we discuss the method, the results, and threats to validity, both regarding
their outcomes and their possible weaknesses. The results that are discussed include the
interviews, the work done at the case company, the TD model & visualisations, and finally
the outcome of the evaluation.

5.1 Interviews
The interviews showed that there was a lot of TD in the case company that was very similar
to the types discussed in the literature study. The reasons for acquiring this TD were also
very similar to the ones discussed in the literature study. Reasons such as lack of knowledge,
time pressure from markets, and prioritising di�erent things other than TD prevention or
TD reduction, were lifted by the interviewees. Due to how similar the TD issues were at the
case company compared to the theory it both showed that the literature has come a long way
defining TD and that the case company was very suited for a master’s thesis like this.

The case company also had several best practices already in use as well as a few improve-
ment suggestions. This both reduced what we had to recommend and limited the thesis scope
to some extent. No suggestions or metric measuring needed to be done regarding code re-
views, having a positive attitude towards TD and sticking to the standard coding language
notation. Some of the improvement suggestions were also added to the recommendations
left to the case company for further TD improvement after the thesis.

5.2 Selection of Metrics
The selected metrics di�ered quite a bit from the desired ones, due to the reasons previously
explained in Section 4.2. This led to us having to estimate code smells using more general
metrics compared to the more detailed definitions found in the literature study. However,

57



5. Discussion

we still perceive that the selected metrics capture most code characteristics that relate to TD
such as complexity, duplication, size, understandability, and importance. Unfortunately, the
lowest level the metrics could measure at was on file level, it would have been better to be
able to identify specific methods in files that contained more TD compared to the others.
This was however not possible using SonarQube, and most files were of the layout that they
contained one method that was much larger than the others. This meant that once the file
had been identified it was rather simple to locate which area of the file the deeper analysis
and refactoring should begin. This was also due to the nature of the projects which had a
structure where each file, in general, had a single task which meant that it did not need to be
further divided.

Pearson’s correlation test varied between the projects where strong correlations between
metrics could be found in the back-end project which could not be found in the front-end
project. This could be explained by the lower sample size for the back-end that had less files
and LOC compared to the front-end. It could also be explained by the front-end and the
back-end projects having di�erent tasks such as the back-end being more logic-heavy and
having more short functions.

Beyond this, the metrics seemed to be rather independent based on the correlation anal-
ysis, specifically for the front-end project. Most metrics had a correlation factor below 0.3,
with the exception of number of Functions, Cyclomatic Complexity and Cognitive Com-
plexity. This could be explained by SonarQube’s implementation of Cyclomatic Complexity
where it increased by one for each function. We still found the number of Functions to be a
relevant metric even though this strong correlation existed since it was an important metric
to evaluate the code smell named Brain Method.

Although Cognitive Complexity and Cyclomatic Complexity had a very strong corre-
lation factor (0.69) we decided to include both metrics in the model. This was because
Cognitive Complexity is a variation of Cyclomatic Complexity that aims to remove some
weaknesses from the former. A simple, easy-to-read switch case could have a Cyclomatic
Complexity of eight where it has a Cognitive Complexity of one. We decided to use both
complexity metrics even though they had a strong correlation in both projects due to Cy-
clomatic Complexity’s proven experience, and not to have simple switch cases to skew our
model.

So although there was strong correlation between some metrics, especially on the back-
end project, all metrics are still believed to have their place in the model and contribute with
something the others metrics can not capture.

5.3 Technical Debt Model
In this section, we discuss the model composition, as well as the precision of the model based
on the developers’ evaluation. Finally, we discuss the shortcomings of the model.

5.3.1 Model Composition
The decision to make the model produce a single value was not certain at the start of the
model design. The literature study had shown that TD is a broad term and it is not easy
to describe it with a single value. Despite this, we needed some way to rank the files, and

58



5.3 Technical Debt Model

eventually, it was decided that a single value was the best option for this. The single value is,
however, produced from a combination of several di�erent metrics. The visualisations in the
form of the spider diagrams and the file-level metric plot also help in showing the broader
picture.

The weighing of the parameters went relatively smooth. It was not too much work check-
ing if the files were ranked in an accurate order. The first weighing based on an estimation of
each metrics’ appearance in the literature study was good, but for these projects that weigh-
ing had too much impact on the size and number of commits. The analysed projects often
received many smaller commits adding a few lines of code to include a new market or had
long text files. These were files that did not need individual refactoring but rather showed
that they could be solved di�erently. After reducing the size and commit weights and making
some other minor modifications to the other metrics the model was finished.

5.3.2 Model Precision
The model precision was o� for the back-end project where only three out of six individual
votes were placed on files the model predicted as having high TD. Especially, SmallFile3-be.ts
received no votes although the model had ranked it as having high TD, mostly because it had
a lot of duplicated code. However, this was intended since it was mapping from one data
structure to another. It is worth noting that the file with the highest calculated TD in the
back-end project was not included in the evaluation since there were no other files of similar
size.

Worth noting is also that the two low TD files that were chosen by the developers were
chosen for reasons that our model did not take into account. The reasons were “bad file
name” and “many developers who contributed to the code”. Our model did not analyse names,
and although the model had commits included, it did not take into account who did these
commits. The number of di�erent developers is a metric that would have been interesting
to measure, but questions following this measurement such as “Is a certain developer linked to
more TD?”, is something we wanted to avoid in this thesis for ethical reasons.

The model performed better for the front-end project where seven out of nine individual
votes were placed in the predicted files. One of the votes that was placed in our low category
hinted at a larger problem: “A copy of this content is not something we should maintain - it should
exist in some centralised repo[sitory]”, something that is hard to measure with SM.

Another interesting aspect is that a few of the files found to be containing high amounts
of TD were old files that had been rewritten in new versions (V2). They had been rewritten
due to “having messy code” and being a “rushed MVP [Minimum Viable Product]” which both are
indicators of TD. However, some other files also had received new versions which the model
did not rank as high.

The second step of the evaluation where the final five files were agreed upon turned out
better. Four out of these files had been identified as having high amounts of TD from the
model, although the dollars were spent a bit di�erent compared to our calculated TD. The
participants were asked why the back-end project received fewer dollars whereas they re-
sponded that the “the technical debt in the back-end project would require less work to remove”,
even though the metrics showed similar TD values as for the front-end project. This further
indicates what has been discussed before, that it is hard to compare di�erent projects and
sectors, perhaps the back-end and the front-end projects should be analysed independently.

59



5. Discussion

This is something that the normalisation based on the project themselves indicate, where the
TD values better follow the developers opinions.

When looking at the ordering for the files with high TD it can be seen that they were
not placed in the correct order according to the model. They did however have very similar
calculated values meaning that there is not that much separating them, hinting that the model
lacks some finer precision. Worth noting is that when looking at the motivation for the
ranking of LargeFile3-fe.tsx which has the highest calculated TD, the developers indicated that
it had already been refactored. “LargeFile3-fe.tsx received fewer dollars since a new version already
had been created”. Perhaps it would have been placed first if the new version did not exist and
we could argue that it already was placed first since it had been refactored into a new version,
compared to i.e. MediumFile3-fe.tsx which has not been refactored.

The data from the evaluation shows that the model has somewhat good precision. A
model like this, or improved with further metrics, can be a good way to automatically find
files in larger projects that can be further analysed. As seen in the evaluation, there are several
aspects identified by developers that the model can not evaluate. Therefore, for best results,
it should not be used as a single source for decision making. Using it in combination with
a TD-list and stakeholder feedback is strongly recommended. The versatility of the model,
such as allowing more metrics to be added, weights to be changed, and allowing di�erent
ways to normalise, increases its usability in other projects.

5.3.3 Model Shortcomings

The model had quite a few shortcomings. Firstly, identifying larger problems such as that
content should be moved to an API, file names being incorrect, lack of unit testing or that
the architecture is sub-par is not possible with the model. The question is if it was possible
to gather any metrics desired, would some combination of these be enough to answer these
higher-level questions? Or will always some human intervention be necessary?

It would also have been preferred if the model could identify specific parts of the files
where the TD was concentrated. This shortcoming is much due to the limitations of the
analysed projects and code analysis software. SonarQube did not measure metrics on a lower
level than file level. Identifying specific methods or classes is possible using other tools that
have lower-level metrics and is something that is recommended for further improvement.

Finally, the question of how applicable the model is for web development projects needs
to be discussed. Much of the metric theory the model is based on is built from papers
analysing more back-end heavy Java projects. Web development often has a more predefined
structure with components that almost always are used. It often has much loose coupling
between files and new components are added frequently which could mean that the commit
metric is not as important for web development. There could also be other metrics that have
a much larger impact on web development that was not discussed at all in the literature that
was studied. To try and negate this shortcoming we had several discussions during the key
metric selection phase with the developers about what metrics they thought had the most
impact.

60



5.4 Evaluation of Method

5.4 Evaluation of Method
The method steps were based on goals proposed by the case company and as we wanted
to make sure that the thesis fulfilled all the goals, it was decided to follow this approach.
The actual method for each step came as a combination of logic; this was the logical way
to approach the problem, and from looking at the literature and seeing what steps were
necessary when working with SM, which is, for example, where the GQM method came
in. All steps were necessary in our opinion, although they could have been carried out in
di�erent ways.

The research questions were used as guidelines for choosing each step. A literature study
and interviews with stakeholders was considered the best option for answering RQ1 as it
provided a broad understanding of the subject both in relation to other companies’ working
methods and the case company’s current situation. For this step, we did not consider other
approaches since it was recognised as necessary steps to start the thesis work with. The in-
terviews and literature study also gave a good foundation for RQ2 together with the GQM
method, which was recognised in the literature.

The final steps of the method, measuring and visualising, was a combination of the result
from the literature study, available resources and our knowledge in the area. It was realised
during our research that our visualisations could not compare to other visualisation tools
available on the market. It was however decided that we wanted to create dashboards for
the data we retrieved and use it when introducing the implementations. If the team and case
company is satisfied with the visualisations, they can decide to go further with the measure-
ments or start paying for a subscription of a tool.

5.5 Technical Debt Visualisation
The dashboard used for visualisation received a positive response from stakeholders at the
case company. The ability to both get an overview of the entire project and see metrics for the
specific files was elevated by the stakeholders. That it also contained easy to grasp colours
from green (good) to red (bad) showing important metrics and the calculated TD values
allowed for an easy learning curve. The possibility to also see what characteristics placed
the top five files first with the spider diagrams was appreciated. Although there was some
relevant feedback that the spider diagrams did not include the weighing for each parameter,
which could be a bit misleading.

The visualisation also included the total project metrics LOC and tasks started and com-
pleted per month. At first, we wanted to include some of the other code metrics used on file
level in this graph, however, after doing a correlation test using the Pearson method it was
seen that on project level all of those metrics strongly correlated to size.

We had an aspiration to have more agile metrics beyond the number of tasks completed
and started, to have a better overview of how the development speed was progressing. This
was however di�cult to collect in an easy manner that would be recommended to the case
company in the future. We could only export the tasks tagged for the project to Excel where
it further was manually processed and summarised. This meant that some tasks fell under the
radar if they were not tagged correctly. One of the reasons for this was that several teams had
their tasks in the same backlog and not all of them were tagged to the corresponding project.

61



5. Discussion

They neither had any tags that corresponded to the front-end or back-end project leading to
us having to combine the tasks for both of them and show the same for both projects.

Other than that, the dashboard was positively received and a lot of interest was shown by
di�erent stakeholders wanting to analyse their projects and have their TD visualised. Which
was done by us delivering both the processed data and visualisation tool to them and creating
a manual on how to use the software for scanning of metrics and visualising them which was
given to the case company.

The dashboard could have included the TD list that was implemented in the issue track-
ing software instead, see Figure 4.9. However, due to how the teams currently were logging
their work daily whereas our dashboard was suggested to be updated once a month, it would
be too much of a hassle to have to log it in there. Although, a list implementation in the
dashboard reading from the TD list in the issue tracking software, could be a possibility.

5.6 Implementation in the Development Pro-
cess

Throughout the thesis work, the several presentations of theory, as well as demos of our work
and the dashboard, has received positive feedback. There is however a problem with present-
ing large amounts of information and recommendations about a subject that the listeners
do not know too much about. It might feel overwhelming and there is no real knowledge of
where to even begin. To try to make sure that the work in this thesis is used, two precautions
were made. The first precaution was the creation of a manual on how to use the software
to both gather and visualise metrics as well as simplifying the steps into a smoother process,
and showing some teams how to use it.

The second precaution was to write a recommendation list where the most critical best
practices and background theory was listed. The list also included steps on how to implement
it into the development process.

We believe that these precautions provide a boost to the initialisation of working with
TD. Simple key steps are easier to both implement and make decisions of, and the easy to
grasp feedback from the dashboard also makes it easy to work with. Hopefully by having
made these precautions some of our recommendations are implemented in the development
process and are further improved as experience is built.

5.7 Threats to Validity
The largest threats to the validity of this thesis can be found in the evaluation stage. Before
the evaluation, the developers that were to rank the TD raised the issue that they were not
sure how to define TD since it is a very broad term. To help their understanding they were
sent a presentation made by us containing the information found in Chapter 2.1. This could
be interpreted as skewing the results to some extent. However, our model did not contain all
parts of the presentation, there were no instructions on how to rank TD and in the end, the
developers’ stated selection criteria di�ered from this presentation.

The low sample size of the evaluation and how it was conducted can also be seen as a
threat. Instead of us selecting 15 files, a more correct result would probably come from having

62



5.7 Threats to Validity

all developers who had worked on the project go through each file together and finding the
ones with most and least TD. This was, however, not possible due to the large amount of
time it would take, as well as that not all developers who had worked on the projects were
available. Several projects should also have been evaluated in a similar way to better capture
the preciseness of the model, this was also not possible due to time constraints. However, to
increase the validity the developers received a lot of time and space to both select their files
and discuss their selections and reasoning amongst them.

The fact that the TD model was mainly based on theory from papers having studied TD
and maintainability for Java applications compared to the studied web development projects
in this thesis is also something to factor. Although the di�erence in project type and pro-
gramming language, the basics regarding TD and maintainability should not di�er too much
between them. The metrics were also selected to cover the most crucial and general charac-
teristics of code that exist in all types of project to decrease this threat. This means that the
model and way of working in the thesis will work for varying projects and organisations.

63



5. Discussion

64



Chapter 6

Conclusion

Throughout this master’s thesis we have aimed to get a deeper understanding of both the the-
ory of TD, with a literature study, and practical examples of it in real software development,
with the help of interviews. One key finding from this was that TD is a broad term where
the definition, to some extent, di�ers depending on the author. The interviews showed that
many developers have insights in TD issues and best practices without being that familiar
with the actual term and that these insights di�ered a lot from developer to developer. It
will require a lot of e�ort to start working with TD, but as experience is built it will become
easier.

Another key finding was that measuring and identifying TD in software development is
not an easy task since di�erent types of debts are identified in di�erent ways and are more
or less complex. For example, it is much harder and complex to identify and refactor ATD
for a system compared to doing the same for a copy pasted method in a system module.

In this thesis, we have attempted to measure and visualise TD with the help of SM found
to be related to TD and maintainability. A TD model has also been created based on these
metrics. Even though we could not collect all metrics that were desired due to the limitations
of the thesis work, the results still hint that the current model and dashboard can be used
to both identify TD and direct refactoring work. It was also found that the model mirrors
some of the TD identification made by developers who created the project and have a lot of
insight. Although both the results and the literature study showed that SM are not enough
on their own to measure TD, due to their complex and broad nature.

It has also been shown that a dashboard visualising TD is both possible and works as
a good basis for discussion that helps the evaluation of implementation decisions and the
describing of how di�erent developers define maintainability.

Finally, how some parts of the organisation currently work with TD has also been stud-
ied and di�erent recommendations regarding best practices and ways of working from the
literature has been given from these.

65



6. Conclusion

66



Chapter 7

Future Work

To get a more complete picture of measuring TD with SM it would be interesting to see simi-
lar work using further or other metrics. Either by writing own software, purchasing software
or analysing a project in a di�erent programming language with more software options to
collect these metrics. Using SM on a larger scale of projects to get a better result of their cor-
rectness and ability to compare di�erent projects, especially in web development is also an
interesting topic. It would also be interesting to try using metrics on method-level to better
identify code smells.

In the times of machine learning, setting up a linear regression model using metrics and
using stakeholders with knowledge of the project as feedback for the model is something that
could be further analysed. This would probably lead to a more precise model with improved
identification results but would need more time and e�ort from the developers.

The di�erence in e�ciency to remove TD with a perfect SM management method com-
pared to none is also something that has not been researched too much. Following “perfect”
protocol and having metrics and visualisations for every aspect of the development process
such as code metrics, architectural metric, deployment metrics and using these in combina-
tion with a TD list, developer knowledge etc. Then comparing how much more e�ciently
TD could be removed from a project using all these tools with not using any assistance.

Finally, the dashboard could be improved by both containing a TD-list and using the
estimated principal and interest for each item in the total project debt estimation.

67



7. Future Work

68



References

R. Alfayez, P. Behnamghader, K. Srisopha, and B. Boehm. An exploratory study on the in-
fluence of developers in technical debt. In Proceedings of the 2018 international conference on
technical debt, pages 1–10, 2018.

S. Alliance. Overview: What is Scrum? https://www.scrumalliance.org/
about-scrum/overview, 2017. Accessed: 2021-01-26.

A. Altvater. Development Leaders Reveal the Best Metrics for Measur-
ing Software Development Productivity. https://stackify.com/
measuring-software-development-productivity/, 2017. Accessed: 2021-02-04.

P. C. Avgeriou, D. Taibi, A. Ampatzoglou, F. A. Fontana, T. Besker, A. Chatzigeorgiou,
V. Lenarduzzi, A. Martini, N. Moschou, I. Pigazzini, et al. An overview and comparison of
technical debt measurement tools. IEEE Software, 2020. doi: 10.1109/MS.2020.3024958.

R. Bavani. Distributed agile, agile testing, and technical debt. IEEE software, 29(6):28–33,
2012.

J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann. Limiting technical debt with main-
tainability assurance: an industry survey on used techniques and di�erences with service-
and microservice-based systems. In Proceedings of the 2018 International Conference on Tech-
nical Debt, pages 125–133, 2018.

B. Cline. 5 TIPS TO WRITE MORE MAINTAINABLE CODE. https:
//www.brcline.com/blog/5-tips-write-maintainable-code#:~:text=
Maintainable%20code%20is%20basically%20the,the%20change%20could%
20break%20something, 2018. Accessed: 2021-02-06.

W. Cunningham. The WyCash portfolio management system. ACM SIGPLAN OOPS Messen-
ger, 4(2):29–30, 1992.

E. da Silva Maldonado, E. Shihab, and N. Tsantalis. Using natural language processing to
automatically detect self-admitted technical debt. IEEE Transactions on Software Engineering,
43(11):1044–1062, 2017.

69

https://www.scrumalliance.org/about-scrum/overview
https://www.scrumalliance.org/about-scrum/overview
https://stackify.com/measuring-software-development-productivity/
https://stackify.com/measuring-software-development-productivity/
https://www.brcline.com/blog/5-tips-write-maintainable-code#:~:text=Maintainable%20code%20is%20basically%20the,the%20change%20could%20break%20something
https://www.brcline.com/blog/5-tips-write-maintainable-code#:~:text=Maintainable%20code%20is%20basically%20the,the%20change%20could%20break%20something
https://www.brcline.com/blog/5-tips-write-maintainable-code#:~:text=Maintainable%20code%20is%20basically%20the,the%20change%20could%20break%20something
https://www.brcline.com/blog/5-tips-write-maintainable-code#:~:text=Maintainable%20code%20is%20basically%20the,the%20change%20could%20break%20something


REFERENCES

E. Dietrich. The Human Cost of Tech Debt. https://www.infragistics.com/
community/blogs/b/erikdietrich/posts/the-human-cost-of-tech-debt,
2016. Accessed: 2021-02-06.

R. J. Eisenberg. A threshold based approach to technical debt. ACM SIGSOFT Software Engi-
neering Notes, 37(2):1–6, 2012.

N. Fenton and J. Bieman. Software metrics: a rigorous and practical approach. CRC press, 2014.

F. A. Fontana, V. Ferme, and S. Spinelli. Investigating the impact of code smells debt on
quality code evaluation. In 2012 Third International Workshop on Managing Technical Debt
(MTD), pages 15–22. IEEE, 2012.

M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley Professional, 2018.

Y. Guo and C. Seaman. A portfolio approach to technical debt management. In Proceedings
of the 2nd Workshop on Managing Technical Debt, pages 31–34, 2011.

Y. Guo, C. Seaman, and F. Q. da Silva. Costs and obstacles encountered in technical debt
management–A case study. Journal of Systems and Software, 2016.

R. Jabangwe, J. Börstler, D. Šmite, and C. Wohlin. Empirical evidence on the link between
object-oriented measures and external quality attributes: a systematic literature review.
Empirical Software Engineering, 20(3):640–693, 2015.

R. Je�ries. Refactoring – Not on the backlog! https://ronjeffries.com/xprog/
articles/refactoring-not-on-the-backlog/, 2014. Accessed: 2021-02-08.

J. Kasurinen, O. Taipale, and K. Smolander. Analysis of Problems in Testing Practices. In
2009 16th Asia-Pacific Software Engineering Conference, pages 309–315, 2009. doi: 10.1109/
APSEC.2009.17.

H. Kniberg. Good and Bad Technical Debt (and how TDD helps). https://blog.crisp.
se/2013/10/11/henrikkniberg/good-and-bad-technical-debt, 2013. Ac-
cessed: 2021-02-08.

M. Lanza and R. Marinescu. Object-oriented metrics in practice: using software metrics to charac-
terize, evaluate, and improve the design of object-oriented systems. Springer Science & Business
Media, 2007.

J.-L. Letouzey. The SQALE method for evaluating Technical Debt. In 2012 Third International
Workshop on Managing Technical Debt (MTD), pages 31–36, 2012. doi: 10.1109/MTD.2012.
6225997.

Z. Li, P. Avgerioua, and P. Liang. A systematic mapping study on technical debt and its
management. Journal of Systems and Software, 101:193–220, 2015.

A. Martini, T. Besker, and J. Bosch. The introduction of technical debt tracking in large
companies. In 2016 23rd Asia-Pacific Software Engineering Conference (APSEC), pages 161–
168. IEEE, 2016.

70

https://www.infragistics.com/community/blogs/b/erikdietrich/posts/the-human-cost-of-tech-debt
https://www.infragistics.com/community/blogs/b/erikdietrich/posts/the-human-cost-of-tech-debt
https://ronjeffries.com/xprog/articles/refactoring-not-on-the-backlog/
https://ronjeffries.com/xprog/articles/refactoring-not-on-the-backlog/
https://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt
https://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt


REFERENCES

J. D. Morgenthaler, M. Gridnev, R. Sauciuc, and S. Bhansali. Searching for build debt: Experi-
ences managing technical debt at Google. In 2012 Third International Workshop on Managing
Technical Debt (MTD), pages 1–6. IEEE, 2012.

A. Mori, G. Vale, M. Viggiato, J. Oliveira, E. Figueiredo, E. Cirilo, P. Jamshidi, and C. Kast-
ner. Evaluating domain-specific metric thresholds: an empirical study. In 2018 IEEE/ACM
International Conference on Technical Debt (TechDebt), pages 41–50. IEEE, 2018.

S. S.A. Metric Definitions. https://docs.sonarqube.org/latest/user-guide/
metric-definitions/, 2021. Accessed: 2021-04-06.

C. Seaman and Y. Guo. Chapter 2 - Measuring and Monitoring Technical Debt. In Advances
in Computers, volume 82 of Advances in Computers, pages 25–46. Elsevier, 2011. URL https:
//www.sciencedirect.com/science/article/pii/B9780123855121000025.

D. Straker. The Hundred Dollar Test. http://creatingminds.org/tools/hundred_
dollar, 2021. Accessed: 2021-03-15.

E. Tom, A. Aurum, and R. Vidgen. An exploration of technical debt. Journal of Systems and
Software, 86(6):1498–1516, 2013.

A. Tornhill. GOTO 2019 * Prioritizing Technical Debt as if Time and Money Matters *
Adam Tornhill. https://www.youtube.com/watch?v=fl4aZ2KXBsQ&ab_channel=
GOTOConferences, December 2019.

R. Verdecchia, I. Malavolta, and P. Lago. Architectural technical debt identification: The
research landscape. In 2018 IEEE/ACM International Conference on Technical Debt (TechDebt),
pages 11–20. IEEE, 2018.

K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist. Technical debt in test automation. In
2012 IEEE Fifth International Conference on Software Testing, Verification and Validation, pages
887–892. IEEE, 2012.

J. Yli-Huumo, A. Maglyas, and K. Smolander. How do software development teams manage
technical debt?–An empirical study. Journal of Systems and Software, 120:195–218, 2016.

N. Zazworka, R. O. Spínola, A. Vetro’, F. Shull, and C. Seaman. A case study on e�ectively
identifying technical debt. Proceedings of the 17th International Conference on Evaluation and
Assessment in Software Engineering, pages 42–47, 2013.

N. Zazworka, C. Izurieta, S. Wong, Y. Cai, C. Seaman, F. Shull, et al. Comparing four ap-
proaches for technical debt identification. Software Quality Journal, 22(3):403–426, 2014.

M. Zhang, N. Baddoo, P. Wernick, and T. Hall. Prioritising refactoring using code bad smells.
In 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation
Workshops, pages 458–464. IEEE, 2011.

71

https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://www.sciencedirect.com/science/article/pii/B9780123855121000025
https://www.sciencedirect.com/science/article/pii/B9780123855121000025
http://creatingminds.org/tools/hundred_dollar
http://creatingminds.org/tools/hundred_dollar
https://www.youtube.com/watch?v=fl4aZ2KXBsQ&ab_channel=GOTOConferences
https://www.youtube.com/watch?v=fl4aZ2KXBsQ&ab_channel=GOTOConferences


REFERENCES

72



Appendices

73





Appendix A

Interview Questions

1. What do you do within CE?

2. Can you describe how the idea for the thesis came about?

3. How is the organization built? Especially around your team?

4. Can you describe your team/s? (history, size, roles)

5. Can you describe the product the teams are working with?

6. How do you work with technical debt today?

7. Who decides what the team should do regarding the implementation of new features
or refactoring to remove technical debt for example?

8. How does the architecture work for your software, do you have any models or rules
that are followed?

9. Does it happen that the software deviates from the architecture for di�erent reasons?

10. What are the e�ects of TD?

11. How do you prioritize the repayment of di�erent types of technical debts?

12. How is technical debt found/identified?

13. How much time is spent on refactoring?

14. Do you perform any measurements of technical debt?

15. What are the most important aspects of TD in your opinion, and what measures do
you think are best for measuring these?

75



A. Interview Questions

16. Do you have any other thoughts / ideas about TD and about the future work around
TD?

76



Appendix B

In-depth Interview Questions

1. What team are you in and how big is it?

2. What is your role and responsibilities in your team?

3. Could you give a quick history of the team and product you are working on?

4. Describe your knowledge about technical debt?

5. Tell us about situations where the team have taken shortcuts and the e�ects of taking
these shortcuts?

6. How does the team make decisions about technical debt?

7. Do you feel comfortable raising TD issues to the team?

8. How do you know if technical debt exists? Can you be more specific about where it
comes up?

9. How is technical debt considered when writing code?

10. What kind of technical debt/issues do you most often find in the code/documentation?

11. What are the team’s code refactoring procedures?

12. When you run into code that you find hard to maintain, which are primary reasons for
this?

13. Could you describe the main steps in testing your code before going into production?
Are there any standards?

14. Describe how the implementation of a new feature is conducted?

15. How much does the team use software metrics?

77



B. In-depth Interview Questions

16. Are you currently measuring any metrics?

17. What software metrics do you believe have the most impact on visualizing TD or seeing
code quality

18. Do you have any ideas on how the company should take care of managing, finding,
reducing and paying shortcuts?

19. Do you have something to raise about the subject that we have not asked about?

78



Appendix C

Results from Goal-Question-Metric

Goals

1. Get a better insight and have a proper monitoring, both of the code itself but also how
the team delivers the software.

(a) Identify TD and the reasons for it to incur

(b) Measure and visualize technical debt

(c) Prioritizing between improvements and developing new features

Questions

1. How complex is the code?

2. How often does the code change?

3. How well is the code working? Both for customers but also for developers

4. How often are new releases made?

5. How much time is spent on maintenance and fixing issues?

6. Repay TD now or later?

7. How much duplicate code exists?

8. How large is an average method/class?

9. How often is documentation updated?

10. How organized is the test coverage?

11. How is the feature-release speed developing?

79



C. Results from Goal-Question-Metric

Metrics

1. Product Metrics

(a) God Class

i. Weighted Method Count (WMC)
ii. Tight Class Cohesion (TCC)

iii. Access to Foreign Data (ATFD)

(b) Data Class

i. Weight of Class (WOC)
ii. Weighted Method Class (WMC)

iii. Number of Attributes (NOA) - (NOAP) / (NOAM)

(c) Brain Method

i. Lines of Code (LOC)
ii. McCabe’s Cyclomatic Complexity

iii. Maximum Nesting Level
iv. Number of Accessed variables (NOAV)

(d) Significant duplication

i. Size of Exact Clone (SEC)
ii. Size of Duplication Chain (SDC)

iii. Line Bias (LB)

(e) Intensive coupling

i. Max Nesting
ii. Coupling Intensity (CINT)

iii. Coupling Dispersion (CDISP)

(f) Shotgun surgery

i. Changing Methods (CM)
ii. Changing Classes (CC)

(g) Number of defects

(h) Number of defects reported by users

80



2. Process metrics

(a) Developer reported TD-items

(b) Number of released features

(c) Number of completed tasks

(d) Average time spent on a subtask

(e) Cycle Time

(f) Lead Time

(g) Number of defects found in testing

(h) Commit interval time

(i) Number of commits

(j) Number of commits per method

3. Resource Metrics

(a) Developer reported TD-items

81



C. Results from Goal-Question-Metric

82



Appendix D

Metric Definitions

The three first metrics definition are from Lanza and Marinescu (2007) while the last two
are from Mori et al. (2018).

• Access to Foreign Data (ATFD): Counts how many attributes from other classes that
are directly accessed from the measured class.

• Weighted Method for Class (WMC): The sum of the cyclomatic complexity of all meth-
ods in a class divided by the number of methods.

• Tight Class Cohesion (TCC): The relative number of method pairs in a class that access
at least one common attribute that is in that class.

• Coupling Between Objects (CBO): The number of classes that are coupled to a class
by it calling methods or accessing attributes of the other classes.

• Lack of Cohesion in Methods (LCOM): Divides the pairs of methods in a class that do
not access its attributes by the pairs of methods that access common attributes.

83



INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2021-06-10

EXAMENSARBETE Identification of Technical Debt in Code using Software Metrics
STUDENTER Erica Schillström, Dan Wahlin
HANDLEDARE Martin Höst (LTH)
EXAMINATOR Ulf Asklund (LTH)

Hur ska en organisation hantera och
mäta teknisk skuld?

POPULÄRVETENSKAPLIG SAMMANFATTNING Erica Schillström, Dan Wahlin

Teknisk skuld förekommer i alla former av mjukvaruutveckling och om skulden ej
behandlas rätt kan konsekvenserna bli stora. Detta arbete undersöker dels hur en or-
ganisation bör jobba med teknisk skuld och dels hur teknisk skuld i kod kan identifieras
och visualiseras med en modell av mjukvarumätvärden.

Teknisk skuld är en metafor som används för
att beskriva konsekvenserna av att ta en gen-
väg i utvecklingsprocessen av ett mjukvarusystem.
Genvägen ger ett team fördel i form av snabbare
leveranser till kund, men en skuld kommer aldrig
utan en kostnad och att ta för många genvägar
utan att betala tillbaka dem kan leda till långsik-
tiga konsekvenser. Denna skuld ökar även risken
att ett team tvingas spendera mer tid på att un-
derhålla och åtgärda problem än att kunna bygga
nya funktioner. Det finns således ett behov att
hantera och mäta teknisk skuld för att fatta rele-
vanta beslut kring refaktoriseringar och utveckling
av mjukvaran.
I vårt examensarbete har vi byggt en modell

med hjälp av åtta mjukvarumätvärden för att up-
pskatta mängden teknisk skuld i en fil. Denna
modell kan användas för att identifiera och ran-
gordna filer i ett mjuvarusystem som bör ses
över för refaktorisering. Dessa mjukvarumätvär-
den valdes utifrån en litteraturstudie där samtliga
steg av hanteringen av teknisk skuld undersöktes.
Mätvärdena uppskattar egenskaper som komplex-
itet, storlek, viktighet, beroende samt underhåll-
barhet i koden. Modellen byggdes upp genom att
vikta och normalisera de olika mätvärdena baserat
på litteraturstudien.

Datan från modellen visualiserades i en dash-
board som både visade individuella mått, samt
ett uträknat teknisk skuld-värde. Dashboarden
visade sig vara ett bra verktyg för att skapa
diskussion samt snabbt få en överblick över pro-
jektet och hitta områden att analysera djupare.
Arbetet resulterade även i fyra slutsatser gällande

GitHub Repository

Online SonarQube Server

Sonar API

Developer 
Knowledge

Dashboards

TD- list

Other Relevant 
Information

Make decision on 
when and where

 to start repaying TD

Information SharingMeasuring & Visualising

+
+

Defect Data

TD Model
Python Script 

Calculation of 
Coupling & Commits

+

organisationers arbete med teknisk skuld: De bör
logga förekomster av teknisk skuld samt uppskatta
dess allvarlighet, avlägga bestämd tid för att iden-
tifiera och refaktorisera teknisk skuld, uppmuntra
till diskussion och utbilda utvecklarna i ämnet
samt utföra mätningar av viktiga mått i koden.
Rek. arbetssätt kan ses i figuren ovan.


	Introduction
	Problem Statement
	Research Questions
	Contribution
	Distribution of Work
	Outline

	Background and Related Work
	Theory
	Technical Debt
	Software Metrics
	Agile Software Development

	Technical Debt Management
	Working with Technical Debt
	Best Practises to Reduce Technical Debt

	Case Company

	Method
	Literature Study
	Interviews
	Informative Interview
	In-depth Technical Debt Interviews

	Identification of Key Metrics
	Data Collection
	Product Metrics
	Process Metrics

	Technical Debt Model
	Weighing the Parameters
	Adjusting for File Size
	Normalisation
	Technical Debt Index

	Evaluation of Model
	Implementation of Visualisation

	Result
	Interviews
	Types of Technical Debt in the Organisation
	Reasons for Acquiring Technical Debt
	Best Practises Already Used by the Organisation
	Improvement Suggestions by the Organisation

	Identification of Key Metrics
	Goal-Question-Metric
	Desired Metrics
	Actual Metrics
	Code Smells Approximation

	Data Collection
	Technical Debt Model
	Evaluation of Model
	Validation of Identified Files

	Technical Debt Visualisation
	Implementation in the Development Process
	Technical Debt List
	Training of Developers


	Discussion
	Interviews
	Selection of Metrics
	Technical Debt Model
	Model Composition
	Model Precision
	Model Shortcomings

	Evaluation of Method
	Technical Debt Visualisation
	Implementation in the Development Process
	Threats to Validity

	Conclusion
	Future Work
	References
	Appendix Interview Questions
	Appendix In-depth Interview Questions
	Appendix Results from Goal-Question-Metric 
	Appendix Metric Definitions



