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Abstract

In this project a two Higgs doublet model with a complex singlet and an extra family symmetry providing
a mechanism for suppression of flavor changing neutral currents is explored. The goal is to investigate the
phenomenological consistency of the model using a custom software framework. To this end, the scalar and
Yukawa sectors of this extension of the Standard Model are explored in detail. The corresponding mass
spectra, vacuum stability conditions and mixing matrices are presented. An inversion procedure, relating a
subset of couplings to physical masses and mixing angles, for both the scalar and the quark Yukawa sector
is implemented. In the search for phenomenologically viable parameter space regions, the Higgs alignment
limit is relaxed while the Yukawa textures are allowed to take the most general complex values allowed by
the symmetries. The phenomenological consistency of the model is investigated in the numerical analysis by
comparing candidate points to experimental data from quark flavor violating processes and Higgs searches as
well as vetoing any points that do not obey the limits set by electroweak precision observables. To facilitate
the numerical analysis, a computer program utilizing several publicly available codes (SARAH, SPheno,
HiggsBounds, HiggsSignals, flavio, FlavorKit) is constructed and run on a computer cluster. The
results show that a symmetry-induced suppression of the flavor changing neutral currents takes place in the
quark sector and the model survives the most stringent phenomenological constraints.

Populärvetenskaplig beskrivning

Den s̊a kallade standardmodellen har länge betraktats som en av den moderna vetenskapens triumfer, tack
vare dess oerhört exakta förutsägelser, som g̊ang p̊a g̊ang har verifierats av experiment. Men fr̊an dess beg-
ynnelse har den alltid varit inkomplett: inte nog med att gravitationen, den kraft som vi människor är mest
bekanta med, inte ens inkluderas i den s̊a har olika, tidigare okända fenomen blivit upptäckta som standard-
modellen inte kan förklara. Vidare, s̊a finns det fenomen som trots att de ryms inom standardmodellen, inte
kan förklaras p̊a ett tillfredsställande sätt. Exempelvis finns det en mekanism för att generera kvarkarnas
massor, men varför de olika kvarkarna har just de massor de har har ingen egentlig föklaring.

I jakt p̊a nya teorier som kan b̊ade förklara fenomen som standardmodellen inte kan och samtidigt inte
motsäga dess bekräftade förutsägelser, har olika utvidgningar av standardmodellen föreslagits. I den här
uppsatsen utforskas en s̊adan utvidgning. I den, har standardmodellen berikats med extra Higgspartiklar
vilka har en relativt stor potential att b̊ade kunna upptäckas inom snar framtid och att samtidigt förklara
vissa av de mysterier som fortfarande pl̊agar denna gren av fysiken. För att utröna om denna modell är
värd att lägga ner mer tid p̊a, har vi genomfört en datoranalys vars syfte har varit att undersöka om denna
modell kan rymmas inom experimentellt etablerade gränsvärden. Datoranalyser av den här sorten best̊ar av
enorma mängder ”gissande” av numeriska värden av modellens parametrar som, även för kraftfulla datorer,
kan ta dagar om inte veckor. För att effektivisera denna procedur, har vi inom det här projektet tillämpat
olika metoder vars syfte har varit att maximera antalet tidigt avvisade gissade värden p̊a parametrarna.
Resultaten visar p̊a att det finns, i denna utvidgning av standardmodellen, parametervärden som b̊ade leder
till intressant fysik och som inte strider mot experimentellt etablerade gränsvärden.
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1 Introduction

The Standard Model (SM) of particle physics is the culmination of several decades of research in both
theoretical and experimental physics. The discovery of the Higgs boson in 2012 [1, 2] confirmed the last
major unverified element of the SM. It is a remarkable achievement of modern science, that can explain next
to everything that we can perceive with our senses in the universe. Nevertheless, we know it to be seriously
incomplete as a description of nature, as it for instance completely excludes gravity. In addition, astrophysical
and cosmological observations have revealed that the problem of constructing a theory including both gravity
and the SM is only the tip of the iceberg. According to those observations, hidden away from our perception
are structures in the universe of vast magnitude that elude both our sight and our SM - the ominous dark
matter and dark energy. Furthermore, there are subtle, known problems much closer to the SM that lack a
first principle explanation as reflected in the following unanswered questions. What mechanism is responsible
for the matter-antimatter asymmetry in the universe? What explains the hierarchical nature of the quark
masses and mixing? Why do neutrinos have a mass? Why is it so small? The list goes on.

Efforts to answer such questions, as well as to put the SM into a greater context, have resulted in
significant theoretical research output. Various theories, of larger and smaller scope, have been proposed
to address the shortcomings of the SM. The more ambitious programs seek to cast the SM as an effective
theory of a more holistic framework, which in the low energy limit reduces to the SM. This usually involves
an enlargement of the SM gauge group to a much larger one that includes the SM interaction gauge groups as
subgroups. Examples are the well-known grand unified theories (GUT), super-symmetric theories (SUSY)
and of course string theories. Apart from the notorious mathematical difficulty these theories pose, an
additional difficulty lies in the production of testable predictions. The energy scales at which the unique
effects of these theories are expected to appear are thought to lie far beyond the technological capabilities
of current and planned experimental facilities.

Other efforts at moving beyond the SM, take a different approach where instead of attempting to create
unifying theories one minimally extends the SM. In this way, the predictions of the resulting model are much
easier obtained. At the same time, the proposed extension of the SM is still expected to be a part of a GUT,
only, one does not necessarily attempt to elucidate what that might be.

Examples of such minimal extensions of the SM are the scalar extensions. Among them, we have the
multi-Higgs doublet models (or n-Higgs doublet models, nHDM for short), which for decades have played
an important role in the attempts to expand the SM [3]. The nHDM extend the SM scalar sector by adding
one or more Higgs doublets to the existing original doublet of the SM. Adding additional Higgs doublets to
the SM is motivated by the fact that such models offer a rich collider phenomenology, additional sources of
CP-violation, dark matter candidates, strong first order phase transitions etc. In particular, the CP-violation
and first order phase transitions that accompany nHDM are interesting since the SM is unable to generate
the observed baryon asymmetry of the universe [3].

A particular class of nHDM are the two Higgs doublet models (2HDM), in some sense the simplest nHDM.
In them, the SM is extended by only one Higgs doublet. The first considerations of 2HDM were motivated
by finding sources of CP-violation [4]. However, it was early noted that 2HDM, and nHDM in general, are
plagued by a problem that does not appear in the SM scenario with one Higgs doublet. The added freedom
introduced by the additional Higgs doublet allows for certain tree-level transitions between quark flavors
that are heavily constrained by experiments. As a result, various schemes have been proposed over the years
to mitigate this problem, often by invoking global symmetries [5, 6, 7]. In this thesis, we make use of one
such mechanism.

A different kind of scalar extension is the inclusion of a scalar singlet into the Higgs sector. The singlets
transform trivially under the SM gauge symmetries which prohibits their coupling to fermions and other SM
particles. In addition, scalar singlets could have driven strong first order phase transitions in the early uni-
verse. Such a possibility is very interesting since it could help explaining the baryon-antibaryon asymmetry
of the universe (the renowned Sakharov conditions for baryogenesis require strong out-of-equilibrium inter-
actions [8]). Such strong first order phase transitions would have generated specific primordial gravitational
wave spectra, that may be detectable by future gravitational wave observatories. All of this makes them
very interesting as dark matter candidates.
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This thesis builds upon a model that was proposed in [9], but not yet tested against phenomenological
constraints. It includes a 2HDM SM extension with a complex singlet and a global U(1) family symmetry.
We perform a phenomenological analysis of the model suggested in [9]. To this end we develop a generic
software tool that is publicly available [10].

This thesis is organized as follows. In section 2 we discuss physics that form the foundation of this
thesis, in particular we introduce the Branco-Grimus-Lavoura (BGL) model [11] which plays an important
role in the project. Next, in section 3 the scalar sector of the model is presented. The mass spectrum of
the scalars is derived, inverted relations between physical parameters and couplings are introduced and the
potential is examined. The next section, section 4, deals with the Yukawa sector. Here, we expand upon
the discussion of the BGL-model. In section 5 we discuss various theoretical and experimental bounds that
constrain the model and the numerical implementation of the parameter space scan. The results section,
section 6, contains the plots summarizing the outcome of our scans. Conclusions are presented in section 7.
In addition, in appendix A the mass matrices of the scalars are shown, appendix B contains a list of some
parameters of the scalar sector expressed in terms of observables for use in numerical simulations and finally
in appendix C we give a short manual of the software tool that was developed as a part of this project.

2 Background

In this section we outline some of the physics that is of crucial importance to this project. Firstly, we present
a brief introduction to flavor physics. Measurements of flavor physics observables such as rare decays and
oscillation amplitudes constitute an important test of the validity of any model aiming to extend beyond the
SM. Next, a discussion of scalar extensions of the SM follows. As an important example of such extensions,
the BGL-model is described.

2.1 Flavor physics

Considerations involving flavor physics have played an important role in the development of the SM of
particle physics [12]. The flavor sector remains important in the continuing explorations of particle physics
for a variety of reasons, including the large number of free parameters and sensitivity to new physics (NP)
contributions.

The quark ”flavors” (up-type: u,c,t and down-type: d,s,b), divided into three generations of increasing
mass, have identical quantum numbers but differing masses. An explanation for the questions as to why
such three copies exist and why the masses of those particle have the particular values they happen to have
is still lacking.

The SM features a symmetry among the fermion flavors that, in the SM, is only broken by the Yukawa
terms [12]. The quark fields are introduced into the SM Lagrangian in the flavor eigenstates as SU(2)L
doublets and singlets:

Qa =

(
pL,a
nL,a

)
, pR,a, nR,a, a = 1, 2, 3 (2.1)

where p refer to up-type quark flavors (up, charm and top) while n refer to down-type quarks (down , strange
and bottom). The index a runs over these three generations. The subscripts L,R refer to the chirality of
the quark fields: due to the chirality-discriminating nature of the SU(2)L symmetry the right-chiral fields
are always SU(2)L singlets while left-chiral fields are SU(2)L doublets.

In the SM, the fermion fields acquire mass though the Higgs mechanism via the Yukawa terms. Those
belonging to quarks can be written as:

− LYuk =
∑
a,b

(
ΓabQaΦnR,b + ∆abQaΦ̃pR,b + h.c.

)
. (2.2)

Φ is the SM Higgs doublet and its dual field is given by Φ̃ = iσ2Φ† where σ2 is the second Pauli matrix
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1. The Yukawa matrices Γab and ∆ab are a priori arbitrary and complex. In the SM, we can diagonalize
the mass and Yukawa (interaction) matrices simultaneously since there is only one Higgs doublet present.
The observable mass eigenstates are related to the flavor eigenstates through unitary transformations (flavor
indices suppressed):

nL = UdLdL, nR = UdRdR,

pL = UuLuL, pR = UuRuR,
(2.3)

where all the U matrices are unitary and 3 × 3, while the states d, u are the physical quark states (down
and up type, respectively). Upon spontaneous symmetry breaking (s.s.b.) the Higgs field acquires a vacuum
expectation value (vev), which can be rotated to the following position by a suitable gauge transformation:

〈Φ〉0 =
v√
2

(
0
1

)
(2.4)

where v is the value of the vev ≈ 246 GeV. The quark Yukawa terms now become the diagonal mass terms:

− LYuk =
∑
a,b

(
md,abdL,adR,b +mu,abuL,auR,b + h.c.

)
, (2.5)

where the diagonal mass matrices are given by:

md,ab = diag(md,ms,mb) = UdL · Γ · U
d†
R , (2.6)

where we introduced the down-type quark masses md,ms,mb. The situation is similar for up-type quarks.
Following this, one might ask: what physical effects do these unitary transformations of the quark fields

have? They seem to have removed the problem of mixing flavors in the mass terms, but what about all the
other parts of the SM Lagrangian?

It turns out [12, 14] that all the other terms of the Lagrangian are unaffected by such unitary transfor-
mations of the quark fields except for the terms describing the charged current (Jµ+) interactions 2. The
flavor violation enters Jµ+ via the CKM matrix V CKM :

Jµ+ ∝
∑
a

pL,aγ
µnL,a =

∑
a,b

uL,a

[
Uu†L UdL

]
ab
γµdL,b =

∑
a,b

uL,aV
CKM
ab γµdL,b. (2.7)

Where the flavor indices are written out to explicitly show the mixing. In what follows, we generally omit
the flavor indices, but they are always implied.

Of particular interest is the fact that CP -violation is introduced to the quark sector via the CKM matrix.
It is well known that a complex term in the Lagrangian violates the T (and therefore CP ) symmetry. Since
the CKM matrix is in general complex, the charged current terms may violate CP -symmetry. For this to
happen however, it must not be possible to cancel out the complex phases of the CKM matrix by rephasing
the quark fields (each quark field carries a redundant phase that can be suitably chosen to cancel out one
phase from e.g. the CKM matrix). It turns out that at least three quark generations are needed to obtain
a theory in which there is a complex phase in the CKM matrix that is physical (i.e. cannot be absorbed
into the quark fields). The CKM matrix has been very successful in explaining the experimentally observed
CP -violation in the quark sector. We return to the CKM matrix and its parametrization in section 4.2.

Since, as we have pointed out, the only flavor violation at tree level in the SM is confined to the charged
current interactions, there are no tree-level flavor changing neutral currents (or FCNCs) in the SM. FCNSs
do occur in the SM, but only via loops with internal W± bosons as is for example depicted in fig. 1. In
addition, the FCNCs are further suppressed by the GIM mechanism [15], whereby all contributions at all
orders in perturbation theory to the FCNC loop diagrams cancel by the unitarity of the CKM matrix if

1This ensures that the generation of up-type quark masses via the Yukawa terms respects SU(2)L, see e.g. [13]
2For a pedagogical exposition of this fact and in particular why the neutral current interactions are flavor-diagonal in the

SM see [12, 13, 14].
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Figure 1: A diagram contributing to the flavor-violating mixing of the K0 −K0 system [16].

they are independent of the quark masses. If the contributions depend on the quark masses, they come with
differing signs and so there is a further cancellation of terms there. Of course, the SM quarks have wildly
differing masses so some contributions survive, but the FCNCs processes in the SM are thus expected to be
very suppressed as they are not only impossible at the tree-level, but also inhibited by both the smallness of
the CKM matrix elements and the GIM mechanism.

FCNCs are naturally encountered and studied in certain meson systems, the neutral K,D and B mesons.
As an example consider the neutral pseudoscalar kaon system: it is made up out of the two flavor eigenstates
|K0〉 = |ds〉 and |K0〉 = |sd〉 which mix at one loop level through e.g. the box diagram shown in fig. 1.
Due to the aforementioned suppression mechanisms in the SM, these meson systems are very sensitive to
BSM physics contributions. As we discuss in the next section, nHDM naturally feature tree-level FCNCs.
Without fine-tuning or additional symmetries, these models typically predict FCNCs that are much too
strong as compared to the experimental data, which favors models with FCNCs close to the weak SM
ones. Therefore, any proposed nHDM must be carefully studied from the point of view of flavor violating
observables such as neutral meson branching ratios, to make sure it complies with the stringent flavor physics
limits.

2.2 Scalar extensions of the SM

The SM scalar sector, featuring a single Higgs doublet, is in a sense the minimal possible such sector. It
suffices to explain the gauge boson masses and can accommodate for those of fermions. However, the gauge
structure of the SM does not prohibit a more involved scalar sector [3]. It is therefore possible to extend the
SM with additional scalar particles as long as the resulting model respects the (nowadays very stringent)
bounds from experimental searches.

The motivation for such models comes from various considerations. Adding additional scalar particles
produces a richer particle spectrum which can, in some models, contain dark matter candidate particles.
The relative phases between the vev:s of the scalars can act as an additional source of CP -violation [4, 17].
The presence of additional scalar fields enriches the vacuum structure potentially enhancing the strength of
FOPTs which, together with the CP -violation possibility, is relevant for the baryogenesis. In addition, the
Yukawa sector becomes highly non-trivial with many possibilities for its modification emerging. A different
type of motivation comes from unified theories such as supersymmetry, that naturally feature additional
scalar particles.

While many possibilities for extending the scalar sector exist, here we will focus on some of the simpler
ones. The archetypal such extensions feature additional Higgs SU(2)L doublets similar to the one already
present in the SM. Such models, featuring n Higgs doublets, as commonly called n-Higgs doublet models
(nHDM). The simplest case is of course the 2HDM which extends the SM scalar sector by one additional
Higgs doublet. The introduction of additional scalar fields usually extends the scalar potential by many
terms. Before discussing the 2HDM scalar potential, recall the SM scalar potential VSM :

LSM ⊃ VSM = µ2 |Φ|2 − λ |Φ|4 , (2.8)

where LSM denotes the SM Lagrangian and µ2, λ are real parameters. Although there appears to be two
degrees of freedom (d.o.f.) (µ2 and λ), the minimization condition of the electroweak minimum reduces this
to only one d.o.f., usually chosen to be λ (or the Higgs particle mass mh = v

√
2λ).
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The introduction of an additional Higgs doublet greatly extends the potential:

V2HDM = µ2
1 |Φ1|2 + µ2

2 |Φ2|2 − µ2
3Φ†1Φ2 −

(
µ2

3

)∗
Φ†2Φ1 + λ1 |Φ1|4 + λ2 |Φ2|4 + λ3 |Φ1|2 |Φ2|2 +

+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

[
λ5

(
Φ†1Φ2

)2

+ λ6

(
Φ†1Φ1

)(
Φ†1Φ2

)
+ λ7

(
Φ†2Φ2

)(
Φ†1Φ2

)
+ h.c.

]
,

(2.9)

here the parameters are also real except for µ2
3, λ5, λ6 and λ7 which can be complex.

The parameters in such a potential are not completely arbitrary however. The so-called tadpole conditions
allow for the expression of one of them in terms of the others for each unique scalar multiplet (so two
conditions in the 2HDM). We will return to the tadpole conditions when we discuss the scalar potential of
our model in section 3. In addition, the parameters are restricted by the conditions of boundedness from
below and the unitarity. The first refer to the physical requirement that the scalar potential must be bounded
from below in all directions, so that it is not possible to reach states of arbitrarily low energy by moving in
some direction in the field space. The second requirement concerns the constraint that the 2→ 2 scattering
matrix must always be unitary. This can be violated in the high-energy regime if the quartic couplings have
too large values [18]. We return to these conditions in section 5.1 where we apply them to our model.

Another type of scalar extensions that is of relevance here, is the scalar singlet extension. In contrast to
the standard Higgs doublets, these extensions feature scalars which are gauge singlets and thus transform
trivially under the SM symmetry transformations. By virtue of this, they have no tree-level couplings to any
SM particles apart from other scalars. They can couple to e.g. the SM Higgs boson via the operator Φ†Φ
[3], which can produce potential terms such as ∝ Φ†ΦS∗S,Φ†ΦS,Φ†ΦS∗. It is worth noting that the scalar
singlet can be either real (1 d.o.f.) or complex (2 d.o.f.).

An often employed tool in the task of scalar model building and testing, is the usage of global symmetries
to modify the structure of the theory. By imposing a continuous or discrete (or a combination thereof)
global symmetry one can significantly simplify the model by e.g. forbidding various term in the potential
and forcing certain Yukawa matrix elements to be zero. Such a procedure is often required when dealing
with scalar extensions that go beyond the simple 2HDM and singlet models, as such models are often very
complicated and an exhaustive investigation without simplifying assumptions is often prohibitively difficult.
Furthermore, any general nHDM features tree-level FCNC. This follows from the fact that in such models
all Higgs doublets couple to fermions via the Yukawa terms and hence the simultaneous diagonalization of
mass and interaction matrices is impossible. In the next section we describe one approach at remedying this
potentially problematic situation.

2.3 The Branco-Grimus-Lavoura Model

The BGL model [11], named after its inventors: G.C. Branco, W. Grimus and L. Lavoura, is one of the
simplest and most important 2HDM. Its main feature is a ”natural” way to suppress FCNCs. In this
section, we aim to introduce the original BGL model and show how the FCNC suppression emerges at tree
level. We will, following the original paper, focus on the Yukawa sector of the model. The scalar sector,
along with the singlet extension of our model, will be discussed in section 3. Along the way, the techniques
and expressions that we will introduce here will be used throughout the rest of this thesis.

The BGL model includes two Higgs SU(2)L doublets, Φj , j = 1, 2. The Yukawa Lagrangian is:

LY = −
2∑
j=1

(
QΓjΦjnR +Q∆jΦ̃jpR

)
+ h.c., (2.10)

here, the notation follows that of section 2.1. The difference is the summation over the Higgs doublets: there
are now two Yukawa matrices for each quark type. For the most general form of such matrices, there will
be strong tree-level FCNCs present. The special symmetry of the BGL model will remedy this situation, as
we shall see.
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Upon spontaneous symmetry breaking (s.s.b.) the Higgs fields acquire a vev, which can be rotated to
the following position by a suitable gauge transformation:

〈Φj〉0 =
vje

iαj

√
2

(
0
1

)
(2.11)

where vj is the value of the vev of the jth Higgs doublet, αj is a CP-breaking phase. The vev:s are related

by v =
√
v2

1 + v2
2 ≈ 246 GeV the SM Higgs vev. Evaluating the terms in eq. (2.10) at this new electroweak

minimum gives:

LY
s.s.b→ n̄L√

2

(
v1e

iα1Γ1 + v2e
iα2Γ2

)
nR +

p̄L√
2

(
v1e
−iα1∆1 + v2e

−iα2∆2

)
pR + h.c. =

= n̄LMnnR + p̄LMppR + h.c.

(2.12)

where we defined the mass matrices Mn,p which are in general non-diagonal. They can be diagonalized by
a unitary transformation to the mass basis eq. (2.3). The CKM matrix is given by, as before, V CKM =
(UuL)†UdL. This change of basis results in diagonal mass matrices:

Dd = (UdL)†MnU
d
R, Du = (UuL)†MpU

u
R. (2.13)

We can expand the scalar fields around the vev:s and parametrize them:

Φj =
eiαj

√
2

( √
2φ+

j

vj + hj + iηj

)
, (2.14)

where, φ+
j are a charged, complex scalar fields while the hj and ηj are real fields 3.

In order to provide a natural way of suppressing the FCNCs, the BGL model features a global family
symmetry, S. Under this symmetry we have the following transformations:

Q1 → ωQ1, pR,1 → ω2pR,1, Φ2 → ωΦ2. (2.15)

Other fields transform under the identity transformation. For now, the only restrictions on the symmetry
transformation ω are that ω 6= 1, ω2 6= 1 and |ω| = 1. The requirement that all terms of the Lagrangian are
to be invariant under the transformations in eq. (2.15) dictates the form of the Yukawa matrices Γj and ∆j .
It is straightforward to check that the allowed form of the Yukawa matrices is:

Γ1 =

 0 0 0
a21 a22 a23

a31 a32 a33

 , Γ2 =

b11 b12 b13

0 0 0
0 0 0

 ,

∆1 =

0 0 0
0 c22 c23

0 c32 c33

 , ∆2 =

d11 0 0
0 0 0
0 0 0

 .

(2.16)

We will give explanations for some of this structure. Regarding the first row of Γ1, note that it couples Q1

to Φ1 and nR. But from the form of the transformations of eq. (2.15), we know that only Q1 transforms
non-trivially under S. Therefore, this row of Γ1 must be zero to maintain the invariance of the Lagrangian
under of S. As a second example consider the d11 entry of ∆2. It gives rise to the following term:

Q1 ·Φ̃2 ·d11 ·pR,1
symmetry trans.→ ω∗Q1 ·ω∗Φ̃2 ·d11ω

2 ·pR,1 = |ω|4Q1 ·Φ̃2 ·d11 ·pR,1 = Q1 ·Φ̃2 ·d11 ·pR,1, (2.17)

As we can see here, the effects of the symmetry transformation cancel, so the invariance under S is maintained
and the matrix element d11 can remain arbitrary. The rest of the matrix elements can be similarly motivated.

3In the absence of a complex phase αj they have definite transformation properties under CP -transformations : the hj are
CP -even while the ηj are CP -odd.
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We note also, that due to the block-diagonal nature of the ∆ matrices, the corresponding diagonalizing
matrix UuL is also block-diagonal and in particular its first row and column is zero except for (UuL)11 which
can be chosen to be 1. Hence, we have the following relation for the topmost row of the CKM matrix:

(UdL)1i = V CKM1i ≡ Si. (2.18)

Before we write out the Yukawa interactions of this model and evaluate the status of the FCNC in it, we
introduce a convenient basis for the Higgs doublets that we will use repeatedly in this thesis. To motivate
it, note that the eigenstates that we have used so far (belonging to the gauge, or Lagrangian, basis) are not
necessarily the same as the mass eigenstates or as the states that couple to the weak vector bosons 4. In
particular in 2HDMs, we have two real scalars that are CP -even if the phase αj vanishes, h1 and h2, but
experimental data suggests that the weak vector bosons couple to only one such scalar, H0. This observation
suggests a new basis, where the state that couples to the vector bosons is a linear combination of the gauge
eigenstates h1 and h2. This is the so called Higgs basis, a basis in the space of Higgs doublets obtained
by performing an orthogonal rotation such that one combination of the Higgs doublets gets the entire vev.
This way, the massless Goldstone modes are made explicit and can be discarded from the considerations
of Yukawa couplings. However, this choice of basis is not physical (it is not the same as the physical mass
basis) but rather a convenient device for exploring the model.

To recover a SM-like Higgs particle we need a candidate particle in our model that has the same (or very
similar) couplings to the weak vector bosons. These couplings appear in the covariant derivative terms of

the Lagrangian |DµΦa|2. Following [19] it is easy to show that the coupling of the CP-even components of
the Higgs doublets to the charged weak vector bosons is:

|DµΦa|2 3
g2

2
W+
µ W

µ−
2∑
a=1

vaha =
g2v

2
W+
µ W

µ−

(
1

v

2∑
a=1

vaha

)
, (2.19)

what this shows is that we can have the a SM-like Higgs boson if we identify it with the linear combination

H0 =
(

1
v

∑2
a=1 vaha

)
and if the vev present here is equal to the electroweak symmetry breaking scale:

v = 246 GeV.
The above observation suggests a new basis of states [19], [20], [21]. We have so far worked in the gauge

(or Lagrangian) basis. The above identification of the H0 combination of gauge eigenstates as the SM-like
Higgs boson with correct coupling to the gauge bosons implies that it is a state in the Higgs basis. The
rotation that takes the Higgs fields to this basis is, explicitly:{

v1 = v cosβ

v2 = v sinβ
with: tanβ =

v2

v1
, v =

√
v2

1 + v2
2 , so that:

(
H0

R

)
=

(
cosβ sinβ
− sinβ cosβ

)(
h1

h2

)
,

(2.20)
where R is the orthogonal combination of H0. The change of basis is thus accomplished by:

O =
1

v

(
v1 v2

v2 −v1

)
=

(
cosβ sinβ
− sinβ cosβ

)
, →

(
H0

R

)
= O

(
h1

h2

)
,

(
G0

I

)
= O

(
η1

η2

)
,

(
G+

H+

)
= O

(
φ+

1

φ+
2

)
,

(2.21)
where we have the three Goldstone modes G0, G+ and G− = (G+)† that according to the theory of elec-
troweak interactions become the longitudinal polarization states of the Z0, W+ and W− bosons. We will
elaborate on the properties of the other combinations in section 3.3, for now note that they are pairwise
orthogonal since the matrix O ∈ SO(2).

We are now in position to evaluate the couplings of the scalars to the quarks. The procedure is to start
with eq. (2.10), insert the Higgs doublets parametrized as in eq. (2.14), diagonalize the states with the

4The distinction between the mass and (implicitly) gauge basis was made on the previous page for quarks (i.e. p, n vs u, d).
Now we are proposing a similar but distinct change for the Higgs doublets.
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matrices eq. (2.3) and use the Higgs basis. The ∆j terms:

−
2∑
j=1

(
Q̄∆jΦ̃jpR + h.c.

)
s.s.b.→ −i

2∑
j=1

e−iαj Q̄∆jσ2

(
φ−j

1√
2
(hj − iηj)

)
pR + h.c. =

= −H
0ūL
v

DuuR −
RūL
v

NuuR + i
IūL
v
NuuR +

H−d̄L
√

2

v

(
V CKM

)†
NuuR + h.c..

(2.22)

Where Nu = v2
v1

diag(0,mu2,mu3)− v1
v2

diag(mu1, 0, 0). It is evident that there are no FCNCs in this part of
the Yukawa sector.

Let us now proceed to the Γj terms. We can proceed here just like we did for the ∆j terms, however
the matrix corresponding to Nu, which we denote by Nd, will not be diagonal. In particular, what we
could do in eq. (2.22) was to utilize the block-diagonal form of the ∆ matrices to perform a simultaneous
diagonalization: the matrices ∆′j = (UuL)†∆jU

u
R are block diagonal. This cannot be done for the Γj matrices:

Γ′j = (UdL)†ΓjU
d
R are not block diagonal. Instead, we manipulate the corresponding terms into a useful form:

1√
2

(
v2e
−iα1Γ′1 − v1e

−iα2Γ′2
)

=
1√
2

(
v2

v1
v1e
−iα1Γ′1 +

v2

v1
v2e
−iα2Γ′2 −

v2

v1
v2e
−iα2Γ′2 − v1e

−iα2Γ′2

)
=

=
v2

v1
Dd −

(
v2

v1
+
v1

v2

)
v2e
−iα2Γ′2√

2

. (2.23)

Here, we have managed to isolate the non-diagonal, FCNC inducing part to the second term. Now, recall
the explicit form of the two Γj matrices, eq. (2.16). We can introduce the projection operator:

P =

1 0 0
0 0 0
0 0 0

 , → v2e
iα2Γ2√

2
= PMd (2.24)

to rewrite the last term of eq. (2.23):

v2e
iα2Γ′2√

2
=
(
UdL
)†
PMdU

d
R =

(
UdL
)†
PUdL

(
UdL
)†
MdU

d
R = S†jSiDd, (2.25)

where we used that PUdL =
(
UdL
)

1i
= Si. With this, we can rewrite the expression eq. (2.23) into:

v2

v1
Dd −

(
v2

v1
+
v1

v2

)
v2e
−iα2Γ′2√

2
=
v2

v1
Dd −

(
v2

v1
+
v1

v2

)
S†jSiDd ≡ Nd (2.26)

and the other part of the Yukawa Lagrangian for quarks is:

−
2∑
j=1

(
QΓjΦjnR + h.c.

) s.s.b.→

− H0d̄L
v

DddR +
Rd̄L
v

NddR + i
Id̄L
v
NddR +

H+ūL
√

2

v
V CKMNddR + h.c..

(2.27)

The two equations eq. (2.22) and eq. (2.27) comprise the quark Yukawa sector of the BGL model. Using the
definition of Nd, eq. (2.26), it is easy to see where all the (tree-level) FCNC are coming from: the coupling of
the down-type quarks to the scalars R and I in eq. (2.27). They are, by virtue of the form of Nd, controlled
by the elements of the CKM matrix.

3 The Scalar Sector

In this section we introduce the model that this thesis explores. We then elaborate on its scalar sector by
deriving the tadpole conditions, its mass spectrum and by discussing how it can be sampled by a computer
program using the so-called inversion procedure. The investigation of the Yukawa sector is deferred to
section 4.
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3.1 The model

The model considered here was introduced in the following Ph.D. thesis by Astrid Ordell as ”νBGL-1”: [9].
The Lagrangian is invariant under SU(3)C × SU(2)L × U(1)Y × U(1)F , where the first three symmetries
are the SM ones and U(1)F is a new global family symmetry, acting on quarks, leptons and scalars (cf. the
BGL-model discussed in section 2.3). The model extends the SM scalar sector to include two Higgs doublets
Φa, a = 1, 2 and a complex scalar singlet S, all of which can have potentially different U(1)F charges. The
potential contains terms that softly break the U(1)F symmetry, giving rise to a massive pseudo-Goldstone
boson. The family-symmetry charge assignments in the νBGL-1 model are presented in table 1.

Table 1: Table of the charges under U(1)F of the νBGL-1 model. The rows specify the components of the
flavor-multiplets (Q, uR etc.). Of course, not all multiplets have the same number of components, hence the
missing entries. The parameters x and y can be any rational numbers, as long as they are chosen consistently
throughout the implementation.

Component Q uR dR L eR NR Φ S

1 x y 2x− y −3x −2x− y −4x+ y −x+ y 8x− 2y
2 x y 2x− y −3x −2y − y −4x+ y −9x+ 3y -
3 −7x+ 2y −16x+ 5y 2x− y 21x− 6y 30x− 9y 12x− 3y - -

The SU(2)L × U(1)Y representations under which the scalars transform are:

Φ1 = (2, 1) Φ2 = (2, 1) S = (1, 0) . (3.28)

Throughout this project, we assume a CP -conserving scalar sector. The complex phase of the vev is therefore
set to zero and all couplings of the scalar potential are assumed to be real. In any future extensions of this
project, this assumption could certainly be relaxed and new phenomena could be investigated. In addition,
in this thesis we implement a slightly simplified version of the νBGL-1 model, namely we exclude the right-
handed sterile neutrinos NR and keep only the massless, left-handed SM neutrinos. As a consequence, the
lepton sector features no tree-level FCNCs.

3.2 The scalar potential

The information from the previous section allows us to write down the scalar potential:

V0 = µ2
1 |Φ1|2 + µ2

2 |Φ2|2 + λ1 |Φ1|4 + λ2 |Φ2|4 + λ3 |Φ1|2 |Φ2|2 + λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

+ µ′ |S|2 + λ′1 |S|
4

+ λ′2 |Φ1|2 |S|2 + λ′3 |Φ2|2 |S|2 +
(
µ2

3Φ†2Φ1 + h.c.
)

+

(
1

2
µ2
bS2 + h.c.

)
.

(3.29)

Clearly, all of the above terms are invariant under the four symmetry groups separately except for the last
two terms. The Higgs doublets transform in the same way under SU(2)L while the S is a singlet so all the
above terms are invariant under SU(2)L. The same applies to U(1)Y , upon inspection of eq. (3.28). The
last two terms are the ”soft-breaking terms”5 that break the global U(1)F symmetry.

In addition to these terms, we can write down phase-dependent terms, i.e. terms that depend on the
relative charges U(1)F of the Higgs doublets and the singlet scalar [22, 23]. These are:

V1 =


a1Φ†1Φ2S + h.c. , or

a2Φ†1Φ2S∗ + h.c. , or

a3Φ†1Φ2S2 + h.c. , or

a4Φ†1Φ2(S∗)2 + h.c.

(3.30)

5Soft-breaking terms are terms in the Lagrangian that break a symmetry, but in a way that does not spoil the high-energy
behavior of the theory.
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To demonstrate the phase dependence, we show the U(1)F transformation for the first term:

a1Φ†1Φ2S → a1 · e−iαχ1Φ†1 · eiαχ2Φ2 · eiαχSS = eiα(χ2−χ1+χS) · a1Φ†1Φ2S (3.31)

clearly, this term is only invariant under the family symmetry if χS = χ1 − χ2. A similar analysis shows
that the corresponding valid choices for the charges of the terms in eq. (3.30) are:

a1Φ†1Φ2S + h.c. → χS = χ1 − χ2

a2Φ†1Φ2S∗ + h.c. → χS = χ2 − χ1

a3Φ†1Φ2S2 + h.c. → χS =
1

2
(χ1 − χ2)

a4Φ†1Φ2(S∗)2 + h.c. → χS =
1

2
(χ2 − χ1) .

(3.32)

Note that only one of the terms in eq. (3.30) can be present in the Lagrangian at the same time if it is to
respect the family symmetry. In the νBGL-1 model only the a1 term can be present (substitute values from
table 1 into the χ:s to verify)6. Although we will carry out all the subsequent analysis with all four terms
present for future reference, it is to be understood however that in obtaining our results we have set all the
coefficients except a1 to zero.

The next step is to obtain the minimum of the potential around which we will then expand the fields.
Firstly, the s.s.b. causes vev to appear. As explained at the start of this section, we work in the CP-conserving
case, so all parameters are real and the vev:s will be real:

〈Φa〉 =
va√

2

(
0
1

)
〈S〉 =

vs√
2

(3.33)

We now require that the potential minimum is in fact at the vev by evaluating the derivatives of the fields
at the vev and setting them equal to zero. These ”tadpole” equations are thus:〈

∂V

∂Φa

〉∣∣∣∣
Φa=〈Φa〉

= 0 (3.34)

The scalar fields can be expanded around the vev’s. We choose the parametrization employed in eq. (2.14)
alongside the following parametrization of the scalar singlet:

S =
1√
2

(vs + σ + iρ) (3.35)

where σ and ρ are real fields. The derivative w.r.t. Φ1:

∂V

∂Φ1
= µ2

1Φ†1+2λ1Φ†1Φ1Φ†1+λ3Φ†1Φ†2Φ2+λ4Φ†1Φ2Φ†2+λ′2Φ†1S†S+a1Φ†2S∗+a2Φ†2S+a3Φ†2S∗2+a4Φ†2S2+µ2
3Φ†2

(3.36)
where it is understood, that only one of the ai terms can be non-zero as explained above. Similarly, for Φ2:

∂V

∂Φ2
= µ2

2Φ†2+2λ2Φ†2Φ2Φ†2+λ3Φ†1Φ1Φ†2+λ4Φ†1Φ†2Φ1+λ′3Φ†2S†S+a1Φ†1S+a2Φ†1S∗+a3Φ†1S2+a4Φ†1S∗2+µ2
3Φ†1.

(3.37)

6Technically we could allow for the other terms as well, requiring for instance small couplings. In this way we would have
additional sources of soft breaking of the family symmetry. Including the dimension four terms (a3 and a4) however would
affect both vacuum stability and tree-level unitarity of the scattering matrix in a non-trivial way, hence we do not consider
them in this project. Although the same argument does not apply to the other trilinear term a2 (since it has a lower dimension
in the fields, the presence of quartic terms in the scalar potential makes it irrelevant in the high-energy limit), we set it also to
zero for simplicity.
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We would now like to proceed as indicated in eq. (3.34) by evaluating the above two derivatives at the
vev. Normally (i.e. in the SM Higgs mechanism), we would factor out the doublet in eq. (3.34) and set
the resulting sum equal to zero. But a quick inspection of eq. (3.36) and eq. (3.37) convinces us that this
is impossible, since the phase-dependent potential terms depend upon a different doublet than the rest of
the terms. So we cannot factor out anything. However, guided by [23] we recognize that the two equations
eq. (3.36), eq. (3.37) combine into a matrix equation.

To see this, consider the following. The terms in eq. (3.29) and eq. (3.30) can be seen as a matrix left-
multiplied by a hermitian conjugated doublet and right-multiplied by a doublet i.e Φ†aMabΦb. For example:

µ2
1Φ†1Φ1 → Φ†1 · µ2

1 · Φ1

λ1

(
Φ†1Φ1

)2

→ Φ†1 · λ1

(
Φ†1Φ1

)
· Φ1

λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
→ 1

2
Φ†1 · λ4

(
Φ†2Φ1

)
· Φ2 +

1

2
Φ†2 · λ4

(
Φ†1Φ2

)
· Φ1

(3.38)

where the terms on the right-hand side can interpreted as matrix elements sandwiched between doublets,
with the index being the Higgs-doublet label 1,2. We can view the derivative in eq. (3.36), eq. (3.37) as
removing one of the outer doublets. Hence the terms in eq. (3.36), eq. (3.37) can be viewed as matrix
elements times the remaining doublet. Proceeding as in eq. (3.38), we can group the terms in eq. (3.36)
accordingly:

∂V

∂Φ1
= Φ†1

(
µ2

1 + 2λ1Φ1Φ†1 + λ3Φ†2Φ2 + λ′2S†S
)

+ Φ†2

(
λ4Φ†1Φ2 + a1S∗ + a2S + a3S∗2 + a4S2 + µ2

3

)
.

(3.39)

Using the form: Φ†aM2
abΦb we see that the first term in the above equation is Φ†1M2

11 and the second one

is Φ†2M2
21. We can proceed with eq. (3.37) analogously. What we really are interested in however, is the

expectation value of this (c.f. eq. (3.34)). We therefore evaluate eq. (3.39) at the vev and collect the terms:

M2
11 = µ2

1 + λ1v
2
1 +

1

2
λ3v

2
2 +

1

2
λ′2v

2
s M2

22 = µ2
2 + λ2v

2
2 +

1

2
λ3v

2
1 +

1

2
λ′3v

2
s

M2
12 =M2

21 =
1

2
λ4v1v2 +

1√
2
a1vs +

1√
2
a2vs +

1

2
a3v

2
s +

1

2
a4v

2
s + µ2

3.
(3.40)

The tadpole equations for the Higgs fields are thus equivalent to:

M2
abvb = 0. (3.41)

We have still not considered the final tadpole equation:〈
∂V

∂S

〉∣∣∣∣
S=〈S〉

= 0. (3.42)

Proceeding as before:

∂V

∂S
= µ′2S†+µ2

bS+2λ′1S†SS†+λ′2Φ†1Φ1S†+λ′3Φ†2Φ2S†+a1Φ†1Φ2+a2Φ†2Φ1+2a3Φ†1Φ2S+2a4Φ†2Φ1S, (3.43)

then evaluating this at the vev and setting it equal to zero gives the tadpole equation:

0 = vs

(
µ′2 + µ2

bvs + λ′1v
2
s +

1

2

(
λ′2v

2
1 + λ′3v

2
2

))
+
v1v2√

2
(a1 + a2) + vsv1v2 (a3 + a4) (3.44)
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For future convenience we want to solve the tadpole equations for µ2
1, µ

2
2, µ
′2 as functions of the λ:s and vev:s.

This can readily be done:

µ2
1 = −

√
2a1v2vs +

√
2a2v2vs + a3v2v

2
s + a4v2v

2
s + 2λ1v

3
1 + λ3v1v

2
2 + λ4v1v

2
2 + λ′2v1v

2
s + 2v2µ

2
3

2v1
,

µ2
2 = −

√
2a1v1vs +

√
2a2v1vs + a3v1v

2
s + a4v1v

2
s + λ3v

2
1v2 + λ4v

2
1v2 + 2λ2v

3
2 + λ′3v2v

2
s + 2v1µ

2
3

2v2
,

µ′2 = −
√

2a1v1v2 +
√

2a2v1v2 + 2a3v1v2vs + 2a4v1v2vs + λ′2v
2
1vs + λ′3v

2
2vs + 2λ′1v

3
s + 2µ2

bvs
2vs

.

(3.45)

3.3 The scalar mass spectrum

In this section we investigate the mass spectrum of the scalar sector. As a consequence of the Nambu-
Goldstone theorem, the s.s.b. causes three massless Goldstone bosons to emerge, which, due to the Glashow-
Weinberg-Salam theory and the underlying Higgs mechanism, become the longitudinal polarization states
of the weak vector bosons, thereby giving them mass.

Furthermore, the same mechanism would cause a massless Goldstone boson to emerge in the complex
singlet since it also acquires a non-zero vev. However, the presence of the soft-breaking terms spoils the
U(1)F symmetry. The resulting boson is thus pseudo-Goldstone i.e. it has a non-zero mass that can in
principle have any value.

In addition to observing all of the above predictions appear in our model, we want to recover the newly
discovered Higgs boson [1, 2] in our model despite the fact that we now have two Higgs doublets and a singlet
that can mix.

First, consider this last objective. To recover a SM-like Higgs particle we need a candidate particle in our
model that has the same (or very similar) couplings to the weak vector bosons. Recall that we have already
mentioned this in the section 2.3 when we discussed the Higgs basis: it is possible to perform an orthogonal
rotation to a basis where one of the states has the correct couplings. Note that the complex singlet does not
enter into these considerations since the couplings appear in the covariant derivative terms of the Lagrangian
|DµΦa|2 thus the complex singlet cannot couple to the electroweak vector bosons (apart from through the
Higgs bosons after EWSB) since it does not transform under their symmetry groups, c.f. eq. (3.28).

What we did not mention in section 2.3 however is the fact that the physical mass eigenstates need not
be the same as the gauge or interaction eigenstates: in fact they can be any orthogonal combination of
the Higgs basis eigenstates. Since we know experimentally that the detected Higgs boson (mass eigenstate)
has up to considerable precision, the expected couplings to the gauge bosons, this needs to be taken into
consideration when evaluating a model’s phenomenological validity.

The limit in which the mass and Higgs basis eigenstates coincide is called the Higgs alignment limit. In
what follows, we first investigate the Higgs and mass bases of our model before exploring the Higgs alignment
condition.

The treatment of mass and Higgs bases is conveniently done by considering the real and imaginary fields
as components of a vector space. The neutral scalar fields are customarily decomposed into real fields (in
our CP -conserving case, CP -even and -odd fields) while the charged scalars are not decomposed, as shown
in eq. (2.14) and eq. (3.35). We thus have the following two vectors of states:

ϕ = (h1, h2, σ, η1, η2, ρ)
T

φ =
(
φ+

1 , φ
+
2

)T
. (3.46)

The real scalars can be grouped into two sets depending on their transformation properties; the CP-even
fields h1, h2, σ and the CP-odd fields η1, η2, ρ. Since the rotation in eq. (2.20) really transforms the Higgs
doublets into each other, it applies also identically to η1, η2 and to φ+

1 , φ
+
2 . Therefore, the rotation that
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tranforms the real scalar fields ϕ (gauge basis) to the Higgs basis (ϕH) is given by:

ϕH = R0ϕ =

(
R1 0
0 R1

)
ϕ0 where: R1 =

 cosβ sinβ 0
− sinβ cosβ 0

0 0 1

 =

 v1
v

v2
v 0

−v2v
v1
v 0

0 0 1


and φH = R+φ where: R+ =

(
cosβ sinβ
− sinβ cosβ

) , (3.47)

where the form of R1 reflects the fact that only the fields belonging to Φa get rotated. We implicitly
introduced the Higgs basis eigenstates, defined as:

ϕH =
(
H0, R, σ,G0, I, ρ

)T
φH =

(
G+, H+

)T
, (3.48)

where we followed standard naming conventions for the Higgs doublet components. Note the components of
the scalar singlet are unaffected by this transformation.

Upon spontaneous symmetry breaking, the scalar particles acquire masses from the potential. In the
gauge (Lagrangian) basis, the mass matrices are given by [7]:[

M2
0

]
ij

=
1

2

〈
∂2V

∂ϕi∂ϕj

〉
,

[
M2
±
]
ij

=

〈
∂2V

∂φi∂φj

〉
. (3.49)

The mass terms appear in the Lagrangian as Lmass = 1
2ϕ

T
i

[
M2

0

]
ij
ϕj + φ†a

[
M2
±
]
ab
φb,

78. The real scalar

mass matrix is block-diagonal (as we do not have any CP-violation in the scalar sector). We present the
explicit forms of these mass matrices in appendix A. The rotation to the mass basis can be parametrized as
a general orthogonal rotation. Since the three parts of the scalar sector do not mix in this model, we will
have 3x3 mixing in the CP -even sector, 3× 3 in the CP -odd sector and 2× 2 in the charged sector.

It is illuminating to consider how transformation to the Higgs basis takes place in practice. Namely:

Lmass =
1

2
ϕTM2

0ϕ =
1

2
ϕTRT0 R0M

2
0R

T
0 R0ϕ =

1

2
ϕTRT0 M

2
0,HR0ϕ =

1

2
ϕT
HM

2
0,HϕH (3.50)

and similarly for the charged scalars. Here, the new mass matrix of the neutral scalars in the Higgs basis
is given by [M0,H ]

2
= R0 ·M2

0 · RT0 . Clearly, to change to the mass basis we need to perform a similar
transformation with a new block-diagonal transformation matrix O. To rotate to the Higgs basis we needed
only one angle, β, that was dictated by the specific requirements that define the Higgs basis. But a general
basis transformation will rotate each independent component separately, so we will have an angle for each
CP -even and CP -odd component and one angle for the complex charged scalars. Since we have three
CP -even and CP -odd components, the corresponding blocks of O need be parametrized as general SO(3)
matrices. The block that diagonalizes the charged sector will be a general SO(2) matrix since we do not
have charged scalar singlet. Explicitly:

ϕm = Oϕ =

(
O1 0
0 O2

)
φm = O3φ, (3.51)

where the subscript m denotes the mass basis and:

O1 = Ox,1Oy,1Oz,1 =

1 0 0
0 cos θ1 sin θ1

0 − sin θ1 cos θ1

cos θ2 0 − sin θ2

0 1 0
sin θ2 0 cos θ2

 cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

 . (3.52)

The matrix O2 has the same form as O1 but with (potentially) different angles θ4, θ5 and θ6. The last block
O3 is:

O3 =

(
cos θ7 sin θ7

− sin θ7 cos θ7

)
. (3.53)

7To understand the origin of the 1
2

factor, note the number of degrees of freedom in real vs. complex fields (see e.g. [14]).
8The mass matrix M2

± and the corresponding mass mH± is the same for both H+ and (H+)† = H−, hence the ± sign.
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We state the names of the mass basis eigenstates:

ϕm =
(
h,H, ς,G0, A, χ

)T
φm =

(
G+, H+

)T
. (3.54)

We now return to the issue of the Higgs alignment. The condition for Higgs alignment is when the Higgs
basis eigenstate, which manifests correct couplings to the vector bosons, is the same as the lightest CP -even
mass eigenstate. First observe how the CP -even states are obtained from gauge eigenstates:H0

R
σ

 = R1

h1

h2

σ

 and:

h
H
ς

 = O1

h1

h2

σ

 , (3.55)

such that: h
H
ς

 = O1R
T
1

H0

R
σ

 . (3.56)

A schematic illustration of the basis transformations can be found in fig. 2. Introduce O1 = O1R
T
1 . The

Higgs alignment limit can now we stated as the condition that [O1]11 = 1 (by the orthogonality of O1 this
automatically means that [O1]12 = [O1]13 = [O1]21 = [O1]31 = 0) i.e. H0 = h.

As we shall see in the next section, for the purposes of testing the model on a computer, we are actually
interested in the matrices O rather than O. To figure out how it is to be parametrized we consider what
happens in the Higgs basis, since the O are designed to diagonalize it. In the Higgs basis the Goldstone modes
decouple i.e. the corresponding rows and columns in the mass matrix are zero. Therefore, the CP -odd scalar
mass matrix is block-diagonal in the Higgs basis with a 2×2 block. Similarly, the G+ mode is made manifest
in the Higgs basis and so the charged scalar mass matrix becomes block diagonal. However, since we only
have one other charged scalar state in the model, the charged scalar mass matrix is actually diagonalized in
the Higgs basis. Finally, the CP -even scalar mass matrix remains 3× 3 with no zero entries. From this we
can conclude that the O matrices can be parametrized as follows: O1, diagonalizing the CP -even scalars is
3 × 3 and can be parametrized like eq. (3.52) with angles α1, α2, α3; O2 diagonalizing the CP -odd scalars
has a 2× 2 block which can be parametrized like eq. (3.53) with angle γ. Explicitly:

ϕm = O0ϕH =

(
O1 0
0 O2

)
ϕH where: O2 =

1 0 0
0 cos γ sin γ
0 − sin γ cos γ

 and φm = φH . (3.57)

Working with the explicit versions of the rotation matrices O1, allows us to convert the alignment
condition [O1]11 = 1 to:

cosα2 cosα3 = 1 (3.58)

which, for the purposes our calculations, is satisfied by:
α1 ∈ [0, 2π)

α2 = 0

α3 = 0

. (3.59)

3.4 Choice of the physical parameters and inversion

Comparing the predictions of a model to experimental data and imposing known restrictions from measure-
ments is best done when the model is expressed in terms of experimentally measurable quantities such as
masses and mixing angles. However, in the past sections we have worked predominantly with parameters
that appear directly in the Lagrangian - the λ:s and µ:s. We would thus like to rewrite our relations in terms
of masses and mixing angles to facilitate straightforward testing of the model numerically.
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Gauge Basis

Higgs Basis Mass Basis

R O

O ·RT = O

Figure 2: The bases employed in the discussion of the scalar states and the transformation matrices between
them.

The last section contains equations relating the gauge basis states to masses and the mass basis. We can
use these relations to express as many Lagrangian parameters as possible in terms of masses and angles.
From the last sections we can identify and name the following masses:

mh,mH ,mς ,mA,mχ,mH± . (3.60)

The first mass is the SM Higgs boson mass (via the Higgs alignment limit implicitly enforced here) the next
mass mH is a new CP-even Higgs boson. The mass mς is the mass state corresponding (predominantly, via
mixing) to the CP-even component of the complex singlet. The mass state mA corresponds to the CP-odd
part of the second Higgs doublet that does not become a Goldstone boson. We have the pseudo-Goldstone
boson mχ that acquires its mass through soft-breaking terms. Finally we have the charged Higgs bosons
with the same mass mH± .

The equality between the mass matrices in the mass basis and the rotated gauge basis mass matrices will
give us the necessary equations to solve for the various parameters. For the CP -even states, this equality
can be written as:

M2
diag,1 = O1R

T
1 R1M

2
0R

T
1 R1O

T
1 = O1R1M

2
0R

T
1 OT1 = O1M

2
0,HOT1 , (3.61)

where M2
diag,1 is the mass matrix of the CP -even scalars in the mass basis. Using the fact that these matrices

are block diagonal we get:

OT1 M2
diag,1O1 = R1M

2
0R

T
1

OT2 M2
diag,2O2 = R1M

2
0R

T
1

M2
diag,3 = R+M

2
±R

T
+,

(3.62)

where the added subscripts have the same function as in the last section, namely they discriminate between
the sectors (1 - CP-even, 2 - CP-odd and 3 - charged). The rotation matrices O1,2,3 were parametrized
explicitly in the last section. If needed, this parametrization can be related to the two sets of rotation
matrices R,O.

The reason for the usage of O and the corresponding transformation between the Higgs and mass bases
can now be explained. In the transformation between the Higgs and mass basis we go from a basis where the
Goldstone modes are explicit (thus significantly reducing the number of non-zero elements in the matrices)
to the diagonal mass basis. Hence we benefit from the partial diagonalization of the Higgs basis.

Since the Goldstone modes appear both in the Higgs and the mass bases, they appear on both sides of
the above equations, reducing the size of the matrices. The first equation is thus a 3 × 3 matrix equation,
the second is 2× 2 while the third is, as previously mentioned, already diagonalized in the Higgs basis. The
mass matrices are symmetric so we have 6 + 3 + 1 = 10 independent equations. Taking into account which
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Lagrangian parameters appear in which sub-matrices, we solve the first 6 equations for λ1, λ2, λ3, λ′1, λ′2
and λ′3. The next 3 equations are solved for µ2

3, µ2
b and a1. Finally, we solve the last equation for λ4. The

explicit solutions are presented in appendix B.
So far, we have assumed a strictly obeyed Higgs alignment limit. However, we could relax this re-

quirement by introducing a small misalignment. This way, the physics becomes more interesting while the
smallness of the misalignment means that this scenario might reproduce the observed experimental data. To
parametrize this scenario consider the upper row of eq. (3.57): (cosα2 cosα3, cosα2 sinα3,− sinα2). In the
Higgs alignment limit, given by eq. (3.58), the angles α2,3 are zero so that only the first element is non-zero.
We can instead set the two other, non-diagonal, elements to be equal to some small numbers that will serve
to parametrize the off-alignment:{

− sinα2 = δ2 ⇒ α2 = arcsin (−δ2) ,

cosα2 sinα3 = δ3 ⇒ α3 = arcsin
(

δ3
cosα2

)
.

(3.63)

We conclude this section by summarizing which parameters are considered to be independent in our
investigation. The scalar masses in eq. (3.60), the vev mixing angle β, the scalar singlet vev vs, the CP -odd
sector mixing angle γ, the CP -even sector mixing angle α1 and the two off-alignment parameters δ2 and δ3
can be varied independently (within suitably chosen bounds). These constitute the input parameter space
in the subsequent numerical analysis.

4 The Yukawa Sector

In this section we explore the Yukawa sector of our model, which is BGL-like. We discuss the parametrization
of the textures in section 4.1 and then consider the CKM matrix in section 4.2.

4.1 Inversion procedure

In the scalar sector we were able to conveniently include the experimentally measurable Higgs mass, as well
as constraints on SM-like Higgs mixing angle and BSM scalar masses into our model through the so-called
inversion procedure. We would like to do the same for the Yukawa sector, trading the Yukawa textures for
observable quantities. The latter here are the fermion masses and the CKM matrix (if one would like to test
the full νBGL-I model, the lepton mixing matrix (the PMNS matrix) would also have to be included). We
will do this through a variant of the procedure outlined in eq. (3.62).

To this end we need, just as in the scalar case, explicit parametrizations of the quark mixing matrices.
First, consider the Yukawa textures: the matrix elements can be any complex numbers. To parametrize the
Yukawa textures, the idea is to use a relation for e.g. quark masses such as:

diag (mu,mc,mt) = [UuL]
†
MuU

u
R (4.64)

to invert it so that the Yukawa couplings are expressed in terms of the mixings and masses:

Mu = UuL · diag (mu,mc,mt) · [UuR]
†
. (4.65)

(see section 2.3 for the definition of the notation)9. Note that as long as the Yukawa textures are block-
diagonal and we have no further conditions on them, the mixing matrices are allowed to be arbitrary unitary
matrices that respect the block-diagonal structure (i.e. they do only mix the blocks, not between them). In
the above example, this means that both UuL and UuR contain a 2x2 block that is an arbitrary U(2) matrix
and a diagonal complex entry of modulus one.

9The astute reader might notice a mismatch in the notation between which mixing matrix is defined as hermitian conjugated
here compared to the scalar sector in e.g. eq. (3.50). However this is just a matter of arbitrary naming and does not affect any
physics. We follow the convention for the fermion sector of [11] and for the scalar sector of [7].

18



There are however, additional conditions on the mixing matrices. What is different compared to the
scalar case, apart from the complex couplings, is the requirement of the reproduction of the CKM matrix.
This means that our fermion mass diagonalization matrices must be such so as to gives us a CKM candidate
matrix that is within experimentally determined bounds. For the quarks and their CKM matrix this is
straightforward to implement as it turns out, as we can trade the left down-type quark mixing matrix for
the CKM matrix as follows:

VCKM ≡ [UuL]
†
UdL ⇒ UdL = UuLVCKM . (4.66)

Using this we can sample the left up-type quark mixing matrix randomly (not worrying about any constraints
except those dictated by the family-symmetry) and use the CKM matrix (sampled within experimental
bounds) to calculate the UdL matrix rather than sample it. This way we guarantee the correct quark mixing.
Note the following: this is possible since the UdL matrix is 3x3 with no additional constraints, in contrast to
e.g. UuL, we have no conditions that enforce zero-elements in the texture.

Furthermore, we notice that the right mixing matrices are completely arbitrary (except that they must
of course be unitary) since they are not observable in any known way (in contrast to the left mixing matrices
which enter into the observable CKM matrix).

We can now state the parametrizations that we use for the mixing matrices, which we base on [24]. The
most general 2x2 U(2) matrix has 22 degrees of freedom and can be parametrized as:

U(2) 3 A =

(
1 0
0 ei(α22−α12)

)(
cos θ sin θ
− sin θ cos θ

)(
eiα11 0

0 eiα12

)
, (4.67)

where the four degrees of freedom consist of the three phases α11, α22, α12 and the angle θ. Using this, the
matrices UuL, U

e
L, U

u
R, U

e
R can be parametrized as:

U
u/e
L/R =

(
A 0
0T eiα33

)
, (4.68)

where 0T = (0, 0). The 3x3 matrix UdR can be parametrized as:

U(3) 3 UdR =

1 0 0
0 ei(α23−α13) 0
0 0 ei(α33−α13)

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ·
·

eiα11 0 0
0 eiα12 0
0 0 eiα13

 ,

(4.69)

the 32 d.o.f:s are the six phases α11, α12, α13, α23, α33, δ and the three angles θ12, θ13, θ23 that are implicit
in the notation c12 = cos θ12. Notice that the middle matrix in eq. (4.69) is the same as the standard
parametrization of the CKM matrix [25]. This will be discussed in the next section.

Having specified the explicit parametrizations of the mixing matrices and the equations of the inver-
sion procedure (based on eq. (4.65)) we could now proceed to list the analytical formulas for the Yukawa
texture elements. However, while such formulas exist in our scenario (and can be easily obtained using
e.g. Mathematica) they are extremely long and have little practical utility. Furthermore, in the computer
implementation of this model the matrix inversion of eq. (4.64) to eq. (4.65) is done numerically. We will
therefore not list these analytical formulas in the thesis.

4.2 The CKM matrix and the Jarlskog invariant

In the quark sector there are five redundant phases that can be used to remove (”rotate away”) five phased in
the quark mixing matrices. Usually, it is the phases of the CKM matrix that are removed. As it was observed
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earlier, eq. (4.69) has just the form of the CKM matrix except for the outer five phases. These are exactly
the phases that can be rotated away using the freedom of the quark field phases [24]. One global quark field
phase always remains and the last phase of the CKM matrix (δ in the above parametrization) is ”hidden”
inside the matrix so it can anyway not be rotated away. It is this phase that causes the CP -violation in the
quark sector.

A convenient parametrization of the CKM matrix is the Wolfenstein parametrization [26], which we
employ in our numerical analysis. In it, the CKM matrix is parametrized as follows:

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O
(
λ4
)
, (4.70)

where the parameters above are defined by:

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣ VcbVus

∣∣∣∣
s13e

iδ = V ∗cb = Aλ3(ρ+ iη) =
Aλ3 (ρ+ iη)

√
1−A2λ4

√
1− λ2 [1−A2λ4 (ρ+ iη)]

.

(4.71)

Here, the LHS of each equality contains quantities from the previously mentioned ”standard” parametrization
of the CKM, namely the middle matrix of eq. (4.69). The CKM matrix elements are denoted by Vij (i = u, c, t
and j = d, s, b), where the indices signify the quark flavors to which the matrix element corresponds.

Clearly, the parametrization of the CKM matrix is not unique, neither is the parametrization of the left
and right mixing matrices. Among them, there are infinitely many unitary rotations. It is therefore possible
to obtain the same physics with different conventions for the matrices. How can we be sure that our method
is correct if e.g. one of the programs we employ gives us the same masses but different mixing matrices?

The answer is provided by the Jarlskog invariant [27]. The Jarlskog invariant is given by:

J = Im (VusVcbV
∗
ubV

∗
cs) , (4.72)

Two differently parametrized CKM matrices result in the same physics, if the absolute values squared of
their matrix elements and their Jarlskog invariants coincide.

5 Implementation

In this section we discuss the more practical aspects of the model investigation. In section 5.1 we present the
various constraints that allow us to reject the majority of parameter-points10 early on in our code, before we
employ computationally intensive programs. Then, in section 5.2 we lay out the structure of our software
and elaborate on its various components and functions.

5.1 Theoretical and experimental bounds

As will be discussed in section 5.2, our simulations depend on several existing codes that we have linked
together. These programs perform a large amount of calculations and are thus very computationally intensive.
When performing a numerical investigation like we have done, it is therefore of great interest to exclude as
many points as possible using computationally cheap constrains before passing the surviving points on to
the computationally intensive codes. In this subsection we discuss a number of such constraints that we have
implemented in our code.

10By parameter-point we mean a set of randomly sampled model parameters that exhaust the freedom of the model. Those
specific parameters will be specified in section 5.2.
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5.1.1 Boundedness from below

The so-called vacuum stability condition is the requirement that the scalar potential of any model must be
bounded from below, i.e. it must not be possible to select a direction in the space spanned by the scalar
fields and (eventually) reach states of arbitrarily low energy. This can be conveniently visualized using
simple polynomials. A potential given by V (x) = x2 − x+C is bounded from below, since in both available
directions the value of the potential eventually goes up. In contrast, the potential V (x) = x3 + x2 is not
bounded from below, since for sufficiently negative x the value of V decreases without limit. Such a situation
is clearly unphysical, therefore any parameter-point exhibiting this property can be promptly rejected. Since
the values of the parameter-points that we sample enter the calculation of the coefficients of the terms in
the scalar potential, the different values they assume can lead to very different geometries featuring both
bounded from below and unbounded potentials.

In this section we follow the method for ensuring boundedness from below presented in [28]. We will
not derive all the results leading up to the criteria, the interested reader is referred to the aforementioned
paper. The condition of boundedness from below can be ensured by the so called co-positivity criterion on
the matrix of quartic couplings. We need only to consider the quartic couplings since their dimension four
terms dominate the behavior of the potential for large field-values. Following the convention of [28], our
matrix of quartic couplings is:

Λ =

 λ1
1
2

(
λ3 + λ4ρ

2
)

1
2λ
′
2

1
2

(
λ3 + λ4ρ

2
)

λ2
1
2λ
′
3

1
2λ
′
2

1
2λ
′
3 λ′1

 , (5.73)

where the parameter ρ can take on the following values: ρ ∈ [0, 1]. From this matrix the co-positivity criteria
can be read off. They are:

λ1 ≥ 0 λ2 ≥ 0 λ′1 ≥ 0

λ1 =
1

2
(λ3 + Θ (−λ4)λ4)

√
λ1λ2 ≥ 0 λ2 =

1

2
λ′2 +

√
λ1λ′1 ≥ 0 λ3 =

1

2
λ′3 +

√
λ2λ′1 ≥ 0√

λ1λ2λ′1 +
1

2
(λ3 + Θ (−λ4)λ4)

√
λ′1 +

1

2
λ′2
√
λ2 +

1

2
λ′3
√
λ1 +

√
2λ1 · λ2 · λ3 ≥ 0,

(5.74)

where Θ (x) =

{
1, if x > 0

0, if x < 0
is the Heaviside step function. In our simulations, all points that do not

satisfy all of these conditions are rejected.

5.1.2 Tree-Level unitarity of the scattering matrix

One of the most important checks that a candidate point must pass is the unitarity of the scalar elastic
two-body scattering matrix (S-matrix) [29, 18]. This means that in the high energy limit, the tree-level
S-matrix of all possible two-body elastic scalar boson scatterings must remain unitary (for the parameter
values specified).

Following [30], this requirement can be translated into a condition on the Jth partial wave aJ by utilizing
the optical theorem:

Im
(
aJ
)

=
∣∣aJ ∣∣2 ⇒

∣∣Re
(
aJ
)∣∣ ≤ 1

2
, (5.75)

where the implication follows upon recognition that the first equation is an equation for a circle in the
complex plane. In the high energy limit only the four-point interactions contribute to these two-to-two
scatterings.

The partial wave amplitude for J = 0 is related to the transition matrix element of the four-point
scatterings by [31]:

a0
ij =

1

16π
〈Ωi|iT̂ 0|Ωj〉 , (5.76)

21



where Ωi,Ωj are the in-going and out-going two-particle states and T̂ 0 is the J = 0 contribution to the
transition matrix of the process. Upon setting up a suitable basis for the in- and out-going states, that
exhausts all the possibilities in the model, the above formula can be used to straightforwardly compute the
full scattering matrix (subject to, of course, the conditions of tree-level only, 2 to 2 elastic scatterings). The
unitarity condition eq. (5.75) takes the form:

〈Ωi|iT̂ 0|Ωj〉 ≤ 8π. (5.77)

The task of computing the unitarity limits now reduces to finding the eigenvalues of the 〈Ωi|iT̂ 0|Ωj〉
matrix. Since we could not find any previous research where such unitarity bounds had been calculated for
a scalar sector such as the one investigated in this work, the derivation of the unitarity bounds has to be
performed independently. The authors of [32] outline in their paper an algorithm for the calculation of those
eigenvalues for a wide class of scalar models. As a part of this project, we adapt this algorithm to our model
and implement it in Mathematica. The crucial step in calculating such bounds is to set up a suitable basis
of states Ωi,Ωj . In table 2 we present our adaptation of the basis of states utilized in [32]. The authors
of said paper classify the states according to quantum numbers that are conserved in the scatterings under
consideration: electric charge Q and weak hypercharge Y . To this end, the states are constructed using
complex fields rather than the separated real constituents.

Table 2: The states used in the calculation of the unitarity limits on the scattering matrix. Note that apart
from these, their hermitian conjugates are also to be included in the calculation. We have here adopted the
naming convention of the original paper [32] wherever applicable. The translation to our naming convention
reads: w+

i = φ+
i and ni = 1√

2
(hi + iηi)

Q 2Y States

2 2 S++
α = w+

i w
+
J

1 2 S+
α = w+

i nj
1 1 N++

α = {w+
i σ,w

+
i S∗}

1 0 T+
α = w+

i n
∗
j

0 2 S0
α = nin

∗
j

0 1 N+
α = {niS, niS∗}

0 0 T 0
α = {w−i w

+
j , nin

∗
j ,SS∗}

The algorithm is described in detail in the source paper [32] and will not be presented here. Our
Mathematica implementation yields the following eigenvalues of the two-to-two elastic scalar scattering
matrix:

yi ∈ {2λ1, 2λ2, 2λ
′
1, λ3, λ4, λ

′
2, λ
′
3, λ3 + 2λ4, λ3 + λ4, λ3 − λ4, λ1 + λ2 ±

√
λ2

1 − 2λ1λ2 + λ2
2 + λ2

4} (5.78)

and in addition, the three roots of:

0 = x3 − x2 (4λ1 + 4λ2 + 2λ′1) + x
(
8λ1λ

′
1 + 16λ1λ2 + 8λ′1λ2 − 2λ′22 − 4λ2

3 − 2λ′23 − 4λ3λ4 − λ2
4

)
+

+ 2λ′1λ
2
4 − 4λ′2λ

′
3λ4 + 8λ′1λ3λ4 − 8λ1λ

′2
3 − 8λ′2λ

′
3λ4 + 8λ′1λ

2
3 + 8λ2λ

′2
2 − 32λ1λ

′
1λ2.

(5.79)

The unitarity of the S-matrix (at tree level) is ensured by requiring that none of these eigenvalues exceeds
8π in absolute value (the application of eq. (5.77)).

5.1.3 Electroweak precision observables

The effects of NP on electroweak precision observables can, under suitable conditions be parametrized using
the oblique correction parameters S, T, U [33]. Since our model fulfills these criteria and the bounds on
the oblique parameters are readily available [25] they offer a perfect opportunity to veto candidate points.
Following [33], we adapt and implement the formulas for the S, T, U parameters contained therein.

22



As with the previous two types of bounds discussed above, we do not present the full formulas that give
us the bounds. Instead we show below the formula for one of the oblique parameters (T ) and discuss the
implementation, the interested reader can consult the original paper [33] to find the full expressions. The
parameter T is given by:

αT ≡ T =
g2

64π2m2
W

{
n∑
a=2

m∑
b=2

∣∣(U†V)
ab

∣∣2 F (m2
a, µ

2
b

)
−
m−1∑
b=2

m∑
b′=b+1

[
Im
(
V†V

)
bb′

]2
F
(
µ2
b , µ

2
b′
)

+

− 2

n−1∑
a=2

n∑
a′=a+1

∣∣(U†U)
aa′

∣∣2 F (m2
a,m

2
a′
)

+ 3

m∑
b=2

[
Im
(
V†V

)
1b

]2 [
F
(
m2
Z , µ

2
b

)
− F

(
m2
W , µ

2
b

)]
+

− 3
[
F
(
m2
Z ,m

2
h

)
− F

(
m2
W ,m

2
h

)]}
,

(5.80)

where α is the fine structure constant, g is the weak force coupling, mZ ,mW ,mh refer to the W±, Z0 and SM
Higgs bosons respectively, ma denote the neutral scalar masses and lastly, µb denote charged scalar masses
(in our case only one such mass: mH±). The function F is given below:

F (I, J) ≡

{
I+J

2 − IJ
I−J ln I

J if I 6= J

0 if I = J.
(5.81)

Next, we translate the U and V matrices to our convention. In the source article, they are defined as the
(complex) matrices that take the mass eigenstates (charged and neutral, respectively) to gauge eigenstates.
We note that the matrix U is the same as the transpose of our R+. The matrix V acts on complex neutral
states, while we work with real neutral fields. To express the V matrix in terms of our matrices we note that
(introducing the matrix R which fulfills the same function as V but for the gauge singlet states):

ReV
ImV
R



h
H
G0

A
ς
χ

 =


h1

h2

η1

η2

σ
ρ

 ⇒


h
H
G0

A
ς
χ

 =

ReV
ImV
R

T


h1

h2

η1

η2

σ
ρ

 (5.82)

and using this we find V by relating the above basis-changing matrix to our matrices O1, O2 (see fig. 2). We
find:

ReV
ImV
R

T

=


[O1]11 [O1]12 0 0 [O1]13 0
[O1]21 [O1]22 0 0 [O1]23 0

0 0 [O2]11 [O2]12 0 [O2]13

0 0 [O2]21 [O2]22 0 [O2]23

[O1]31 [O1]32 0 0 [O1]33 0
0 0 [O2]31 [O2]32 0 [O2]33

 , (5.83)

which is simply a rearrangement of the matrices that take the gauge basis to the mass basis, such that the
gauge eigenstates that do not couple to the weak vector bosons (and thus do not contribute to S, T, U) are
separated.

5.1.4 Higgs physics constraints

Since the model we are considering features multiple scalar particles and since there both are and have been
experiments looking for such extra scalars, it is important to compare the model predictions to experimental
data. Apart from the 125 GeV Higgs particle h detected at LHC [1, 2], there have been no confirmed sightings
of any extra scalars. Therefore, whatever the predictions of our model may be, all parameter points that do
not agree with the published experimental exclusion bounds have to be promptly rejected.
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To manually collect and correctly compare all the available experimental data would be a prohibitively
time-consuming task. However, the publicly available code HiggsBounds (HB) [34, 35, 36, 37, 38] auto-
matically performs this function, namely it compares the model predictions to 95% confidence limit (C.L.)
exclusion bounds from LEP, Tevatron and LHC searches.

A brief description of the workings of HB follows. An important concept in the realm of Higgs physics
constraints is the signal topology X. Is is defined as a combination of a particular production process
of one or two scalar particles P (h) or P (h1, h2) and specific decay mode(s) F . The results published by
the experimental collaborations can be divided into two types: model-independent bounds on specific signal
topologies and combined analyses designed to constrain certain popular models (e.g. the SM and the Minimal
Supersymmetric Standard Model (MSSM)). The latter type of bounds are usually stricter but cannot be
straightforwardly applied to other models due to the in-built model assumptions. The HB tests whether the
supplied parameter point is sufficiently similar to one of the models for which the combined analyses have
been performed, and depending on the answer compares it to the different available bounds.

The basic principle of the comparison of the parameter point data to the experimental exclusion bounds
is the following. The data needed by the program is the masses of the scalar bosons (including specification
of which of them are neutral and which charged), their total decay widths, their decay branching ratios
and production cross sections (normalized to a reference value). The programs first determines which signal
topology has the highest statistical sensitivity, X0, by calculating:

X0 = X : max

{
Qmodel (X)

Qexpec (X)

}
, (5.84)

where Q(X) denotes the cross section for the signal topology X. ”Model” refers to the prediction of the the
parameter point (the model under consideration) and is calculated from the required input data. ”Expec”
stands for the expected 95% C.L. exclusion limit on Q(X) as obtained from Monte Carlo simulations. The
model prediction for the most sensitive topology is then compared to experimental data by evaluating the
ratio:

Qmodel (X0)

Qobs (X0)
, (5.85)

where ”obs” refers to the experimentally established 95% exclusion limit on the signal cross section. If this
ratio is greater than one, the point is excluded at 95% C.L. The program features many input options that are
described in the above cited references. In particular, there is an option to provide effective couplings rather
than production cross sections as input. This option is used by us, since such couplings can be automatically
calculated by another program that we employ, SPheno [39, 40].

Following the celebrated discovery of a Higgs particle candidate in 2012, a sister program to HB was
developed, HiggsSignals (HS) [41]. Its task is to compare the predictions of the model, in the form of signal
strength modifiers, to the signal strength modifiers obtained experimentally. The signal strength modifier
is a quantitative measure of the model (or observed) signal strength, normalized to the SM prediction. To
carry out the comparison, two complementary χ2 measures are computed by the HS to obtain a quantitative
answer to the question how compatible the parameter point is with the experimental Higgs signal.

5.2 Numerical analysis

The goal of the numerical analysis is to perform a random scan over the free parameters of the model (from
the scalar and Yukawa sectors) and investigate which of the sampled points pass various relevant bounds. The
implementation of the bounds is made in such a way, that the computationally cheapest bounds (discussed
in section 5.1) are implemented so that they reject failing points before the rest of the codes are employed.
Upon passing the aforementioned first checks, a candidate point passes onto SPheno which calculates the
mass spectrum, mixing matrices, Wilson coefficients, branching ratios and more. To configure SPheno for
our model, we use a Mathematica package, SARAH [42], where we implement our model and use it to
set-up SPheno. The output data of SPheno is used to start HiggsBounds which in turn provides the
necessary input for HiggsSignals. The final output of this chain of codes is thus parameter points that
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have passed both the HiggsBounds and HiggsSignals checks, in addition to the boundedness from below,
unitarity and S, T, U bounds.

The constraints from flavor physics are implemented a posteriori during the analysis stage. The saved
Wilson coefficients computed by SPheno in conjunction with FlavorKit [43] are used to calculate flavor
physics observables using the python package flavio [44]. The results of these analyses are presented in
section 6.

For a more technical description of the codes, see appendix C.
The early results we obtained motivated us to consider the Jarlskog invariant, presented in section 4.2.

We noticed that the mixing matrices given by SPheno gave a different CKM matrix than the one constructed
from the mixing matrices as sampled by our program. Upon investigation however, we found that the two
matrices agree according to the criteria discussed in section 4.2.

5.2.1 Input parameter space

The numerical input values that enter our simulations are documented in this section. For all fermion and
gauge boson masses as well as CKM matrix entries and uncertainties (Wolfenstein parametrization), oblique
parameter values and the experimentally detected Higgs boson mass we use the values provided by the
Particle Data Group [25] (2021 update). All the angles and phases in the Yukawa inversion are allowed to
vary within [0, 2π). For the other input parameters, we use the values displayed in table 3.

Table 3: The intervals in which the various parameters are sampled. X in the first entry refers to all of the
following: H,A, ς, χ,H+.

mX [GeV] vs [GeV] α1 γ δ2 & δ3 β

[80, 500] [100, 500] [0, 2π) [0, 2π) (-0.2, 0.2) [0, π2 )

6 Results

We begin with the presentation of plots depicting the oblique parameter values of the sampled parameter
points. In fig. 3 we plot S vs T while in fig. 4 we plot U vs T . In both cases we plot both a representable
sample of failed points (points having been rejected either due to HB, HS or any one of the pre-SPheno bounds
discussed in section 5.1) and the points that have passed all checks including HB & HS (but excluding any
flavor physics limits). Note that the proportion of the failed to successful points is not representative of
the scanning procedure. In the aforementioned plots we have about 1000 successful points and 10000 failed
ones. However, in the scanning procedure there were of the order of 10 million failed points per the 1000
successful ones. The experimental bounds on the oblique parameters, as provided by [25], are also shown
in said plots. They clearly show how efficiently the implementation of these bounds restrict the parameter
space: the vast majority of depicted points fall outside these bounds and were thus rejected at an early stage
of the scanning procedure. In addition, we see that the T parameter varies considerably more than S and
U . This is expected, as described in [33].

We now shift our attention to the flavor physics considerations. The reason behind considering the BGL-
model is to provide a mechanism for suppression of FCNC:s. We have calculated a representative sample
of related observables using the flavio package, in what follows we present the most interesting ones. To
determine whether a point is to be rejected or not based on flavor physics analysis, we have computed 1
σ C.L. using experimental data from [25] and the the flavio package. These limits are shown in all the
following plots. We reject a point if it falls outside said bounds. We find that the model obeys several key
observables with good margins, while the bounds on other observables result in a rejection of a large portion
of the points that otherwise pass all the other bounds and checks.

Among the observables that the model easily satisfies we find the branching ratio fractions
BR(K+→π+νν)

BR SM(K+→π+νν)

and BR(B→Xsγ)
BRSM(B→Xsγ) which are shown in fig. 5. The parameter |ε| of the kaon system is also well under control
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(a) Including failed points. (b) Only points passing HB & HS.

Figure 3: The oblique parameters S and T . In subplot a) we have plotted their values for a representative
sample of points that failed at least one bound. The black vertical and horizontal lines are the experimental
bounds from [25]. The green points are those that passed HB & HS. They are shown separately in subplot
b).

(a) Including failed points. (b) Only points passing HB & HS.

Figure 4: The oblique parameters U and T . In subplot a) we have plotted their values for a representative
sample of points that failed at least one bound. The black vertical and horizontal lines are the experimental
bounds from [25]. The green points are those that passed HB & HS. They are shown separately in subplot
b).
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(a)
BR(K+→π+νν)

BRSM(K+→π+νν) (b) BR(B→Xsγ)
BRSM(B→Xsγ)

Figure 5: Flavor observables that are well within 1σ C.L. In subplot a),
BR(K+→π+νν)

BRSM(K+→π+νν) . In fig. 5b,
BR(B→Xsγ)

BRSM(B→Xsγ) .

in the model, as can be seen in fig. 6. Here, we also plotted this observable against the vev v2 to show the
hierarchical selection of vev allocation that the model displays. All the points passing HB & HS have most of
the value of v in the second Higgs doublet 11. This can be understood on the basis of the Yukawa couplings:
the second doublet is (mostly) responsible for giving the mass to the heavy fermions. As can be seen from
eq. (2.22), maximizing v2 leads then to a minimization of the top quark coupling to the extra scalars, which
makes them harder to produce at colliders hence allowing more such points to pass HB & HS.

Some other flavor observables result in many rejected points. In fig. 7 the branching ratio fractions
BR(B0→µ+µ−)

BRSM (B0→µ+µ−) and
BR(Bs→µ−µ+)

BRSM(Bs→µ−µ+) are shown. We see that in particular for the second observable, a

majority of points is rejected including almost all the low-mass scalars (from fig. 7b we explicitly see this for
H± and A). Similarly restricting are the observables ∆Md

∆Md(SM) and ∆Ms

∆Ms(SM) shown in fig. 8.

7 Conclusions

In this project, we have studied a scalar singlet and Higgs doublet extended SM with BGL-like suppression
of FCNS:s in the quark sector and a simple lepton sector. In order to ensure the exploration of as large
an area of uncharted physics territory as possible, we facilitated our analysis with the most general Yukawa
textures and mixing matrices in the quark sector as well as with a relaxed Higgs-alignment limit. To optimize
the code, we implemented three different checks for rejecting large numbers of parameter points at a stage
before the employment of heavier, public, programs. These were boundedness from below, for which we
derived necessary and sufficient conditions, unitarity of the scattering matrix, where we obtained tree-level
analytical conditions and checks of electroweak precision observables via the STU parameters. This resulted
in a significant performance boost.

The parameter space scan resulted in passing points with scalar masses spread out over the entire 80-500
GeV scan range. In particular, there was a concentration of charged Higgses with masses at about 80 GeV.
Upon implementing the complementary flavor physics analysis however, most of such points were rejected.
The flavor observables that were particularly limiting turned out to be ∆Md, ∆Ms and BR (Bs → µ−µ+).
In general however, the BGL-like nature of the model was evident, as many other flavor observables that
were studied were well within their 1 σ bounds and there was a significant number of points passing all
constraints.

11This one figure suffices to show this, since all the other plots showcase the same points, just for different observables
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(a) |ε|
|ε|SM

(b) |ε|
|ε|SM

Figure 6: Flavor observables that are well within 1σ C.L. In subplot a), |ε|
|ε|SM

plotted vs v2. In fig. 5b, |ε|
|ε|SM

again, this time plotted against mH± .

(a)
BR(B0→µ+µ−)

BRSM(B0→µ+µ−)
(b)

BR(Bs→µ−µ+)
BRSM(Bs→µ−µ+)

Figure 7: Two flavor observables that result in plenty of rejected points. In fig. 7a,
BR(B0→µ+µ−)

BRSM (B0→µ+µ−) . In

fig. 7b,
BR(Bs→µ−µ+)

BRSM(Bs→µ−µ+) .
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(a) ∆Md
∆Md(SM)

(b) ∆Ms
∆Ms(SM)

Figure 8: Two flavor observables that result in plenty of rejected points. In fig. 8a, ∆Md

∆Md(SM) . In fig. 8b,
∆Ms

∆Ms(SM) .
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A Mass Matrices

In this appendix we present the symmetric mass matrices of the scalar sector. In the gauge basis, we have
for the CP -even scalars:

M2
0,even =


[
M2

0,even

]
11

[
M2

0,even

]
12

[
M2

0,even

]
13[

M2
0,even

]
12

[
M2

0,even

]
22

[
M2

0,even

]
23[

M2
0,even

]
13

[
M2

0,even

]
23

[
M2

0,even

]
33

 , (A.1)

where the elements are:[
M2

0,even

]
11

= 3v2
1λ1 +

1

2

(
v2
sλ
′
2 + v2

2λ3 + v2
2λ4 −

1

v1

[
a1v2vs

√
2 + 2v3

1λ1 + v1v
2
sλ
′
2 + v1v

2
2λ3 + v1v

2
2λ4 + 2v2µ

2
3

])
,[

M2
0,even

]
12

=
1√
2
a1vs + v1v2λ3 + v1v2λ4 + µ2

3,[
M2

0,even

]
13

=
1√
2
a1v2 + v1vsλ

′
2,[

M2
0,even

]
22

= 3v2
2λ2 +

1

2

(
v2
sλ
′
3 + v2

1λ3 + v2
1λ4 −

1

v2

[
a1v1vs

√
2 + 2v3

2λ2 + v2v
2
sλ
′
3 + v2

1v2λ3 + v2
1v2λ4 + 2v1µ

2
3

])
,[

M2
0,even

]
23

=
1√
2
a1v1 + v2vsλ

′
3,[

M2
0,even

]
33

= 3v2
sλ
′
1 +

1

2

(
v2

1λ
′
2 + v2

2λ
′
3 + 2µ2

b −
1

vs

[
a1v2v2

√
2 + 2v3

sλ
′
1 + v2

1vsλ
′
2 + v2

2vsλ
′
3 + 2vsµ

2
b

])
.

(A.2)
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For the CP -odd scalars:

M2
0,odd =


[
M2

0,odd

]
11

[
M2

0,odd

]
12

[
M2

0,odd

]
13[

M2
0,odd

]
12

[
M2

0,odd

]
22

[
M2

0,odd

]
23[

M2
0,odd

]
13

[
M2

0,odd

]
23

[
M2

0,odd

]
33

 , (A.3)

where the elements are: [
M2

0,odd

]
11

=
[
M2

0,even

]
11
− 2v2

1λ1,[
M2

0,odd

]
12

=
1√
2
a1vs + µ2

3,[
M2

0,odd

]
13

=
1√
2
a1v2,[

M2
0,odd

]
22

=
[
M2

0,even

]
22
− 2v2λ2,[

M2
0,odd

]
23

= − 1√
2
a1v1,[

M2
0,odd

]
33

=
[
M2

0,even

]
33
− 2v2

sλ
′
1 −

3

2
µ2
b .

(A.4)

For the charged scalars:

M2
± =

([
M2
±
]
11

[
M2
±
]
12[

M2
±
]
12

[
M2
±
]
22

)
, (A.5)

where the elements are:[
M2
±
]
11

= v2
1λ1 +

1

2

(
v2
sλ
′
2 + v2

2λ3 −
1

v1

[
a1v2vs

√
2 + 2v3

1λ1 + v1v
2
sλ
′
2 + v1v

2
2λ3 + v1v

2
2λ4 + 2v2µ

2
3

])
,[

M2
±
]
12

=
1√
2
a1vs +

1

2
v1v2λ4 + µ2

3,[
M2
±
]
22

= v2
2λ2 +

1

2

(
v2
sλ
′
3 + v2

1λ3 −
1

v2

[
a1v1vs

√
2 + 2v3

2λ2 + v2v
2
sλ
′
2 + v2

1v2λ3 + v2
1v2λ4 + 2v1µ

2
3

])
.

(A.6)

Upon rotation to the Higgs basis, the CP -even mass matrix becomes:

M2
0,H,even =


[
M2

0,H,even

]
11

[
M2

0,H,even

]
12

[
M2

0,H,even

]
13[

M2
0,H,even

]
12

[
M2

0,H,even

]
22

[
M2

0,H,even

]
23[

M2
0,H,even

]
13

[
M2

0,H,even

]
23

[
M2

0,H,even

]
33

 , (A.7)

where the elements are:[
M2

0,H,even

]
11

=
2

v2

(
v4

1λ1 + v4
2λ2 + v2

1v
2
2 [λ3 + λ4]

)
,[

M2
0,H,even

]
12

=
v1v2

v2

(
2v2

2λ2 − v2
2 [λ3 + λ4] + v2

1 [λ3 + λ4 − 2λ1]
)
,[

M2
0,H,even

]
13

=
1

v

(
a1v1v2

√
2 + v2

1vsλ
′
2 + v2

2vsλ
′
3

)
,[

M2
0,H,even

]
22

= 2v2
1 (λ1 + λ2 − λ3 − λ4) +

2v4
1

v2
(λ3 + λ4 − λ1 − λ2)− v1

v2

(
a1vs
√

2 + 2µ2
3

)
+

− v2

v1

(
a1vs
√

2 + 2µ2
3

)
,[

M2
0,Heven

]
23

=
1

2v

(
a1

[
v2

1 − v2
2

]√
2 + 2v1v2vs [λ′3 − λ′2]

)
,[

M2
0,Heven

]
33

= 2v2
sλ
′
1 −

1

vs
√

2
a1v1v2.

(A.8)
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The CP -odd mass matrix in the Higgs basis:

M2
0,H,even =


0 0 0

0
[
M2

0,H,odd

]
22

[
M2

0,H,odd

]
23

0
[
M2

0,H,odd

]
23

[
M2

0,H,odd

]
33

 , (A.9)

where the elements are: [
M2

0,odd

]
22

= − v2

2v1v2

(
a1vs
√

2 + 2µ2
3

)
,[

M2
0,odd

]
23

= − 1√
2
a1v,[

M2
0,odd

]
33

= − 1

2vs

(
a1v1v2

√
2 + 4vsµ

2
b

)
.

(A.10)

As stated earlier, the charged scalar mass matrix in the Higgs basis is diagonal in our model:

M2
±,H =

(
0 0

0 − v2

2v1v2

(
a1vs
√

2 + v1v2λ4 + 2µ2
3

)) . (A.11)

B Inverted Parameters

Here, we present a selection of the parameters of the scalar expressed in terms of masses and mixing angles.
For brevity, we use the shorthand notation: cosα1 = cα1 .

a1 =
1

v

(
cos γ1 sin γ1

[
m2
χ −m2

A

]√
2
)
, (B.12)

µ2
b = −1

2

(
m2
A cos2 (γ1) +m2

χ sin2 (γ1) +
a1v1v2√

2vs

)
, (B.13)

µ2
3 = − 1

2v2

(
m2
Av1v2 cos2 (γ1) +m2

χv1v2 sin2 (γ1)
)
− a1vs√

2
, (B.14)

λ1 =
1

4v2v3
1

(
v2v2

[
a1vs
√

2 + 2µ2
3

]
+ 2m2

hv1c
2
α2

[v1cα3
− v2sα3

]
2

+

− 4v1cα1sα1sα2

[
m2
H −m2

ς

] [
v1v2c2α3 +

(
v2

1 − v2
2

)
cα3sα3

]
+

+ 2v1s
2
α1

[
c2α3

(
m2
ςv

2
2 +m2

Hv
2
1s

2
α2

)
+ s2

α3

(
m2
ςv

2
1 +m2

Hv
2
ss

2
α2

)
+ v1v2s2α3

(
m2
ς −m2

Hs
2
α2

)]
+

+2v1c
2
α1

[
c2α3

(
m2
Hv

2
2 +m2

ςv
2
1s

2
α2

)
+ s2

α3

(
m2
Hv

2
1 +m2

ςv
2
ss

2
α2

)
+ v1v2s2α3

(
m2
H −m2

ς s
2
α2

)])
,

(B.15)

λ2 =
1

8v1v3
2

(
2v2

[
a1vs
√

2 + 2µ2
3

]
+ v1v2

[
2m2

h + 3
(
m2
H +m2

ς

)
− 8v2

1λ1+

+2c2α1
c2α2

(
m2
H −m2

ς

)
c2α2

(
2m2

h −m2
H −m2

ς

)])
,

(B.16)

λ3 =
1

2v2
1v

2
2

(
v2
[
c2α3

(
m2
hc

2
α2

+ s2
α2

[
m2
Hs

2
α1

+m2
ς c

2
α1

])
+ 2cα1

cα3
sα1

sα2
sα3

(
m2
ς −m2

H

)
+

+s2
α3

(
m2
Hc

2
α1

+m2
ς sα1

)]
− 2

[
v4

1λ1 + v4
2λ2 + v2

1v
2
2λ4

])
,

(B.17)
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λ4 = −
√

2a1vs + 2µ2
3

v1v2
−

2m2
H±

v2
, (B.18)

λ′1 =
1

4v3
s

(
a1v1v2

√
2 + 2vs

[
c2α2

(
m2
Hs

2
α1

+m2
ς c

2
α1

)
+m2

hs
2
α2

])
, (B.19)

λ′2 =
1

2vv1vs

(
a1v2v

2
√

2 +
[
m2
H −m2

ς

]
vcα2

s2α1
[v2cα3

+ v1sα3
] +

+
1

2
v
[
2m2
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H −m2

ς +
(
m2
H −m2

ς

)
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(B.20)

λ′3 =
1

2v1v2vs

(
a1

[
v2

2 − v2
1

]√
2 + 2v1v2vsλ

′
2 + 2vcα2

[(
m2
H −m2

ς

)
cα1

cα3
sα1

+

+
(
m2
Hs

2
α1

+m2
ς c

2
α1
−m2

h

)
sα2

sα3

])
.

(B.21)

C Software Manual

In this section we describe how to use the software BGLNCSexplorer that can be found at [10] (there the
up-to-date version of the program and manual can be found). The repository contains the SARAH models
used, the corresponding SPheno set-up codes, bash scripts for running the codes on a cluster and finally
the Python files that constitute the actual program.

The software is divided into two, separately executed, chains of scripts. The first one is started from
wrapper master.py and performs the scan. The scan is configured from the plain text file config file

where the user can specify the number of points to be created, the ranges over which to scan all the free
parameters (assumed to be in GeV wherever applicable), the versions of the external software that are
installed (SARAH, SPheno, HiggsBounds and HiggsSignals) and what data is to be saved.

Once the first chain has been run at least once, generating some data, the other chain may be executed.
This chain loads the saved data and analyzes it, producing plots depicting the data and the results of
the analysis. It is started by running analysis and plotting.py and can be configured from the plain
text file analysis config file. In the configuration file, the user can specify which (implemented) flavor
observables to plot. The experimental data corresponding to those flavor observables can also be specified
here (required to plot 1 σ C.L. limits). In addition a switch exists in the configuration file that allows for
the creation of a register that stores the location of all the points that had passed all bounds (up to and
including HiggsBounds and HiggsSignals). The usage of such a register allows for a faster subsequent
runs of the analysis and plotting.py chain of codes.

All the files comprising the two chains are summarized in table 4. In addition, a set of bash scripts
for running the codes in a HPC environment (configured for LUNARC Aurora cluster) can be found in
the repository. They are written to work together with the aforementioned Python chains with minimal
intervention from the user. A summary of them can be found in table 5.
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Table 4: The function and interdependence of the Python files that make up the BGLNCSexplorer.

Python File Description Dependence

wrapper master.py The main execution file. Calls wrapper loop.py and
data handling,py

wrapper loop.py The main loop. 1 Iteration
= 1 Point.

Calls
inversion procedure.py,
electroweak precision

observables.py and
file writing.py

analysis and plotting.py Harvests from files and
analyzes the data. Ex-
ecuted independently
from master.

Calls visualization.py

and file writing.py

inversion procedure.py Implements the inversion
procedure for the Yukawa
and scalar sectors.

None

electroweak precision observables.py Calculates the electroweak
precision observables.

None

file writing.py Saves the preSPheno data,
writes the SLHA input file
for SPheno.

None

data handling.py Bunches the data into larger
files, tosses out unneeded
data.

None

visualization.py Creates the plots. None

Table 5: The function and interdependence of the bash scripts that allow for running in a hpc environment.

Bash File Description Dependence

master.sh The execution file of the
wrapper master.py chain of codes.
Parallerizes the simulation process
over processor cores.

Calls workScript.sh for each parallel
process

workScript.sh Runs the wrapper master.py chain of
codes. Called for each processor core
by master.sh

None

analysis submit.sh Analyzes the previously col-
lected and stored data. Uses the
analysis and plotting.py chain of
codes.

None
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