
Arnoldi iteration and Chebyshev
polynomials

Kateryna Ufymtseva
Bachelor Thesis

Spring Term 2021

Faculty of Science
Centre for Mathematical Sciences

Numerical Analysis

Abstract
In this thesis, we examine the Arnoldi iteration - an iterative algorithm used for
finding a Hessenberg form of a matrix as well as approximating its eigenvalues by
forming an orthonormal basis of a Krylov subspace. We explore the mechanism
behind the work of the algorithm and how the values it finds approximate the
eigenvalues.
In the process of answering these questions we consider the concepts of the ideal
Arnoldi approximation problem, ideal Arnoldi polynomial and Chebyshev polynomial
of a matrix, and how they are related to the original Arnoldi approximation problem,
which is solved by the iteration. We also look into the pseudospectra of a matrix,
its connection to eigenvalue estimates, also known as Ritz values, and Chebyshev
polynomials.

1

Acknowledgements
I want to extend gratitude to my supervisor Claus Führer, who helped me to write
this thesis even in the summer and amongst the challenges of the pandemic, and
also to my family, who supported me in this work.

2

Contents

1 Background 4

2 Algorithm overview 5
2.1 Arnoldi iteration and minimal polynomial 7
2.2 Projections onto successive Krylov subspaces 7
2.3 Minimal polynomial . 8

3 Chebyshev polynomials 9
3.1 Chebyshev polynomials on a closed interval 9
3.2 Chebyshev polynomials of matrices 10

4 Ideal Arnoldi approximation problem and Chebyshev polynomials
of matrices 11
4.1 Ideal Arnoldi approximation problem 11
4.2 Special case of normal matrices . 13
4.3 Computations . 13

5 Arnoldi iteration and pseudospectra 16

6 Conclusions 18

7 The Code 19

8 References 26

3

1 Background

Solving systems of linear equations and finding eigenvalues of a matrix are two very
important problems in linear algebra. There are methods to solve them analytically,
but they generally cannot be used to compute solutions of large problems numer-
ically. That is why a number of methods were developed to solve these problems
using different approaches.

When solving the problems numerically, one uses algorithms employing matrix
factorizations, such as LU and QR factorizations and a Hessenberg form of a matrix.
They are used to represent a matrix as a product of two or more matrices with special
structure: lower- and upper-triangular matrices in LU factorization and orthogonal
and upper-triangular matrices in QR decomposition, as an example. There exist a
group of known and studied methods that solve a problem exactly, such as, for exam-
ple, Gram-Schmidt algorithm for solving linear systems of equations and Gaussian
elimination. However, they have the drawback of being expensive to compute.

Another group of algorithms that are called iterative methods go around this
issue. Unlike direct methods, that can take O(n3) to complete and have to be
finished to achieve results, iterative methods provide useful results even after a
small (less than the dimension of a problem) number of iterations. Algorithms of
this type are often used to approximate solutions to large problems. One of their
common uses are problems concerning sparse matrices - matrices that have very few
non-zero elements (roughly equal to the number of rows or columns). These types
of problems often arise in engineering when solving partial differential equations, in
combinatorics and network theory.

The Arnoldi iteration is an iterative method used for approximating eigenvalues
that was first introduced in 1950 in the paper ”The principle of minimized iterations
in the solution of the matrix eigenvalue problem” by W. E. Arnoldi [1]. The paper
describes a generalization of a Lanczos’ algorithm - an algorithm for diagonalizing
symmetric matrices - to be applied to all matrices.
After its first formulation, the algorithm was studied and there was established a link
between the way it operates and approximation theory of polynomials. The mech-
anism of the iteration is now thought about as projections onto Krylov subspaces,
while the process by which it locates eigenvalues is not yet completely clear.

This thesis is concerned with explaining which eigenvalues are approximated
and why, as well as exploring the connection between the algorithm, Chebyshev
polynomials, and pseudospectra.

4

2 Algorithm overview

Notation:
We consider real m ×m matrices A here, the norm ‖.‖ is a vector two norm or a
matrix two norm.

Definition 1 An upper Hessenberg matrix is a matrix whose elements ai,j = 0, ∀i, j
with i > j + 1. It is a matrix of the form:

H =

h11 h12 . . . h1m

h21 h22

.
...

hm−1,m

hm,m−1 hmm

The matrix H is called the Hessenberg form of A, if A = QHQ∗ or AQ = QH,
where Q is an orthogonal matrix [2].

Definition 2 Krylov subspaces are a nested set of spaces Ki defined as follows: for
an n× n matrix A and a vector b of length n,

Kn = [b, Ab,A2b, A3b, ..., An−1b]. (1)

The Arnoldi iteration is an algorithm, which aims to recursively construct an or-
thonormal basis for the Krylov subspaces Ki.
At every step, the eigenvalues of a section of the Hessenberg matrix H approximate
some of the eigenvalues of the original matrix A. These approximations are called
Arnoldi estimates or Ritz values. At each step n there are exactly n of them.

The iteration is derived as follows [2]:
Let m, n < m be positive integers, A a real m ×m matrix, ‖.‖ a two-norm, b an
arbitrary m-vector. Let Qn be the m × n matrix consisting of the first n columns
of Q:

Qn =

 q1 q2 q3 ... qn

and Hn be the (n+ 1)× n upper-left section of H:

Hn =

h11 . . . h1n

h21 h22

.
...

hn,n−1 hnn
hn+1,n

Then AQn = Qn+1Hn. Writing this equality in more detail we get:

5

 A

 q1 . . . qn

 =

 q1 . . . qn+1

h11 . . . h1n

h21

. . .
...

hn+1,n

And performing the matrix multiplications explicitly we get: Aq1 . . . Aqn

 =

 h11q1 + h21q2 h12q1 + h22q2 + h32q3 . . . h1nq1 + ...+ hn+1,nqn+1

Writing down the nth column of this equation separately gives the following expres-
sion:

Aqn = h1nq1 + ...+ hnnqn + hn+1,nqn+1 (2)

It is a recurrence definition for qn+1 involving the previous vectors qi for i ≤ n, which
means that they can be computed consecutively, given the first vector q1. The algo-
rithm implements this recurrence relation with the initial vector chosen arbitrarily,
with the only condition that it is of length 1.

The following is a pseudocode that describes the algorithm [3, p. 3]:

Algorithm 1: Arnoldi iteration

b = arbitrary;
q1 = b/‖b‖;
for n = 1, 2, ... do

v = Aqn;
for j = 1 to n do

hjn = q∗j v;
v = v − hjnqj;

end
hn+1,n = ‖v‖;
qn+1 = v/hn+1,n;

end

The eigenvalues of Hn, derived via an additional algorithm, are the Arnoldi estimates
of the matrix A.
The algorithm was implemented in Python and is displayed in the appendix.

Figure 1 displays the outcome of the Arnoldi iteration performed for a random
matrix 50× 50 on steps 2, 20, 49 and 50. Red crosses represent true eigenvalues of
the matrix, the dots are Arnoldi estimates for a given step.
In the last step the iteration locates the eigenvalues exactly. In practice, the algo-
rithm is stopped before the last iteration, because the dimensions of the matrix are
large and the goal is to obtain estimated values of the eigenvalues.
We can observe that the algorithm locates the eigenvalues on the edges first, and

6

Figure 1: The graph of eigenvalues (red crosses) and eigenvalue estimates of a matrix
at an iteration (dots, with the colour indicating the number of the iteration)

gradually ”moves” closer to the center of the cluster.

2.1 Arnoldi iteration and minimal polynomial

It is known that matrix iterative methods are closely related to approximation theory
[4]. In the case of the Arnoldi iteration, it is polynomial approximation. In the
following two sections we will discuss the theory behind the Arnoldi algorithm and
state the Arnoldi(/Lanczos) approximation problem that is solved by it [2].

2.2 Projections onto successive Krylov subspaces

According to Definition 2, Krylov subspaces are a nested set of spaces

Kn = [b, Ab,A2b, A3b, ..., An−1b],

for an n× n matrix A and a vector b of length n.
By definition, the columns of the matrix Q, qi, form an orthonormal basis for

Krylov subspaces generated by A and q1.

Kn = [q1, Aq1, A
2q1, ..., A

n−1q1] = [q1, q2, ..., qn−1] (3)

The matrix H̃n = QT
nAQn is the Hessenberg matrix Hn with the last row re-

moved. It represents the orthogonal projection of A onto Kn in the orthogonal basis
q1, ..., qn.

7

Definition 3 We define the Krylov matrix Kn as a matrix of columns Aib:

Kn =

 b Ab ... An−1b

Theorem 4 [2, p. 255]The matrices Qn generated by the Arnoldi iteration are
reduced QR factors of the Krylov matrix:

Kn = QnRn (4)

The Hessenberg matrices Hn are the corresponding projections

H̃n = Q∗nAQn, (5)

and the successive iterates are related by the formula

AQn = Qn+1Hn, (6)

2.3 Minimal polynomial

Consider a vector x ∈ Kn. It can be written as

x = c0b+ c1Ab+ c2A
2b+ ...+ cn−1A

n−1b (7)

for some ci ∈ C.
Let

q(z) = c0 + c1z + c2z
2 + ...+ cn−1z

n−1, (8)

then x = q(A)b and can be analysed in terms of matrix polynomials.
Monic polynomials are polynomials with the leading coefficient one. Define P n =
{monic polynomials of degree n}, then

Arnoldi Approximation Problem:

Find the minimal polynomial pnb ∈ P n such that ‖pnb (A)b‖2 = minimum
(9)

Theorem 5 [2, p. 259] As long as the Arnoldi iteration does not break down (i.e.
Kn is of full rank n), the Arnoldi approximation problem has a unique solution pnb ,
namely the characteristic polynomial of Hn.

8

3 Chebyshev polynomials

Chebyshev polynomials were first described and studied by the Russian mathe-
matician Pafnuty Chebyshev, who worked, among other things, on number theory,
integral theory and problems in mechanics [5].
They are used in many areas of applied mathematics, such as interpolation prob-
lems, approximating functions with a polynomial and trigonometry.
We will describe the original Chebyshev polynomials defined on a closed interval.
There were also developed generalisations of Chebyshev polynomials to compact
subsets of C and finitely many smooth regions, which we will not go into [6][p. 193].

3.1 Chebyshev polynomials on a closed interval

Definition 6 Chebyshev polynomials Tn(x) are defined as

Tn(x) = cos(n · arccos(x)), n ∈ N0. (10)

Tn(x) are polynomials of degree n that can also be defined by a recurrent relation:

Definition 7 Chebyshev polynomials Tn(x) are defined by

T0(x) = 1, T1(x) = x and Tn+1(x) = 2x · Tn(x)− Tn−1(x) (11)

Since the functions are a cosine function performed on some argument, their
attained values lie in [−1, 1]. This also makes it easier to determine their zeros and
extreme values.

The zeros of Tn are called Chebyshev points x∗k and are described by:

x∗k = cos

(
2k + 1

2n
· π
)
∈ [−1, 1], 0 ≤ k ≤ n− 1. (12)

The extreme values |Tn(xk)| = 1 are attained at Chebyshev abscissae:

xk = cos

(
k

n
π

)
∈ [−1, 1], 0 ≤ k ≤ n. (13)

Chebyshev polynomials have a minimal property that is formulated in the fol-
lowing theorem.

Theorem 8 (Minimal property of Chebyshev polynomials)
1. Let P be a set of polynomials of degree n that have a leading coefficient an 6= 0,
then

∃ξ ∈ [−1, 1] : |p(ξ)| ≥ |an|
2n−1

.

2. Let P∗n be a set of polynomials of degree n with leading coefficient an = 1, and
‖p‖∞ = maxξ∈[−1,1] |p(ξ)|. Then

‖2−(n−1)Tn‖∞ ≤ min
w∈P∗

n

‖w‖∞.

By the recurrent definition, the leading coefficient of Tn(x) is 2n−1, therefore
monic Chebyshev polynomials are defined as

T̃n(x) =
1

2n−1
Tn(x) =

1

2n−1
cos(n · arccos(x)) , for n ∈ N0.

9

3.2 Chebyshev polynomials of matrices

The properties of Chebyshev polynomials on compact sets are well-known, however
there hasn’t been a lot of theoretical work in the field of the Chebyshev polynomials
of matrices.
In a 2010 work [7], V. Faber, Tichy and Liesen explored general properties of Cheby-
shev polynomials of matrices in analogy to the ones on compact sets, as well as
considered special cases of matrices. Among the properties common or related to
Chebyshev polynomials of compact sets, are behaviour under shifts or scalings, and
even/odd properties.
In the next section, we consider Chebyshev polynomials of matrices and their con-
nection to the Arnoldi iteration.

- unitary invariance - shifted and scaled matrices (Th 2.2) - alternation property
(Th 2.3) - known zeros (Th 2.4. 2.5) - linear chebyshev polynomials (Th 2.6)

10

4 Ideal Arnoldi approximation problem and Cheby-

shev polynomials of matrices

4.1 Ideal Arnoldi approximation problem

The Arnoldi iteration depends on the starting vector b. However, it can be removed
from the discussion and the following problem can be posed:

Find qn ∈ P n such that ‖qn(A)‖ = minimum. (14)

It is called the ideal Arnoldi approximation problem.

The outcome of the Arnoldi iteration - the matrix Hn and, hence, the quality of
approximation - depends on the starting vector b, as well as the matrix A. However,
the choice of b is arbitrary, and although its special qualities can be important
in some cases, they do not usually impact the algorithm very much. In general,
properties of the matrix A are more significant to the problem.

By passing from the initial approximation problem to the ideal one, we can
remove the effects of the starting vector and focus on the matrix essence of the
problem.

There is an inequality relation between the polynomial solutions to the original
and ideal Arnoldi approximation problems:

Theorem 9 [4] The original and ideal Arnoldi polynomials are related by

‖pnb (A)b‖
‖b‖

≤ ‖qn(A)‖ ≤ ‖pnb (A)‖. (15)

The existence and uniqueness of the solution of (9) and (14) is stated in the following
theorem:

Theorem 10 (2 in [4]) The optimal polynomials pnb and qn exist. Provided

that the minima in (9) and (14) are nonzero, they are unique.

(16)

Proof
We can regard the original Arnoldi problem of minimizing ‖pnb (A)b‖ as a different
problem:
Find v∗ ∈ span{b, Ab, ..., An−1b} such that

‖v∗ − Anb‖ ≤ ‖v − Anb‖ ∀v ∈ span{b, Ab, ..., An−1b},

which is a problem of finding the best approximation of Anb in the space spanned
by b, Ab, ..., An−1b.
Similarly, the ideal Arnoldi problem of minimizing ‖qn(A)‖ can be thought of as
finding v∗ ∈ span{I, A, ..., An−1} such that

‖v∗ − An‖ ≤ ‖v − An‖ ∀v ∈ span{I, A, ..., An−1},

11

We will consider both of these problems in terms of vectors: find the closest to
y point v in vector space V .

1. Existence
Existence of pnb and qn stems from compactness of the spaces spanned by b, Ab, ..., An−1b
and I, A, ..., An−1.

2. Uniqueness
The proof of uniqueness can be divided in two parts:
a) is the closest point v ∈ V to y unique?
b) does it have a unique representation in terms of the vectors?

We will consider the latter question first.
b) For the ideal Arnoldi problem the uniqueness of the representation of v is equiv-
alent to the vectors I, A, ..., An−1 are linearly independent.
We will do a proof by contradiction. Assume that the vectors are linearly dependent,
then there exists a linear combination of them that is equal to zero with a non-zero
coefficient by An−1 ⇒ An−1 ∈ span{I.A, ..., An−2} ⇔ An ∈ span{A,A2, ..., An−1}
and, therefore, ‖qn(A)‖ = 0, which is a contradiction.

The reasoning is analogous for the original Arnoldi problem.
We will give the outline for the proof of part a.
a) For the original problem the proof follows from strict convexity of the vector
two-norm.

For the ideal problem, the proof is by contradiction, assuming that there exist
two distinct solutions q1(z) and q2(z). Then we form q(z) = 1

2

(
q1(z) + q2(z)

)
and

consider the right singular values of A. It is then proven that (q2 − q1)(A)wj = 0
for a number of singular values wj, 1 ≤ j ≤ J . Then we consider the convex linear
combination qε = (1 − ε)q(z) + εδq(z), where δq(z) is a monic polynomial derived
from (q2− q1)(z). It is then shown that q1 and q2 are not minimal, which leads to a
contradiction.
�

It was stated in [4] that the core of the process by which Arnoldi iteration locates
eigenvalues is the solution to the ideal problem, not the original one. The outcome
of the algorithm hinges on the implicit hope that the solution to (9) is a good
approximation of the solution to (14).

The solution to the ideal approximation problem, qn, might be called a Cheby-
shev polynomial of the matrix A of degree n, in an analogy to a Chebyshev polyno-
mial of a subset of the complex plane, which is a monic polynomial that minimizes
the sup-norm on that set. This analogy becomes an identity in the special case when
A is normal [4].

12

4.2 Special case of normal matrices

When A is normal, it is diagonalizable A = UΛUT and a polynomial of A multiplied
by the initial vector can be written as:

p(A)b = Up(Λ)UT b =
m∑
j=1

wjp(λj)uj, (17)

where wj = uTj b, {λj} are eigenvalues and {uj} are corresponding orthonormal
eigenvectors of A.
Therefore, the norm of this expression is given by

‖p(A)b‖ =
(
(p(A)b)(p(A)b)T

) 1
2 =

(
m∑
j=1

m∑
i=1

wjwip(λj)p(λi)·ujuTi

) 1
2

=

(
m∑
j=1

w2
jp(λj)

2

) 1
2

(18)
since {uj} are orthonormal. Then the original Arnoldi problem (9) is equivalent to
a weighted least squares approximation problem in the complex plane.
For the ideal Arnoldi approximation problem, the identity

‖p(A)‖ = sup
λ∈Λ(A)

|p(λ)| (19)

shows that it is equivalent to the Chebyshev approximation problem in the complex
plane: find a polynomial that has a minimum supremum norm on Λ(A).
In particular, the ideal Arnoldi polynomial qn is the same as the Chebyshev poly-
nomial for Λ(A).

4.3 Computations

In this section we approximate the ideal Arnoldi polynomial qn and plot it with true
Arnoldi polynomials for various initial vectors.
For normal matrices, the ideal Arnoldi polynomial is simply the Chebyshev poly-
nomial of the set Λ(A), as explained in the previous section, and can be computed
by known algorithms. For the general case, there also exist an algorithm involving
semidefinite programming described in [9] by Trefethen and Toh. However, here,
we used a simpler and more computationally expensive procedure discussed in the
earlier paper [4].

It is based on Theorem 9 in the case of ‖b‖ = 1. The polynomial qn can be
computed with an optimization code to find b with ‖b‖ = 1 such that ‖pnb (A)b‖ is
maximum on a fixed step n. From Theorem 9 we have

‖pnb (A)b‖ ≤ ‖qn(A)‖ ≤ ‖pnb (A)‖ (20)

∀b s.t. ‖b‖ = 1. If such a b can be found that ‖pnb (A)b‖ = ‖pnb (A)‖, then pnb = qn. It
is not known whether such b always exist, but it is assumed that it does in [4].
We used an optimization code minimize from scipy.optimize in Python. It imple-
ments a Nelder-Mead method of optimization, which was chosen because it requires
only function evaluations to run. The arguments of the method are the starting

13

Figure 2: The graph of the norms of ideal and true Arnoldi polynomials for a random
10× 10 matrix A. Dots represent values at each step.

vector b and the function that has the vector b as the argument. The function per-
forms the Arnoldi iteration until the step number n and returns the value of the
norm ‖pnb (A)b‖. The optimization code finds a b that maximizes this norm.

The black line in the graph represents the norm of the ideal Arnoldi polynomial
‖qn(A)‖ and the colored thin lines represent the vector norms ‖pnb (A)b‖ of original
Arnoldi polynomials for different starting vectors b at all steps 1-10.
We can see that the norm of the ideal polynomial is larger than the norms of original
polynomials.

Figure 3: The graph of the norms of ideal and original Arnoldi polynomials for a
random 10× 10 matrix A, with dots representing values at each step.

The second graph with dashed lines, shows the norm ‖pnb (A)‖ in addition to

14

‖pnb (A)b‖ and ‖qn(A)‖. The first graph shoes the norms of polynomials on steps
1-10, and the second graph provides a closer look on the values obtained on step 10.
According to the inequality in Theorem 9, the norms ‖pnb (A)‖ are larger or equal to
the norm of the ideal polynomial. This inequality is also illustrated by the graph,
barring the last step m.
In fact, according to the theory, all the norms have the same value in the last step.
Both the true and ideal Arnoldi polynomials are equal to the characteristic polyno-
mial of A on the final step of the algorithm (since H is unitarily similar to A by
definition and, thus, has the same characteristic polynomial), and their norms are
equal to zero.
We argue that in our implementation the norms are not identical on the last step
due to computational errors, as the differences are of order of magnitude 10−10 or
less.
The fact that the norms of each individual Arnoldi polynomial multiplied by the
initial vector is closest to the norm of the same polynomial not multiplied by the
vector in our graph, is most likely also due to the implementation.

The program was also run for matrices with special structure. Arnoldi iteration
is widely used for sparse matrices, thus we used special sparse matrices in our ex-
amples.

1. Diagonal

Figure 4: The graph of the norms of ideal and true Arnoldi polynomials for a
diagonal 10× 10 matrix A

2. Bidiagonal
In both cases, no special properties with regards to Arnoldi polynomials or ideal

Arnoldi polynomials were found. The only notable difference from a general case
is the heightened accuracy - at the last step the norms are of order of magnitude
around 10−15, not 10−8.

15

Figure 5: Graphs of the norms of ideal and true Arnoldi polynomials for a bidiagonal
10× 10 matrix A

5 Arnoldi iteration and pseudospectra

Definition 11 of eigenvalues and eigenvectors
Let A ∈ Rm×m be a square matrix. A nonzero vector x ∈ Cm is an eigenvector of
A, and λ ∈ C is its corresponding eigenvalue, if and only if

Ax = λx (21)

The set of all eigenvalues of A is called the spectrum of A and is denoted by
Λ(A) ⊂ C. Eigenvalues and eigenvectors provide valuable information about matri-
ces and the way they operate, as well as reduce problems to a collection of scalar
ones. Examples of the use of eigenvalues are problems of resonance and stability.
[2]

Pseudospectra of a matrix, like spectra of a matrix, is a property that describes
the way a matrix ”behaves”. Eigenvalues are often useful to determine what a
matrix ”does”, for example in modelling physical events, however, in some cases,
particularly when the matrix in question is far from normal - that is, does not have
a full set of orthogonal eigenvectors, - its eigenvalues cannot accurately describe the
matrix. [2, p. 258] In cases like these, another, more complex, concept is used -
pseudospectra.

16

There are several equivalent definition of pseudospectra. [10]

Definition 12 Let A ∈ Rm×m and ε > 0 be arbitrary. The ε-pseudospectrum σε(A)
of A is the set of z ∈ C such that

‖(z − A)−1‖ > ε−1. (22)

Using a convention that ‖(z−A)−1‖ =∞ for z ∈ σ(A), where σ(A) is the spectrum
(the set of eigenvalues).

Definition 13 σε(A) is the set of z ∈ C such that

z ∈ σ(A+ E) (23)

for some E ∈ Cm×m with ‖E‖ < ε.
Definition 2 defines ε-pseudospectra as a set of points that are eigenvalues of a

perturbed matrix A+ E with ‖E‖ < ε.

Definition 14 σε(A) is the set of z ∈ C such that

‖(z − A)v‖ < ε (24)

for some v ∈ Cm with ‖v‖ = 1.

For an arbitrary A ∈ Rm×m and ε > 0, σε(A) is nonempty, open, and bounded,
with at most m connected components, each containing one or more eigenvalues of
A.

It was shown numerically that the ideal Arnoldi polynomial approximates pseu-
dospectra for matrices that are far from normal.[9]
The way the polynomials approximate pseudospectra is through their lemniscates,
regions defined as Ln(A) = {z ∈ C : |qn(z)| ≤ ‖qn(A)‖}.
Since ‖qn‖Λ(A) ≤ ‖qn(A)‖, the lemniscates contain the spectrum Λ(A) ⊂ Ln(A).

In their 1998 study ”Chebyshev polynomials of a matrix” [9] Kim-Chuan Toh and
Lloyd Trefethen found a link between pseudospectra and ideal Arnoldi lemniscates.
They conducted a number of numerical experiments that revealed a connection be-
tween the pseudospectra of a certain, arbitrarily chosen, ε and lemniscate regions
of the Chebyshev polynomial of the same matrix. Matrices considered included a
diagonal, a bidiagonal, a Grcar, an ellipse, a Beam-Warming matrices and others.
The nature of the approximation of pseudospectra by Chebyshev lemniscates is not
outlined in that paper, but the results open an area for further research on the topic.

17

6 Conclusions

In this thesis we looked into the Arnoldi iteration, an iterative algorithm that pro-
vides useful approximations of eigenvalues of a matrix. We relayed its implementa-
tion as well as the way it works and delivers the results on a theoretical level. We
also looked into questions of how the iteration produces the values and why they
are used as approximations of the eigenvalues.

Expanding on the latter point, we explored the ideal Arnoldi approximation
problem and the way it relates to the original Arnoldi approximation problem. It
also provides insight into the way the original algorithm approximates properties of
the matrix.

As an illustration to an inequality involving the norms of the Arnoldi polynomial
and the Chebyshev polynomial we created a program that plots the norms. We
plotted the norms for several types of matrices.

We also explored the link between pseudospectra of a matrix and lemniscates of
the ideal Arnoldi polynomial.

Some further work can be done into the question of how and why Chebyshev
polynomial approximates pseudospectra, and how it reflects other properties of a
matrix. Another area of potential study can be directed towards studying the Cheby-
shev polynomials of a matrix themselves. Some of their properties were discussed
and proven in [7], but there is room for further work.

18

7 The Code

The Arnoldi iteration

1 import matplotlib as mpl

2 import matplotlib.pyplot as plt

3 import numpy as np

4 from matplotlib.animation import FuncAnimation

5

6 N = 20; #big number

7 m = 20; #the size of matrix

8 b = np.random.rand(m); #arbitrary

9

10 A = np.random.rand(m, m); #matrix A is arbitrary

11

12 np.reshape(A, (m , m));

13

14 q = b / np.linalg.norm(b);

15 Q = np.array ([q]);

16 H = np.zeros ((N + 1, N + 1));

17 np.reshape(H, (N + 1, N + 1));

18

19 eigenvaluesH = []; #array of arrays with Ritz values

20

21 for n in range(N):

22 v = np.dot(A, q); #use a blackbox procedure

23 for j in range(n + 1):

24 qj = np.transpose(Q[j, :]);

25 h = np.dot(qj, v);

26 v = v - h * qj;

27 H[j][n] = h;

28 h = np.linalg.norm(v);

29 H[n + 1][n] = h;

30 q = v / h;

31 Q = np.concatenate ((Q, [q]), axis = 0);

32

33 ev, eigenvectorsH = np.linalg.eig(H[0:(n + 1), 0:(n + 1)]);

34 eigenvaluesH.append(ev);

35

36 Q = np.transpose(Q)

37

38

39 eigenvaluesA , eigenvectorsA = np.linalg.eig(A)

19

The Arnoldi iteration function

1 import matplotlib as mpl

2 import matplotlib.pyplot as plt

3 import numpy as np

4 from matplotlib.animation import FuncAnimation

5

6

7 def arnoldi(A, N, b = np.zeros (2)):

8 (m, m) = np.shape(A);

9 if b.all() == 0:

10 b = np.random.rand(m);

11

12 q = b / np.linalg.norm(b);

13 Q = np.array ([q]);

14 H = np.zeros ((N + 1, N + 1));

15 np.reshape(H, (N + 1, N + 1));

16

17 eigenvaluesH = [];

18

19 for n in range(N):

20 v = np.dot(A, q); #use a blackbox procedure

21 for j in range(n + 1):

22 qj = Q[j, :].T;

23 h = np.dot(qj , v);

24 v = v - h * qj;

25 H[j][n] = h;

26 h = np.linalg.norm(v);

27 H[n + 1][n] = h;

28 q = v / h;

29 Q = np.concatenate ((Q, [q]), axis = 0);

30

31 ev , eigenvectorsH = np.linalg.eig(H[0:(n + 1), 0:(n + 1)]);

32 eigenvaluesH.append(ev);

33

34 return eigenvaluesH;

20

The code for plotting the norms of ideal Arnoldi polynomials ‖qn(A)‖
1 import matplotlib as mpl

2 import matplotlib.pyplot as plt

3 import numpy as np

4 from arnoldi_function import *

5 from scipy.optimize import minimize

6

7

8 def pFunc(p, X):

9 ans = np.zeros((N, N))

10 #print('x', x)

11 Xi = np.eye(N)

12 for i in range(np.size(p)):

13 #print('p[', i, ']: ', p[i])

14 #print('X^', i, ': ')
15 #print(Xi)

16 ans += p[i] * Xi

17 Xi = np.dot(X, Xi)

18 return ans

19

20

21 #comparison of the ideal Arnoldi polynomial and the real Arnoldi

polynomials with different b

22 N = 10; #big number

23 m = 10; #the size of matrix

24 A = np.random.rand(m, m); #matrix A is arbitrary

25

26

27 l = 2 #number of true arnoldi polynomials

28 color = plt.get_cmap('turbo ', l) #'plasma '
29

30 Y = np.zeros ((l, N))

31 Y1 = np.zeros ((l, N))

32

33 for k in range(l):

34

35 b = np.random.rand(m); #arbitrary

36

37 np.reshape(A, (m , m));

38

39 q = b / np.linalg.norm(b);

40

41 eigenvaluesH = arnoldi(A, N, q)

42

43 X = np.array(range(1, N + 1))

44

45 for i in range(N):

46 p = np.poly(eigenvaluesH[i])

47 p = p[::-1]

48 Y[k, i] = np.linalg.norm(np.dot(pFunc(p, A), q), ord = 2)

49 Y1[k, i] = np.linalg.norm(pFunc(p, A), ord = 2)

50

51

52 plt.plot(X, Y[k], color = color(k), linewidth = 0.9, label = r'
$||p^n_{}(A)b_{}||$'.format(k + 1, k + 1))

53 plt.plot(X, Y1[k], color = color(k), linewidth = 0.9, linestyle

= '--', label = r'$||p^n_{}(A)||$'.format(k + 1))

54

21

55

56 #compute and plot the ideal arnoldi polynomial

57

58 YY = np.zeros(N)

59

60 for n in range(1, N + 1):

61 pp = np.zeros(n)

62

63 def bFunc(b):

64 global n

65 global pp

66 b = b / np.linalg.norm(b, ord = 2)

67 eigenvaluesH = arnoldi(A, n, b)

68 p = np.poly(eigenvaluesH[n - 1])

69 p = p[::-1]

70 pp = p

71 norm = np.linalg.norm(np.dot(pFunc(p, A), b), ord = 2)

72 return -norm

73

74

75 b0 = b / np.linalg.norm(b, ord = 2)

76

77 res = minimize(bFunc , b0 , method='nelder -mead',
78 options ={'xatol ': 1e-4, 'disp': True}) #1e-8

79

80 print("res.fun = ", res.fun)

81 print('pp = ', pp)

82 print('matrix norm: ', np.linalg.norm(pFunc(pp , A), ord = 2))

83

84 YY[n - 1] = -res.fun

85

86

87

88 plt.plot(X, YY , color = 'black ', linewidth = 2.0, label = r'$||q^n(
A)||$')

89

90 plt.grid(True)

91 plt.yscale('log')
92 #plt.ylim (10**(-10) , 10**(-4))

93 #plt.xlim (9.6, 10.1)

94 plt.xlabel('n')
95 plt.ylabel(r'$||q^n(A)||$ and $||p^n(A)b||$ and $||p^n(A)||$')
96 #plt.text(7, 10**0 , r'Ideal Arnoldi ')
97 #plt.text(5, 10**(-3), r'Arnoldi ')
98 plt.legend ()

99 plt.show()

100

101 #----------------------closer look at the last step

--

102

103 plt.grid(True)

104 plt.yscale('log')
105

106 for k in range(l):

107 plt.plot(X[8:10] , Y[k, 8:10] , color = color(k), linewidth =

0.9, label = r'$||p^n_{}(A)b_{}||$'.format(k + 1, k + 1))

108 plt.plot(X[8:10] , Y1[k, 8:10] , color = color(k), linewidth =

0.9, linestyle = '--', label = r'$||p^n_{}(A)||$'.format(k + 1))

22

109 #plt.plot(X, Y, color = color(l), linewidth = 0.9)

110 #plt.plot(X, Y1, color = color(l), linewidth = 0.9, linestyle =

'--')
111 plt.plot(X[8:10] , YY[8:10] , color = 'black ', linewidth = 2.0, label

= r'$||q^n(A)||$')
112

113 plt.xlabel('n')
114 plt.ylabel(r'$||q^n(A)||$ and $||p^n(A)b||$ and $||p^n(A)||$')
115 plt.ylim (10**(-9.5) , 10**(-5))

116 plt.xlim (9.8, 10.01)

117 plt.legend ()

118 plt.show()

23

The code for creating the animation

1 import numpy as np

2 import pandas as pd

3 import seaborn as sns

4 import matplotlib

5 import matplotlib.pyplot as plt

6 import matplotlib.animation as animation

7

8 from arnoldi import eigenvaluesH , eigenvaluesA , N;

9

10 evs = eigenvaluesH;

11 m = np.size(evs);

12

13 #initialize the writer

14 Writer = animation.writers['ffmpeg ']
15 writer = Writer(fps = 5, metadata = dict(artist = 'Me'),
16 bitrate = 1800)

17

18 #create a figure

19 fig = plt.figure(figsize =(10 ,6))

20 plt.xlim(np.min(evs[m - 1]. real) - 1,

21 np.max(evs[m - 1]. real) + 1)

22 plt.ylim(np.min(evs[m - 1]. imag) - 1,

23 np.max(evs[m - 1]. imag) + 1)

24 plt.xlabel('Realz ', fontsize = 20)

25 plt.ylabel('Imagz ', fontsize = 20)

26 plt.title('Arnoldi eigenvalues ', fontsize = 20)

27

28

29 colors = plt.get_cmap('viridis ', m);

30 norm = plt.Normalize(0, N)

31 sm = plt.cm.ScalarMappable(cmap = "viridis", norm = norm)

32 sm.set_array ([])

33

34 f = 0

35

36 #animation function

37 def animate(i):

38 global f

39 data = evs[i]; #select data range

40 if i > 0:

41 p = sns.scatterplot(x = evs[i - 1].real ,

42 y = evs[i - 1].imag , data = evs[i - 1],

43 color = (1, 1, 1))

44 p = sns.scatterplot(x = eigenvaluesA.real ,

45 y = eigenvaluesA.imag , data = eigenvaluesA ,

46 color = 'red', marker = 'x')
47 p = sns.scatterplot(x = data.real ,

48 y = data.imag , data = data ,

49 color = colors(i))

50 p.tick_params(labelsize =17)

51 if i == 0 and f == 0:

52 f = 1

53 p.figure.colorbar(sm)

54

55

56 #start the animation

57 ani = matplotlib.animation.FuncAnimation(fig , animate ,

24

58 frames = N, repeat = True)

59

60 #save the animation

61 ani.save('ArnoldiEvs.mp4', writer = writer)

25

8 References

References

[1] W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix
eigenvalue problem, Quarterly of Applied Mathematics, volume 9, pages 17–29,
1951

[2] L. N. Trefeten, David Bau, Numerical Linear Algebra, 1997

[3] K.-C. Toh and L. N. Trefethen, Calculation of pseudospectra by the Arnoldi
iteration, SIAM J. Sci. Comput. 17 (1996), 1-15

[4] A. Greenbaum and L. N. Trefethen, GMRES/CR and Arnoldi/Lanczos as matrix
approximation problems, SIAM J. Sci. Comput. 15 (1994), 359-368

[5] Pafnuty Lvovich Chebyshev, sketch by A. M. Lyapunov (in Russian),
http://escriptorium.univer.kharkov.ua/bitstream/1237075002/5967/2/
Tom 4 17 Lyapunov.pdf
(Online; accessed 13-August-2021)

[6] P. Deuflhard and A. Hohmann, Numerical Analysis in Modern Scientific Com-
puting

[7] V. Faber, J. Liesen, and P. Tichy, On Chebyshev polynomials of matrices, SIAM
J. Matrix Anal. Appl., Vol. 31, No. 4, pp. 2205–2221, 2010

[8] K.-C. Toh, Matrix Approximation Problems and Nonsymmetric Iterative Meth-
ods, Ph.D. thesis, Cornell University, Ithaca, NY, 1996.

[9] K.-C. Toh and L. N. Trefethen, The Chebushev polynomials of a matrix, SIAM
J. Matrix Anal. Appl. 20 1998, 400-419

[10] L. N. Trefethen and M. Embree, Spectra and pseudospectra of matrices, The
behaviour of nonnormal matrices and operators, Princeton University Press,
Princeton and Oxford, 2005

26

