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Abstract 
 

Anthropogenic pressure on coastal areas continues to increase, thus intensifying coastal 

erosion. Coastal monitoring programs are therefore essential to prevent severe 

ecosystem and economic consequences. Successful coastal monitoring schemes require 

highly accurate analysis-ready Digital surface models (DSMs) derived using the same 

workflow. Using a Unmanned Aerial Vehicle – Structure from motion (UAV-SfM) 

approach allows for a cost-efficient, automated approach ensuring repeatability. Image 

segmentation is used to create water masks automatically, and an algorithmic approach 

to identify and import GCPs was developed. While most literature features a semi-

automatic approach, this pipeline presents a workflow that allows for a fully automated 

DSM generation from UAV images. An image segmentation model (VGG-Segnet) is 

trained to automatically identify water and land areas in the UAV images resulting in a 

pixel accuracy of 90%. Ground control points (GCPs) are automatically identified using 

only the RGB images of the UAV by differentiating pixel clusters by color, size, and 

shape, as well as relative position. While the outcome was not perfect and the markers 

were not always placed perfectly in the center, the approach showed high potential to 

be developed further. The study further shows the importance of using appropriate 

settings in Agisoft Metashape. Settings are likely to depend on equipment and study 

area. However, some insight into the effect of settings on the alignment quality is 

presented. The DSMs created in this study achieved an RMSE of 3 - 4 cm, proving a 

very high accuracy. Further analysis showed that this error is likely to be 

underestimated due to the poor distribution of check points.  

 

 

Keywords: Physical geography, ecosystem analysis, geomatics, GIS, UAV, structure-

from-motion, machine learning, coastal monitoring  
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1. Introduction 

Anthropogenic pressure on coastal areas continues to increase. Estimates suggest that 

by 2025, almost 75% of the world’s population will live within 60 km of a coast 

increasing the vulnerability to coastal erosion processes (Pranzini et al. 2015;  

Gonçalves et al. 2019). Besides ecosystem consequences, such as habitat loss, 

intensified coastal erosion can have severe socio-economic repercussions, including the 

loss of property and the destruction of infrastructure (Wen et al. 2019). Hence it is vital 

to monitor coastal processes to minimize these damaging outcomes.  

Coastal monitoring requires topographic datasets such as Digital Surface Models 

(DSMs) (Mancini et al. 2013). DSMs are widely used as the basis of city and landscape 

modeling such as glacier monitoring, estimating biomass, dune monitoring, and 

monitoring of coastal zones (Baltsavias et al. 2001;  Macay Moreia et al. 2013;  Bendig 

et al. 2014;  Almeida and Almar 2020;  Grottoli et al. 2020). A DSM at high accuracy 

is crucial to ensure the quality of models requiring elevation. Traditionally, DSMs have 

been derived using terrestrial surveying techniques involving theodolites and total 

stations (TS). These are labor-intensive and require high levels of expertise (Nelson et 

al. 2009). Due to the laboriousness of these established methods, remote sensing 

techniques have increased in popularity. Remote sensing methods utilize aerial and 

satellite platforms using photogrammetry techniques and, more recently, Light 

Detection and Ranging (LiDAR) (Leal-Alves et al. 2020). Until recently, airborne laser 

scanning using LiDAR was unrivaled when requiring time-efficient, high-resolution 

DSMs, yet it is associated with high costs (Leal-Alves et al. 2020).  

Recent advances in Unmanned Aerial Vehicle (UAV) technology have enabled the use 

of commercial-grade UAVs for image collection (Jiang et al. 2017). Comparisons 

between traditional surveying methods and UAV approaches have proved that time 

efficiency is greatly enhanced, and the accuracy is comparable, if not better, when using 

UAVs (Carrera-Hernández et al. 2020;  Lu and Chyi 2020). To align all images 

obtained during a UAV flight, it is necessary to derive the exact position and orientation 

of the camera. Despite the rapid advances in UAV systems, payload limitations and low 

altitude flight paths (up to 120 m) cause difficulties in deriving those parameters. Image 

alignment describes the process of finding a suitable transformation between two 

images such that points identified in both images can be related, ensuring that a real-

world feature is not represented twice (Brown 1992).  

Structure-from-Motion (SfM) is a highly automatable photogrammetry method used to 

perform image alignment and create 3D models. SfM techniques grew popular for 

reconstructing 3D scenes from large photo collections such as flickr.com, including 

reconstructing the Colosseum in Rome (Agarwal et al. 2009) and the Great Wall of 

China (Snavely et al. 2006). Studies have since shown that this technique can be used 

with UAV aerial imaging to derive 3D point clouds of similar accuracy to ones 

generated from aerial laser scanning (Mancini et al. 2013). This has prompted the 

successful use of UAV-SfM methods in a wide range of applications, including; 
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floodplain monitoring (Izumida et al. 2017), forestry (Iglhaut et al. 2019), archaeology 

(Rodríguez-Martín and Rodríguez-Gonzálvez 2020), and disaster risk monitoring 

(Gomez and Purdie 2016).   

The application of UAV-SfM methods within coastal monitoring has gained increased 

attention after Mancini et al. (2013) achieved a vertical accuracy of 20 cm for the 

resulting DSMs. A high degree of automation was proven, suggesting the use of this 

method in rapid response and monitoring applications. Further successful 

implementations include measurements of bedrock erosion in rocky coasts (Hayakawa 

and Obanawa 2020), quantifying shoreline erosion (Lin et al. 2019), measuring dune 

and beach face erosion (Turner et al. 2016), and identifying coastline change 

(Papakonstantinou et al. 2017). Most of this research relies on several manual steps, 

which are both time-consuming and require extensive expertise. This thesis, therefore, 

focuses on three parts: automation, optimization, and evaluation (assessment).  

It is common practice to manually identify Ground Control Points (GCPs) for 

referencing and manually create masks to mask undesired areas (Gonçalves and 

Henriques 2015). Manually masking hundreds of images individually and identifying 

tens of GCPs on at least three images is time-consuming, making it desirable to 

automate these processes.  

Optimized workflows within Metashape (Agisoft 2020a), one of the most popular 

photogrammetric processing software packages used for SfM, are widely debated and 

often use outdated software versions (Li et al. 2016;  USGS 2017;  Tinkham and Swayze 

2021). Moreover, inexperienced operators often rely on default software settings, which 

may be inadequate for individual purposes (Mayer et al. 2018). Therefore, the study 

investigated optimized settings for Metashape 1.7.0, presenting comprehensive results 

that can be used as a reference to optimize further projects. The thesis concludes with 

an accuracy assessment of the automatically generated DSM, allowing comparisons to 

results from other literature.  

The aim of this thesis is to study the use of DSMs created from UAV image data for 

coastal monitoring applications. Emphasis is put on the optimization and 

automatization of the workflow. The research questions are: 

• To what extent can the processing of creating DSMs from images captured with 

a UAV be automated to minimize the need for manual labor and expertise? 

• To what extend can settings within the SfM software be optimized to improve 

the accuracy of the DSM? 

• What accuracy can be achieved using a UAV-SfM derived point cloud and 

DSM in a coastal area? 
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2. Background 

2.1. Coastal monitoring 

A successful coastal monitoring scheme requires accurate and up-to-date data derived 

from a uniform approach (Mills et al. 2005). While current data is important, having a 

time series is crucial. Time series data should be acquired using the same approach to 

guarantee a seamless monitoring program allowing conclusions on how the coastal area 

is changing. If datasets are derived using different approaches, it becomes difficult to 

distinguish between dataset errors and actual change.  

2.1.1. Traditional coastal monitoring techniques 

Monitoring techniques can be classified into traditional, conventional monitoring and 

evaluation methods and remote sensing methods (Wen et al. 2019). Traditional beach 

surveys are ground-based and use Global Navigation Satellite Systems (GNSS), or TS, 

where 3D point information is collected independently, requiring large amounts of 

interpolation as the point data clouds created are relatively sparse (Delgado and Lloyd 

2004). Terrestrial laser scanning (TLS) and mobile laser scanning (MLS) methods have 

been introduced to account for this. However, the time-consuming nature and the 

relatively high cost remain. Additionally, being ground-based limits the use of these 

techniques in challenging terrain and may negatively impact the environment, making 

it an unviable option in sensitive areas such as dunes (Shaw et al. 2019).  

2.1.2. Airborne remote sensing monitoring techniques 

Due to such shortcomings, airborne remote sensing has emerged as the primary source 

of geospatial information for detecting and monitoring coastline changes (Lin et al. 

2019). The most common airborne remote sensing methods used for monitoring coasts 

include satellite imagery (Rangel-Buitrago et al. 2015), airborne lidar systems (ALS) 

(Obu et al. 2017), and UAV photogrammetry (Mancini et al. 2013;  Gonçalves and 

Henriques 2015).  

Satellite remote sensing has the advantage of providing multispectral or even 

hyperspectral data. While the spatial resolution has significantly improved throughout 

the last decades, Papakonstantinou et al. (2016) and Tabor (2018) have concluded that 

the data is too coarse to monitor small coastal changes, and instead, very high resolution 

(VHR) data should be used. ESA’s Copernicus program distinguishes VHR-1 and 

VHR-2, where VHR-1 has a spatial resolution of < 1 m and VHR-2 of 1-4 m (Hoersch 

and Amans 2015). Restrictions concerning spatial resolution, as well as limited 

temporal flexibility due to the satellite’s orbit, have led to aerial LiDAR systems (ALS) 

becoming a standard topographic product for coastal mapping (Lin et al. 2019).  

LiDAR is an active remote sensing technology using a laser pulse to measure the 

distance to an object or the ground surface (Kandrot 2013). The altitude is retrieved by 

measuring the time between sending out the laser pulse and receiving the reflection. To 
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measure the elevation of the surface, the aircraft needs to be fitted with a sensor 

measuring the elevation. The altitude of the aircraft (height between aircraft and 

surface) can then be subtracted from the elevation of the aircraft (height between the 

aircraft and sea level) to determine the elevation of the surface (height between surface 

and sea level). This method produces a point cloud throughout a flight, each point 

containing X, Y, and Z coordinates. Usually, there is a positive correlation between the 

number of points measured this way and the accuracy of a surface model derived from 

the dataset, as less interpolation is required. Even though the spatial resolution of ALS 

is lower than TLS, it is sufficiently high for coastal monitoring and allows for 

monitoring complicated terrain and sensitive areas (Westoby et al. 2018). However high 

costs prohibit repeating flights with a high temporal resolution. Seasonal dynamics can 

therefore not be analyzed without soaring costs.  

None of the airborne remote sensing techniques fulfill the accuracy and repeatability 

requirements of a successful coastal monitoring scheme (Mills et al. 2005). LiDAR 

lacks repeatability at a reasonable cost, while satellite data is usually not accurate 

enough. While TLS and MLS fulfill the accuracy requirements, the inability to tackle 

challenging terrain, high costs and time effort make it inadequate for many study areas. 

Until recently, scientists had to trade-off accuracy, repeatability, coverage, and costs 

when monitoring coastal areas. In contrast, the emergence of UAV-based 

photogrammetry over the last years provides a cheap, accurate, and flexible system 

capable of monitoring coastal zones.  

2.1.3.  UAV data collection in coastal areas 

Due to technological advances, off-the-shelf UAVs equipped with a camera and GNSS 

are now available for use in coastal research applications (Turner et al. 2016). These 

UAVs are usually small multirotor drones such as the DJI Mavic Pro or the DJI 

Phantom 4, capable of carrying a payload of around one kilogram. Besides a UAV, this 

method requires GCPs, for referencing the images (Section 2.2.2) and an SfM pipeline 

to reconstruct the topography from the images (Section 2.2.3).  

Utilizing off-the-shelf equipment makes this technique cost-efficient and flexible. 

Flexibility is, however, limited by weather conditions. Strong winds can influence the 

UAV’s automated flight path, and both rain and direct sun can greatly affect the quality 

of the images. Therefore, cloudy conditions are preferred when conducting a UAV 

survey (Leitão et al. 2015).  

Papakonstantinou et al. (2016) further highlight the high level of automation, the ease 

of conducting such a survey, and the resulting high repeatability and the high resolution 

of under 5 cm as significant benefits compared to other methods used to monitor coastal 

zones. Extensive further research has been done, backing UAV-SfM as a viable option 

for coastal monitoring (Harwin and Lucieer 2012;  Mancini et al. 2013;  Gonçalves and 

Henriques 2015;  Long et al. 2016;  Chen et al. 2018;  Elsner et al. 2018;  Westoby et 

al. 2018). Shortcomings linked with this technique include a relatively small spatial 
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coverage and the necessity of GCPs. While the spatial coverage is likely to increase 

over time due to battery improvements increasing flight times, the need for at least one 

GCP will most certainly remain.  

2.2. UAV data processing 

2.2.1. Structure-from-Motion 

SfM is a photogrammetric technique in computer vision, capable of reconstructing a 

3D scene from 2D images at high resolution. This allows for the construction of a DSM 

from a set of aerial images. The method uses the principle that depth can be recovered 

from multiple viewpoints whose relative position is known through triangulation, much 

like human binocular vision (Iglhaut et al. 2019). Multiple viewpoints can be retrieved 

from a single camera if either the camera moves while the object of interest remains 

stationary or vice versa. In the case of UAV flights, a single camera moves while the 

surface remains stationary. Two problems remain: firstly, a method is required to 

identify the same feature in two different images (tie points), and secondly, the image 

viewpoints need to be recovered to retrieve relative positions between them. 

Conventional SfM algorithms, therefore, follow the process described in Figure 1, 

including the three main components: Feature extraction and matching, camera motion 

estimation, and 3D structure recovery (Ozyesil et al. 2017) 

 

Figure 1 - Structure-from-Motion 3D reconstruction pipeline. (Workflow diagram adapted from Vasile et al. (2011)) 

In the feature extraction step, distinct features (key points) are identified in each image 

and compared with key points in other images. If images overlap, it is possible to 

identify the same key point in multiple images and match them, forming tie points. 

Feature extraction and matching methods are based on the idea that similar-looking 

features are likely to correspond to the same feature in the real world. Such algorithms 

started as corner detectors and developed towards cluster-based approaches to identify 

clusters belonging to a single object, such as the commonly used Scale Invariant Feature 

Transform (SIFT) algorithm (Moravec 1980;  Lowe 2004). SIFT and other improved 

algorithms allow for identifying tie points anywhere in the image even if the quality, 

brightness, or scale differs between the images. Once features are identified in all 

images, features from one image can be matched to those in all other images to create 
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tie points. Each tie point is identified and grouped with other tie points if these describe 

the same feature (stereo matching).  

The next step is to estimate the interior and exterior orientation parameters (Snavely 

2011). Exterior orientation parameters describe the pose of the camera, thus the 

orientation and position of the camera. Interior orientation parameters include camera 

focal length, coordinates of the principal point of the image, and lens distortion 

coefficients. Both exterior and interior orientation parameters can be retrieved from the 

network of tie points using bundle adjustment to align the images (Agisoft 2020b). 

Simultaneously a sparse point cloud representing the triangulated 3D coordinates of the 

most prominent features is calculated through stereo matching. Depth for overlapping 

image pairs can then be calculated by generating multiple depth maps for each image. 

When combining these depth maps, a partial dense point cloud for this image is created. 

Combining these individual dense point clouds allows for constructing a final dense 

point cloud for the entire study area. This final dense point cloud can then be used to 

create a DSM. 

Metashape, earlier Photoscan, is a commercial 3D reconstruction software produced by 

Agisoft LLC, Russia. There are many other commercial software packages (e.g., Pix4D, 

RealityCapture, VisualSFM, Bentley CC) and some Open-Source tools (e.g., ColMap 

or AliceVision) able to handle this workflow. Comparisons of SfM software packages 

by Jiang et al. (2020) and Kingsland (2020) have shown that while Metashape has a 

longer processing time, it is the most reliable in image alignment and produces some of 

the best results that are both consistent and repeatable. Pix4Dmapper stands out as it 

rivals Metashape in accuracy while processing much faster (Kingsland 2020). 

Nevertheless, Sefercik et al. (2019) concluded that Metashape performs better when 

generating DSMs. Further, Metashape has found much success and application in 

research when reconstructing 3D scenes (Verhoeven 2011;  Li et al. 2016;  Hendrickx 

et al. 2019). While the exact algorithms used within Metashape are not published, 

Agisoft confirmed in 2011 that the feature matching step works similar to the SIFT 

algorithm, and camera locations are approximated and later refined using bundle-

adjustment, a process similar to the Bundler system (Semyonov 2011). Metashape 

favors accuracy over speed, a theory confirmed by various papers since (Jiang et al. 

2020;  Kingsland 2020). 

2.2.2. Georeferencing using GCPs and standard GNSS 

As briefly mentioned before, the SfM-pipeline reconstructs the 3D scene only 

relatively. It is, therefore, necessary to georeference the output model from the SfM-

pipeline. Ground Control Points (GCPs) are required to do this accurately. GCPs are 

usually square markers made of waterproof material, painted with a high contrast 

pattern to make them easy to identify. If these points are well distributed and the 

coordinates of these GCPs are known, it is possible to identify and reference the DSM. 

Even though GNSS is improving, and real-time kinematic/post-processing kinematic 

(RTK-PPK) methods are introduced to UAV systems, at least one GCP is still necessary 
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for reliable referencing (Tonkin and Midgley 2016). RTK and PPK are GNSS 

correction methods used to correct location errors. The UAV used to derive the 

provided datasets, however, did not include such a system. 

When using standard GNSS, it is essential to use multiple evenly distributed GCPs 

(Jaud et al. 2018). Saponaro et al. (2019) provide an extensive study on the GCP 

requirements for a successful UAV-based topographic study. They conclude that the 

usage of low-precision equipment typically used on a UAV requires post-processing of 

the sparse point cloud to guarantee the precision standards required for topographic 

purposes. Such post-processing of the sparse point cloud can usually be done in SfM 

software packages such as Metashape. Further, Saponaro et al. (2019) suggest using 6-

7 GCPs for GIS (Geographic Information System) applications and more than 15 GCPs 

to produce accurate cartographic work. Proper referencing of the images is crucial 

before the SfM pipeline can be utilized to ensure reliable results. 

2.3. Identifying GCPs on images 

When identifying the center of the GCP in the image, the software is told where this 

accurately measured point is located. Identifying three points like this is sufficient for 

the software to identify the same point in all other images accurately. Software such as 

Metashape provides automatic identification methods. Limitations being that 

depending on the number of objects resembling a GCP in the study area, the process 

can get error-prone, and only certain GCP types can be identified. Further, this 

automated system requires manual input of the coordinates, as there is no way for it to 

know which point corresponds to which measurement. James et al. (2017) proposed a 

semi-automated GCP identification compatible with early versions of Agisoft 

Photoscan. While the method is promising, it requires a manual initiation process to 

identify a GCPs position in an image (James et al. 2017). Therefore, even this approach 

is not sufficient to provide a fully automated workflow. 

2.4. Masking water from the images 

Gonçalves and Henriques (2015) pointed out that the water from breaking sea waves 

can make it difficult for software like Metashape to generate accurate tie points. 

Therefore, they propose using masking techniques to exclude such areas from the 

individual images during the feature identification and matching steps. However, to 

study coastal areas thoroughly, it is necessary to include all areas of the beach, all the 

way to the swash zone (Figure 2) (Papakonstantinou et al. 2016). The swash zone 

describes the part of the beach which is alternately wet or dry due to wave run-up. It is, 

therefore, desirable to generate water masks in a way that only areas outside of the 

swash zone get excluded. Further, it is not desirable to manually create individual water 

masks for every image in every UAV flight.  
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Figure 2- Location and change of the swash zone between the beach and the sea at different weather conditions 
(Figure adapted from Danchenkov and Belov (2019) using own unmanned aerial vehicle image from image set 6) 

Image segmentation describes the process of classifying an image into homogeneous 

areas (Cheng et al. 2001). Each pixel in an image is labeled to match one of the 

predefined classes. This can be done efficiently using machine learning, especially 

convolutional neural networks (CNNs). CNNs are a type of neural network in which 

the architecture is specified to detect complex features in data. For an in-depth 

description and assessment of recent advances in CNN, please refer to Gu et al. (2018). 

To build such a CNN model for image segmentation, the Tensorflow 2.0 Python 

repository containing the deep learning API Keras can be used (Chollet 2015;  Abadi 

et al. 2016). Tensorflow is an open-source machine learning system providing the 

architecture for large-scale machine learning (Abadi et al. 2016). Keras provides the 

high-level building blocks for developing deep-learning models and uses Tensorflow 

as the backend engine (Chollet 2018). Keras is widely used, for example, by Google, 

Netflix, and the machine-learning competition platform Kaggle (Chollet 2018). 

Additionally, this approach has been acknowledged for implementing image 

segmentation, especially in medical research but also when working with aerial images 

(Roth et al. 2018;  Ivanovsky et al. 2019).  

2.5. Parameter Settings in Metashape 

When working with Metashape, the user can select different settings at certain 

workflow stages affecting the final DSM. For example, during image alignment, these 

include if images should be upscaled or downscaled and the maximum number of 

identified points on multiple images (tie points). In addition, when optimizing the 

retrieved point cloud, different metrics are available to disregard tie points of poor 

quality.   

Identifying the optimal settings in Metashape is difficult. Little research has been 

published, as many commercial users do not publish their findings. Studies providing 

information about the influence of parameters on the quality of the product include 

James et al. (2017), Röder et al. (2017), Mayer et al. (2018), and (USGS 2017). 

Generally, optimal parameter settings differ greatly depending on the study area and 

hardware used. However, the settings and workflow found in literature will be used as 

guidelines and tested for this study area. Further, Röder et al. (2017) and USGS (2017) 

used Agisoft Photoscan version 1.2.6, James et al. (2017) version 1.3.2 and Mayer et 

al. (2018) version 1.4.1. Settings used should therefore be double-checked for 

Metashape version 1.7.0, the version used in this thesis.  
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3. Methodology 

3.1. Study Area and Data 

3.1.1.  Study Area 

The study area describes a coastal stretch around the point 14.310 N and 55.913 E 

(EPSG: 4326), encompassing an area of 0.232 km2 just south of Åhus harbor in the 

eastern part of the municipality of Kristianstad, Sweden (Figure 3). A similar study area 

was defined by the erosion investigation report from 2018 by the Danish Hydraulic 

Institute (DHI) Sweden, on behalf of Kristianstad Municipality, as Norra Äspet 

(Eriksson 2018). For convenience, the study area in this thesis will therefore also be 

referred to as Norra Äspet. 

Norra Äspet is part of Vattenriket, the oldest of seven biosphere reserves in Sweden 

(Pearce 2019). The beach consists of predominately postglacial fine sand, making it a 

popular bathing destination. Behind this 10–30 m wide stretch of beach, aeolian sands 

in the form of 1–3 m high dunes characterize the landscape. The dunes are covered 

mainly by small shrubs, typically beachgrass, behind which a prominent open pine 

forest emerges. Here, hundreds of houses, mainly used as summer residencies, are often 

located less than 5 m above local sea level. In 2017, the County Administrative Board 

of Scania expressed their concerns regarding the risk of building close to the coast, 

temporarily halting the construction of new houses in the area (Länsstyrelsen-Skåne 

2017). Between the 1940s and 2010, approximately 15-30 m of the beach has eroded. 

Further, a 2020 report by the Geological Survey of Sweden (SGU) emphasizes the 

erosion threat by labeling the study area as a beach with significant erosion (Nyberg et 

al. 2020).  

Despite these risks, demand for property remains high due to its locality within a nature 

reserve and the proximity to prime bathing beaches. With building plots located right 

on the dunes, it is important to monitor the coastal processes as accurately as possible 

to minimize human and economic damages. Therefore, the municipality of Kristianstad 

has decided on using a UAV-SfM approach, as described in the following sections. 
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Figure 3 - Approximate location of the study area (red box) and where the study area is located on a larger scale 
(bottom right). Coordinate reference system: EPSG 4326 

 3.1.2.  Data 

Three different datasets were used, including UAV images, GCP measurements, and 

TS measurements (Table 1). UAV image sets and corresponding GCP measurements 

were taken on the same day. All datasets were provided by the municipality of 

Kristianstad. In Metashape, datasets were processed using the CPU (CPU: Intel Core 

i7-6700 at 3.4GHz, RAM:64GB). 

Table 1 – Datasets used including date, reference system and source. 

Datasets Collection date Coordinate 

Reference System 

(CRS) 

Source 

UAV Image Sets 2017-2020 WGS84  

(EPSG: 4326) 

Municipality 

Kristianstad 

GCP measurements Same as UAV Image 

Sets 

SWEREF99 13 30 

(EPSG: 3008) 

Municipality 

Kristianstad 

Total Station 

measurements 

08/2020 & 10/2020 SWEREF99 13 30 

(EPSG: 3008) 

Municipality 

Kristianstad 

 

UAV images 

The UAV image dataset of the study area consisted of six flights covering the entire 

study area between October 2017 and June 2020 (Table 2). Due to the UAV’s battery 

limitations, a single flight could not cover the entire study area. Therefore a minimum 

of three individual flights were required to provide full coverage. While some of these 

flights were conducted on the same day, limited daylight and weather caused some to 

be up to nine days apart. The study area was covered by around 600 individual 
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Red/Green/Blue (RGB) images in jpg format, taken from a Sony A6000 camera (Sony, 

2014, Japan) mounted to a Trimble ZX5 Multirotor (Trimble, 2015, USA). The setup 

included standard GNSS, with a flight time of 20 minutes, being stable up to wind 

speeds of up to 10 m/s (Trimble 2015). The complete hardware specifications can be 

found in Appendix A and B. Throughout the optimization section of this study, the most 

recent flight (UAV Image Set 6) was used. The other image sets were used for training 

the water mask model and for evaluation purposes.   

Table 2 – List of available UAV datasets, including weather and wind conditions obtained from the weather 
station located at Kristianstad airport (ca. 10 km from the study area). 

UAV 

Image Set 

ID 

Flight date and time 

(dd/mm/yyyy – hh:mm) 

Weather condition Wind 

direction 

Wind 

speed 

(m/s) 

1 10/10/2017 – 10:00 

11/10/2017 – 11:00 

Sunny 

Scattered clouds 

WNW 

WSW  

4 

3 

2 01/04/2019 – 11:00 

09/04/2019 – 11:00 

Sunny 

Mostly cloudy 

E 

NE 

3 

4 

3 09/10/2019 – 11:00 Mostly cloudy WSW 5 

4 03/12/2019 – 11:00 

04/12/2019 – 11:00 

Cloudy 

Cloudy 

SW 

W 

3 

4 

5 23/03/2020 – 11:00 

25/03/2020 – 11:00 

Sunny 

Sunny 

S 

SW 

3 

4 

6 28/05/2020 – 11:00 

29/05/2020 – 11:00 

02/06/2020 – 10:00 

Sunny 

Sunny 

Sunny 

NE 

NE 

NW 

3 

3 

3 

 

Ground Control Points  

While conducting the individual flights, the municipality placed a set of well-

distributed GCPs, containing elevation data, measured using RTK-GNSS on a Trimble 

GeoXR (Trimble, n.d., USA) for measurements between 10/2017 and 04/2019. From 

10/2019 forward, the Leica GS18I (Leica, n.d., Germany) was used. Using the Leica 

GS18I, Schaufler et al. (2021) found that the measurement error of this equipment was 

2.9 cm horizontally and 2.5 cm vertically.  

The distribution of the GCPs in the study area for the UAV image set 6 can be seen in 

Figure 4. As mentioned in Section 2.2.2, a total of 15 GCPs are recommended to use to 

ensure highly accurate results. In this study, 33 GCPs were available for each flight, 

thus more than enough to meet the requirements.  
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Figure 4 - Distribution of ground control points in the study area for unmanned aerial vehicle image set 6. 
Coordinate reference system: EPSG 3008 

Total station measurements 

The municipality measured the elevation of more than 100 points per TS dataset using 

a Leica TS16 achieving an uncertainty in the millimeter range. These were split into 

several profiles along the beach, often between where GCPs were placed in UAV image 

set 6 (Figure 5). Due to the time discrepancy between the closest UAV flight (06/2020) 

and the TS measurements (08/2020), these measurements could not be used as ground 

truth data for the evaluation of the final DSM. Possible storm events between the UAV 

flight and TS measurements could influence the elevation data. In this case, 

measurements closer to the coastline would be expected to be affected more whilst 

measurements further from the coastline were not expected to change much, and 

therefore this dataset was used as a plausibility control.  

 
Figure 5 – Distribution of total station measurements in the study area for unmanned aerial vehicle image set 6. 
Closer zoom onto the distribution of Profile 6. Profiles were numbered from south to north. Coordinate reference 
system: EPSG 3008 
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3.2. Workflow Automation 

3.2.1. Overview of the workflow 

Figure 6 shows the general workflow of this thesis. UAV images, water masks, and the 

identification of GCPs were required before SfM processing could be conducted. The 

result of the SfM processing was a DSM which was then assessed in terms of its vertical 

accuracy. For this step, GCPs were previously split into control and check points and 

then compared with the DSM elevation at the same locations.  Check points define 

GCPs that were used in the Georeferencing step while control points refer to 20% of 

the GCPs that were set aside randomly and not used for georeferencing to ensure 

validation to be as independent as possible.  

 
Figure 6 - Overview of the general workflow in this thesis 

There was an extensive number of parameters to select from during this workflow in 

Metashape (Table 3). Therefore, it was decided to adopt values from literature and then 

conduct individual testing to ensure that these values were well-suited for this study 

area and Metashape version. Finally, having derived the optimal parameters ensuring 

time-efficient, accurate and repeatable DSM construction, the pipeline was converted 

into a Python script executable using the Python console in Metashape.  

The python console in Metashape was used to automate most of the workflow. The only 

steps that were not possible to automate in the python console were identifying and 

importing GCPs automatically and creating individual masks if desired. Therefore, 

python scripts were developed to create solutions outside of the Metashape python 

console. The outputs created for both the water mask and the GCP identification were 
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made compatible with the Metashape automated workflow script. This allowed the 

possibility to create a fully automated UAV-SfM workflow to build highly accurate 

DSMs.     

3.2.2. Water mask 

Access to a sizeable dataset consisting of annotated images was required to 

automatically generate water masks using machine learning. Additionally, a machine 

learning model capable of image segmentation was required.   

Premade, annotated UAV datasets were rare but available. One such dataset was the 

Semantic Drone Dataset provided by TU Graz (TUGraz 2019). However, the dataset 

did not include enough water pixels (open water) to train a model sufficiently. 

Therefore, a training dataset needed to be created from scratch using a portion of the 

raw UAV images to increase the chances of success. Using GIMP, approximately 400 

UAV images from different UAV image sets were annotated manually, detailing if an 

area in an image was land or water. This annotated dataset was then split, 80/20, into a 

training and validation dataset at random. 

The Keras-segmentation python module was used to provide a simple way of 

implementing predefined, proven image segmentation models (Gupta 2019).  A quick 

trial run was conducted on the dataset using different base models (VGG-16 and 

Resnet) and segmentation models (UNet and Segnet). While the differences were 

minimal, the combination of VGG-16 and Segnet (VGG-Segnet) gave the best result 

and further used. A total of 10 epochs were used to train the VGG-Segnet model. The 

number of epochs corresponds to the number of times the model will iterate through 

the entire dataset. While inspecting the change in loss and accuracy after each epoch, 

for 12 epochs, it became apparent that some overfitting occurred after the 10th epoch, 

making 10 epochs a reasonable choice. Overfitting occurs when the model 

“memorizes” or learns patterns specific to the training data that are not relevant for any 

other data. The result is that the actual accuracy of the model is worse than the training 

accuracy projects.  

After training, the image segmentation model needed to be evaluated to ensure a well-

performing model. Two metrics were used, pixel accuracy and Intersection-over-Union 

(IoU). Pixel accuracy defines the share of pixels in the predicted image classified 

correctly, as seen in Equation 1 (Wu et al. 2016). TP representing the number of true 

positive pixels, the number of pixels that were identified correctly as water and TN the 

number of true negative pixels, the number of pixels correctly identified as not water. 

FP the number of false positive pixels, the number of pixels incorrectly identified as 

water, and FN the number of false negative pixels, the number of pixels incorrectly 

identified as not water.  

𝑃𝑖𝑥𝑒𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (Equation 1) 
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The biggest limitation of this metric is class imbalance. Class imbalance occurs when 

different classes are extremely imbalanced in an area. In this case, the class split was 

65 % land and 35 % water and therefore no class imbalance occurred. 

Once trained and evaluated, the model was used before starting image alignment to 

create masks for all raw images automatically. Masks were then imported into 

Metashape and used within the image alignment process. Here, the masks could either 

be applied to key points or tie points. Apply mask to tie points denotes that any area 

masked on any image will be excluded from all other images (Agisoft 2020b). Any 

areas falsely classified as water would therefore be excluded from the entire SfM 

process. Additionally, water moves constantly, and therefore an area covered by water 

in Image 1 may not be covered by water in Image 2. Therefore, Apply mask to key points 

was the safer and better option for the purpose of this study.   

The water mask was used to identify the effect of masking out most of the noise 

introduced by water in coastal study areas. Further, it was a vital part of the automatic 

GCP identification to decrease the chance of misclassification. Light reflections on 

water were one of the most significant causes for misidentifying GCPs as they can 

appear to look very similar to white GCPs (Figure 9).  

3.2.3. Automatically identifying GCPs 

The main issue with automating the Metashape pipeline is identifying each GCP. When 

importing the coordinates of GCPs, the automatic placement of each marker did not 

correspond with the GCP's location in the images. Therefore, the manual method was 

to drag and drop the marker guesses onto the exact location of the markers in the 

images. This method was tedious, and it was challenging to identify the GCPs with 

varying brightness levels. Therefore, it was of interest to create an automated method 

to identify each GCP and correspond it with the measured real-world coordinates. To 

achieve this, each GCP needed to be identified in the images and associated with the 

corrected reference system coordinates. An algorithmic approach was used to identify 

the two different types of GCPs used throughout the UAV flights (Figure 7).  

 

Figure 7 - Examples of the two different ground control point types, the white variant (a) and the yellow/black 
variant (b). 
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Figure 8 shows a simplified workflow outlining the process of identifying the GCPs. 

First, clusters of adjacent pixels containing similar RGB values corresponding to the 

color of the GCP were identified using the python package skimage. However, only 

three bands were available (RGB), and separating the GCPs from the background solely 

through the means of these pixel values proved very difficult. Therefore, shape and size 

were further considered, and thresholds were set accordingly after inspecting the 

images.   

 

Figure 8 – Simplified workflow of the method used to correctly identify a ground control point. 

UAV flights in coastal environments contain images predominately covered by water 

and sand. This contrast caused issues with the brightness making the white GCP plates 

range between 210/210/210 (RGB) and 250/250/250 (RGB). Further, the water surface 

reflected very brightly when hit by the sun causing many white clusters that on occasion 

fit both the shape and size thresholds. GCPs were not expected on the water, so 

therefore the previously created water mask was utilized. However, these constraints 

still resulted in several misidentified clusters as objects or reflections proved to be too 

similar (Figure 9). Hence, an additional constraint was added, the relative position 

between three GCPs. This constraint further allowed to link predicted GCPs to the 

measured GCP list provided by the municipality Kristianstad.  
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Figure 9 - Objects looking similar to the white ground control points; a and b showing anthropogenic objects, c 
showing the effect of light reflection on water and d showing rocks along the coast. 

In the UAV image set 6, the GCPs were distributed in sets of three along the beach 

(GCP triplets). This distribution not only allowed for a well-distributed set of GCPs but 

also to calculate relative positions between GCPs as some images covered three 

different GCPs as shown in Figure 10. Knowing the distribution of these points in the 

real world, this distribution was expected to be very similar to the images taken from 

overhead. While this was not entirely true as the yaw, pitch, and roll angles of each 

image cause slight distortions, this approximation was sufficient for the purpose here.  

 

Figure 10 – a) A set of correctly identified ground control points (A,B,C). b) The same points but additionally a falsely 
identified point (D). Absolute distances as well as distance ratios between considered points clearly differ. 

Figure 10 is a visual simplification of this approach. Figure 10a displays the actual 

location of a GCP triplet distributed along the beach. By calculating the ratio of two 

distances between one point and two other points in the triplet (e.g., A-B and A-C), this 

ratio was approximately the same for the real-world measurements and the pixel 

coordinates. This method was then repeated for the other two points to increase the 

chance of finding the correct points. Figure 10b shows what happened if the algorithm 

identified a wrong GCP based on size, shape, and color (D). Calculating the ratios using 

D instead of C led to deviations from the real-world, measured ratios. The pixel size 

was further included (1.4 cm) in the calculation to account for situations where ratios 

could not distinguish between valid and invalid GCPs. If a configuration of three points 

met all specified thresholds, it was saved to a point set.  

It remained unclear which configurations correlated to which measured GCPs in the 

provided list. Therefore, the absolute differences between measured and predicted 

ratios were calculated using the pixel size. The predicted triplet with the configuration 

that provided the smallest difference to the measured triplet then corresponded to this 
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measured triplet. A text file was finally created, including the image name, marker ID, 

image pixel coordinates, measured geographical coordinates, and each point's altitude. 

To evaluate this method, GCPs were identified this way for four different flights. It was 

observed how many GCPs were placed for the flight, how many were correctly 

identified, and how many were falsely identified. Further, for the 06/2020 flight, the 

points were imported into Metashape, and the goodness of fit of the placement was 

determined visually.  

GCPs were then imported using the python console in Metashape. The only option 

found to achieve this automatically was to create a model (mesh) and then pick a point 

on the mesh and set the marker. However, it was apparent that the mesh may introduce 

an additional source of error as some points were incorrectly placed due to the mesh 

being too coarse. This was the reason for building a dense point cloud of the lowest 

quality before then using this to build a finer mesh.   

3.3.   Optimization of settings in Metashape 

Succeeding the automated water mask and GCP identification, the two steps necessary 

to fully automate the pipeline, the next step was to find optimized parameters within 

Metashape. This ensured that for the same study area, the resulting DSMs were 

comparable and of high quality. Figure 11 shows a more specific workflow of 

processing within Metashape and was adopted from Gindraux et al. (2017) and Acorsi 

et al. (2019). The six main steps described in more detail were denoted with a letter (A-

F). 

 
Figure 11 - General overview of the steps from the raw image to a digital surface model. Asterisk denotes that the 
step was looked at in detail within the optimization section of the thesis. Steps A-E belong to the structure-from-
motion steps processed in Metashape. 
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Steps followed by an asterisk in Figure 11 were steps in Metashape, which contained 

parameters that were looked at in more detail to identify optimized settings. Table 3 

shows the full list of parameters that were tested together with the corresponding 

workflow step.     

Table 3 – Full list of Metashape parameter settings tested throughout this thesis.  

Workflow 

step 

Parameter Settings 

Image 

Alignment 

(A) 

Accuracy Highest, High, Medium, Low, Lowest 

Key point limit 5,000 – 500,000 

Tie point limit 1,000 – 60,000 

Adaptive camera fitting ON/OFF 

Guided image matching ON/OFF 

Reference (source) 

preselection 

ON/OFF 

Optimizing 

sparse point 

cloud (B) 

Reconstruction uncertainty 30, 20, 15, 10, 7 

Projection accuracy 10, 8, 5, 4, 3.5, 3, 2.5, 2, 1.5 

Image count 2, 3, 4 

Reprojection error 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1 

Optimize 

Weights (D) 

Marker accuracy (m) 0.001, 0.005, 0.01, 0.03, 0.05 

Marker accuracy (pixel) 0.05, 0.1, 0.3, 0.5, 1, 2 

Tie point accuracy (pixel) 0.5, 1, 1.5, 2 

 

3.3.1.  Image alignment (A) 

Having preprocessed the data, the images were aligned. When using the Align 

Photos tool, several parameters were adjustable (Figure 12).   

 

Figure 12 - Image alignment window in Metashape, showing possible parameters that can be changed. Settings 
presented in the figure are those used in the final results for image alignment. 

When setting the accuracy to high, the software estimated the camera positions without 

downscaling the images (Agisoft 2020b). Each lower accuracy setting downscaled the 

images by a factor of four compared to the previous. Highest upscaled the images by a 

factor of four. Literature suggested that using higher accuracy settings correlated with 
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a better alignment (Röder et al. 2017). However, if the resolution was too fine, this 

could cause more outlier points, hence decreasing the alignment quality (Tinkham and 

Swayze 2021). Therefore, all accuracy settings were tested, and computational time and 

reprojection error observed. 

When reference preselection (source) was toggled, the approximate positions of the 

GNSS were used to provide relative orientation and hence reducing processing time 

(James et al. 2017). However, the extent of this was unknown and therefore tested by 

running the image alignment with and without this setting, using the same hardware 

and software and noting the computational time of the process displayed by Metashape. 

Key point limit and tie point limit described the maximum number of feature points 

considered by the software during alignment. A higher number may increase the 

number of points, but it may also increase the number of less reliable points. Therefore, 

a sensitivity analysis, consisting of 14 settings between 5000 and 500 000 key points, 

was conducted. The results were plotted on a graph toidentify how reprojection error 

and computational time change as the key and tie point limit differs. Similarly, a 

sensitivity analysis of 11 settings between 1000 and 60000 tie points was conducted. If 

a key or tie point limit of 0 was used in Metashape, this meant that there was no limit 

and all points were considered in the calculation.   

Exclude stationary tie points was toggled as it excluded any tie points that were in the 

same place across different images (Agisoft 2020b). The UAV was constantly moving, 

hence not allowing tie points to be stationary. Any stationary tie points were therefore 

falsely identified. 

Little had been published about the effect of the Guided image matching and adaptive 

camera model fitting, which was why these two settings were toggled on and off to 

identify the effect on the computational time and the reprojection error. Guided image 

matching allowed for the generation of excessive number of tie points required for very 

high resolution images (Agisoft 2020b). Adaptive camera model fitting allowed to 

enable the automatic selection of camera parameters based on their reliability 

estimates in the adjustment process. During this parameter selection step, it was further 

possible to include any premade masks into the workflow.  

3.3.2.  Optimizing alignment (B) 

Optimizing the alignment was vital to detect and remove any outliers or low-quality 

points. It was desirable to thin the point cloud to only contain high-quality points while 

also keeping enough points to work within later stages. The metric used to assess the 

quality of the sparse point clouds was the RMS tie point reprojection error (RMSRE). 

It represented the RMSE of the residuals of the image coordinates computed by the 

bundle adjustment process (Mayer et al. 2018). These residuals were further required 

to be distributed randomly to ensure no over-parameterization occurred (James 2017).  
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Keeping a high number of tie points was important to ensure that the final DSM did not 

contain holes or required extensive interpolation. The effect of decreasing the number 

of tie points was seen in Figure 13. While technically only points of lower quality were 

deleted, at a certain point, holes began to form in the point cloud. Since the beach was 

the area of interest, initial thinning in the areas covered by water or in the built-up area 

could be overlooked. In Figure 13c however, holes began to form in parts of the beach, 

making the point cloud too thin. This would increase the amount of interpolation 

necessary, thus decreasing the quality of the final product.  

 

Figure 13 – Visual comparison of three sparse point clouds in Agsioft Metashape. 13a showing a point cloud before 
any optimization with ~ 4,000,000 tie points. 13b showing the optimized point cloud as derived in this thesis 
containing ~ 1,200,000 tie points. 13c shows an overly optimized point cloud with many gaps, containing ~ 500,000 
tie points.  

Metashape offered a tool called gradual preselection, which encompassed four 

methods of identifying suboptimal points, reprojection error, reconstruction 

uncertainty, projection accuracy, and image count. After using each method, the 

selected points were deleted, and cameras realigned using the optimize cameras 

tool with adaptive camera model fitting turned on. It was recommended to repeat each 

method and optimization to ensure that the limits set are met (USGS 2017). 
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Reprojection error was the distance between the point on the image where a 

reconstructed 3D point was projected and the original projection of that 3D point 

detected on the photo (Agisoft 2020b). To ensure a subpixel alignment, points with 

reprojection errors larger than one were excluded. Reconstruction 

uncertainty characterized the accuracy of positioning points in the cloud and was 

recommended before building the geometry when constructing the dense point cloud 

(Agisoft 2020b). Projection accuracy filtered out points which projections were 

localized poorer due to their larger size (Agisoft 2020b). Recommendations for this 

setting varied from anywhere between 2 and 10 (Díez Díaz et al. 2017;  USGS 2017). 

The last option available was image count. Image count allowed the filtering of tie 

points that were only present in a small number of images. Tie points present in two 

images were less reliable than tie points identified in a higher number of images. Since 

Agisoft had not published any recommended values for these parameters and the 

suggested values in literature varied, a sensitivity analysis for each parameter was 

conducted to identify the effect on residual size and distribution. Depending on the 

parameter, between four and ten individual settings, covering a range of values, were 

used in runs, keeping all other settings constant.   

3.3.3.  Referencing to GCPs (C) 

Using the proposed automated GCP identification approach, GCPs were imported in 

one of two ways (Figure 14). Both methods required an optimized sparse point cloud 

and the construction of a mesh. A mesh connected points of a point cloud to create a 

continuous 3D surface. When using a mesh, it was identified that a point on the mesh 

could be selected and a marker placed at that position, like the manual drag and drop 

approach. Said mesh could either be created coarsely using the sparse point cloud as a 

basis or finely by first building a dense point cloud before creating the mesh from the 

dense point cloud. Building a dense point cloud increased the computational time of the 

process significantly, which was why the lowest quality with mild filtering was used.  

To compare the performance of the two automated GCP placement methods, the 

placement of markers on four different GCPs (two white and two black/yellow) was 

compared with results using the manual approach. Here the measured GCP list was 

imported as markers, and each marker was then manually adjusted to be precisely 

placed on the center of the corresponding GCP. This was done for each GCP on three 

images which was sufficient to ensure high accuracy.  
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Figure 14 – Detailed workflow of the ground control point import step showing the two methods of either directly 
generating a mesh or first building a dense point cloud before then generating the mesh from the dense point 
cloud. 

The GCPs were then split into two groups. From the 33 GCPs, 27 remained as GCPs, 

while six spaced out but randomly selected points were used as check points (CP) 

(Figure 15). The GCPs were then used to optimize the sparse point cloud further. 

Having transformed the coordinate systems accordingly, the cameras were optimized 

once again with the GCPs toggled. Introducing CPs allowed to monitor the quality of 

the results with respect to measured points independently from the GCPs. 

 

Figure 15 – Overview of the placement of ground control points (red circles) and check points (yellow triangles) in 
the study area for unmanned aerial vehicle image set 6. Coordinate reference system: EPSG 3008 
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3.3.4.  Weighting observations (D) 

Metashape allowed tie point, marker, and camera observations to have different 

weights, depending on the confidence of their respective positional measurements 

(Figure 16). Marker accuracy (m) was set to the uncertainty of the field measurements, 

in this case, 0.03 m. Tie point accuracy (pixel) and marker accuracy (pixel) were left 

at their default values. James (2017) suggested running the bundle adjustment using 

default values before substituting these for the output values and rerunning the bundle 

adjustment. This suggestion was tested, but since values differ in literature, a sensitivity 

analysis was conducted to evaluate the effect of marker accuracy (pixel), marker 

accuracy (m) and tie point accuracy (pixel). For marker accuracy (pixel), six values 

ranging between 0.05 pixels and 2 pixels, for marker accuracy (m), five values between 

0.001 m and 0.05 m and for tie point accuracy (pixel), 4 values between 0.5 and 2 were 

tested and the GCP and CP error, as well as the residuals, were observed. Marker 

accuracy (m), represents the uncertainty of the GCPs field measurements. However 

literature suggests that this value is used merely as a weight and may therefore be 

altered (Mayer et al. 2018). 

 

Figure 16 - Reference settings window in Metashape showing among others marker accuracy (m), marker accuracy 
(pixel) and tie point accuracy (pixel) which are looked at more closely in the later sections of this thesis. 

3.3.5.  Building dense point cloud (E) 

Two parameters were possible to change when the dense point cloud was built (Figure 

17). The first was the quality, which was similar to the image alignment accuracy 

parameter. Ultra-high used the original images, and every lower quality step 

downscaled the image by a factor of 4 (Agisoft 2020b). There was a significant 

difference in processing time when altering this setting. High quality required 

approximately three days to compute the dense point cloud and Ultra-high close to one 

week. Therefore, Medium was used throughout this thesis. The second adjustable 

parameter was depth filtering, including disabled, mild, moderate, and aggressive 
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options. The depth filtering tool aimed to eliminate outliers by filtering noise from the 

raw depth maps (Agisoft 2020b). The stronger the filter, the more noise was removed. 

However, this noise could also be valuable information if the study area included sharp 

elevation changes. In this case, the study area was described as a relatively smooth 

sandy beach, and therefore an aggressive filtering mode was selected throughout the 

study.  

 

Figure 17 - Window with options for building the dense point cloud in Metashape. The presented settings 
correspond to those used in the final results. 

3.4.  DSM creation and evaluation 

3.4.1.  Generate DSM  

Metashape allowed to generate a DSM from the dense point cloud. It was important to 

ensure that the study area was entirely within the bounding box. The geographic 

projection SWEREF99 13 30 (EPSG: 3008) was used, the dense cloud as the source 

data and interpolation enabled. The default (enabled) interpolation, allowed to calculate 

the DSM for all areas visible on at least one image and was recommended to use to 

generate DSMs (Agisoft 2020b).  

The DEM was then exported from Metashape, and vertical accuracy was assessed using 

a wide range of independent profile measurements along the coast.   

3.4.2.  DSM accuracy assessment 

To compare the vertical accuracy of each DSM, the root mean squared error (RMSE) 

was calculated for the elevation of the DSM and the elevation of the measured GCPs 

and CPs. The RMSE is a metric commonly used to compare elevation models to ground 

truth data (Hirano et al. 2003;  Hugenholtz et al. 2013). The spatially corresponding 

point was identified for each measured point on the DSM, and the RMSE calculated 

according to Equation 2. 

𝑅𝑀𝑆𝐸 =  √
∑ (𝐺𝐶𝑃𝑒𝑙𝑒𝑣−𝐷𝑆𝑀𝑒𝑙𝑒𝑣)2𝑛

𝑖=1

𝑛
   (Equation 2) 

Where n was the number of points, GCPelev was the GCP elevation, 

and DSMelev represented the DSM elevation. GCPelev was substituted for CPelev to 
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calculate RMSE in terms of check points. For comparisons with the total station 

measurements, the same approach was used. To eliminate a source of human error, a 

python script was written to automatically identify the GCPs/CPs on the DSM. 

Corresponding elevation values for the DSM were extracted at the location of each 

GCP/CP using the Geospatial Data Abstraction Library (GDAL) python package 

(GDAL 2012).  

To investigate spatial patterns, individual errors for each GCP and CP were mapped. 

Further, the root mean square difference (RMSD) was calculated between the DSM and 

the TS measurement profiles. While the TS profiles could not be used as the ground 

truth (Section 3.1.2), a comparison provided information about the spatial distribution 

of errors and accuracy between GCPs. Lastly, to identify possible artifacts, distortions, 

or holes resulting from the workflow, an orthomosaic and a hillshade were created 

(Appendix C-F). An orthomosaic described a set of geometrically corrected images 

stitched together, creating an accurate representation of the area. A hillshade function 

used the DSM and considered the sun’s relative position to create shading throughout 

the image, which helped visualize the DSM.  

4. Results  

4.1. Evaluation of the automated water mask 

The water mask was evaluated both visually and using metrics (Figure 18). Training 

accuracy, validation accuracy, training loss andvalidation loss. Visually, the original 

image was overlaid with the predicted water mask to observe the fit. Further, image 

alignments with and without using the water mask were compared. Accuracy and Loss 

curves were used to evaluate the training process of the neural network. The accuracy 

curve (Figure 18a) shows that both the training and validation curves flatten out by the 

tenth epoch. A slight underfitting may have still occurred, but overall, the model 

seemed well trained. The shape of the loss curve (Figure 18b) shows that the model had 

a high learning rate. The model was slightly underfitted as training loss was slightly 

decreasing at the end of the tenth epoch. The validation dataset showed both higher 

accuracy and a smaller loss than the training dataset. One explanation for this was that 

the random validation dataset used was easier to predict than the training dataset.  

 
Figure 18 - Accuracy (18a) and Loss (18b) plots of the image segmentation model. Dashed orange line 
representing the validation results, blue line shows training results.  
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The calculated pixel accuracy was 90%, meaning that 90% of the image's pixels were 

correctly classified as either water or land (Figure 18a). Being a coastal area, it was 

most important to identify the coastline in the images. Due to the overlap between 

images, having misclassified small areas was secondary if the coastline was identified 

correctly. A misidentified coastline could have resulted in masking out large parts of 

the beach or keeping more noise caused by water, making DSMs from different flights 

difficult to compare. A visual comparison by overlaying the original image with the 

predicted mask was therefore made. Figure 19 shows the performance of the automated 

water mask on a random validation image. The machine learning model was not trained 

on this specific image. The coastline was captured well, but misclassification occurred 

when distinguishing between water and vegetation, especially when the lighting was 

not ideal. This was seen in the bottom and top right corners of Figure 19b. 

 
Figure 19- The automated water mask in a validation image. 19a shows the original image, the 19b shows the 
original image with the mask as a transparent overlay. Blue/green colour showing the predicted water, yellow the 
predicted land. 

The effect on the sparse point cloud is displayed in Figure 20. While not masking out 

every water pixel in the study area, the water masks proved to be effective. When 

comparing the zoomed-in areas, it was further seen that the optimized point cloud was 

denser when using the mask (Figure 20b). The implementation of an automated water 

mask within the pipeline was therefore feasible. 
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Figure 20 – Difference between sparse point clouds when using the water mask (b) during image alignment and 
without (a). 

 

4.2. Evaluation of the automated GCP identification 

Four UAV image sets were used to evaluate the performance of the proposed 

algorithmic approach for automated GCP identification. GCP triplets possible to 

identify referred to groups of three GCPs fulfilling certain assumptions required for this 

approach to function correctly. If these assumptions were not fulfilled when placing the 

GCPs, the approach could not be expected to identify the GCPs. Assumptions included 

that GCPs were placed so that three GCPs were visible together on at least one image 

and that the two types of GCPs were not used within the same group of three GCPs.  

Table 4 show that for the 06/2020 image set, all 33 GCPs were possible to identify and 

correctly identified. Especially in the 2019 image sets, GCP types were often mixed 

within a triplet, or GCPs were not placed correctly, causing only a few GCPs to be 

possible for the algorithm to detect. These GCPs were then largely identified correctly. 

In the 03/2020 image set, all GCPs were laid out in triplets. However, one triplet was 

spread too far, so that no image included all three of these GCPs and two GCP sets were 

not possible to be identified. In none of the image sets, GCPs were falsely identified. 

Table 4 - Performance of the automated ground control point (GCP) identification method compared to the total 
number of GCPs and GCP triplets that were possible for the algorithm to identify. GCPs are required to be placed 
in a group of three GCPs using the same marker style so that at least one image covers all three GCPs (GCP 
triplet).  

Image Set Total number of 

GCPs 

GCP triplets 

possible to 

identify 

Correctly 

Identified 

GCP triplets 

Falsely 

identified 

GCPs 

06/2020 33 11 11 0 

03/2020 30 9 7 0 

12/2019 33 3 3 0 

04/2019 42 3 2 0 
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A comparison of three methods of inserting GCPs into the Metashape project is shown 

in Table 5. The standard, manual method of importing GCPs provided the highest 

accuracy. The limiting factor for the automated GCP & sparse point cloud method was 

that the mesh was too coarse. GCPs were not placed in the exact position defined by 

the coordinates but instead as close as possible, which caused the error to increase. 

Therefore, a dense point cloud was built to generate a finer mesh, which improved the 

quality of the method significantly (Table 5).  

Table 5 - Comparison in horizontal ground control point error (GCP_XYerr) and horizontal check point error 
(CP_XYerr) when varying ground control point import/placement methods in Metashape. 

Method GCP_XYerr (cm) CP_XYerr (cm) 

Manual GCP 3.56 3.30 

Automated GCP & sparse point cloud 6.70 5.30 

Automated GCP & dense point cloud 5.71 3.64 

 

The placement quality was visually compared by comparing marker placement for all 

three methods using four example GCPs (Figure 21). It was shown clearly in these 

examples that the GCPs were identified well, but the center point of the GCP was not 

always found. While the Manual method showed perfect placement results for all four 

examples, the automated versions were prone to slight inaccuracies. These were proven 

to be smaller when the dense point cloud automation method was used.  

 
Figure 21 - Comparison between the manual and the two automated placement methods. Each row shows one 
example ground control point marker placement. From top to bottom these are Marker 4, Marker 24, Marker 44 
and Marker 45. 
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4.3. Evaluation of settings used in Metashape 

4.3.1. Image alignment parameters 

Accuracy  

The results showed that a higher accuracy decreased reprojection error (Table 6). Both 

the Highest setting as well as High setting achieved a subpixel reprojection error. 

Compared to High, Highest accuracy further reduced reprojection error while the 

increase in computational time was manageable (Table 6). For further parameter 

teesting, Highest accuracy was selected.  

Table 6 - Change in number of tie points (#TP), rms reprojection error (RMSRE) and computational time (CT) when 
varying levels of accuracy during image alignment while keeping the other settings default. Default settings were, 
highest accuracy, 40000 key point limit, 4000 tie point limit, generic preselection and exclude stationary tie points 
toggled in Metashape. 

Accuracy #TP RMSRE (pixel) CT (min) 

Highest 390,418 0.903 138 

High 368,214 0.953 110 

Medium 336,833 1.193 103 

Low 279,868 2.471 81 

Lowest 66,969 4.551 53 

 

Further options 

Table 7 shows the effect of using generic preselection, reference preselection, adaptive 

camera fitting, and guided image matching on #TP, RMSRE, and CT. Combining 

both generic and reference (source) preselection had no notable effect on #TP and RE 

of the image alignment. However, it reduced the computational time by ~ 50 % 

compared to deselecting either preselection option and was therefore used in further 

processing. Other settings did not show any notable positive effects on #TP, RE, or CT 

and were not considered any further.   

Table 7 - Comparison of different image alignment settings using UAV image set 6. Accuracy is set to highest 
whilst toggling different parameters, in terms of Number of tie points (#TP), rms reprojection error (RMSRE) and 
computational time (CT). Default settings were, highest accuracy, 40000 key point limit, 4000 tie point limit, 
generic and reference (source) preselection and exclude stationary tie points toggled. 

Setting #TP RMSRE (pixel) CT (min) 

Default  390,578 0.900 73 

Only generic preselection  390,418 0.903 138 

Only reference (source) 

preselection 

333,956 0.986 143 

Adaptive camera fitting 390,576 0.902 138 

Guided image matching 389,360 0.898 153 

 

Key point limit 

The relationship between the key point limit and the RMSRE can be described as an 

exponential decay (Figure 22, red line). When no key point limit was set, the software 
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used the maximum number of key points, which varied between ~ 550,000 and 800,000 

key points. Therefore, the minimum RMSRE achieved through varying the key point 

limit was 0.609. The downside of such a large number of key points was the 

computational time. As seen in Figure 22 (blue dashed line), computational time and 

key point limit showed a linear relationship between 5,000 and 140,000. Therefore, 

time continued to increase constantly while the reprojection error decreased less and 

less. A key point limit of 140,000 provided a good balance between RMSRE and CT 

and was used as a constant for further testing. #TP also increased as the key point limit 

was increased. ~ 4,000,000 tie points were considered when a key point limit of 140,000 

was specified compared to only ~ 150,000 tie points when a key point limit of 5,000 

was used (Appendix G).  

 
Figure 22 – Effect of varying key point limit on reprojection error (pixels) and computational time. Table 
containing the exact values can be found in Appendix G. 

Tie point limit 

RMSRE decreased as the tie point limit was increased (Figure 23). However, when 

lower tie point limits were observed closely, RMSRE showed fluctuation and did not 

necessarily improve with increasing tie point limits (1,000 – 10000). At such small 

limits, a larger number of tie points may have influenced reprojection error either way, 

as more points could have led to more good points or a large increase in bad points. At 

around 10,000 tie points, this seemed to stabilize, and from there on RMSRE is 

decreased with increasing tie points.  

The difference in computational time is relatively small given the processing time of 

the entire workflow. It was therefore suggested to consider all tie points by using 0 as 

the input value. A more detailed table of results is presented in Appendix H. 
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Figure 23 - Effect of varying tie point limit on reprojection error and computational time. Table containing the 
exact values can be found in Appendix H. 

4.3.2. Optimizing alignment 

Moving forward, a copy of the aligned images (highest quality, generic and reference 

(source) preselection, a key point limit of 140,000 and tie point limit of 0) was used to 

test the different alignment optimization methods available in Metashape. Methods 

included reconstruction uncertainty (RU), projection accuracy (PA), reprojection error 

(RE), and image count (IC).  

Reconstruction uncertainty (RU) 

Deleting points with high reconstruction uncertainty increased RMSRE but decreased 

the horizontal GCP and CP error (Table 8). A large #TP was deleted to achieve a slight 

decrease in horizontal GCP and CP error.  

 
Table 8 - Effect of changing the reconstruction uncertainty (RU) level on number of tie points (#TP), rms 
reprojection error (RMSRE), ground control point horizontal error (GCP_XYerr) and check point horizontal error 
(CP_XYerr). 

RU level #TP RMSRE GCP_XYerr (cm) CP_XYerr (cm) 

- 4,027,126 0.736 2.89 5.34 

30 3,987,034 0.737 2.89 5.34 

20 3,697,555 0.745 2.84 5.28 

15 3,353,397 0.753 2.80 5.19 

10 2,267,881 0.789 2.69 4.96 

7 1,472,368 0.815 2.56 4.75 

 

Projection accuracy (PA) 

By setting a lower threshold of the maximum projection accuracy level, both the 

reprojection error and the horizontal GCP and CP errors were decreased greatly (Table 

9). PA levels between 2 and 3 seemed to achieve the best results, combining low 

RMSRE and lower horizontal GCP and CP errors. For a PA level of 1.5, horizontal CP 

error increased compared to a PA level of 2 while GCP error continued to decrease, 

hence hinting at the presence of overfitting.  
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Table 9 - Effect of changing the projection accuracy (PA) level on number of tie points (#TP), rms reprojection error 
(RMSRE), ground control point horizontal error (GCP_XYerr) and check point horizontal error (CP_XYerr). 

PA level #TP RMSRE GCP_XYerr (cm) CP_XYerr (cm) 

- 4,027,126 0.736 2.89 5.34 

10 3,895,655 0.578 2.88 5.33 

8 3,815,037 0.549 2.88 5.32 

5 3,451,078 0.485 2.81 5.18 

4 3.085,382 0.446 2.71 4.95 

3.5 2,804,631 0.426 2.64 4.75 

3 2,329,494 0.397 2.48 4.33 

2.5 1,726,757 0.353 2.24 3.73 

2 1,048,311 0.294 1.96 3.26 

1.5 502,353 0.249 1.65 3.46 

 

Image count (IC) 

Similar to PA, an increase in IC level greatly decreased the number of remaining tie 

points (Table 10). Further, the reprojection error increased while the GCP error only 

decreased slightly. Image count was therefore not further considered.  

Table 10 - Effect of changing the image count (IC) on number of tie points (#TP), rms reprojection error (RMSRE), 
ground control point horizontal error (GCP_XYerr) and check point horizontal error (CP_XYerr). 

IC level #TP RMSRE GCP_XYerr (cm) CP_XYerr (cm) 

- 4,027,126 0.726 2.89 5.34 

2 1,783,430 0.811 2.65 4.92 

3 1,114,038 0.841 2.50 4.74 

4 797,210 0.855 2.39 4.57 

 

Reprojection error (RE) 

The RE showed one of the most notable effects on RMSRE, GCP, and CP errors (Table 

11). Overall, RMSRE and horizontal GCP and CP errors decreased as RE levels were 

lowered. Improvements were identified without #TP dropping too drastically. The RE 

level of 0.1 showed overfitting as horizontal GCP error continued to decrease while 

horizontal CP error increased.  

Table 11 - Effect of changing the reprojection error (RE) level on number of tie points (#TP), rms reprojection error 
(RMSRE), ground control point horizontal error (GCP_XYerr) and check point horizontal error (CP_XYerr). 

RE level #TP RMSRE GCP_XYerr (cm) CP_XYerr (cm) 

- 4,027,126 0.726 2.89 5.34 

0.4 3,763,092 0.670 2.56 4.78 

0.35 3,578,662 0.632 2.37 4.46 

0.3 3,338,158 0.589 2.18 4.14 

0.25 3.029,131 0.538 2.00 3.87 

0.2 2,638,441 0.473 1.84 3.73 

0.15 2,153,309 0.394 1.72 3.73 

0.1 1,558,349 0.288 1.59 3.90 
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Further testing was conducted using PA, RE, and RU values that seemed reasonable 

from the individual tests and combining those, observing the same metrics as before 

(Appendix I). The addition of RU into the optimization process did not improve the 

result. Therefore, PA = 2.5 and RE = 0.25 was the preferred combination to optimize 

the alignment (Table 12). 

Table 12 - Final, suggested method for optimizing alignment, using projection accuracy (PA) and reprojection 
error (RE) thresholds.  Further, the resulting number of tie points (#TP), rms reprojection error (RMSRE), ground 
control point horizontal error (GCP_XYerr) and check point horizontal error (CP_XYerr) are given. 

Method #TP RMSRE GCP_XYerr 

(cm) 

CP_XYerr 

(cm) 

PA = 2.5 

RE = 0.25 

1,262,672 0.223 1.76 

 

3.61 

Marker accuracy (m) 

 

The measurement uncertainty of the markers was identified as ~ 0.03 m. Therefore 0.03 

m seemed to be a reasonable value for MA (m). However, the best results were achieved 

using a value of 0.01, hence increasing the weighting for using markers slightly (Table 

13). Overfitting occurred at smaller MA (m) values as horizontal CP errors increase 

while horizontal GCP errors continued to decrease. Therefore, a MA (m) of 0.01 was 

used. 

Table 13 - Effect of varying marker accuracy in meters (MA) on horizontal ground control point error (GCP_XYerr) 
and horizontal control point error (CP_XYerr). 

MA (m) GCP_XYerr (cm) CP_XYerr (cm) 

0.001 0.14 3.80 

0.005 (default) 1.76 3.61 

0.01 3.27 3.43 

0.03 8.44 7.89 

0.05 14.19 14.30 

 

Marker accuracy (pixel) 

Test results for varied marker accuracy (pixel) regarding horizontal GCP and CP error 

are shown in Table 14. While the default value (0.5) seemed reasonable, a marker 

accuracy (pixel) value of 0.3 proved to be more optimal and was used in further steps.  

Table 14 - Effect of varying marker accuracy in pixels (MA) on horizontal ground control point error (GCP_XYerr) 
and horizontal control point error (CP_XYerr). 

MA (pixel) GCP_XYerr (cm) CP_XYerr (cm) 

0.05  3.90 3.45 

0.1 3.81 3.32 

0.3 3.56 3.30 

0.5 (default) 3.27 3.43 

1 2.42 4.04 

2 1.47 5.86 
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Tie point accuracy (pixel) 

Table 15 shows that the best setting considering GCP and CP errors was the default 

TPA (1 pixel). Higher TPA values showed signs of overfitting, while lower TPA values 

proved to be less accurate.  

Table 15 – Effect of varying tie point accuracy in pixels (TPA) on horizontal ground control point error (GCP_XYerr) 
and horizontal check point error (CP_XYerr). 

TPA (pixel) GCP_XYerr (cm) CP_XYerr (cm) 

0.5  5.71 5.09 

1 (default) 3.56 3.30 

1.5 3.04 3.59 

2 2.83 3.96 

The optimal settings found for the reference accuracy settings of MA (m), MA (pixel), 

and TPA (pixel) with the respective errors were summarized in Table 16.   

Table 16 - Optimal settings found for marker accuracy (MA) in meter, marker accuracy (MA) in pixels and tie point 
accuracy (TPA) and the corresponding horizontal ground control point error (GCP_XYerr) and horizontal check 
point error (CP_XYerr).  

Method GCP_XYerr (cm) CP_XYerr (cm) 

MA (m) = 0.01, MA (pixel) 

= 0.3, TPA = 1  

3.56 3.30 

Image residual plots 

Lastly, image residuals were plotted to identify residual distribution. Figure 24a shows 

the residual plot before the optimization, Figure 24b after the optimization. An overall 

decrease in residual magnitude due to the optimization was seen. Nevertheless, a 

random distribution was not found.   

 

Figure 24 – Image residual plot outputs from Metashape. 25a) residual plot before optimization, 25b) residual 
plot after optimization 

It was found that one extra camera optimization was necessary, in which adaptive 

camera fitting was deactivated and fit additional corrections toggled. Figure 25 
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compares the residual plot before (Figure 25a) and after (Figure 25b) the final camera 

optimization process. While the distribution could not be considered absolutely 

random, the circular pattern was removed. This final alignment was used as the basis 

for further steps in this thesis.   

 

Figure 25 - Image residual plot outputs from Metashape. a) residual plot after optimization, b) residual plot after 
one additional camera optimization and using the setting fitting additional corrections 

Optimized parameter settings 

Table 17 shows a summary of the optimized parameter settings used for creating the 

dense point cloud. Improvements were especially seen by changing the key point limit 

and the tie point limit as well as using the Highest accuracy during image alignment. 

Table 17 - Summary of the optimal configuration of parameters in Metashape derived from the previous results 
(Section 4.3.2). These settings were used as default in the python script and for generating the final digital surface 
models. 

Workflow step Parameter Proposed Setting 

Image Alignment Accuracy Highest 

Generic preselection  ON 

Reference (source) preselection ON 

Key point limit 140,000 

Tie point limit 0 

Adaptive camera fitting OFF 

Guided image matching OFF 

Optimizing camera 

parameters 

Reconstruction uncertainty - 

Projection accuracy 2.5 

Image count - 

Reprojection error 0.25 

Marker accuracy (m) 0.01 

Marker accuracy (pixel) 0.3 

Tie point accuracy (pixel) 1 
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4.4. Evaluation of the DSM 

4.4.1. Accuracy assessment 

The RMSE of the two masked and unmasked DSM were calculated using both the 

GCPs and the CPs, proving errors of less than 0.04 m (Table 18). Using the water mask 

improved the quality of the DSM, reducing error by 1 cm.  

Table 18 – Root mean square error (RMSE) of unmanned aerial vehicle (UAV) derived digital surface models, with 
and without using the water mask considering both ground control points (GCPs) and check points CPs. 

Markers UAV RMSE (cm) UAV + mask RMSE (cm) 

GCPs 3.86 2.80 

CPs 3.92 2.73 

 

The Survey Statistics tool in Metashape allowed plotting the individual GCP and CP 

errors for both the version without (Figure 26a) and with the mask (Figure 26b). In both 

cases, the individual vertical error did not exceed 0.07 m, and horizontal error was 

around 0.03 m throughout the study area. When the mask was used, the maximum 

vertical error was 0.05 m. In terms of the spatial distribution of the vertical error, no 

clear trend could be observed (Figure 26).  

 
Figure 26 – a) Ground control point (GCP) locations and error estimates for the digital surface model (DSM) without 
mask. b) GCP locations and error estimates for DSM with mask.  Vertical error is represented by ellipse color. X, Y 
errors are represented by ellipse shape. Estimated Control points are marked with a dot and estimated check points 
with a cross. Coordinate reference system: EPSG 3008 
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4.4.2. Comparison to total station profiles 

 

The DSM was further compared to the TS elevation measurements from 08/2020. 

RMSD was calculated for each individual profile and in total for both the masked and 

unmasked version of the DSM (Table 19). The results were then plotted to investigate 

possible outliers or inaccuracies in the DSM (Appendix J & K). RMSD values were 

very similar between masked and unmasked DSMs, with the total RMSD within 1 cm 

of each other. While most individual profiles showed an RMSD between 5 and 15 cm, 

Profile 6 stood out with an RMSD of ~ 600 cm. This profile also greatly affected the 

total RMSD, causing a total RMSD for both DSMs of over 160 cm.  

Table 19 – Root mean square difference (RMSD) for each individual profile and total considering both the 
unmasked and masked unmanned aerial vehicle (UAV) digital surface model. 

 UAV RMSD (cm) UAV + mask RMSD (cm) 

Profile 1 10.76 10.56 

Profile 2 5.09 5.98 

Profile 3 9.08 8.88 

Profile 4 6.58 6.27 

Profile 5 11.09 11.35 

Profile 6 587.98 590.82 

Profile 7 12.57 12.93 

Profile 8 10.25 10.37 

Profile 9 13.64 13.00 

Total 161.81 162.59 

 

Profile 6 was therefore looked at closer, and the first three points varied greatly from 

the TS measurements (Appendix K). Likely being an outlier, the unmasked orthomosaic 

was overlapped with the TS measurements (Figure 27). When zoomed in on the first 6 

points of Profile 6, it was seen that the first three points were overlapped by trees 

(Figure 27, red circle).  

 
Figure 27 – Orthomosaic overlapped with the total station measurement profile locations giving emphasis on the 
first three points of profile 6 (red circle). Coordinate reference system: EPSG 3008 
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It was therefore assumed that the UAV-SfM approach measured the elevation of a tree 

at these points. The TS measurements were not affected by this, causing a large 

elevation discrepancy occurred. The total RMSD and the RMSD for Profile 6 were 

therefore recalculated after disregarding these three points (Table 20). 

Table 20 - Root mean square difference (RMSD) for Profile 6 and total after disregarding outliers, considering both 
the unmasked and masked unmanned aerial vehicle (UAV) digital surface model. 

 UAV RMSD (cm) UAV + mask RMSD (cm) 

Profile 6 22.31 22.06 

Total (without outliers) 11.01 10.95 

 

The TS measurements were further used to identify underlying trends, considering 

elevation and distance from the nearest GCP. It was assumed that the elevation error 

increased with distance to the closest GCPs. In the absence of well-distributed CPs, the 

TS measurements were used to estimate a more independent vertical error of the DSM. 

While other factors such as erosion may have influenced elevation measurements 

between the datasets, an underlying trend of an increased elevation difference should 

be noticeable. When observing Figure 28, it was seen that this was not the case. R2 = 

0.07 confirms that there was no correlation between the distance between GCPs and the 

elevation difference. Hence, no great increase in error was to be expected for areas 

further from GCPs in the DSM.  

 
Figure 28 - Linear regression between the distance between the total station (TS) measurement and the closest 
ground control point and the elevation difference between TS measurements and the predicted elevation using 
the unmasked unmanned aerial vehicle digital surface model. R2 = 0.03 showing no correlation, n = 156. 

5. Discussion 
 

To automatically generate highly accurate DSMs from off-the-shelf UAVs allows for 

the cost-efficient implementation of coastal monitoring schemes. To create a robust 

time series, DSMs should be derived the same way, minimizing uncertainty. An 

accuracy assessment of this methodology is necessary to identify for what application 

these DSMs can be used.   
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This thesis shows that it is possible to fully automate the pipeline from UAV images to 

high accuracy DSMs. This was successfully achieved by automating the generation of 

water masks, automatically identifying and placing GCPs, and finally writing all steps 

in the form of a python script to automate processing. Achieving a horizontal and 

vertical error of 3-4 cm shows that this pipeline can produce the accuracy required to 

monitor coastal environments successfully, especially when observing seasonal 

changes. More evaluations are required to prove further the robustness and quality of 

this pipeline using different datasets and more independent CPs. It is suggested to 

specifically conduct a flight meeting the GCP distribution requirements and including 

well-distributed, independent markers that can be used as check points. The choice of 

check points certainly affected the results, and therefore the check point error can not 

be trusted blindly. The study has tried to account for the poor distribution of check 

points by using the TS measurements. Compared to the TS measurements, the RMSD 

achieved was 10-11 cm, thus suggesting that GCP and CP errors are underestimating 

the real error of the DSM. Since the measurements were taken two months after the 

UAV flight, the results are difficult to use as ground truth data. It is impossible to know 

if the difference in elevation represents error or if other factors influenced it. Ideally, 

this dataset would have been measured within a week of the UAV flight.  

RMSE values in the vicinity of 5-10 cm have been achieved using similar UAV datasets 

in literature (Papakonstantinou et al. 2016;  Chen et al. 2018). Even though the UAV 

was not fitted with RTK or PPK systems, high accuracies were achievable in this thesis 

as many GCPs were available. When using all 33 GCPs as control points, results are 

expected to improve further.   

5.1. Water mask 

 

The automation of the water mask using image segmentation shows much promise and 

implementing a water mask can be concluded as desirable. As suggested by Gonçalves 

and Henriques (2015), alignment is improved, and noise reduced when using water 

masks. However, it has been shown that thorough optimization of the alignment can 

result in a highly accurate DSM without using water masks. 

However, the number of images in training and validation datasets should be increased 

to increase performance and robustness. Especially the validation dataset needs to be 

extended as it resulted in higher accuracy and lower loss values than the dataset used 

for training. Ideally, all the currently available images of the flights would be included 

either as training, validation, or test data. This could not be done within this thesis due 

to the time constraints. 

Especially for long-term coastal monitoring schemes, training an image segmentation 

model can prove valuable in the long run and is therefore suggested. 
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5.2. GCP identification 

To the author’s knowledge, the method to identify GCPs within the proposed pipeline 

presents a novel approach to automating the entire SfM pipeline using Metashape. 

Compared to semi-automated approaches widely used in literature, the need for manual 

inputs is eliminated (Gonçalves and Henriques 2015;  James et al. 2017).  While not 

optimized, the method shows promise by identifying GCPs correctly if these were 

placed following the requirements outlined in Section 3.2.3. Improving the algorithm 

can make the method more robust, decrease computational time and relax some of the 

outlined requirements in the future. In general, the yellow GCPs could be identified 

easier than their white counterparts as there were less similar looking objects. However, 

it was easier to find the center point of the white GCPs as the center point of a square 

was easier to identify. Depending on the DSMs’ application, improvements are required 

to ensure that the center point of a GCP is identified. A highly accurate sparse point 

cloud can, however, still be achieved using the proposed automated method. 

5.3. Metashape settings 

Optimal parameter settings throughout the Metashape workflow have been heavily 

discussed in the Agisoft forum and elsewhere on the internet. The software manual does 

not allow for complete insight into the algorithms behind the processing steps. Further, 

individual parameter explanations are difficult to come by and often explained 

insufficiently. Studies like Tinkham and Swayze (2021) and Moreira et al. (2021) were 

published while this thesis was written and therefore show the relevance of identifying 

optimized settings in Agisoft.  

Mayer et al. (2018) pointed out the necessity of outlining the detailed workflow in 

Metashape and conducting thorough accuracy assessments of the DSMs. The varying 

quality of alignment results in this thesis emphasizes this point. Caution is advised when 

using settings derived from studies dealing with other use-cases. Röder et al. (2017) 

referenced a workflow derived by paleontologists to reconstruct dinosaur bones. The 

proposed settings did not prove to be transferable to the use case of this thesis. Most of 

the default Agisoft settings are shown to be well picked but not necessarily optimal. A 

more comprehensive study would be necessary to suggest good parameter settings for 

any UAV-SfM studies in coastal areas. 

It was surprising to see that varying RU levels did not improve the sparse point cloud. 

This setting is used throughout the optimization process widely in literature (Röder et 

al. 2017;  USGS 2017). Lastly, setting the MA (m) to 0.01 instead of the measurement 

uncertainty of the markers (0.03 in this case) was an interesting observation. While 

theoretically, it makes sense to set the MA to the measurement accuracy of the markers, 

the results back the argument that this setting is used as a weighting in bundle 

adjustment (Mayer et al. 2018). Therefore, lowering this value gives more confidence 

in the measurements of the markers.  
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Limitations of this method were that the split between GCPs and CPs was not changed, 

and CPs could not be guaranteed to be independent of GCPs. As used by James et al. 

(2017), a Monte-Carlo approach could therefore be used to strengthen results. Further, 

only one study area and flight were used for testing. Including more flights or different 

study areas would increase the robustness of the results found. With more time, the 

study could be extended to include all UAV flights in the evaluation process. 

5.4. General limitations 

The datasets available for this project were not specifically created with an accuracy 

assessment in mind. It was required to work with the data available as additional flights 

could not be conducted. Therefore, no adjustments were possible if any problem with 

the data was identified, such as mixing GCPs or the distribution of GCPs and CPs. TS 

measurements of GCPs and a UAV paired with GNSS RTK-PPK would most definitely 

help reduce error within this proposed workflow.  

Further, Metashape supports GPU processing, which can greatly decrease 

computational time during processing. In this study, CPU processing was used entirely, 

making certain parameter settings uneconomically. Changing to GPU may make certain 

parameter decisions focused on accuracy over computational time more feasible.  

Creating DSMs may cause problems throughout seasons when dealing with a beach. 

People are usually excluded from the processing as they are moving objects. However, 

people that are sunbathing do not move and can therefore cause issues. It can be difficult 

to reliably compare seasonal changes without increasing the uncertainty of the DSM.  

6. Conclusion 
 

This study confirms the possibility of creating fully automated, analysis-ready DSMs 

for coastal monitoring using a UAV-SfM approach. Monitoring requirements such as 

repeatability and accuracy are both fulfilled using the proposed method. Further, the 

need for manual processing the amount of expertise required is greatly decreased. 

However, as it stands, the time necessary for processing is increased compared to 

conventional workflows.  

Decisions made on selecting Metashape parameters within this thesis are motivated, 

but uncertainty regarding the optimized setup remains. It stays unclear if and to what 

extent the study area and equipment influence the selected settings. The study does, 

however, conclude that alignment optimization is a crucial step within the workflow.   

The third research question could not be answered sufficiently due to the temporal 

differences in TS measurements and UAV flights. The two datasets were compared, 

but the TS measurements could not be used as ground truth data. When comparing the 

two datasets, the difference in elevation is minimal, containing only a few outliers. This 

suggests that highly accurate DSMs have been created using the outlined methods.  



43 

 

References 
 

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. 

Davis, et al. 2016. Tensorflow: Large-scale machine learning on heterogeneous 

distributed systems. arXiv preprint arXiv:1603.04467.  

Acorsi, M., M. Martello, and G. Angnes. 2019. IDENTIFICATION OF MAIZE 

LODGING: A CASE STUDY USING A REMOTELY PILOTED AIRCRAFT 

SYSTEM. Engenharia Agrícola, 39: 66-73. DOI: 10.1590/1809-4430-

eng.agric.v39nep66-73/2019 

Agarwal, S., N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski. 2009. Building Rome 

in a day. In IEEE 12th International Conference on Computer Vision: IEEE. 

Agisoft Metashape Professional. 1.7.0. 

Agisoft. 2020b. Agisoft Metashape User Manual. Agisoft LLC. 

Almeida, L. P., and R. Almar. 2020. Application of Remote Sensing Methods to 

Monitor Coastal Zones. Journal of Marine Science and Engineering, 8: 391. 

DOI: 10.3390/jmse8060391 

Baltsavias, E. P., E. Favey, A. Bauder, H. Bosch, and M. Pateraki. 2001. Digital Surface 

Modelling by Airborne Laser Scanning and Digital Photogrammetry for Glacier 

Monitoring. The Photogrammetric Record, 17: 243-273. DOI: 10.1111/0031-

868x.00182 

Bendig, J., A. Bolten, S. Bennertz, J. Broscheit, S. Eichfuss, and G. Bareth. 2014. 

Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived 

from UAV-Based RGB Imaging. Remote Sensing, 6: 10395-10412. DOI: 

10.3390/rs61110395 

Brown, L. G. 1992. A survey of image registration techniques. ACM Computing 

Surveys, 24: 325-376. DOI: 10.1145/146370.146374 

Carrera-Hernández, J. J., G. Levresse, and P. Lacan. 2020. Is UAV-SfM surveying 

ready to replace traditional surveying techniques? International Journal of 

Remote Sensing, 41: 4820-4837. DOI: 10.1080/01431161.2020.1727049 

Chen, B., Y. Yang, H. Wen, H. Ruan, Z. Zhou, K. Luo, and F. Zhong. 2018. High-

resolution monitoring of beach topography and its change using unmanned 

aerial vehicle imagery. Ocean & Coastal Management, 160: 103-116. DOI: 

10.1016/j.ocecoaman.2018.04.007 

Cheng, H. D., X. H. Jiang, Y. Sun, and J. Wang. 2001. Color image segmentation: 

advances and prospects. Pattern Recognition, 34: 2259-2281. DOI: 

https://doi.org/10.1016/S0031-3203(00)00149-7 

Chollet, F. 2015. keras. 

Chollet, F. 2018. Deep Learning mit Python und Keras: Das Praxis-Handbuch vom 

Entwickler der Keras-Bibliothek. MITP-Verlags GmbH & Co. KG. 

Danchenkov, A., and N. Belov. 2019. Morphological changes in the beach-foredune 

system caused by a series of storms. Terrestrial laser scanning evaluation. 

Russian Journal of Earth Sciences, 19: 1-14. DOI: 10.2205/2019ES000665 

Delgado, I., and G. Lloyd. 2004. A Simple Low Cost Method for One Person Beach 

Profiling. Journal of Coastal Research, 204: 1246-1252. DOI: 10.2112/03-

0067r.1 

Díez Díaz, V., H. Mallison, and M. Belvedere. 2017. “3D Imaging Handbook: 

Photogrammetry Digitization techniques” for the SYNTHESYS project. 

Elsner, P., U. Dornbusch, I. Thomas, D. Amos, J. Bovington, and D. Horn. 2018. 

Coincident beach surveys using UAS, vehicle mounted and airborne laser 

scanner: Point cloud inter-comparison and effects of surface type heterogeneity 

https://doi.org/10.1016/S0031-3203(00)00149-7


44 

 

on elevation accuracies. Remote Sensing of Environment, 208: 15-26. DOI: 

10.1016/j.rse.2018.02.008 

Eriksson, C., 2018. Erosionsutredning Kristianstad. DHI Sverige, Report 12803640, 

Gothenburg, Sweden. [in Swedish, English summary] 

GDAL, G. 2012. Geospatial Data Abstraction Library. Open Source Geospatial 

Foundation.  

Gindraux, S., R. Boesch, and D. Farinotti. 2017. Accuracy Assessment of Digital 

Surface Models from Unmanned Aerial Vehicles’ Imagery on Glaciers. Remote 

Sensing, 9: 186. DOI: 10.3390/rs9020186 

Gomez, C., and H. Purdie. 2016. UAV- based Photogrammetry and Geocomputing for 

Hazards and Disaster Risk Monitoring – A Review. Geoenvironmental 

Disasters, 3. DOI: 10.1186/s40677-016-0060-y 

Gonçalves, G., S. Santos, D. Duarte, and J. Santos. 2019. Monitoring Local Shoreline 

Changes by Integrating UASs, Airborne LiDAR, Historical Images and 

Orthophotos. 

Gonçalves, J. A., and R. Henriques. 2015. UAV photogrammetry for topographic 

monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote 

Sensing, 104: 101-111. DOI: 10.1016/j.isprsjprs.2015.02.009 

Grottoli, E., M. Biausque, D. Rogers, D. W. T. Jackson, and J. A. G. Cooper. 2020. 

Structure-from-Motion-Derived Digital Surface Models from Historical Aerial 

Photographs: A New 3D Application for Coastal Dune Monitoring. Remote 

Sensing, 13: 95. DOI: 10.3390/rs13010095 

Gu, J., Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, et al. 2018. 

Recent advances in convolutional neural networks. Pattern Recognition, 77: 

354-377. DOI: https://doi.org/10.1016/j.patcog.2017.10.013 

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other 

models in Keras. 0.3.0. 

Harwin, S., and A. Lucieer. 2012. Assessing the Accuracy of Georeferenced Point 

Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle 

(UAV) Imagery. Remote Sensing, 4: 1573-1599. DOI: 10.3390/rs4061573 

Hayakawa, Y. S., and H. Obanawa. 2020. Volumetric Change Detection in Bedrock 

Coastal Cliffs Using Terrestrial Laser Scanning and UAS-Based SfM. Sensors, 

20: 3403. DOI: 10.3390/s20123403 

Hendrickx, H., S. Vivero, L. De Cock, B. De Wit, P. De Maeyer, C. Lambiel, R. 

Delaloye, J. Nyssen, et al. 2019. The reproducibility of SfM algorithms to 

produce detailed Digital Surface Models: the example of PhotoScan applied to 

a high-alpine rock glacier. Remote Sensing Letters, 10: 11-20. DOI: 

10.1080/2150704x.2018.1519641 

Hirano, A., R. Welch, and H. Lang. 2003. Mapping from ASTER stereo image data: 

DEM validation and accuracy assessment. ISPRS Journal of Photogrammetry 

and Remote Sensing, 57: 356-370. DOI: https://doi.org/10.1016/S0924-

2716(02)00164-8 

Hoersch, B., and V. Amans, 2015. Copernicus Space Component Data Access 

Portfolio: Data Warehouse 2014-2020. Report, Frascati, Italy. [in Swedish, 

English summary] 

Hugenholtz, C. H., K. Whitehead, O. W. Brown, T. E. Barchyn, B. J. Moorman, A. 

LeClair, K. Riddell, and T. Hamilton. 2013. Geomorphological mapping with a 

small unmanned aircraft system (sUAS): Feature detection and accuracy 

assessment of a photogrammetrically-derived digital terrain model. 

https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/S0924-2716(02)00164-8
https://doi.org/10.1016/S0924-2716(02)00164-8


45 

 

Geomorphology, 194: 16-24. DOI: 

https://doi.org/10.1016/j.geomorph.2013.03.023 

Iglhaut, J., C. Cabo, S. Puliti, L. Piermattei, J. O’Connor, and J. Rosette. 2019. Structure 

from Motion Photogrammetry in Forestry: a Review. Current Forestry Reports, 

5: 155-168. DOI: 10.1007/s40725-019-00094-3 

Ivanovsky, L., V. Khryashchev, V. Pavlov, and A. Ostrovskaya. 2019. Building 

Detection on Aerial Images Using U-NET Neural Networks. In 2019 24th 

Conference of Open Innovations Association (FRUCT),  116-122. 

Izumida, A., S. Uchiyama, and T. Sugai. 2017. Application of UAV-SfM 

photogrammetry and aerial lidar to a disastrous flood: repeated topographic 

measurement of a newly formed crevasse splay of the Kinu River, central Japan. 

Natural Hazards and Earth System Sciences, 17: 1505-1519. DOI: 

10.5194/nhess-17-1505-2017 

James, M. 2017. SfM-MVS PhotoScan image processing exercise. 

James, M. R., S. Robson, S. d'Oleire-Oltmanns, and U. Niethammer. 2017. Optimising 

UAV topographic surveys processed with structure-from-motion: Ground 

control quality, quantity and bundle adjustment. Geomorphology, 280: 51-66. 

DOI: https://doi.org/10.1016/j.geomorph.2016.11.021 

Jaud, M., S. Passot, P. Allemand, N. Le Dantec, P. Grandjean, and C. Delacourt. 2018. 

Suggestions to Limit Geometric Distortions in the Reconstruction of Linear 

Coastal Landforms by SfM Photogrammetry with PhotoScan® and MicMac® 

for UAV Surveys with Restricted GCPs Pattern. Drones, 3: 2. DOI: 

10.3390/drones3010002 

Jiang, S., C. Jiang, and W. Jiang. 2020. Efficient structure from motion for large-scale 

UAV images: A review and a comparison of SfM tools. ISPRS Journal of 

Photogrammetry and Remote Sensing, 167: 230-251. DOI: 

10.1016/j.isprsjprs.2020.04.016 

Jiang, S., W. Jiang, W. Huang, and L. Yang. 2017. UAV-Based Oblique 

Photogrammetry for Outdoor Data Acquisition and Offsite Visual Inspection of 

Transmission Line. Remote Sensing, 9: 278. DOI: 10.3390/rs9030278 

Kandrot, S. 2013. Coastal Monitoring: A New Approach. Chimera, 26: 69-83. DOI: 

10.33178/chimera.26.9 

Kingsland, K. 2020. Comparative analysis of digital photogrammetry software for 

cultural heritage. Digital Applications in Archaeology and Cultural Heritage, 

18: e00157. DOI: 10.1016/j.daach.2020.e00157 

Länsstyrelsen-Skåne. 2017. Länsstyrelsen Skåne tar ställning mot planläggning på 

mark som hotas av översvämning och erosion. 

Leal-Alves, D. C., J. Weschenfelder, M. D. G. Albuquerque, J. M. D. A. Espinoza, M. 

Ferreira-Cravo, and L. P. M. D. Almeida. 2020. Digital elevation model 

generation using UAV-SfM photogrammetry techniques to map sea-level rise 

scenarios at Cassino Beach, Brazil. SN Applied Sciences, 2. DOI: 

10.1007/s42452-020-03936-z 

Leitão, J., M. Moy de Vitry, A. Scheidegger, and J. Rieckermann. 2015. Assessing the 

quality of Digital Elevation Models obtained from mini-Unmanned Aerial 

Vehicles for overland flow modelling in urban areas. Hydrology and Earth 

System Sciences Discussions, 12: 5629-5670. DOI: 10.5194/hessd-12-5629-

2015 

Li, X. Q., Z. A. Chen, L. T. Zhang, and D. Jia. 2016. Construction and Accuracy Test 

of a 3D Model of Non-Metric Camera Images Using Agisoft PhotoScan. 

https://doi.org/10.1016/j.geomorph.2013.03.023
https://doi.org/10.1016/j.geomorph.2016.11.021


46 

 

Procedia Environmental Sciences, 36: 184-190. DOI: 

10.1016/j.proenv.2016.09.031 

Lin, Y.-C., Y.-T. Cheng, T. Zhou, R. Ravi, S. Hasheminasab, J. Flatt, C. Troy, and A. 

Habib. 2019. Evaluation of UAV LiDAR for Mapping Coastal Environments. 

Remote Sensing, 11: 2893. DOI: 10.3390/rs11242893 

Long, N., B. Millescamps, F. Pouget, A. Dumon, N. Lachaussée, and X. Bertin. 2016. 

ACCURACY ASSESSMENT OF COASTAL TOPOGRAPHY DERIVED 

FROM UAV IMAGES. ISPRS - International Archives of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences, XLI-B1: 1127-1134. DOI: 

10.5194/isprs-archives-xli-b1-1127-2016 

Lowe, D. G. 2004. Distinctive Image Features from Scale-Invariant Keypoints. 

International Journal of Computer Vision, 60: 91-110. DOI: 

10.1023/B:VISI.0000029664.99615.94 

Lu, C.-H., and S.-J. Chyi. 2020. Using UAV-SfM to monitor the dynamic evolution of 

a beach on Penghu Islands. Terrestrial, Atmospheric and Oceanic Sciences, 31: 

283-293. DOI: 10.3319/tao.2019.09.25.01 

Macay Moreia, J. M., F. Nex, G. Agugiaro, F. Remondino, and N. J. Lim. 2013. FROM 

DSM TO 3D BUILDING MODELS: A QUANTITATIVE EVALUATION. 

ISPRS - International Archives of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences, XL-1/W1: 213-219. DOI: 10.5194/isprsarchives-

xl-1-w1-213-2013 

Mancini, F., M. Dubbini, M. Gattelli, F. Stecchi, S. Fabbri, and G. Gabbianelli. 2013. 

Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction 

of Topography: The Structure from Motion Approach on Coastal Environments. 

Remote Sensing, 5: 6880-6898. DOI: 10.3390/rs5126880 

Mayer, C., L. Pereira, and T. Kersten. 2018. A Comprehensive Workflow to Process 

UAV Images for the Efficient Production of Accurate Geo-information. In 

CNCG2018 - IX Conferência Nacional de Cartografia e Geodesia. Amadora, 

Portugal. 

Mills, J. P., S. J. Buckley, H. L. Mitchell, P. J. Clarke, and S. J. Edwards. 2005. A 

geomatics data integration technique for coastal change monitoring. Earth 

Surface Processes and Landforms, 30: 651-664. DOI: 10.1002/esp.1165 

Moravec, H. 1980. Obstacle avoidance and navigation in the real world by a seeing 

robot rover. 

Moreira, B. M., G. Goyanes, P. Pina, O. Vassilev, and S. Heleno. 2021. Assessment of 

the Influence of Survey Design and Processing Choices on the Accuracy of Tree 

Diameter at Breast Height (DBH) Measurements Using UAV-Based 

Photogrammetry. Drones, 5: 43.  

Nelson, A., H. I. Reuter, and P. Gessler. 2009. Chapter 3 DEM Production Methods 

and Sources. 65-85. Elsevier. 

Nyberg, J., B. Goodfellow, J. Ising, and A. Hedenström, 2020. Kustnära 

sedimentdynamik. Report 423-1763/2019, Uppsala, Sweden. [in Swedish, 

English summary] 

Obu, J., H. Lantuit, G. Grosse, F. Günther, T. Sachs, V. Helm, and M. Fritz. 2017. 

Coastal erosion and mass wasting along the Canadian Beaufort Sea based on 

annual airborne LiDAR elevation data. Geomorphology, 293: 331-346. DOI: 

10.1016/j.geomorph.2016.02.014 

Ozyesil, O., V. Voroninski, R. Basri, and A. Singer. 2017. A Survey on Structure from 

Motion. Acta Numerica, 26. DOI: 10.1017/S096249291700006X 



47 

 

Papakonstantinou, A., M. Doukari, and K. Topouzelis. 2017. COASTLINE CHANGE 

DETECTION USING UNMANNED AERIAL VEHICLES AND IMAGE 

PROCESSING TECHNIQUES. Fresenius Environmental Bulletin, 26: 5564-

5571.  

Papakonstantinou, A., K. Topouzelis, and G. Pavlogeorgatos. 2016. Coastline Zones 

Identification and 3D Coastal Mapping Using UAV Spatial Data. ISPRS 

International Journal of Geo-Information, 5: 75. DOI: 10.3390/ijgi5060075 

Pearce, Å., 2019. Kristianstads Vattenrike Biosphere Reserve Activities 2019. Report. 

[in Swedish, English summary] 

Pranzini, E., L. Wetzel, and A. T. Williams. 2015. Aspects of coastal erosion and 

protection in Europe. Journal of Coastal Conservation, 19: 445-459. DOI: 

10.1007/s11852-015-0399-3 

Rangel-Buitrago, N. G., G. Anfuso, and A. T. Williams. 2015. Coastal erosion along 

the Caribbean coast of Colombia: Magnitudes, causes and management. Ocean 

& Coastal Management, 114: 129-144. DOI: 

10.1016/j.ocecoaman.2015.06.024 

Röder, M., S. Hill, and H. Latifi. 2017. Best practice tutorial: Technical handling of 

the UAV "DJI Phantom 3 Professional" and processing of the acquired data. 

Rodríguez-Martín, M., and P. Rodríguez-Gonzálvez. 2020. Suitability of Automatic 

Photogrammetric Reconstruction Configurations for Small Archaeological 

Remains. Sensors, 20: 2936. DOI: 10.3390/s20102936 

Roth, H. R., C. Shen, H. Oda, M. Oda, Y. Hayashi, K. Misawa, and K. Mori. 2018. 

Deep Learning and Its Application to Medical Image Segmentation. Medical 

Imaging Technology, 36: 63-71. DOI: 10.11409/mit.36.63 

Saponaro, M., E. Tarantino, and A. Reina. 2019. Assessing the Impact of the Number 

of GCPS on the Accuracy of Photogrammetric Mapping from UAV Imagery. 

Baltic Surveying, 10: 43-51. DOI: 10.22616/j.balticsurveying.2019.006 

Schaufler, S., X. Luo, and B. Richter. 2021. Multi-Sensorsystem für hochpräzise, 

georeferenzierte visuelle Punktbestimmung. 

Sefercik, U., F. Tanrıkulu, and C. Atalay. 2019. Photogrammetric 3D Modelling 

Potential Comparison of SFM-Based New Generation Image Matching 

Software. 

Semyonov, D. 2011. In Algorithms used in Photoscan. 

Shaw, L., P. Helmholz, D. Belton, and N. Addy. 2019. COMPARISON OF UAV 

LIDAR AND IMAGERY FOR BEACH MONITORING. ISPRS - International 

Archives of the Photogrammetry, Remote Sensing and Spatial Information 

Sciences, XLII-2/W13: 589-596. DOI: 10.5194/isprs-archives-xlii-2-w13-589-

2019 

Snavely, K. 2011. Scene Reconstruction and Visualization from Internet Photo 

Collections. IPSJ Transactions on Computer Vision and Applications, 3. DOI: 

10.2197/ipsjtcva.3.44 

Snavely, N., S. M. Seitz, and R. Szeliski. 2006. Photo tourism. ACM Transactions on 

Graphics, 25: 835-846. DOI: 10.1145/1141911.1141964 

Tabor, M., 2018. UK GEOS Coastal Erosion and Accretion Project. Report, 

Southampton, UK. [in Swedish, English summary] 

Tinkham, W. T., and N. C. Swayze. 2021. Influence of Agisoft Metashape Parameters 

on UAS Structure from Motion Individual Tree Detection from Canopy Height 

Models. Forests, 12. DOI: 10.3390/f12020250 

Tonkin, T., and N. Midgley. 2016. Ground-Control Networks for Image Based Surface 

Reconstruction: An Investigation of Optimum Survey Designs Using UAV 



48 

 

Derived Imagery and Structure-from-Motion Photogrammetry. Remote 

Sensing, 8: 786. DOI: 10.3390/rs8090786 

Trimble. 2015. Trimble ZX5 Multirotor Unmanned Aircraft System Datasheet. 

Trimble. 2016. Trimble ZX5 Aerial Imaging Solution User Guide. USA. 

TUGraz. 2019. Semantic Drone Dataset. Retrieved 28.03 2021, from  

https://www.tugraz.at/index.php?id=22387. 

Turner, I. L., M. D. Harley, and C. D. Drummond. 2016. UAVs for coastal surveying. 

Coastal Engineering, 114: 19-24. DOI: 10.1016/j.coastaleng.2016.03.011 

USGS (2017) Agisoft PhotoScan Workflow. 

https://uas.usgs.gov/nupo/pdf/USGSAgisoftPhotoScanWorkflow.pdf (last 

accessed. 

Vasile, A., L. Skelly, K. Ni, R. Heinrichs, and O. Camps. 2011. Efficient City-Sized 3D 

Reconstruction from Ultra-High Resolution Aerial and Ground Video Imagery. 

Verhoeven, G. 2011. Taking computer vision aloft - archaeological three-dimensional 

reconstructions from aerial photographs with photoscan. Archaeological 

Prospection, 18: 67-73. DOI: 10.1002/arp.399 

Wen, S., F. Zhang, Z. Wang, F. Li, X. Jing, and J. Zhao. 2019. Coastal Erosion 

Monitoring and Hazard Degree Assessment at Penglai Sandy Coast Based on 

Remote Sensing. IOP Conference Series: Earth and Environmental Science, 

234: 012014. DOI: 10.1088/1755-1315/234/1/012014 

Westoby, M. J., M. Lim, M. Hogg, M. J. Pound, L. Dunlop, and J. Woodward. 2018. 

Cost-effective erosion monitoring of coastal cliffs. Coastal Engineering, 138: 

152-164. DOI: 10.1016/j.coastaleng.2018.04.008 

Wu, Z., C. Shen, and A. Hengel. 2016. Bridging Category-level and Instance-level 

Semantic Image Segmentation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.tugraz.at/index.php?id=22387
https://uas.usgs.gov/nupo/pdf/USGSAgisoftPhotoScanWorkflow.pdf


49 

 

Appendix A  

 
Appendix A – Hardware specification of the Sony a6000 camera used to capture the UAV images used in this 
thesis, adapted from (Trimble 2016). 

Feature Specification (Sony a6000) 

Effective pixels 24.3 megapixels 

Image sensor APS-C 23 x 15.6 mm CMOS 

Shutter speed 1/4000-30 sec 

ISO sensitivity AUTO, ISO 100-25600 

Display 7.5 cm tilting LCD monitor 

Dimensions (width x height x depth) 120 x 67 x 45 mm  

Weight 344 g 

Battery charging time  Approx. 310 min 

Lens  Sony 16mm F/2.8 E-mount camera lens 

Focal length 16 mm  

F-aperture 2.8-22 

Angle of view 83° 

Max. diameter 62 mm 

Filter size (diameter) 49 mm 

Length  22.5 mm 

 

 

Appendix B  

 
Appendix B – Specifications of the Trimble ZX5 Multirotor used to conduct the UAV flights providing the UAV 
datasets used in this thesis adapted from (Trimble 2015). 

Operation Trimble ZX5 Multirotor 

Endurance 20 min 

Max. ceiling 3,000 m  

Launch and recovery Vertical  

Weather limit Stable in winds up to 36 km/h 

Communication and control range Up to 2 km 
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Appendix C 

 
Appendix C – Orthomosaic of the DSM without using the water mask. Emphasis given on two areas to allow 
comparisons between Appendices C-F. Top left showing a zoom of an area where the alignment is not ideal. CRS: 
EPSG 3008 
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Appendix D 

 
Appendix D - Orthomosaic of the DSM when using the water mask. Emphasis given on two areas to allow 
comparisons between Appendices C-F. Top left showing a zoom of an area where the alignment is not ideal. CRS: 
EPSG 3008 
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Appendix E 

 
Appendix E - Hillshade of the DSM without using the water mask. Emphasis given on two areas to allow comparisons 
between Appendices C-F. Top left showing a zoom of an area where the alignment is not ideal. CRS: EPSG 3008 
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Appendix F 

 
Appendix F - Hillshade of the DSM without using the water mask. Emphasis given on two areas to allow comparisons 
between Appendices C-F. Top left showing a zoom of an area where the alignment is not ideal. CRS: EPSG 3008 
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Appendix G 

 
Appendix G - Effect of varying key point limit on number of tie points (#TP), rms reprojection error (RMSRE) and 
computational time (CT) during image alignment in Agsioft Metashape, using default settings and a tie point limit 
of 0. 

Key Point Limit #TP RMSRE (pixel) CT (min) 

5,000 157,435 0.958 51 

10,000 317,633 0.933 56 

20,000 637,924 0.903 66 

40,000 1,256,587 0.847 83 

60,000 1,857,751 0.811 102 

80,000 2,439,802 0.781 119 

100,000 2,985,495 0.759 135 

120,000 3,156,009 0.741 156 

140,000 4,027,126 0.726 176 

200,000 5,440,283 0.692 251 

300,000 7,941,555 0.659 437 

400,000 9,393,481 0.637 613 

500,000 11,125,762 0.622 788 

0 (550000-800000) 13,244,525 0.609 1055 
 

 

Appendix H 

 
Appendix H - Output of a sensitivity analysis observing the effect of varying tie point limit on number of tie points 
(#TP), rms reprojection error (RMSRE) and computational time (CT) during image alignment in Agsioft Metashape, 
using default settings and a key point limit of 140000. 

Tie Point Limit #TP RMSRE (pixel) CT (min) 

1,000 105,780 0.807 112 

2,000 215,452 0.798 116 

4,000 426,748 0.792 126 

5,000 531,657 0.795 127 

10,000 1,014,487 0.803 138 

15,000 1,552,259 0.801 148 

20,000 2,128,576 0.791 154 

30,000 3,049,421 0.766 167 

40,000 3,667,412 0.742 173 

60,000 4,026,093 0.726 177 

0  4,027,126 0.726 176 
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Appendix I 

 
Appendix I – Results of testing various combinations of projection accuracy (PA), reprojection error (RE) and 
reconstruction uncertainty (RU) on the number of tie points (#TP), rms reprojection error (RMSRE) and 
computational time (CT) during image alignment in Agsioft Metashape, using default settings and a key p 

Method #TP RMSRE GCP_XYerr 

(cm) 

CP_XYerr 

(cm) 

PA = 3 

RE = 0.3 

1,894,542 0.291 1.97 3.75 

PA = 2.5 

RE = 0.25 

1,262,672 0.223 1.76 

 

3.61 

PA = 2 

RE = 0.2 

664,087 0.156 1.58 3.83 

 

PA = 2 

RE = 0.25 

766,059 0.186 1.64 3.66 

PA = 2.5 

RE = 0.2 

1,092,218 0.181 1.60 3.91 

PA = 3 

RE = 0.25 

1,697,873 0.247 1.73 3.74 

PA = 2.5 

RE = 0.25 

RU = 20 

1,146,888 0.225 1.76 3.65 

PA = 2.5 

RE = 0.25 

RU = 15 

1,036,952 0.218 1.64 3.75 

PA = 2.5 

RE = 0.25 

RU = 10 

937,138 0.237 1.64 3.81 
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Appendix J 
Appendix J – First 5 Total station profile measurements plotted against the corresponding elevation derived from 
the UAV approach. Higher measurement ID indicates a closer proximity to the coastline. 
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Appendix K 
Appendix K – 5th to 9th total station profile measurements plotted against the corresponding elevation derived from 
the UAV approach. Higher measurement ID indicates a closer proximity to the coastline. 

 


