
MASTER’S THESIS 2021

Multi-Object Tracking in a
Camera Network: Cooperation
between the components
Felix Lundström

ISSN 1650-2884
 LU-CS-EX: 2021-25

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2021-25

Multi-Object Tracking in a Camera
Network: Cooperation between the

components

Spårning av flera objekt i ett
kameranätverk: Samarbetet mellan

komponenterna

Felix Lundström

Multi-Object Tracking in a Camera
Network: Cooperation between the

components

Felix Lundström
fe5713lu-s@student.lu.se

June 22, 2021

Master’s thesis work carried out at Axis Communications AB.

Supervisors: Pierre Nugues, pierre.nugues@cs.lth.se
Oskar Persson, oskar.persson@axis.com

Mikael Andreen, mikael.andreen@axis.com
Simon Molin, simon.molin@axis.com

Examiner: Elin Anna Topp, elin_anna.topp@cs.lth.se

mailto:fe5713lu-s@student.lu.se
mailto:pierre.nugues@cs.lth.se
mailto:oskar.persson@axis.com
mailto:mikael.andreen@axis.com
mailto:simon.molin@axis.com
mailto:elin_anna.topp@cs.lth.se

Abstract

This thesis covers the topic of multi-target multi-camera tracking. Tracking ob-
jects across cameras can for example be used to prevent or analyse recordings
of crime scenes. The solution can be divided into three di�erent components:
detection, tracking and re-identification. Detecting the objects, tracking them
within each view and re-identifying appearing objects against a database. We fo-
cus on real-time tracking with open world re-identification. This means that we
are not able to use future frames when tracking targets and we also need to figure
out if an appearing object has been seen or not. Re-identification turned out to
be the most di�cult problem since objects might appear in di�erent poses, lights
and distances. We investigated if we can solve this problem by using principal
component analysis (PCA). PCA is used to transform the features into stable
ones over time. We did not find any improvements by adding PCA to the sys-
tem.

Keywords: Multi-target multi-camera tracking, tracking, re-identification, real-time,
open world, principal component analysis

2

Acknowledgements

First, we would like to thank Axis Communications AB for giving us the opportunity to
conduct this thesis. We would like to thank our supervisors at Axis, Oskar Persson, Simon
Molin and Mikael Andreen for providing us with invaluable help and discussions.

We would also like to thank our supervisor at the university, Pierre Nugues, for helping
us to stay in the right direction to complete this thesis.

At last, we would also like to thank everybody involved in the FLET21 dataset. This gave
us the possibility to test our tracking system on di�erent scenarios.

3

4

Contents

1 Introduction 9
1.1 Context . 9
1.2 Case description . 10
1.3 Purpose . 11

1.3.1 Research questions . 11
1.3.2 Approach . 11

1.4 Contributions . 12
1.5 Outline . 12

2 Related work 13
2.1 Detection . 13

2.1.1 You Only Look Once (YOLOv3) 14
2.1.2 Faster Region-based Convolutional Neural Networks 14
2.1.3 YOLOv4 . 14

2.2 Tracking . 15
2.3 Tracking across cameras . 15

2.3.1 Human re-identification . 16
2.3.2 CLM based tracking . 16
2.3.3 GM based tracking . 17

2.4 Re-identification . 17
2.4.1 TriNet . 17
2.4.2 AGW . 17
2.4.3 Principle Component Analysis . 17

2.5 State-of-the-art Multi-Camera tracking . 18
2.5.1 A distributed approach for real-time multi-camera multiple object

tracking . 18
2.5.2 Real-Time Multi-Target Multi-Camera Tracking with Spatial-Temporal

Information . 19
2.5.3 Real-Time Multiple People Tracking with Deeply Learned Candi-

date Selection and Person Re-Identification 19

5

CONTENTS

3 Datasets and Metrics 21
3.1 Datasets . 21

3.1.1 Detection datasets . 21
3.1.2 Tracking datasets . 21
3.1.3 Re-Identification datasets . 21
3.1.4 Dataset for the complete system . 22

3.2 Metrics . 22
3.2.1 Detection metrics . 22
3.2.2 Tracking metrics . 22
3.2.3 Re-Identification metrics . 23
3.2.4 Metrics for the complete system . 23

4 Method 25
4.1 Implementing a Baseline . 26

4.1.1 Detection . 27
4.1.2 Tracking . 27
4.1.3 Re-Identification . 27

4.2 Evaluation . 28
4.2.1 Detection . 28
4.2.2 Tracking . 28
4.2.3 Re-identification . 28
4.2.4 Complete System . 29

4.3 Analysis . 29
4.3.1 Weighted Averaged Metrics (WAM) 30

4.4 Update . 30
4.4.1 1st Iteration: Re-identification . 30
4.4.2 2nd Iteration: Detection . 30
4.4.3 3rd Iteration: Detection . 31
4.4.4 4th Iteration: Re-identification . 31
4.4.5 5th Iteration: Re-identification . 31

5 Results 33
5.1 Detection . 33

5.1.1 YOLOv3 . 34
5.1.2 Faster RCNN . 34
5.1.3 YOLOv4 . 35

5.2 Tracking . 35
5.3 Re-Identification . 37

5.3.1 TriNet . 37
5.3.2 AGW . 39

5.4 Complete system . 40
5.4.1 Baseline (YOLOv3 – SORT – TriNet) 40
5.4.2 FRCNN – SORT – TriNet . 41
5.4.3 YOLOv4 – SORT – TriNet . 41
5.4.4 YOLOv4 – SORT – AGW . 42

5.5 Cooperation between components . 42

6

CONTENTS

6 Discussion 43
6.1 Complete system . 43
6.2 Weighted Averaged Metrics . 43
6.3 Detection . 44

6.3.1 Detection performance . 44
6.3.2 The detection performance e�ect on the MTMCT 44

6.4 Tracking . 45
6.4.1 Tracking performance . 45
6.4.2 The tracking performance e�ect on the MTMCT 45

6.5 Re-identification . 46
6.5.1 Re-identification performance . 46
6.5.2 PCA . 47
6.5.3 TriNet trained to extract less features 47
6.5.4 Re-identification performance a�ect on the MTMCT system . . . 47

6.6 Ethical aspects . 47
6.7 Validity . 48

7 Conclusions 49
7.1 Future Work . 50

References 51

7

CONTENTS

8

Chapter 1

Introduction

Real-time object tracking between multiple cameras is an increasingly growing area (Cia-
parrone et al., 2020). The di�culties with tracking objects in real-time between multiple
cameras are varied and hard to overcome. But the technology and hardware recently have
necessitated an investigation into if it is practically possible today. Among other things, we
will look into the components of a multi-target multi-camera tracking (MTMCT). MTMCT
consists of the following components: detection, tracking and re-identification, which is
described further in Chapter 2. We will investigate how they work, both separately and to-
gether. In addition, we will analyse why the various approaches of the components interact
di�erently with each other.

1.1 Context
Tracking objects across multiple cameras by analysing and processing videos is a widely used
technique in many di�erent application areas. It can be used to track lost kids in a mall
(Abraham et al., 2021), monitor and analyse the environment in autonomous cars (Yurtsever
et al., 2020) or crime scenes (McLean et al., 2013) or even to detect strange behaviour to pre-
vent criminal activity (McLean et al., 2013). Trained machine learning models for detecting
and tracking objects in videos have been used for a long time and have been dominated by
deep learning models and neural networks for a while.

In recent years, we have reached su�cient performance with deep learning approaches to
also be able to track objects between di�erent cameras, both overlapping and non-overlapping.
However, such approaches require significant resources. In this thesis, our task is to deter-
mine, whether it is viable to use in practice with reasonable memory usage and complexity,
but still e�cient enough to use in real-time (30 FPS) applications. By reasonable we mean
that a general computer can run the application.

9

1. Introduction

1.2 Case description
Axis Communications AB (which we will refer to as Axis from now on) was founded in 1984
and first focused on network technology to connect devices like printers, storage and scanner
servers, etc. In 1996, Axis launched the world’s first network camera, named AXIS Neteye
200 (Axis, 2021). After this breakthrough, Axis has mainly been focusing on developing
network cameras.

Currently, Axis spends a lot of resources on writing algorithms and models for video pro-
cessing in their cameras. Techniques like object detection and similar are now continuously
developed at Axis, which also includes a lot of research to keep being on the forefront of the
field. The interest of tracking people through multiple cameras has risen lately for di�erent
uses. One thing that is important to mention is that there exists a wide variety of algorithms
to accomplish the same goal in every case. Most of the state of the art algorithms do now
involve artificial intelligence such as deep learning and neural network models.

In this thesis, we investigated whether it is possible to track and re-identify persons
within several cameras in real-time. This includes detecting all pedestrians within each cam-
era, tracking them through the view and connecting each person to a unique identifier be-
tween all the cameras in the network. More specifically, we will use existing models for each
component and connect them into a complete system. Figures 1.1 and 1.2 show examples of
how two di�erent cameras re-identify two persons at di�erent times. Both figures contains
three images, where the left most is an image of person 1, second of person 2 and the third
with both person 1 and 2.

Figure 1.1: Example of frames from camera 1

Figure 1.2: Example of frames from camera 2

10

1.3 Purpose

We considered some typical use cases provided by Axis to narrow down the scope of
this task. This was essential for completing this thesis, otherwise its evaluation would be
incomplete due to the time and resources available. The two most common cases are:

1. multi-channel products with 360°view, mounted on street lights;

2. linked cameras in indoor corridors.

Furthermore we have limited the work to be within a real-time system that will be run on
either the camera product or a general-purpose computer, i.e. no supercomputers. We are
not allowed to assume that we know the camera topology, which means we can not use it
while tracking between cameras.

1.3 Purpose
The purpose of this thesis is to analyse the di�erent ways of detecting, tracking and re-
identifying humans. Furthermore we will investigate how di�erent algorithm for each com-
ponent of the MTMCT a�ect the other components. This will provide a greater understand-
ing of how the di�erent components cooperate in the complete system.

1.3.1 Research questions
We can divide our problem into the following three questions:

1. Which commonly used components (detection, tracking and re-identification) can we
apply to solve our task?

2. Why does specific combinations of components work better than others?

3. How is the di�erent performance aspects a�ected when only comparing the most sta-
ble features to re-identify objects?

The motivation for RQ1 is grounded in that we need to find existing components which
can be used in the implementation.

Di�erent models for each component prioritise di�erent aspects of performance. This
means that they will cooperate di�erently with the other components. We have to understand
why specific setups are e�cient and others are not. RQ2’s aim is to answer this.

When re-identifying objects, they might appear in di�erent lights, angles, poses or dis-
tances. A person looks di�erently depending on these aspects. For example, if the re-identification
model looks at colours, they may vary due to di�erent light. We will try to solve this by find-
ing and comparing the features that remain most stable through these di�erent setups. This
is the motivation for RQ3.

1.3.2 Approach
To begin with, we will start by researching the subject to see which methods are already
discovered and which algorithms seem to be the most suitable. We will then continue by set-
ting up a baseline version with existing models for detection, tracking and re-identification.

11

1. Introduction

When we have a working baseline where everything works out together, we will create an
evaluation pipeline to evaluate the system. When we are at this stage, we will analyse the
results, upgrade the system and assess the design. This process will then be repeated until
satisfaction or the time limit of the thesis has been reached.

1.4 Contributions
This thesis has been carried out in cooperation with Eric Turesson from Blekinge Institute
of Technology. The work has been divided so that the first two research questions are similar
while the third is completely separate and done individually.

During the work, all programming has been done by pair programming, where we have
equally shared the programming and criticising role. All the analyses have been done together.
The reason is that we believe that discussion brings further validity to the analysis since we
can see di�erent viewpoints and taking advantage of our di�erent skills. We do not share
the same thesis report, but there are similar parts in the reports. We wrote the introduction,
results, discussion and conclusion individually. The result and discussion chapters are based
on the same evaluations and results. The related works and method chapters are close to
being identical with small di�erences. In the related works and method, we have tried to
ensure that both of us have done the same amount of work. The process has been that we
take turns writing and examining. The content of related works and method are not the exact
same due to the fact that the third research question is di�erent.

1.5 Outline
The thesis is structured in the following way: Chapter 2 introduces the reader to the track-
ing, detection and re-identification tasks and other relevant information. The metrics and
datasets can be found in chapter 3. Chapter 4 details how the thesis was conducted. Chap-
ter 5 presents the thesis’s objective result and the objective analysis of the result. Chapter 6
presents the result and the significance of our results. In Chapter 7, you can find the conclu-
sion of the thesis and discussions on future works for the area.

12

Chapter 2

Related work

MTMCT consists of three components: detection, tracking and re-identification:

1. Firstly, we need to search the frames for objects, which is handled by the detection
model.

2. Secondly we need to keep track of each object within a sequence of frames, providing
it with an unique id. To accomplish this task, a tracking algorithm is utilised.

3. Thirdly, we need to create connections between the targets across multiple cameras.
This is achieved by using a re-identification model, which compares each target to a
database with previously seen objects.

2.1 Detection
Detection algorithms identify all interesting objects of a specific class or multiple classes
within an image. The detection algorithm takes an image as input, and the output is a list of
bounding boxes discovered in the image. Each of these bounding boxes contains an object
which the algorithm is trained to find. The bounding box is often a set of pixel coordinates
and a confidence value on how sure the algorithm is that the bounding box contains a specific
object. The convolutional neural network (CNN) is the state-of-the-art approach to deal
with the detection task which outperforms previous methods. Some widespread CNN object
detection methods are R-FCN (Dai et al., 2016), Faster R-CNN (Ren et al., 2017), SSD (Liu
et al., 2015) and YOLOv3 (Redmon and Farhadi, 2018). A list of the detection algorithms
which this thesis uses can be found in the following subsections.

13

2. Related work

2.1.1 You Only Look Once (YOLOv3)
YOLOv3 (Redmon and Farhadi, 2018) is a fast detection algorithm with decent accuracy,
since real-time is an important factor in this thesis this makes YOLOv3 an incredibly suitable
choice.

YOLOv3 capitalizes on previous work by Redmon and Farhadi (2017). YOLOv3 tries
to predict coordinates and size parameters for its bounding boxes: tx, ty, tw, th. To deal with
boxes that are close to the boundaries of the image, o�sets of cx and cy are used together with
the previous bounding boxes prior width pw and height ph. This then creates the following
formulas to calculate the bounding box’s coordinates. e below is Euler’s number.

bx = σ(tx) + cx
by = σ(ty) + cy
bw = pwetw

bh = pheth

(2.1)

For each box, a class prediction is applied and determines a label for the box. YOLOv3 uses a
feature extractor to extract the features and then using the features, it tries to predict a label.

YOLOv3 has the ability to classify a wide spectrum of objects. Examples could be cats,
dogs, humans and many more. We have decided to only focus on humans so we have limited
YOLOv3’s amount of labels to only humans or, as YOLOv3 calls them, persons.

2.1.2 Faster Region-based Convolutional Neural Net-
works

Faster Region-based Convolutional Neural Networks (FRCNN) (Ren et al., 2017) are an im-
provement of the previously developed RCNN (Girshick et al., 2013). The goal of creating
FRCNN is that it needs to increase its processing speed while retaining its accuracy.

FRCNN comprises two modules: a deep, fully convolutional network that proposes re-
gions in an image that might contain objects of interest. The other module is called the
detector. The detector takes the proposed regions and then tries to detect objects within the
region.

2.1.3 YOLOv4
YOLOv4 is a one-stage object detection module developed by Bochkovskiy et al. (2020) which
has continued the work of YOLOv3 (Redmon and Farhadi, 2018). YOLOv4 aims to optimise
its speed and accuracy compared to YOLOv3. YOLOv4 improvement in accuracy and pro-
cessing speed is respectable compared to YOLOv3 processing speed and accuracy. YOLOv4
strives to be able to be run and trained on consumer-friendly graphic cards.

YOLOv4 is built on YOLOv3 (Redmon and Farhadi, 2018). The improvement made in
YOLOv4 is the introduction of several new modules.

14

2.2 Tracking

2.2 Tracking
All tracking uses detection, but there is an important distinction between some approaches.
Some handle the detection internally, while some need a detection component which pro-
vides them with detections as input for the tracking phase. Tracking using detection as input
works by taking each frame and applying a detection algorithm which extracts bounding
boxes. The tracking part can utilise these boxes to track objects.

Tracking is often divided into two phases. Prediction of object locations and the associa-
tion with detection and the prediction (Bewley et al., 2016). For each new frame, the tracking
algorithm does the following:

1. Detect objects which are of interest.

2. Predict new location for detected objects using previous frames.

3. Associate the detection with the prediction.

Some popular tracking methods are motion-aware multi-object tracking (Han et al., 2020),
simple online real-time tracking (Bewley et al., 2016) and Brasó and Leal-Taixé (2020)’s al-
gorithm. All of the mentioned tracking algorithms take advantage of several algorithms to
combine, to create a stronger tracking algorithm.

The tracking component we used is Simple Online Realtime Tracking (SORT). Bewley
et al. (2016) implemented a tracking system called simple online real-time tracking (SORT).
As input, it takes the detection from a detection algorithm such as YOLO. Using the detec-
tion, SORT associates the detection to a bounding box containing the object which is tracked.
With a Kalman filter, the optimal velocity is calculated and connected to the bounding box
and used to predict the future frames bounding boxes.

Kalman Filter for tracking moving targets consist of estimating a state vector that com-
prises of attributes from the target, such as velocity and position. It is this state vector that
tries to calculate the future position of the targets. Kalman Filter is an algorithm that uses
series of known information observed over time to predict unknown information. In the case
of tracking the unknown information is the future position of the targets.

The Hungarian algorithm is a combinatoral optimization algorithm that can solve as-
signment problems. Furthermore, it is a fast algorithm. Using Hungarian algorithm, an
assignment cost matrix is calculated by applying intersection-over-union (IoU) to find the
distance between the detection and the predictions. IoU is the result of dividing the overlap-
ping area och two bounding boxes by the area of union. In addition, a minimum IoU is used
to discard assignments where the overlap between the detection and the track is lower than
the IoUmin. This ensures that a correct data association is conducted between the detection
and the track.

2.3 Tracking across cameras
According to Hou et al. (2017), there exist mainly three ways to track human objects across
multiple cameras:

• Human re-identification

15

2. Related work

• Camera linked model(CLM) based tracking

• Graph model (GM) based tracking

Below there will be a summary of each of the three ways to track objects across cameras.

2.3.1 Human re-identification
Hou et al. (2017) report that human re-identification focuses on extracting features from an
object and distance metric learning. Simplified human re-identification works by saving the
extracted features from an object in a database. Objects are provided by a tracking algorithm,
which detects and generates bounding boxes for each object. When an unknown object enters
a camera view, it extracts the features from that object. Then it compares it to all feature sets
in the database to see if the object is a known object or a new object. The comparison could
be made using Euclidean distance by calculating how close the features are to be the same,
and this is the distance learning metric part. If the object is a match, it assigns the id it has
in the database, otherwise generates a new id for the object and saves it.

Features
Hou et al. (2017) report that the most common features to extract are colour, texture, shape,
global features, regional feature, patch-based features, and semantic features. The most
prominent one is the colour. Hou et al. (2017) further explain the definition of these fea-
tures and how to extract these features.

Distance Metric Learning
Euclidean distance is the most common way to measure the similarity distance between two
feature vectors representing human objects. Recently, research points to that the Euclidean
distance approach struggles with significant variation in illumination, pose, and viewpoints.

According to Hou et al. (2017), further research has been more directed towards learning
an optimal metric model. The optimal metric model’s purpose is to learn a linear transfor-
mation that can map the original feature space to a new feature space.

2.3.2 CLM based tracking
According to Hou et al. (2017), CLM uses available training data from the entry/exit points
of two views to estimate the feature (Temporal-spatial and appearance) relationship between
two views. CLM uses this to account for the di�erence between the views when calculating
the feature distance between human objects.

CLM can be trained using both supervised and unsupervised training. The di�erence
lies in the training dataset, which needs considerably more attention if supervised training is
used. Therefore since the dataset demands increased sizes to achieve functional performance,
unsupervised training has become more commonly used. It is a more realistic alternative
and scalable to large-scale camera networks. CLM is mainly used in tracking humans across
multiple static cameras.

16

2.4 Re-identification

2.3.3 GM based tracking
Hou et al. (2017) informs that GM based tracking uses graph modelling techniques to generate
a solvable GM using detection, tracks or trajectories as input. An optimisation solution is
used to deal with data association across cameras. According to Hou et al. (2017), GM based
tracking can handle complex scenes relatively well, but it struggles with the association of
object across cameras.

2.4 Re-identification
We used TriNet and the Attention Generalised Mean Pooling with Weighted Triplet Loss
(AGW) re-identification algorithm in this thesis. A summary of the re-identification meth-
ods we used can be found in the following sub-sections.

The feature extraction from one object in di�erent environments might extract features
which varies a lot under di�erent circumstances. This problem might be solved by Principle
Component Analysis (PCA) and is explained in the third sub-section.

2.4.1 TriNet
Re-identification is an essential part in being able to track across several cameras. Using
Hermans et al. (2017) plain convolutional neural network (CNN) together with a triplet loss
enables a re-identification application that has the ability to extract features from a human
object.

This method works by enhancing the CNN’s training by using triple loss. As an e�ect,
end-to-end learning between an input image and a desired feature space is possible. Fur-
thermore this optimises the network and causes an additional metric learning step obsolete.
Then, simple Euclidean distance can be used to compare the features.

2.4.2 AGW
Ye et al. (2020) describe a re-identifcation method called AGW. AGW is an improvement on
Luo et al. (2020) work. It is built upon a ResNet50 (He et al., 2016) as a backbone, which
is a 50 layer Residual Network. In addition it utilises three improvement methods. First, a
non-local attention block (Wang et al., 2018) produces the weighted sum of the features at all
positions. Next a generalised-mean pooling (Radenovic et al., 2019) provides fine grained in-
stance retrieval and lastly the weighted regularisation triplet loss part generates hard triplets
for AGW to use.

2.4.3 Principle Component Analysis
Wold et al. (1987) describes how PCA can reduce the dimensions of data to contain as sta-
ble data as possible. PCA analyses the features over time to create new features in smaller
dimension to represent the objects. These new features are hopefully more stable over time
and can be trained on use-case specific data.

17

2. Related work

PCA creates new uncorrelated variables (principal components), where it tries to put
maximum information in the first component, the remaining maximum information in the
next component an so on. This is reduced into solving an eigenvalue/eigenvector problem,
and the new variables are defined by the dataset at hand. To make the PCA more adapted to
the specific use-case, you can feed it with varied data to find a feature space that are stable
through these variations.

2.5 State-of-the-art Multi-Camera tracking
The following algorithms are the state-of-the-art real-time deep learning algorithms used
for tracking and re-identifying across multiple cameras. The methods provide information
on how state-of-the-art tracking methods are constructed and information we can use when
constructing our tracking system.

2.5.1 A distributed approach for real-time multi-camera
multiple object tracking

Previtali et al. (2017) detail a MTMCT system named PTracking. PTracking works by utilis-
ing Distributed particle filters (DPF), which is often used in developing tracking algorithms.
Particle filtering is done by placing out possible future positions (particles) for the object. It
weights each particle depending on the possibility of being correct, according to the known
information. The particles are then resampled and new particles are created with the weights
in consideration and so on. This enables the system to predict the location of the object, and
can then use that to track objects in the views.

The three main components of PTracking are the following:

• The general algorithm (PTracking)

• The clustering algorithm (KClusterize).

• The data association.

KClusterize is a clustering method without the need of knowing the number of clusters.
KClusterize is also an e�cient algorithm that is not computationally heavy.

The data association assigns ID’s to each object using the following features:

• Direction

• Velocity

• Position

Furthermore, PTracking uses an HSV (Hue, saturation and value) colour model to re-identify
already known objects. The model contains HSV colour histograms for the already known
objects to use when comparing them.

18

2.5 State-of-the-art Multi-Camera tracking

2.5.2 Real-Time Multi-Target Multi-Camera Track-
ing with Spatial-Temporal Information

Zhang and Izquierdo (2019) detail a tracking system composed of detection, tracking in a
single view and a re-identification algorithm to handle cross camera object association.

For detection, they use the OpenPose algorithm (Cao et al., 2019). The false-positive rate
for OpenPose is too high. A lightweight RFCN (Chen et al., 2018) is applied to refine the
bounding box. The result is a drastic reduction of false positives.

It uses a Kalman filter for tracking, which is then sent to a re-identification network to
connect the targets in multiple cameras. This network uses Deeply-Learned Part-Aligned
Representations re-identification algorithm (Zhao et al., 2017) to extract features for the
cross camera object association, which decomposes the human body into regions which are
discriminative for person matching.

2.5.3 Real-Time Multiple People Tracking with Deeply
Learned Candidate Selection and Person Re-
Identification

Chen et al. (2018) describe a method that uses R-FCN detection algorithm (Dai et al., 2016)
together with a Kalman filter to predict future positions of the detected objects. To solve
the association across cameras, a re-identification method is used. More specifically Szegedy
et al. (2015) GoogLeNet is used.

19

2. Related work

20

Chapter 3

Datasets and Metrics

3.1 Datasets
This section contains a short summary of the datasets used for evaluating the di�erent com-
ponents. All datasets except for FLET21 provides ground truths. These ground truths are
manually annotated by the authors of the datasets. These ground truths are used to compare
the results against.

3.1.1 Detection datasets
For detection evaluation, we have used two datasets. The first is the COCO dataset (Lin
et al., 2014). We have modified it a bit as we only evaluated persons and the COCO dataset
has a wide array of classes. COCO is a commonly used dataset for evaluating detection.

3.1.2 Tracking datasets
For tracking, we utilised the MOTChallange 2015 dataset (Leal-Taixé et al., 2015), which is a
collection of datasets with various characteristics. This dataset collection was chosen because
it subjects the tracking algorithm to various di�culties. Examples of the di�culties could be
that the objects are occluded, walks in groups or crosses path with other objects.

3.1.3 Re-Identification datasets
Re-identification uses Market1501 (Zheng et al., 2015) dataset. Market1501 is a commonly
used dataset for training and evaluating re-identification methods.

DukeMTMC-reid is a subset of the complete DukeMTMC (Ristani et al., 2016) dataset.
This subset is specifically designed for training and evaluating a re-identification.

21

3. Datasets and Metrics

3.1.4 Dataset for the complete system
For evaluating the complete system, we created a couple of videos representing the use cases.
We called it FLET21. The dataset consists of several camera views which contain a specified
amount of people.

3.2 Metrics
This section contains a short summary of the metrics used for evaluating the components
and the complete system.

3.2.1 Detection metrics
Padilla et al. (2021) describe some common metrics used when evaluating detection. There
are the following: Average precision (AP), average recall (AR), true positives, false positives
and missed detection. Some of them are self-explanatory.

AP is a conventional object detection evaluation metric where AP is the regression and
classification accuracy. AP is often determined using intersection over union (IoU) which
describes how good the bounding box fits within the ground truth bounding box. For exam-
ple, AP50 says that at least 50% of the bounding box fit within the ground truth bounding
box. AR is used to measure the detection algorithms ability to detect an object in an image.
AR1 describes how good it is at detecting an object if there is one object in the image and
AR10 is how good it is at detecting an object if there are 10 objects in the image.

True positives (TP) describes the number of correctly identified objects. False positives
(FP) describe the number of incorrect detection of objects that do not exist or misplaced an
existing object’s detection. False negatives (FN) describes the number of objects which were
not detected. True negatives (TN) is not possible to measure, since it represents the objects
that are not detected and does not exist.

3.2.2 Tracking metrics
There are many metrics for evaluating tracking, and not all of them are essential for this
thesis. A selection of the most relevant metrics is therefore necessary.

The metrics used for evaluating the tracking are from Ristani et al. (2016)’s paper where
the following metrics are used: Multiple Object Tracking Accuracy (MOTA), Multiple Ob-
ject Tracking Precision (MOTP), ID F1 score (IDF1), ID precision (IDP), ID recall (IDR),
Recall, Precision, TP, FP, FN, ID switches (IDSW) and ID switch recall (IDSWR):

MOTA describes the overall performance of the tracking.

MOTP describes the average dissimilarity between the trackers output and the ground truth.

IDF1 is the number of correctly identified detections over the average number of labels in
the ground-truth and the computed detection.

IDP is the ID precision measuring the fraction of ground-truth person detections, that are
correctly assigned to a unique person ID.

22

3.2 Metrics

IDR measures the probability that the id is correctly labelled.

IDSW is the number of times the tracked objects switch id in total. Lastly,

IDSWR is the ratio for how often each object switches id.

3.2.3 Re-Identification metrics
For re-identification, there are two commonly used metrics for evaluating re-identification.
Mean average precision (mAP) and cumulative match characteristics (CMC-k) where k is the
rank. The rank specifies how many of the top most possible matches we look at. mAP is the
average over all the precisions of the queries. Precision is the ability of the model to only
identify the relevant objects. CMC-k represents the probability that a correct match appears
in the top k ranked retrieved results.

We also have the check for existence (CFE) accuracy metric, which describes how good
the re-identification algorithm is at determining if a person exists in the database or not. The
evaluation is done using a query and gallery set. The gallery contains images of people. The
query set contains images on both people that exist in the gallery set and some that is not yet
seen.

This evaluation is done by creating a gallery containing a set number of people. The query
set contains images of people in the gallery set.

Creating a query with persons we know exist in the gallery and persons we know do not
exist. This result in a percentage value.

3.2.4 Metrics for the complete system
Here we will look at the processing speed (FPS), tracking and re-identification performance.
There are no direct metrics for evaluating a complete tracking system over multiple cameras,
so here we had to construct a metric for evaluating the complete system’s performance.

23

3. Datasets and Metrics

24

Chapter 4

Method

The work has been divided into five separate but closely related stages. For a complete picture
of the workflow, Figure 4.1 shows the di�erent stages and how they relate.

Figure 4.1: Thesis workflow

In the first stage, we performed a literature review to examine real-time MTMCT. We
researched the components we decided to use in our MTMCT system. The system was chosen
from extensive research into similar use cases.

Both state-of-the-art and more frequently used approaches of each component have been
researched. They both contain important information to be able to construct an MTMCT
system properly.

The inclusion criteria are that they must have been published within 10 years, writ-
ten in English or Swedish, and available through known digital libraries such as IEEE and
arXiv. Common keywords used for exploring the libraries are “re-identification”, “Real-
Time”, “Multi-target multi-camera tracking” or “MTMCT”, “Tracking algorithms”, “detec-
tion algorithm" and many more keywords. These mentioned keywords has been combined
together in various combinations.

We have researched di�erent methods to evaluate tracking systems and their components.
This enables a correct way of evaluating the tracking system and its component to increase
the results’ validity.

25

4. Method

Standard datasets used for evaluating the components and the MTMCT system were
also researched. The reason is that we need datasets that represent the use cases we were
given. There is also the need for commonly used datasets that can grant legitimacy to our
evaluations. This stage will lay the foundation to be able to answer the research questions
dictated in Section 1.3.1.

The second stage consists of utilising the knowledge gained from the research stage. Here
we take the knowledge gathered and implements a MTMCT baseline using open-source
projects. The result is a baseline that can track objects in a multi-camera system. This stage
provides answers for RQ1 since we have to create a working baseline for our use cases.

The third stage is to evaluate the system created from the second stage. This evaluation
will be the basis for comparing future improvements. The result from the third stage is a list
of performance values for each of the components and also for the complete tracking system.

The fourth stage’s task is to carry out a comprehensive analysis of the evaluation stage’s
information. This information will show how the components work together, which com-
ponents are bottlenecks. The information gained from the analysis will then result in one or
more component and parameters which needs to be modified. Furthermore, we will execute
a more thorough analysis of why the component works the way it does with the other compo-
nents. For example, why does inadequate detection accuracy a�ect the tracking component
in a certain way? At this stage, we are laying the groundwork for RQ2. Moreover we will
investigate the metric which is described in Section 4.3.1.

The fifth stage, the update stage, takes the information from the analysis to determine
which part we should update. We continuously loop over stage three to five until either the
time limit is reached or su�cient performance is achieved.

4.1 Implementing a Baseline
Figure 4.2 provides an overview of the baseline and how the future system will work.

Figure 4.2: Complete MTMCT system

After researching, we have concluded that we should divide the components as in Figure
4.2. The reason for this division, instead of having some parts merged together, is that we

26

4.1 Implementing a Baseline

now have greater control over the components. It is easier to replace components, change
the parameters and optimise the way all components work together. With this division, we
can find implemented models for each component and create a baseline to start from. In
addition we have the ability to individually evaluate the components which would not be
possible in a system where the components are built in together.

4.1.1 Detection
For detection, we use YOLOv3, which is discussed in Section 2.1.1. The reason to use YOLOv3
is that its focus lies in achieving real-time detection and still having decent accuracy. Since
we decided that real-time is a crucial aspect, we chose to prioritise real-time over accuracy.

YOLOv3 is commonly used due to its ease of use and implementing. There exist pre-
trained models for the implementation, which drastically reduced the time to implement
it. There are similar works from which we could gather inspiration when implementing it.
These mentioned aspects are the reason for choosing YOLOv3 and not later versions. The
later ones are more experimental versions, which do not provide good and tested support or
models.

YOLOv3 takes a frame as input and produces bounding boxes for each object found in
the frame. These bounding boxes are then sent to the tracking algorithm. In the baseline, we
apply YOLOv3 on every frame since it is relatively fast. However, it is possible to only run
the detection every n-th frame.

4.1.2 Tracking
Simple Online Real-Time Tracker (SORT) was used as the tracking component. Section
2.2 summarises how SORT works. The reason for choosing SORT is grounded in that it
is commonly used when implementing a baseline. SORT was explicitly designed to be a
baseline and a testbed for future trackers. Furthermore, SORT is easy to implement. The
tracker’s downside is that it has di�culties handling occlusion and cannot keep a consistent
id when an object disappears and reappears. This downside is irrelevant in our case due to
the re-identification algorithm handling this.

SORT takes the bounding boxes the detection algorithm produces and generates an id
for the bounding boxes. SORT then tries to predict future positions for the bounding boxes
to keep a consistent id for the targets.

4.1.3 Re-Identification
The TriNet re-identification algorithm, which is discussed in Section 2.4.1 was used as the re-
identification component. TriNet was chosen based on its ease of implementation and that
it had available trained models. The performance of TriNet, while not the best, is su�cient
for the baseline.

TriNet receives the targets from each of the camera views and extracts features from them.
It uses the Euclidean distance to measure the distance between the object features and all the
database features by utilising a threshold to determine if the object’s features are close enough
to features in the database. This enables us to say whether they are the same object or not. If

27

4. Method

the object has no match in the feature database, it stores it with a new ID. Re-identification
is constructed to allow for only applying it every n-th frame.

4.2 Evaluation
We have created an evaluation pipeline to enable us to quickly replace the components in the
tracking system. This frees up more time to change out components. The evaluation pipeline
is constructed to evaluate the components independently and also to calculate the metric
for the complete system. The metric for the complete system is Weighted Averaged Metrics
(WAM) which tells us roughly how good the tracking system is.

4.2.1 Detection
Section 3.2.1 describes the metrics used in the evaluation of the detection algorithm. Fur-
thermore, Section 3.1.1 describes the dataset used in the evaluation of the detection models.

The evaluation for detection consists of applying the detection algorithm on a consider-
able amount of images and then comparing the output against the ground truth. The ground
truth were manually annotated by the authors of the dataset. This produces accurate perfor-
mance values for the detection algorithm, which describes its ability to detect objects.

The evaluations were conducted on the COCO dataset, one of the most commonly used
datasets when evaluating detection models.

4.2.2 Tracking
Section 3.2.2 describes the metrics used in the evaluation of the tracking algorithm. Further-
more, Section 3.1.2 describes the datasets used when evaluating the tracking models.

The evaluation of the tracking algorithm consists of several evaluations on di�erent datasets.
The reason is that we want to evaluate the tracking algorithm on datasets containing di�er-
ent di�culties such as occlusion, number of people and image di�culties. For each of the
datasets, a list of detections is provided. The tracking algorithm receives these detections,
predicts their future positions and assigns them an id. The output is then compared against
the ground truth for the dataset. The ground truth were manually annotated by the authors
of the dataset. This result in accurate performance values. Since we test the tracking on dif-
ferent datasets with di�erent complexities, we receive performance values which reflect how
the tracking handles complex situations.

4.2.3 Re-identification
Section 3.2.3 describes the metrics used in the evaluation of the re-identification algorithm.
Furthermore, Section 3.1.3 describes the datasets used for evaluating the re-identification
models.

The re-identification uses two datasets which are common datasets to evaluate on. The
re-identification algorithm is applied on a gallery and a query set which are images of persons
extracted from the dataset. We have modified the sizes of the sets to reflect our use cases

28

4.3 Analysis

more accurately. The evaluation consists of matching the persons from the query and gallery
sets. The result is then compared against the provided ground truths. The result consists of
accurate performance values for the re-identification algorithm. Testing it on more than one
dataset ensures that it has no bias towards a dataset.

When evaluating the re-identification model, we will evaluate both with or without di-
mension reduction methods. There are two di�erent approaches of dimension reduction
we experimented with and found out whether it improves or worsens the metric values. The
first approach is to simply train the re-identification algorithms to use less features, the other
involves the usage of PCA to reduce the feature dimension.

4.2.4 Complete System
Section 3.2.4 describes the metrics used in the evaluation of the complete system algorithm.
Furthermore, Section 3.1.4 provides a description of the datasets for the complete system
evaluation.

The development testing consists of running the complete tracking system on two camera
views and monitoring the frame rate. The system is constructed to calculate the frame rate in
runtime and presents the average frame rate when finished executing. Moreover, we conduct
a manual evaluation of the result on the finished video sequence. Here we evaluate its ability
to keep the ids consistent over several cameras.

Due to Covid-19 and GDPR, the di�culty to gather suitable material to test the complete
system properly was increased. To gather performance values that reflect the use cases we
were provided, we would have to create four camera views where approximately 30 persons
moved around. We had to create this ourselves. Due to GDPR, we wont be able to show any
images.

We created a two-view camera network with roughly 10 persons. This might hurt the
tracking system’s validity since we cannot accurately test it on its intended number of people.
We reasoned that this only hurts the performance values and not the ability to determine the
e�ect of the di�erent components on the complete tracking system.

The argument for this is that the only di�erence we will see is the metric change in mag-
nitude. The metrics values still represent the performance of the components and can still
be used. We have named our dataset FLET21. In FLET21, there are also other smaller videos
which test di�erent scenarios. These videos are created with 1-2 camera views and about 5
persons.

As mentioned in Section 3.2.4, there is no specific metric for a MTMCT system. There-
fore we had to use our WAM metric to evaluate the MTMCT.

4.3 Analysis
The fourth stage encompasses analysing the evaluation result. This means that we go over
each of the MTMCT system components and conduct quantitative and qualitative analyses.
We looked at the complete tracking system and conducted a quantitative and a qualitative
evaluation. Lastly, using the information from the analysing stage, we initiated the update
stage.

29

4. Method

The quantitative analysis consists of calculating the metrics for each component and then
calculating the WAM for the complete system. For a more thorough explanation on how
WAM is constructed and how to compare WAM values, see Section 4.3.1.

The qualitative evaluation is conducted by examining the output videos after the tracking
system has been applied. Here we will look at how it applies ids and tracks the objects across
cameras. We also look at how the environment (light, occlusion and other disturbances) a�ect
the MTMCT system.

4.3.1 Weighted Averaged Metrics (WAM)
The quantitative evaluation consists of calculating WAMcomponent . Equation 4.1 describes
how to calculate WAM for detection, Eq. 4.2 is for tracking and last Eq. 4.3 describes re-
identification. The values which we receive from these represent the performance of the
components and the complete system. The higher the value, the better the performance.

WAMDetection = AP50 (4.1)

WAMTracking =
MOT A + MOTP

2
(4.2)

WAMRe−identi f ication =
mAP +CMCrank_1

2
·CFE (4.3)

For the complete system, we summarise the WAMcomponent from each of the components.

WAM =WAMDetection ·WAMTracking ·WAMRe−identi f ication. (4.4)

What is important to mention here is that WAM is heavily biased towards our use cases.
This causes the metric to be hard to compare to other tracking systems with other use cases.
The WAM value only holds meaning within our use cases and exists to enable an easy way of
determining if the system performance changes.

4.4 Update
4.4.1 1st Iteration: Re-identification
To accomplish this, we used PCA which is explained in Section 2.4.3.This was to let the
program do a deeper analysis of the features stability and create new, fewer features. The
PCA was performed with features extracted from a video we recorded of a person walking in
di�erent light, background, poses and distances. The hope was to create fewer and simpler
features, adapted to our use case. We tried this for 8, 16, 32 and 64 features.

4.4.2 2nd Iteration: Detection
Based on the results from the first iteration, we chose to update the detection. We decided
on using FRCNN (Ren et al., 2017) which focuses more on accuracy and correct bounding
boxes, which we felt was needed to improve the overall performance.

30

4.4 Update

4.4.3 3rd Iteration: Detection
Based on the result from the second iteration, we decided on changing the detection one more
time. The reasons are the disappointing result from FRCNN (Ren et al., 2017). We chose to
implement YOLOv4 (Bochkovskiy et al., 2020) which shows respectable increase in accuracy
and processing speed compared to both FRCNN and YOLOv3 (Redmon and Farhadi, 2018).

4.4.4 4th Iteration: Re-identification
We wanted to see how the re-identification is a�ected when lowering the feature dimensions
when training the TriNet re-identification model.

4.4.5 5th Iteration: Re-identification
Based on the results in Section 5.3.1, we decided on testing a re-identification algorithm with
higher performance metrics in the mAP and rank-1 fields. Therefore we chose the Attention
Generalized mean pooling with weighted triplet loss (AGW) which has a respectable increase
in both the mAP and the rank-1 metrics. It is also a state-of-the-art baseline which was devel-
oped and used in Ye et al. (2020) to compare against current state-of-the-art re-identification
methods.

31

4. Method

32

Chapter 5

Results

In this chapter, we begin with presenting the results from evaluating the detection, tracking
and re-identification models independently. We continue by presenting the results for eval-
uating the complete MTMCT system both quantitatively and qualitatively. Lastly, we will
talk about how the component cooperate and a�ect each other.

5.1 Detection
The detection models are evaluated on the COCO dataset described in Section 3.1.1. Since
we are only interested in detecting pedestrians, we modified the evaluation to only detect
persons within the COCO dataset. We present tables of metric values for each detection
algorithm we implemented in our system.

The metrics we produced are AP with di�erent intersection over union (IoU) and AR
with di�erent numbers of ground truth objects. These metrics are described in Section 3.2.1.
Since the tracker can handle some flaws from the detection stage, AP50 is the most interesting
metric value and is the only one that has impact on the WAM metric.

Table 5.1 shows the metrics provided by the evaluation tests from each of the detection
algorithms. Table 5.2 shows the performance in the aspect of processing speed. The reason
for calculating the processing speed on FLET21, is that we wanted to evaluate it on a rep-
resentation of our use-case. In the COCO dataset, there are always only at most one object
to be detected per image. This is why we use FLET21 for evaluating the processing speed,
since we want to know how fast one average frame is calculated. Also, the resolution on the
videos are higher, which is more likely the case when used in practice. Each section also in-
cludes three bounding boxes for one person created with the given detection model. These
bounding boxes are picked manually from a video but should represent what it usually looks
like. The images are from the same video where one is taken from behind, one from the side
further away and one from the front.

33

5. Results

Table 5.1: Detection models evaluated on the COCO dataset. The
metrics are explained in Section 3.2.1 and the dataset can be read
about in Section 3.1.1

Model Dataset AP AP50 AP75 AR1 AR10 AR100 WAM
YOLOv3 COCO 0.3575 0.5808 0.3905 0.1638 0.3954 0.3953 0.5808

Faster RCNN COCO 0.1796 0.4036 0.1294 0.1072 0.2192 0.2230 0.4036
YOLOv4 COCO 0.4519 0.6487 0.5171 0.1823 0.4783 0.4884 0.6487

Table 5.2: The time it took for each of the detection algorithms to
process one frame in FLET21

Detection algorithm Processing speed (s)
FRCNN 0.3350
YOLOv3 0.0740
YOLOv4 0.0592

5.1.1 YOLOv3
The metric values for YOLOv3 on the COCO dataset are presented in Table 5.1. It receives
the second highest values of the three detection models evaluated in all of the metrics. In
Table 5.2, we can see that YOLOv3 also comes in the second place in the aspect of processing
speed, which is calculated with the reason explained above. Figure 5.1 visually shows three
examples of bounding boxes on a person detected and created by YOLOv3. As we can see, the
bounding boxes are relatively accurate. There is some extra space at some places and some
small parts of the person are missing in the middle image.

Figure 5.1: Three di�erent images with bounding boxes detected by
YOLOv3 applied to it.

5.1.2 Faster RCNN
Table 5.1 presents the metric values for Faster RCNN on the COCO dataset. Table 5.2 shows
the processing speed of the model, evaluated on the FLET21 dataset with the reason explained

34

5.2 Tracking

earlier. As we can see, Faster RCNN underperforms in both the precision/recall and process-
ing speed aspects. Figure 5.2 visually shows three examples of bounding boxes on a person
detected and created by Faster RCNN.

In these examples, the FRCNN misses a lot in some bounding boxes and very often has
much extra space around the actual objects. The bounding boxes change very much between
every frame, which is harder to present in images. The middle image in Figure 5.2 shows one
example when FRCNN both miss a huge part of a person and got considerably extra space on
one side. This frame is not the same as when showing examples from YOLOv3 and YOLOv4
in Figures 5.1 and 5.3 respectively. This is because FRCNN was not capable to detect the
person in that moment at all.

Figure 5.2: Three di�erent images with bounding boxes detected by
FRCNN applied to it.

5.1.3 YOLOv4
YOLOv4’s results from the evaluation on the COCO dataset is shown in Table 5.1.The pro-
cessing speed per frame, which is evaluated on the FLET21 dataset with the reason explained
before, is shown in Table 5.2. These results show that YOLOv4 gives the superior per-
formances on all the independent evaluations. Figure 5.3 visually shows three examples of
bounding boxes on a person detected and created by YOLOv4. As we can see, the bounding
boxes fits the object almost perfectly. It does not include space between the person and the
bounding box, neither does it miss much of the person. The bounding boxes between each
frame in the tested videos are very similar for the objects. This makes the boxes float very
smoothly in the video.

5.2 Tracking
In Tables 5.3 and 5.4, we present the results generated by evaluating SORT according to
Section 4.2.2. The number of calculated metrics was too large, which is the reason it is divided
into two tables. The datasets in the tables are all of the datasets in the MOTChallenge, which
is a collection of varying datasets representing di�erent situations för multi-target tracking.

Both tables show varying values on the di�erent datasets. For example, the MOTA for
TUD-Stadtmitte dataset is 0.7171 while MOTA for the Venice-2 dataset is 0.1855. When

35

5. Results

Figure 5.3: Three di�erent images with bounding boxes detected by
YOLOv4 applied to it.

looking into these two datasets, we can see that Venice-2 includes much more occlusion and
is more crowded. The overall WAM value for the datasets was 0.5635, which is calculated as
described in Section 4.3.1.

When running our system without the re-identification on the FLET21 dataset, we can see
that SORT struggles with occlusion and reappearing objects. Another problem for SORT is
that it can not track two persons overlapping each other. This explains the bad MOTA value
on the Venice-2 dataset. The process time for SORT on our FLET21 dataset was an average
of 0.0014 seconds per frame.

Table 5.3: SORT tracking algorithm evaluated on the dataset men-
tioned in the dataset column. See Section 3.2.2 for information
on the metrics and see Section 3.1.2 for information regarding the
datasets used. This is part 1 of 2 tables. See Table 5.4 for part 2.

Dataset MOTA MOTP Recall Precision
ADL-Rundle-6 0.3809 0.7489 0.5752 0.7624
ADL-Rundle-8 0.2860 0.7106 0.4426 0.7579
ETH-Bahnof 0.4471 0.7433 0.6486 0.7743

ETH-Pedcross2 0.4538 0.7480 0.5188 0.9078
ETH-Sunnyday 0.5915 0.7438 0.7750 0.8186

KITTI-13 0.1929 0.6855 0.3858 0.6918
KITTI-17 0.6018 0.7227 0.6706 0.9234

PETS09-S2L1 0.6189 0.7368 0.7500 0.8738
TUD-Campus 0.6267 0.7368 0.6852 0.9425

TUD-Stadtmitte 0.7171 0.7523 0.7448 0.9751
Venice-2 0.1855 0.7341 0.4246 0.6476
Overall 0.3989 0.7283 0.5596 0.7918

36

5.3 Re-Identification

Table 5.4: SORT tracking algorithm evaluated on the dataset men-
tioned in the dataset column. See Section 3.2.2 for information
on the metrics and see Section 3.1.2 for information regarding the
datasets used. This is part 2 of 2 tables. See Table 5.3 for part 1.

Dataset IDF1 IDP IDR IDSW IDSWR
ADL-Rundle-6 0.4338 0.5044 0.3805 75 1.3
ADL-Rundle-8 0.3263 0.4426 0.2518 103 2.3
ETH-Bahnof 0.6094 0.6684 0.5599 67 1.0

ETH-Pedcross2 0.5353 0.7360 0.4206 77 1.5
ETH-Sunnyday 0.7244 0.7447 0.7051 22 0.3

KITTI-13 0.4381 0.6118 0.3412 16 0.4
KITTI-17 0.7108 0.8448 0.6135 9 0.1

PETS09-S2L1 0.3510 0.3800 0.3262 102 1.4
TUD-Campus 0.6065 0.7203 0.5237 6 0.1

TUD-Stadtmitte 0.7347 0.8482 0.6479 10 0.1
Venice-2 0.3243 0.4094 0.2684 57 1.3
Overall 0.4589 0.5541 0.3916 544 9.7

5.3 Re-Identification
The results we present in this section are retrieved from experiments on both the Market1501
and the DukeMTMC-reid datasets respectively. In our experiments, we provide three di�er-
ent metric values: mAP, CMC-1 and CFE. To match our use case, we ran the experiments on
15 randomly generated subsets of 40 people where half are previously seen and exist within
the re-identification database. We did this to represent a kind of steady state for the system.
We ran this with 10,000 iterations to get a statistically trustworthy result, where we take the
average values from each iteration.

We also present the results for di�erent approaches of performing the re-identification
step. We have some variation of how many features we look at when comparing an unknown
object with a person in the database. These features are converted with a feature dimension
reduction method. The comparison between a feature list with the database is done by com-
puting the euclidean distance. To decide if the detected person is included in the database
we use a threshold. Only new targets within a view are re-identified.

5.3.1 TriNet
In Tables 5.5 and 5.6, we can see the metrics produced when testing TriNet on the Market1501
and the DukeMTMC-reid datasets. These are the two datasets presented in 3.1.3. This re-
identification model was trained on the Market1501 dataset and was trained to extract 128
features. We used PCA, explained in Section 2.4.3, to reduce the feature dimension to 64, 32,
16 and 8 features. The PCA was created with a video of a person representing our use case
where the light, pose, angles and distance varies.

37

5. Results

Table 5.5: Metrics for the TriNet re-identification model on Market-
1501. 128 features is the original extracted features while 64, 32, 16
and 8 features are created by the PCA. The thresholds used to de-
termine if a person exists in the gallery is 8 for 128 features, 7.5 for
64/32 features, 5.5 for 16 features and 3 for 8 features.

Features mAP CMC-1 CFE WAM
128 0.9850 0.9944 0.9937 0.9835

64 (PCA) 0.9748 0.9909 0.9910 0.9740
32 (PCA) 0.9714 0.9901 0.9917 0.9726
16 (PCA) 0.9350 0.9765 0.9845 0.9409
8 (PCA) 0.7977 0.8953 0.9442 0.7992

Table 5.6: Metrics for the TriNet re-identification model on the
DukeMTMC-reid dataset. 128 features is the original extracted fea-
tures while 64, 32, 16 and 8 features are created by the PCA. The
thresholds used to determine if a person exists in the gallery is 8 for
128 features, 7.5 for 64/32 features, 5.5 for 16 features and 3 for 8
features.

Features mAP CMC-1 CFE WAM
128 0.4708 0.6108 0.8603 0.4652

64 (PCA) 0.4753 0.6148 0.8550 0.4660
32 (PCA) 0.4707 0.6134 0.8549 0.4634
16 (PCA) 0.3954 0.5432 0.8223 0.3859
8 (PCA) 0.2776 0.3785 0.7218 0.2367

As we can see, reducing the number of features did not improve the stability and perfor-
mance in our case. Since we did not see any significant improvements, we did not go on with
a qualitative analysis with PCA. Since the model was trained on Market1501, the metrics
produced with the Market1501 dataset are not as interesting as the ones with Duke. This is
because when we train a model on some data, it gets familiar to this kind of data. When we
run the tests on similar data, it will more like perform better on these tests since it is trained
to do so. The DukeMTMC-reid dataset then represent the general case since it is unknown
to the model.

In Table 5.7, we present the metric values for the TriNet model that where trained to
extract 64 and 8 features instead of 128. As we can see, no improvement were accomplished
in this attempt to find simpler features.

38

5.3 Re-Identification

Table 5.7: TriNet re-identification algorithm evaluated on Mar-
ket1501 and DukeMTMC-reid datasets. The model is trained to ex-
tract 64 and 8 features instead of 128.

nbr. features Dataset mAP CMC-1 CFE WAM
64 Market 0.9750 0.9916 0.9811 0.9647
64 DukeMTMC-reid 0.4632 0.5937 0.7159 0.3783
8 Market 0.9496 0.9779 0.9523 0.9178
8 DukeMTMC-reid 0.4441 0.5524 0.6723 0.3349

5.3.2 AGW

In Tables 5.8 and 5.9, we find the resulting metrics created by the AGW re-identification
model on the Market-1501 and the DukeMTMC-reid dataset respectively. Just as TriNet,
AGW was trained on the Market-1501 dataset and extracts 2048 features per object. We
used PCA to reduce the feature dimension to 1024, 512, 256 and 128 features. The PCA
was created on the same video as the one for TriNet, where it can follow a person through
di�erent circumstances. We can see that adding feature dimension reduction to the AGW
with PCA did not improve the metrics at all. We were not able to retrain AGW with less
features due to that it AGW is quite heavy to train.

Table 5.8: Metrics for the AGW re-identification model on the
Market-1501 dataset. 2048 features is the original extracted features
while 1024, 512, 256 and 128 features are created by the PCA. The
thresholds used to determine if a person exists in the gallery is 17 for
2048 features, 15 for 1024 features, 13 for 512 features, 10.5 for 256
features and 9 for 128 features.

Features mAP CMC-1 CFE WAM
2048 0.9854 0.9965 0.9941 0.9851

1024 (PCA) 0.9741 0.9944 0.9933 0.9777
512 (PCA) 0.9656 0.9930 0.9903 0.9698
256 (PCA) 0.9511 0.9911 0.9869 0.9583
128 (PCA) 0.9253 0.9865 0.9108 0.8707

39

5. Results

Table 5.9: Metrics for the AGW re-identification model on the
DukeMTMC-reid dataset. 2048 features is the original extracted
features while 1024, 512, 256 and 128 features are created by the
PCA. The thresholds used to determine if a person exists in the
gallery are 17 for 2048 features, 15 for 1024 features, 13 for 512 fea-
tures, 10.5 for 256 features and 9 for 128 features.

Features mAP CMC-1 CFE WAM
2048 0.6466 0.7728 0.9026 0.6406

1024 (PCA) 0.5476 0.7066 0.8894 0.5578
512 (PCA) 0.5293 0.6965 0.8891 0.5449
256 (PCA) 0.5035 0.6779 0.8782 0.5187
128 (PCA) 0.4661 0.6523 0.8699 0.4865

5.4 Complete system
In this section, we will present the evaluation done with the complete MTMCT system on
the FLET21 dataset. We present both the qualitative and quantitative analyses described in
Section 4.2.4. The distance between two objects in all tests were computed and represented
in Euclidean distance since it was recommended by the authors of the re-identification mod-
els. The evaluation was done within every iteration of the MTMCT on three di�erent sub-
datasets from FLET21.

1. ROOM: Recorded inside a boxing gym with only four persons walking through a cam-
era view in a line with some space between. The videos are with the same view but in
di�erent times and the persons are walking in another order.

2. COR: Dataset representing an indoor corridor with two cameras in di�erent direc-
tions placed about 2 meters from the ground. Recorded outdoors because of the cir-
cumstances of the ongoing pandemic with Covid-19. This dataset was created to rep-
resent the indoor corridor case mentioned in Section 1.2

3. STREET: Created outdoors on a bigger area to represent the street view on the lamp-
posts case mentioned in Section 1.2. Some persons are walking through the view very
far away and some are closer to the cameras. Also this dataset has two views.

Table 5.10 shows us the resulting WAM and FPS from all the di�erent setups on the
FLET21 dataset. This is the quantitative analysis done on the complete system. We can see
that we no MTMCT system managed to achieve the goal of 30 FPS.

In the coming sub-sections we present the results from the qualitative evaluation done
on all the di�erent sets of components.

5.4.1 Baseline (YOLOv3 – SORT – TriNet)
The baseline is an MTMCT system consisting of the following components:

• Detection: YOLOv3

40

5.4 Complete system

Table 5.10: The WAM value for each of the MTMCT system and the
FPS they manged on the FLET21

MTMCT system WAM FPS
YOLOv3-SORT-TriNet 0.1532 4.1548
FRCNN-SORT-TriNet 0.1068 1.9035
YOLOv4-SORT-TriNet 0.1716 4.3934
YOLOv4-SORT-AGW 0.2088 4.1050

• Tracking: SORT

• Re-identification: TriNet

When evaluating the system on the ROOM dataset, the system correctly re-identified
three out of four persons. There was one person who switched id when turning in both views.
On the COR and STREET datasets, it did not manage to re-identify any of the persons across
the di�erent camera views. The bounding boxes from the detection model were su�ciently
good except for some extra space around some objects. The tracker worked well except for the
cases when persons cross each other. The tracker only keeps one of the targets and sometimes
lets the wrong person keep that track id. When a person walks out of a camera, and another
person walks in at almost the same place and approximately the same time, the new person
steals the track when entering the view. This is because SORT only uses spatial and temporal
aspects when tracking.

5.4.2 FRCNN – SORT – TriNet
This MTMCT system consists of the following components:

• Detection: FRCNN

• Tracking: SORT

• Re-identification: TriNet

The version of MTMCT system with FRCNN as detection algorithm did not re-identify
any of the targets between cameras. The bounding boxes where very inaccurate where it often
included things in the background as part of the persons.

5.4.3 YOLOv4 – SORT – TriNet
This MTMCT system consist of the following components:

• Detection: YOLOv4

• Tracking: SORT

• Re-identification: TriNet

41

5. Results

YOLOv4-SORT-TriNet got the same performance on our qualitative analysis as the same
system with YOLOv3 instead. The only di�erence is that the bounding boxes are a bit more
accurate. This does not help the re-identification in our test cases, but helps the tracking for
each target to become smoother. As we can see in Table 5.10, this is the fastest system even
though it is not real-time with our implementations.

5.4.4 YOLOv4 – SORT – AGW
This MTMCT system consist of the following components:

• Detection: YOLOv4

• Tracking: SORT

• Re-identification: AGW

This system, where AGW is used instead of TriNet as re-identification model, is the one
with best results on the metrics. Still, this does not show in our qualitative analysis. It did
not re-identify any target across the cameras.

5.5 Cooperation between components
The three di�erent detection algorithms used (YOLOv3, FRCNN and YOLOv4) have very
di�erent performance.

FRCNN creates much more varying bounding boxes for the same object, which a�ects
both the tracking and re-identification algorithms. The tracking algorithms are having a hard
time interpolating the target between frames with detections, which makes the tracks irreg-
ular and harder to follow. Since both the re-identification algorithms (TriNet and AGW)
are struggling with di�erent backgrounds, too large bounding boxes from the detection al-
gorithms decrease the re-identification performance.

The other detection algorithms, YOLOv3 and especially YOLOv4, create much more
regular and precise bounding boxes which improves the re-identification performance. The
tracking algorithm (SORT) does a good job tracking targets until they get occluded or dis-
appears for a short while. When it loses track of a person when occluded or overlaps with
another person, it forces the system to re-identify the lost target. Lastly, when two targets
cross each other, one may take over the other persons track id. Since we do not want to assign
the same id to di�erent targets within one view, we might let the wrong person take over the
id. This forces the person, who the id actually belongs to, to re-identify and switch to another
id. This corrupts the gallery of known persons, i.e. the database.

42

Chapter 6

Discussion

We start by discussing the complete system’s performance and how the system worked out
in the end. We continue by discussing every components performance and how it a�ects the
MTMCT system. We also talk about our WAM metric and the results of reducing the features
dimensions in di�erent ways. Lastly, we also include the ethical aspects and the validity of
this thesis.

6.1 Complete system
The complete MTMCT system consists of three parts, detection, tracking and re-identification.
We only used already implemented models from github and connected them into one system.
The detection component sends all detections for each frame to the tracker, the tracker uses
these detections to update each track and remove duplicates. From here, we have bounding
boxes with tracker ids. Every time a new tracker id appears, the detections for this track are
used by the re-identification model to connect the track id to a person.

We got a working system, but did not reach the performance we wished for. The biggest
problem is the re-identification part since the models seem to include a big amount of the
background into the features. Also the light and pose will make features which depend on
colour vary for the same person. It is also very hard to distinguish if one person already exists
in the database or not. These problems are further discussed in Section 6.5

6.2 Weighted Averaged Metrics
The WAM metric we introduced in this thesis is a metric created for our specific use case.
We chose the most important metrics for an overall quantitative evaluation for our system.
This does not represent the reality, but might still give us a hint of if it performs well or not
at all.

43

6. Discussion

We chose to look at the following metrics for the computation of WAM:

• Detection: AP

• Tracking: MOTA, MOTP

• Re-identification: mAP, CMC-1, CFE

This generates the best kind of accuracy through the system as we could think of in an
quantitative evaluation. The WAM value for re-identification seems to be kind of misleading.
As seen in Section 5.3, AGW gets a WAM value of 0.6406 ond the DukeMTMC-reid dataset
while TriNet gets a WAM value of 0.4660 as highest. In our qualitative evaluation, AGW
do not work as well as TriNet on our test videos. AGW gets higher mAP, CMC-1 and CFE
than TriNet, which means that even the standard metrics are misleading in this case. The
reason for this might be that TriNet works better for our use-case. In our use-case, the back-
ground is many times pretty similar. Even though we can see that the background is a�ecting
the feature extraction in the qualitative tests, it might have less impact. In the quantitative
evaluations on the DukeMTMC-reid dataset, the TriNet might struggle more with di�erent
backgrounds than AGW. This would also imply that TriNet is better at extracting features
when the background does not di�er.

6.3 Detection
The coming two sections will discuss the results of the evaluation on the detection models.
We include how the performance of the detection algorithms a�ect the complete MTMCT
system. The discussion includes the aspect of our use case and how we used and implemented
the models.

6.3.1 Detection performance
We started with YOLOv3 as the detection algorithm in the baseline. This model was the first
model in the system to replace since we wanted as accurate bounding boxes as possible for
the re-identification model. The reason why is described in the next section. YOLOv3 had a
decent FPS of 0.0592s and created good enough bounding boxes for the tracker.

When replacing YOLOv3 with FRCNN, the results were sadly disappointing since we
expected better accuracy than YOLOv3. FRCNN received much worse metric values, both
quantitatively and qualitatively. We continued by replacing FRCNN with YOLOv4, which
performed su�ciently enough for our MTMCT system.

6.3.2 The detection performance effect on the MTMCT
The performance of the detection model a�ects both the tracker and the re-identification
model. If the detection model misses a considerable amount of bounding boxes for a target,
the information which is fed to the tracker becomes limited and might make it lose track of
the target.

44

6.4 Tracking

YOLOv3 and YOLOv4 were su�cient enough for the tracker. It did not miss a substan-
tial amount of detections per target, with exception to when something was occluded. The
re-identification model would have better possibilities for improvement if it gets partly oc-
cluded objects as input. Anyhow, these situations with much occlusion seem to be easier to
solve with a better tracker model instead.

Since the re-identification algorithms seems to depend to a considerable degree on the
background when comparing objects, YOLOv3 might be including too big amount of space
around the targets. YOLOv4 on the other hand, should not impact the tracker or re-identification
very much in any negative way with its su�ciently accurate bounding boxes.

FRCNN missed too many detections, created inaccurate bounding boxes and could not
detect objects far away. This limited the input feed to both the tracker and re-identification
models, which decreased their and the whole MTMCT systems performance.

Another interesting part is whether we want detections from far away in our case. The
detections from far away might make it hard for the re-identification model to extract good
features due to too low resolution. The low resolution often results in less details and merged
colors, which seems to extract generalised features. We noticed in the analysis that many
detections matches with these low resolution persons. Still we want to detect and be able
to track persons far away from the camera as well, which results in high requirements of the
cameras resolution. One could also keep tracking people when they appear in low resolution,
but not save new features extracted from them.

6.4 Tracking
This section will describe and discuss the results of the tracking algorithm SORT and how
it a�ects the complete MTMCT system. We talk about what we think the tracker does well
and what performance we would have wanted to see. Just as for the detection section above,
we will include the aspect of our use case when discussing.

6.4.1 Tracking performance
The tracker got decent values on the metrics for the datasets which did not include too popu-
lated areas or occlusion. The tracker is stable as long as people do not cross each other’s paths
or get occluded. When people cross each other’s paths, one target often steals the other’s id
and the other gets a completely new id. These flaws are critical in our case, but it is within
what we expected from such a simple and fast algorithm. We did not have the time to replace
this component since we prioritised changing the detection and re-identification models in-
stead. We also thought that putting some work into configuring the way the models work
together was more important than replacing the tracker.

6.4.2 The tracking performance effect on the MTMCT
Since re-identifying seems to be the weak spot in this kind of systems, we would need to
be able to rely on the tracker in each view. If the tracker changes id, this will force the
re-identification algorithm to re-identify the target. If this goes wrong, we might gather
inaccurate data to the new target in the database. This will decrease the performance on the

45

6. Discussion

re-identification model when comparing with seen objects in the future, due to corrupted
data in the database.

When an object steals another person’s tracking id, this will not trigger the re-identification
model to re-identify the target. This means that it will continue gathering extracted features
to the database from the wrong person. Because of the fact that SORT is struggling with
occluded objects, the re-identification cannot gather information on the targets when they
are occluded. This makes it harder to re-identify the target when it becomes occluded in the
future.

6.5 Re-identification
Re-identification across the cameras is the absolute hardest part of the MTMCT system.
When an already seen person appears in a new camera, this will often be in a completely
di�erent angle, light, environment, pose and distance. To compare this person with the
known persons within the database is hard as it is. In our case, we also need to consider
the open-world version. This means that the model firstly has to consider if the detected
person exists in the database or not. The performance of these aspects is included in the
coming sections, where we will also discuss whether feature dimension reduction is useful or
not.

6.5.1 Re-identification performance
According to the tables shown in Section 5.3, we see that AGW receives better test results on
the metrics. These metrics do not show a fair picture of the reality, since we actually found
out that TriNet performs better in the qualitative tests. We do not really understand why
AGW performs worse, since it has better mAP, CMC-1 and CFE than TriNet on the tests.
The reason might be that AGW does not match our use-case as well as TriNet does, or it gets
too a�ected of the detection or tracking flaws in the system.

Both TriNet and AGW are struggling with the di�erence in background when extracting
features. The distance between a person and the ones in the database seems to be very a�ected
by the background of the bounding boxes. We tried to reduce the feature dimensions in
di�erent ways to solve this in hope for extracting simpler and more stable features over time.
This is further discussed in Sections 6.5.2 and 6.5.3. We did not have the time to experiment
with segmentation of the bounding boxes to simply delete the background, which we might
think can make a big di�erence.

In our implementation of the system, we are using a threshold to determine if a person
exists in the database or not. This seems to be a bad way of doing it and does not work as
well as one might think. Unfortunately, we were not able to implement anything that works
better.

We were not able to get the test data we wanted to for FLET21 due to the ongoing pan-
demic. The datasets do not really represent the real cases since we could not gather the
amount of people needed or being inside for some tests. We were not able to use the cameras
from Axis which it is intended to run on, since we were working from home and had to use
our mobile phones.

46

6.6 Ethical aspects

6.5.2 PCA
When choosing to implement PCA into our system, the thought was to reduce the features
into fewer and more stable features. This PCA was created with videos where the angles,
light, distance and poses di�er to make the features independent of these factors. As far as
we tested on our models, this did not improve the performance on either TriNet or AGW.

The PCA would hopefully contain the most significant and important features for each
person. We tried to record the videos in environments and from heights representing our
use-case to redirect the features towards optimal ones for our system. Probably both TriNet
and AGW extracted as good features as they could before we applied the PCA, or we would
need more material to train the PCA on to make it more reliable.

6.5.3 TriNet trained to extract less features
We also tried to train the TriNet model to extract less features from the bounding boxes.
The idea was to represent a person more roughly by simple features to distinguish between
persons more easily. Just as with PCA, this did not improve the performance in any way.

6.5.4 Re-identification performance affect on the MTMCT
system

Since tracking within one view is an already solved problem, the re-identification is the com-
ponent which has biggest impact on MTMCT. Not only the model, but also the way it is used.
If the re-identification gets one re-identification wrong, this will corrupt the dataset and will
probably lead to either generalised targets in the dataset or several ids for the same target.
Both these problems will set o� a snowball e�ect.

With a good re-identification, one can even correct the trackers flaws. If the tracker
switches id for example, the re-identification model might connect the new tracking id to
the same re-identification id. The re-identification model will not solve this if a target steals
another ones when crossing each other for example. At least not in the way we implemented
the system, since we only re-identify the persons when the tracker finds a new track.

6.6 Ethical aspects
Processing videos, or more specifically, tracking persons can be used for both good and bad
purposes. Our work was to investigate the components of a MTMCT system, how we can
connect them in an e�cient way and how we can manipulate the features to make it more
stable. We are focusing on tracking persons to study or prevent crimes, find lost persons and
any other security based purposes. Still, this kind of technology can be used to violate other
peoples privacy in an immoral way as well. As much as we would like to, we could not be
able to prevent this from happening.

When recording the data for the FLET21 dataset, we made sure every actor were well
aware of us recording. They all also had to agree to being a part of the videos. All images
within this thesis contains only two persons who cooperated when writing this thesis, Felix

47

6. Discussion

and Eric. Moreover, all recorded videos for evaluation will be deleted as we are done using
them.

6.7 Validity
The metrics gathered from the quantitative evaluations are done with publicly available
datasets, modified to represent our use case. This should give a valid representation of the
values.

However, due to Covid-19, we were not able to create the data for qualitative evaluation
as we wanted to. The FLET21 dataset contains fewer people than we wanted to and some
use-cases were not able to be recorded in good places. For example, the corridor case had to
be recorded outside. This made a big di�erence in the light, more varying background and
was overall harder for the system to work as intended.

Since we only used already implemented components, and in the way the authors de-
scribed how to use them, some validity lies in how they implemented them. Furthermore the
way we connected the components and how we used the re-identification seems to work as
intended.

48

Chapter 7

Conclusions

During this thesis, we found that some components are definitively more di�cult than others.
For example detection and tracking within a view is an already solved problem, especially the
detection models.

We did not prioritise to replace the tracker since we were struggling more with the re-
identification model and how to use it in the best possible way. The tracker works well
except for the cases when people cross each other’s paths or get occluded. If we were allowed
to assume the camera topology to be known, the tracker would have been worth to replace
at an early stage.

The next coming paragraphs answers both RQ1 and RQ2. The detection algorithm used
in our final MTMCT system, which performs as good as we need, is YOLOv4. YOLOv4 is
probably both accurate and fast enough to use for this purpose if optimised.

The tracker used, SORT, is probably fast enough but lacks too much accuracy when peo-
ple are occluded. The tracker needs to handle occlusion for the re-identification to work,
since it needs to gather data for persons when they are occluded as well. We thought about
some other solutions to this problem, which might be possible to be solved with the re-
identification model. This is discussed in the next Section 7.1, which is about future work.

Furthermore, if the tracker switches id and creates a new track, the system is forced
to re-identify this target. This will hopefully re-identify to the same target, but since re-
identification seems to be the most di�cult part we want to rely on the tracker as much as
possible. In an even worse case, one person might steal another person’s track when crossing
each other. This person will now take another person’s id and extract false features to it.
Since we want to rely on the tracker, we do only re-identify persons which are considered
new persons by the tracker.

The re-identification models we used for our system were TriNet and AGW. AGW achieved
superior metric values from the quantitative evaluation than TriNet, while TriNet seems to
work better in practice during our qualitative evaluations. The only reasonable reason for
this is that TriNet is better adapted for our use-case, alternatively that our recordings in
FLET21 dataset are not as extensive and reliable as they need to be. The re-identification

49

7. Conclusions

algorithm is the heaviest model to run. There might be possible improvements on how often
to extract features, how to store them and how to compare them. Both models seem to be
struggling with the background of the bounding boxes. This is the reason for replacing the
detection algorithm to a more accurate one, to avoid extra background.

Regarding RQ3, we came to the conclusion that reducing the feature dimension did not
improve our models. We tried to train the TriNet model to extract fewer features, which
might be simpler and easier to separate people from each other. This did not improve the
performance in any way except for a small cut in processing time when comparing feature
vectors. We also found that transforming features with PCA, neither improved the perfor-
mance significantly in any case. We created our PCA with recordings of persons through
di�erent circumstances and our hope was to create features that is independent of di�erent
light, angles and distances.

7.1 Future Work
One of the most important things to solve is when the tracker lets a person steal another
persons tracking id. A way to solve this might be to not rely on the tracker when two persons
are too close to each other, or to skip the Kalman’s filtering in these occasions. If we always
re-identify the persons when they are very close, this might solve the problem. It can be
interesting to experiment with this to find an e�ective approach. Alternatively replace the
tracker to a more stable one which can use the direction the objects are moving. The tracker
might be replaced due to bad performance during occlusion anyways.

There are some attempts to improve our re-identification phase that we did not have the
time to experiment with. Since the models we use for re-identification extract features that
depend on the background, one option could be to segment and mask the persons within the
bounding box. This would simply delete the background and only extract from the actual
person.

Our tracking model is struggling with occluded objects, and this might also be possible
to be solved by the re-identification model. If the re-identification could split the target into
parts like legs, torso and head, this might be a good approach.

When checking if the person already exists in the database or not, we are not using a
threshold for the Euclidean distance between the feature vectors. It would be interesting if
there is any clustering algorithm who could do a better work at deciding this.

Lastly, one could use the knowledge of the camera topology in the network, which we
were not allowed to assume. But might be possible in many cases. One way may be to make
it a requirement for the one who installs it to describe the topology to the MTMCT system
in some way. Another approach could be to let the system have an initialisation phase where
the system learns the camera topology. The system could then create weights for the re-
identification phase depending on where the person was last seen and where it appears.

50

References

Abraham, N. S., Rajan, R. A., George, R. E., Gopinath, S., and Jeyakrishnan, V. (2021). Find-
ing missing child in shopping mall using deep learning. In Suresh, P., Saravanakumar,
U., and Hussein Al Salameh, M. S., editors, Advances in Smart System Technologies, pages
477–482, Singapore. Springer Singapore.

Axis (2021). Axis history. https://www.axis.com/about-axis/history. Accessed:
2021-03-26.

Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B. (2016). Simple online and realtime
tracking. In 2016 IEEE International Conference on Image Processing (ICIP), pages 3464–3468.

Bochkovskiy, A., Wang, C., and Liao, H. M. (2020). Yolov4: Optimal speed and accuracy of
object detection. CoRR, abs/2004.10934.

Brasó, G. and Leal-Taixé, L. (2020). Learning a neural solver for multiple object tracking. In
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 6246–
6256.

Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., and Sheikh, Y. A. (2019). Openpose:
Realtime multi-person 2d pose estimation using part a�nity fields. IEEE Transactions on
Pattern Analysis and Machine Intelligence.

Chen, L., Ai, H., Zhuang, Z., and Shang, C. (2018). Real-time multiple people tracking with
deeply learned candidate selection and person re-identification. In 2018 IEEE International
Conference on Multimedia and Expo (ICME), pages 1–6.

Ciaparrone, G., Luque Sánchez, F., Tabik, S., Troiano, L., Tagliaferri, R., and Herrera, F.
(2020). Deep learning in video multi-object tracking: A survey. Neurocomputing, 381:61–88.

Dai, J., Li, Y., He, K., and Sun, J. (2016). R-fcn: Object detection via region-based fully
convolutional networks. ArXiv, abs/1605.06409.

Girshick, R. B., Donahue, J., Darrell, T., and Malik, J. (2013). Rich feature hierarchies for
accurate object detection and semantic segmentation. CoRR, abs/1311.2524.

51

https://www.axis.com/about-axis/history

REFERENCES

Han, S., Huang, P., Wang, H., Yu, E., Liu, D., Pan, X., and Zhao, J. (2020). MAT: motion-
aware multi-object tracking. CoRR, abs/2009.04794.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
volume 2016-, pages 770–778. IEEE.

Hermans, A., Beyer, L., and Leibe, B. (2017). In defense of the triplet loss for person re-
identification. CoRR, abs/1703.07737.

Hou, L., Wan, W., Hwang, J.-N., Muhammad, R., Yang, M., and Han, K. (2017). Human
tracking over camera networks: a review. EURASIP journal on advances in signal processing,
2017(1):1–20.

Leal-Taixé, L., Milan, A., Reid, I. D., Roth, S., and Schindler, K. (2015). Motchallenge 2015:
Towards a benchmark for multi-target tracking. CoRR, abs/1504.01942.

Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. (2014). Microsoft COCO: common objects in
context. CoRR, abs/1405.0312.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016;2015;).
SSD: Single Shot MultiBox Detector, volume 9905, pages 21–37. Springer International Pub-
lishing, Cham.

Luo, H., Jiang, W., Gu, Y., Liu, F., Liao, X., Lai, S., and Gu, J. (2020). A strong baseline and
batch normalization neck for deep person re-identification. IEEE Transactions on Multime-
dia, 22(10):2597–2609.

McLean, S. J., Worden, R. E., and Kim, M. (2013). Here’s looking at you: An evaluation of
public cctv cameras and their e�ects on crime and disorder. Criminal justice review (Atlanta,
Ga.), 38(3):303–334.

Padilla, R., Passos, W. L., Dias, T. L. B., Netto, S. L., and da Silva, E. A. B. (2021). A compara-
tive analysis of object detection metrics with a companion open-source toolkit. Electronics
(Basel), 10(3):279.

Previtali, F., Bloisi, D. D., and Iocchi, L. (2017). A distributed approach for real-time multi-
camera multiple object tracking. Machine vision and applications, 28(3-4):421–430.

Radenovic, F., Tolias, G., and Chum, O. (2019). Fine-tuning cnn image retrieval with no
human annotation. IEEE transactions on pattern analysis and machine intelligence, 41(7):1655–
1668.

Redmon, J. and Farhadi, A. (2017). Yolo9000: Better, faster, stronger. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 6517–6525.

Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental improvement. CoRR,
abs/1804.02767.

Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster r-cnn: Towards real-time object
detection with region proposal networks. IEEE transactions on pattern analysis and machine
intelligence, 39(6):1137–1149.

52

REFERENCES

Ristani, E., Solera, F., Zou, R., Cucchiara, R., and Tomasi, C. (2016). Performance measures
and a data set for multi-target, multi-camera tracking. In European Conference on Computer
Vision workshop on Benchmarking Multi-Target Tracking.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
and Rabinovich, A. (2015). Going deeper with convolutions. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–9.

Wang, X., Girshick, R., Gupta, A., and He, K. (2018). Non-local neural networks. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7794–7803.

Wold, S., Esbensen, K., and Geladi, P. (1987). Principal component analysis. Chemometrics
and Intelligent Laboratory Systems, 2(1):37–52. Proceedings of the Multivariate Statistical
Workshop for Geologists and Geochemists.

Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., and Hoi, S. C. H. (2020). Deep learning for
person re-identification: A survey and outlook. CoRR, abs/2001.04193.

Yurtsever, E., Lambert, J., Carballo, A., and Takeda, K. (2020). A survey of autonomous
driving: Common practices and emerging technologies. IEEE Access, 8:58443–58469.

Zhang, X. and Izquierdo, E. (2019). Real-time multi-target multi-camera tracking with
spatial-temporal information. 2019 IEEE Visual Communications and Image Processing (VCIP),
Visual Communications and Image Processing (VCIP), 2019 IEEE, pages 1 – 4.

Zhao, L., Li, X., Wang, J., and Zhuang, Y. (2017). Deeply-learned part-aligned representations
for person re-identification. CoRR, abs/1707.07256.

Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., and Tian, Q. (2015). Scalable person
re-identification: A benchmark. In 2015 IEEE International Conference on Computer Vision
(ICCV), pages 1116–1124.

53

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2021-06-10

EXAMENSARBETE Multi-Object Tracking in a Camera Network: Cooperation between the components
STUDENT Felix Lundström
HANDLEDARE Pierre Nugues (LTH), Oskar Persson, Simon Molin and Mikael Andreen (Axis)
EXAMINATOR Elin Anna Topp (LTH)

Följa och återidentifiera människor
mellan kameravyer

POPULÄRVETENSKAPLIG SAMMANFATTNING Felix Lundström

Att bearbeta videor från bland annat övervakningskameror blir allt mer vanligt. I detta
arbete undersöker vi om det är möjligt att följa och återidentifiera människor mellan
olika kameror i realtid.

Vad gör vi om vi inte hittar vårt barn som gått
vilse i köpcentret? Skulle det inte vara skönt om
vi kunde ta reda på vart han eller hon tagit vä-
gen? Liknande scenarier tillhör de problem som
detta arbete är gjort för att lösa. Ett annat
användningsområde kan vara att analysera över-
vakningskameror på brottsplatser. I vilket fall
som helst, så kan det finnas stor nytta av att
kunna följa och återigenkänna personer mellan
olika kameror.

I bilderna kan vi se ett exempel på när två per-
soner känns igen på olika bilder. Målet är att varje
person ska ha samma färg på rutorna oavsett bild,
men även samma unika id-nummer.

Uppgiften kan delas upp i tre olika faser: upp-
täcka personer i en bild, följa varje person inom
en kameravy och känna igen personerna mellan de
olika kamerorna. Allt detta ska dessutom ske i re-
altid! Detta betyder att man inte kan använda sig
utav delar av videon som sker i framtiden. Detta
gör det ännu svårare för systemet att hinna samla
tillräckligt med information om en person innan

denne behöver identifieras igen.
Att följa personer i endast en kameravy är något

man redan kan göra relativt effektivt. Däremot
att återidentifiera personer på ett bra sätt, utan
att känna till kameratopologin, är ännu ett olöst
problem. Dessutom ser varje person väldigt olik ut
beroende på vinkel och ljus. Här fick jag försöka
sätta en gräns för hur lik en person behöver vara
en annan för att säga att det är samma person.
Jag har undersökt hur de olika faserna i sys-

temet kan fungera tillsammans och hur deras pre-
standa påverkar övriga komponenter. Jag kom
fram till att återidentifieringsfasen är den delen
som kräver mest fortsatta studier. Jag testade
varje del av systemet för sig och även hur de
fungerar tillsammans med övriga komponenter.
När man extraherar information från upptäckta

personer, så kan man få med egenskaper som vari-
erar beroende på omständigheterna. T.ex. så ser
personer i regel väldigt olika ut från olika vinklar,
eller om det är mörkt eller ljust. Jag testade om
man kan förbättra prestandan genom att trans-
formera egenskaperna i databasen till några som
är stabila över tid, oberoende av olika parametrar.
PCA tillförde inga förbättringar i den utsträcknin-
gen jag testade. Däremot lyckades jag bygga en
fungerande grund för ett komplett system som ly-
ckas utföra uppgiften.

	Introduction
	Context
	Case description
	Purpose
	Research questions
	Approach

	Contributions
	Outline

	Related work
	Detection
	You Only Look Once (YOLOv3)
	Faster Region-based Convolutional Neural Networks
	YOLOv4

	Tracking
	Tracking across cameras
	Human re-identification
	CLM based tracking
	GM based tracking

	Re-identification
	TriNet
	AGW
	Principle Component Analysis

	State-of-the-art Multi-Camera tracking
	A distributed approach for real-time multi-camera multiple object tracking
	Real-Time Multi-Target Multi-Camera Tracking with Spatial-Temporal Information
	Real-Time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-Identification

	Datasets and Metrics
	Datasets
	Detection datasets
	Tracking datasets
	Re-Identification datasets
	Dataset for the complete system

	Metrics
	Detection metrics
	Tracking metrics
	Re-Identification metrics
	Metrics for the complete system

	Method
	Implementing a Baseline
	Detection
	Tracking
	Re-Identification

	Evaluation
	Detection
	Tracking
	Re-identification
	Complete System

	Analysis
	Weighted Averaged Metrics (WAM)

	Update
	1st Iteration: Re-identification
	2nd Iteration: Detection
	3rd Iteration: Detection
	4th Iteration: Re-identification
	5th Iteration: Re-identification

	Results
	Detection
	YOLOv3
	Faster RCNN
	YOLOv4

	Tracking
	Re-Identification
	TriNet
	AGW

	Complete system
	Baseline (YOLOv3 – SORT – TriNet)
	FRCNN – SORT – TriNet
	YOLOv4 – SORT – TriNet
	YOLOv4 – SORT – AGW

	Cooperation between components

	Discussion
	Complete system
	Weighted Averaged Metrics
	Detection
	Detection performance
	The detection performance effect on the MTMCT

	Tracking
	Tracking performance
	The tracking performance effect on the MTMCT

	Re-identification
	Re-identification performance
	PCA
	TriNet trained to extract less features
	Re-identification performance affect on the MTMCT system

	Ethical aspects
	Validity

	Conclusions
	Future Work

	References

