
MASTER’S THESIS 2021

Considerations when
Constructing a Food
Recommender System with
Sparse Data
Axel Falk, Johan Sievert Lindeskog

ISSN 1650-2884
 LU-CS-EX: 2021-26

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2021-26

Considerations when Constructing a Food
Recommender System with Sparse Data

Att tänka på när man implementerar ett
rekommendationssystem baserat på gles

data

Axel Falk, Johan Sievert Lindeskog

Considerations when Constructing a Food
Recommender System with Sparse Data

Axel Falk
elt15afa@student.lu.se

Johan Sievert Lindeskog
johan.sievertlindeskog@gmail.com

July 6, 2021

Master’s thesis work carried out at MEIQ Systems AB.

Supervisor: Dennis Medved (LTH), dennis.medved@med.lu.se
Jakob Navrozidis (WEIQ), jakob.navrozidis@weiq.tech

Examiner: Elin Anna Topp, elin_anna.topp@cs.lth.se

mailto:elt15afa@student.lu.se
mailto:johan.sievertlindeskog@gmail.com
mailto:dennis.medved@med.lu.se
mailto:dennis.medved@med.lu.se
mailto:jakob.navrozidis@weiq.tech
mailto:elin_anna.topp@cs.lth.se

Abstract

In fast growing economies, companies connected to e-commerce rely on a rec-
ommender system, as these systems can improve the user experience and increase
sales at the same time. In this thesis, we implement and investigate the perfor-
mance of a food recommender system, based on implicit feedback data collected
from over 100 restaurants in Sweden by MEIQ Systems AB. First, an attempt to
convert the implicit feedback to pseudo explicit rating is investigated. Second,
the implicit feedback is used without a conversion. Content-based filtering and
collaborative filtering are the two main strategies that will be compared. Tech-
niques like singular value decomposition and alternating least squares will be
used. Our results show that the implicit interpretation of the data is preferable.

We will focus on the meaning of "good". What is a good recommendation?
As it is not obvious how one can evaluate the results, we will discuss trade-o�s,
limitations and advantages, and ultimately provide suggestions and considera-
tions for dealing with recommender systems of similar nature, with a focus on
top-k recommendation evaluation.

Keywords: recommender system, collaborative filtering, matrix factorization, content-
based filtering, item features

2

Acknowledgements

First of all, we would like to thank MEIQ Systems AB for providing the data set. Without
the data, this thesis would not have been possible. Second, a big thank you to our super-
visors Dennis Medved, postdoctoral researcher at the department of Computer Science at
LTH, and Jakob Navrozidis, lead developer at MEIQ. Also, thank you Elin Anna Topp, the
examiner of this thesis, for providing the final valuable insights and comments, making it
possible for us to pass and thereby earn the honor of graduating as engineers. Last but not
least, Isak Falk, Axel’s brother and doctoral student at the University College London, has
been yet another source of inspiration during this project. Thank you Isak for cheering on us.

Axel Falk & Johan Sievert Lindeskog, June 2021

3

4

Contents

Acronyms and nomenclatures . 9
List of figures and tables . 13

1 Introduction 15
1.1 MEIQ Systems AB and WEIQ . 15
1.2 Historical background of recommender systems 15
1.3 Related work . 16
1.4 Focus of this work . 16

1.4.1 Method . 17
1.4.2 Contributions . 17
1.4.3 Thesis outline . 17

2 Theory and method 19
2.1 Data interpretation . 19

2.1.1 Explicit feedback . 19
2.1.2 Implicit feedback . 19

2.2 Natural language processing . 20
2.2.1 Word embeddings . 21
2.2.2 Clustering methods . 21
2.2.3 Term frequency–inverse document frequency 21
2.2.4 Cosine similarity . 22

2.3 Content-based filtering . 22
2.3.1 Item-item . 22
2.3.2 User-user . 22

2.4 Collaborative filtering . 23
2.4.1 Matrix factorization . 24
2.4.2 Singular value decomposition . 24
2.4.3 Alternating least squares . 25
2.4.4 Hybrid model- Weighted approximate-rank pairwise loss function . 25
2.4.5 Other methods . 26

2.5 Summary of methods . 26

5

CONTENTS

2.5.1 CBF- advantages and disadvantages 27
2.5.2 CF- advantages and disadvantages 27

2.6 Metrics . 27
2.6.1 Root mean squared error . 28
2.6.2 Precision@k . 28
2.6.3 Recall@k . 29
2.6.4 Subjective evaluation . 29
2.6.5 Other metrics . 29

2.7 Clustering evaluation methods . 30

3 Approach 31
3.1 Data description . 31
3.2 Overview and statistics . 32
3.3 Input data for modelling . 34
3.4 Item features . 35
3.5 Pseudo explicit ratings . 36
3.6 Level of confidence . 36
3.7 Inverse propensity weights . 37
3.8 Hyperparameter optimization . 37

4 Results and discussion 39
4.1 Item feature clustering using NLP . 39

4.1.1 Clustering of tags . 40
4.1.2 Clustering of categories . 41

4.2 Content-based filtering . 42
4.3 Pseudo explicit filtering . 42
4.4 Implicit filtering . 44

4.4.1 Implicit filtering with WARP . 44
4.4.2 Implicit filtering with ALS . 46

4.5 Subjective evaluation . 47

5 Conclusion and future work 49
5.1 Future work . 50

Appendix A Hyperparameters 57
A.1 Optimal hyperparameter setup . 57

Appendix B Example of recommendations 59
B.1 Example of recommendations- full data . 59
B.2 Example of recommendations- Seller A . 60

6

Acronyms

ALS Alternating least squares.

CBF Content-based filtering.

CF Collaborative filtering.

MF Matrix factorization.

ML Machine learning.

NLP Natural language processing.

RMSE Root mean squared error.

RS Recommender system.

SVD Singular value decomposition.

TFIDF Term frequency–inverse document frequency.

WARP Weighted approximate-rank pairwise.

7

Acronyms

8

Nomenclature

r̂ui the estimated rating of user u for item i

µ the mean of all ratings

bi item bias, i.e., the mean of all ratings given to item i

bui the baseline rating of user u for item i

bu user bias, i.e., the mean of all ratings given by user u

I the set of all items. i and j denote items

U the set of all users. u and v denote users

9

NOMENCLATURE

10

List of Figures

2.1 An example of a 5x5 explicit interaction matrix, displaying what items which
user has interacted with, and which score the user rated the item with. . . . 20

2.2 Figure of collaborative- (left) and content-based filtering (right). This is a
modified version of an image from [25]. 23

2.3 An example of a matrix A factorized into two low rank matrices Uk and Vk ,
and a diagonal matrix Σk , using SVD. Note that the resulting matrix is an
approximation of the original matrix A. 24

3.1 Distribution of number of purchased unique items per user for the full data
set and Seller A. Note that the figure is cropped due to the small proportion
of users who bought more than 15 unique items. 32

3.2 The number of sold items for the 15 biggest sellers in the full data set. . . . 33
3.3 Representation of how a data set for RS is split into train set and test set by

masking, in comparison to a normal data split in ML. Image from [42]. . . . 34
3.4 An example of how the categories and tags can look like in the WEIQ app. . 35

4.1 Scatter plots of the tags in the 2-dimensional vector space. The left plot
displays the manually assigned tags for the original tags and the right-most
plot shows the k-means clustering of the tags. 40

4.2 Scatter plots of the categories of the full set in the 2-dimensional vector
space. The plots are showing the dimensionality of the embeddings reduced
with singular value decomposition. The clustering method is k-mean with
three clusters. 41

4.3 RMSE from pseudo explicit feedback, for the full data set (left), and Seller
A (right). 43

4.4 Precision@k (left) and recall@k (right) from implicit feedback for the full
data set. The blue curve represents the WARP-model, and the green curve
represents the WARP-model with the inverse propensity weights-implementation,
and the orange curve represents the baseline. 45

11

LIST OF FIGURES

4.5 Precision@k (left) and recall@k (right) from implicit feedback for Seller A.
The blue curve represents the WARP-model, and the green curve represents
the WARP-model with the inverse propensity weights-implementation, and
the orange curve represents the baseline. 46

4.6 Precision@k (left) and recall@k (right) from implicit feedback for the full
data set. 46

4.7 Precision@k (left) and recall@k (right) from implicit feedback for Seller A. 47

12

List of Tables

2.1 Confusion matrix, general scheme. 28

3.1 Example of how the data is stored. 31
3.2 Interpretation of the data. 32
3.3 Statistics of the full data set and Seller A. 34

4.1 The three classes the categories and tags were manually divided into, used
for classification. 39

4.2 Confusion matrix of the labelled tags and the predicted labels clustered using
k-means. 40

4.3 Confusion matrix of the labelled categories and the predicted labels clus-
tered using k-means. 41

4.4 Recommendations made for 3 frequently bought items from Seller A, to-
gether with its similarity score, using CBF. 42

A.1 The optimal hyperparameter setup (x = available) for the models trained on
the full data set. 57

A.2 The optimal hyperparameter setup (x = available) for the models trained on
the Seller A data set. 57

B.1 Recommendations (rec.) for user u1 from the full data set, based on all the
items bought by user u1, using WARP with and without inverse propensity
weights, respectively. 59

B.2 Recommendations (rec.) for user u1 from the full data set, based on all the
items bought by user u1, using ALS. 59

B.3 Recommendations (rec.) for user u2 from Seller A, based on all the items
bought by user u2, using WARP with and without inverse propensity weights,
respectively. 60

B.4 Recommendations (rec.) for user u2 from Seller A, based on all the items
bought by user u2, using ALS. 60

13

LIST OF TABLES

14

Chapter 1

Introduction

1.1 MEIQ Systems AB and WEIQ
This degree project is done in collaboration with MEIQ Systems AB (MEIQ), a start-up soft-
ware company since 2018 based in Malmö, Sweden. The company conducts development,
operation, and sales of a platform for menu and order management, aimed at the restaurant
industry and compatible operations. Their main product is called "WEIQ" (a play on words
of the question "Why queue?"), which is a free software application (app) available for any-
one who wants to order food and drinks. The aim of WEIQ is primarily to remove queuing
time for the customers as they place orders directly in the app, without involvement of the
restaurant sta�, and choose a time to pick up their order. This saves time, both for the cus-
tomers and the restaurants, which is a crucial factor in the restaurant industry. Especially at
crowded bars, where a fair and organized queuing system rarely exists, the app solution can
be useful. Furthermore, the app minimizes the risk of incorrect orders as no involvement of
waiters and waitresses is needed, and there is no way to dine and dash since the payment is
required before the order is complete.

1.2 Historical background of recommender
systems

The first form of a recommender system (RS) was presented in 1992 [18], used to filter spam
from important emails. Since then, numerous e-commerce websites implemented these sys-
tems to make personalized recommendations to their customers [51]. In 2013, about 35% of
what a consumer purchased at Amazon.com came from some form of product recommen-
dation [36]. However, not only e-commerce websites use personalized recommendation. In
2006, Netflix announced that the winner of the Netflix Prize, an open competition for pre-
dicting user-item ratings on movies and series, would be awarded 1M dollars. This lead to

15

1. Introduction

a major interest within the field, with more than 20000 teams from 150 countries partici-
pating [4]. Today, 80% of Netflix watch time comes from recommendations [19]. Another
big company where a recommendation engine is essential is YouTube, whose product chief
claims that about 70% of the watch time on the platform comes from recommendations using
artificial intelligence (AI) and machine learning (ML), rather than user search [55].

1.3 Related work
There are two types of input from which a RS is constructed; explicit feedback, where users
explicitly express their preferences in some form, i.e., a rating scale, and implicit feedback,
where users’ interactions with products, i.e., clicking on an item or purchasing an item, are
used to predict their preferences instead. Explicit feedback is preferable to work with as the
feedback provided by the user is less ambiguous than its implicit counterpart [34]. With that
being said, many systems are restricted to the usage of implicit feedback [26].

Today, most RS are either based on content-based filtering (CBF), recommending items
similar to other items, or collaborative filtering (CF), recommending items based on user
similarities. CF in particular has gained popularity over the years, originally by using nearest-
neighbor techniques, but lately, with greater success, by the use of matrix factorization [11].
Hybrid models combine di�erent filtering techniques, e.g., CBF and CF, in order to solve
inherent problems of the particular filtering technique.

The trend in RS, similarly to many other fields, is currently deep learning [60]. While the
deep learning based RS are state-of-the-art, they share reproducibility problems. Maurizio
Ferrari Dacrema et al. published a paper in 2019 demonstrating that out of the 18 best RS
algorithms from the previous year, only 7 of them were somewhat reproducible and out of
those 7, only 1 could outperform typical heuristic methods such as nearest-neighbor based
models [13].

1.4 Focus of this work
At the time of writing, WEIQ has no feature implemented to target the customers of the
restaurants with tailored recommendations. A good RS can improve the user experience and
increase sales at the same time, which is why an implementation of such a feature could be
beneficial, both for the restaurants, the customers, and MEIQ as a company. Just like most
software applications do, WEIQ collects data from its users. The objective from MEIQ’s
point of view is to, given that a user is browsing a particular restaurant’s menu, display top 5
recommendations for the user, before they have decided what to order.

During this thesis, we will try to answer the following questions:

• Is it possible to implement a good RS based on implicit feedback using ML techniques,
given that the data is incomplete, dirty, and very limited?

• How should the data be preprocessed?

• How should the models be evaluated and compared?

• Will CF be superior to CBF, despite the fact that the data is very limited?

16

1.4 Focus of this work

As there already exist a lot of previous work in this field, we will focus on the meaning of
good in relation to RS. As it is not obvious how one can evaluate the results, we will discuss
trade-o�s, limitations and advantages, and ultimately provide suggestions and considerations
for dealing with RS of similar nature, with a focus on top-k recommendation evaluation.

1.4.1 Method
The objective of this thesis was to implement a RS based on the data given. We investigated
the data characteristics to limit the scope of appropriate methods. As the data contained
both user-item interactions and item features, we decided to try both CBF and CF. The CBF
was implemented using the information retrieval method term frequency–inverse document
frequency (TFIDF) together with the similarity measure cosine similarity, introduced in Sec-
tion 2.2.3 and 2.2.4, respectively.

We considered two approaches in the case of CF, treating the implicit feedback as explicit,
by a conversion, and using the original implicit feedback. Most research about RS concerns
explicit feedback, which is why we tried the explicit approach. For this approach, we used
the model-based CF method singular value decomposition (SVD), described in Section 2.4.2.
For the second approach with implicit feedback, we used alternating least squares (ALS)
and weighted approximate-rank pairwise (WARP) loss, explained in Section 2.4.3 and 2.4.4,
respectively.

When evaluating the performance of the RS, the top recommendations were in focus.
Therefore, we chose to use the classification accuracy metrics precision@k and recall@k,
described in Section 2.6.2 and 2.6.3, respectively, when comparing the ALS-model and the
WARP-model. These metrics could not be used directly when evaluating the SVD-model,
which is why we here instead used the predictive accuracy metric root mean squared error
(RMSE), explained in Section 2.6.1. Finally, we decided to compare the models subjectively
by examining the recommendations given by each model for a specific user.

1.4.2 Contributions
During most of this thesis, we worked with the programming parts together in a pair pro-
gramming fashion, although sub-tasks were delegated di�erently. In the later parts of the
projects, Axel focused more on the CF parts containing WARP while Johan focused on the
CBF parts. This included both implementation, modifications, and evaluation of the respec-
tive methods. Although the focus areas of this thesis were divided in the later parts, mostly
due to limited amount of time, both writers of this thesis have been involved in some way
during the whole project. The final last month were spent writing the thesis together, with
support from notes and observations during the project.

1.4.3 Thesis outline
After introducing MEIQ as a company and presenting some historical background about
RS, Chapter 2 includes essential theory about di�erent types of filtering approaches and
evaluation methods. Chapter 3 contains an overview of the data, and the general approach
regarding the construction of the RS. The results are presented in Chapter 4 along with

17

1. Introduction

discussions. Finally, in Chapter 5, we finish the report with a conclusion, where we summarize
and further discuss our findings, followed by potential areas of improvement.

18

Chapter 2

Theory and method

2.1 Data interpretation
To provide recommendations, other than random, some form of pattern must be extracted
from the data. However, di�erent types of feedback can be used in RS. Normally, this feed-
back is either explicit or implicit, which will be discussed below.

2.1.1 Explicit feedback
If a user u has the possibility of rating items they have interacted with, for instance, with
a thumbs up/thumbs down rating, or on a scale from 1 to 5, this would be an example of
explicit feedback. When u really likes an item i, this can be explicitly expressed with a high
rating, i.e., we know that u likes i if the rating is high (given that u will never be biased and
always give truthful ratings). The same applies for low ratings, i.e., u can explicitly express
that i is not preferred by giving it a low rating.

Explicit feedback can be described in terms of an interaction matrix [15], where the rows
and columns represent the users and items, respectively. An example of an interaction matrix,
given the set of all users U , and the set of all items I , is displayed in Figure 2.1.

Here, the first user u1 has interacted with items i2, i4, and i5. Note that u1 has never
interacted with i1 nor i3, which is why the rating is set to 0. To be clear, this does not mean
that u1 dislikes i1 or i3, but rather that they have not interacted with the item.

2.1.2 Implicit feedback
In the case where no explicit information about user preferences is available, one must rely on
other methods to understand the users’ behavior. For instance, if a user purchases a product,
without rating it, it is still considered as an interaction, although implicit. To give an example
of an implicit interaction matrix, replace all numbers that are non-zero with 1 in Figure 2.1.

19

2. Theory and method

Figure 2.1: An example of a 5x5 explicit interaction matrix, display-
ing what items which user has interacted with, and which score the
user rated the item with.

Browsing activity and watching habits, etc., could also be used to model user preferences
[26]. Note that in this situation, we do not have any direct input regarding the preferences
of the users, especially not about interactions with a negative outcome. If a user interacts
with an item once, do they like it or not? How implicit feedback can be interpreted will be
elaborated in Chapter 3.

Normally, explicit feedback is preferred over implicit [31], due to the fact that implicit
feedback is much noisier and not as easy to work with. This should correspond to intuition,
since, as mentioned before, we explicitly know the opinion regarding the items a user has
interacted with in explicit feedback, compared to implicit feedback where we only know
what items the user interacted with, not considering the opinion of the interaction. However,
in practice, implicit data is more common to work with, due to the e�ective and easy way to
collect it, for instance with cookies.

2.2 Natural language processing

Natural language processing (NLP) is a field within computer science that explores how
computers can interact with natural languages, for instance, Swedish, Spanish and Chinese,
i.e., languages that human societies use to communicate among themselves. The general
problem with natural languages is that the grammatical and semantic (semantics, syntac-
tic, and pragmatics) rules that each specific language has, are not necessarily followed by the
speaker/writer of that language, but the context is often enough for the listener/reader to
extract the information needed to comprehend the meaning. The intended goal with NLP in
this project is to improve the consistency of the item features, described in Section 3.4.

20

2.2 Natural language processing

2.2.1 Word embeddings
Word embedding or distributed word representation is a term used in NLP for vector rep-
resentation of words. Words are mapped to a high dimensional vector space, and hopefully,
similar words will be mapped close to each other in this vector space [39].

Since most restaurants use Swedish when naming tags and categories, a word embedding
trained on a Swedish corpus is used. fastText is an open-source library created by Facebook’s
AI Research lab (FAIR) focused on text representation and text classification and provides
pretrained word vector models for a multitude of languages, amongst them Swedish [8]. The
word vectors were trained using an improved Continuous Bag of Words (CBOW) model on
corpora gathered from Wikipedia [20]. Continuous Bag of Words is a word vector model that
contextualizes words of a corpus and maps them to the vector-space [38].

2.2.2 Clustering methods
When the words are mapped to a vector space by the embeddings, there are mathemati-
cal methods to cluster the words. The resulting clusters will contain similar words. The
clustering method used in the project was k-means clustering. While other methods were
experimented with, such as Spectral clustering [57] and T-distributed Stochastic Neighbor
Embedding [24], they performed worse and were thus excluded from the results.

The k-means clustering algorithm is initialized by randomizing the locations of the cen-
troids in the vector space, followed by the assignment step where each observation is assigned
a cluster based on the distance to the nearest centroid. This is followed by the update step,
where the position of each centroid is re-estimated in the vector space based on the new mean
location of all the observations belonging to that cluster. These two steps are reiterated until
convergence is achieved.

2.2.3 Term frequency–inverse document frequency
Term frequency–inverse document frequency (TFIDF) is a common method within the field
of NLP, used for understanding the importance of a word in a collection of documents or a
corpus [47]. The first part, term-frequency, is calculated as

tf(t, d) =
ft,d
Td

(2.1)

where t is the term (word), d is the document, ft,d is the number of times the term t occurs in
document d, and Td is the total number of terms t′ ∈ d. The last part exists since the size of
di�erent documents can vary, which would make only raw count of words unfair to compare
between documents. Hence, the term-frequency tries to capture the importance of a word
in a specific document.

The second part, inverse document frequency, is calculated as

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|
(2.2)

where N is the total number of documents in the collection and |{d ∈ D : t ∈ d}| is the
number of documents in the collection where t appears. Thus, frequently occurring words

21

2. Theory and method

that show up in most of the documents in the collection will be weighted down since the
logarithm of something small will be close to zero or negative.

Breitinger et al. conducted a survey in 2015 [3], investigating research papers concerning
RS. They found that 83% of text-based RS in digital libraries use TFIDF for information
extraction.

2.2.4 Cosine similarity
Just like TFIDF, cosine similarity is a method within the field of NLP, commonly used to
measure document similarity in text analysis [21]. If every document is represented as a vector
with its corresponding words as dimensions, the similarity between two vectors (documents)
A and B, can be found by simply calculating the cosine of the angle between them according
to

cosine similarity = cos(θ) =
A · B
‖A‖‖B‖

=

∑n
i=1 AiBi√∑n

i=1 A2
i

√∑n
i=1 B2

i

, (2.3)

where the second equality comes from the definition of scalar product in linear algebra. Note
that documents will probably contain a lot of words, making these vector representations
high dimensional [54].

2.3 Content-based filtering
In general, algorithms used in RS belong to two types of categories: content-based filtering
(CBF) and collaborative filtering (CF) [28]. In addition to this, there are hybrid models, as
will be discussed in Section 2.4.4. In this section, an overview of CBF will be presented.

2.3.1 Item-item
An intuitive implementation of a CBF RS would be, as the name indicates, to use the content
to recommend items. In this type of implementation, the content is regarding the items. If
some kind of information about the items is available, for instance, categories, tags or a
description in text, it could be used as features for describing the items. Assuming that item
features are defined, combined with a method for comparing the similarity of items, e.g.,
TFIDF followed by cosine similarity, recommendations can be made based on the similarity
score of items. If user u previously has interacted with item i, and item j is similar to i, then
j will be recommended to u. A descriptive image of this situation is represented in the right
part of Figure 2.2.

2.3.2 User-user
This variant of CBF is in some sense quite similar to the previous item-item implementa-
tion. The di�erence lies in that there exists little or no content about the items, and instead,
content about the users exists. If, for instance, demographic information, such as gender,
age, country, etc., would be available, one could use this as features to identify similar users

22

2.4 Collaborative filtering

Figure 2.2: Figure of collaborative- (left) and content-based filtering
(right). This is a modified version of an image from [25].

(although, for instance, women from Sweden in their 20’s probably do not like the same food
only because they share similar demographic information). From this, assuming that user u
is similar to user v, one can recommend what u previously ordered to v, regardless of whether
their purchase histories have something in common or not.

2.4 Collaborative filtering
Collaborative filtering is a technique used to recommend items to users based on the prefer-
ences of other users [50]. An example of this can be found on the left side of Figure 2.2, where
both users have read the same articles and therefore are seen as having similar preferences,
which in turn is why the article that has only been read by the left user is recommended to the
right one. To give another example, looking at Figure 2.1, user u1 and u5 have similar ratings
for item i2, i4, and i5, making the users similar. In addition to this, u5 gave i1 a high rating,
which is why i1 should probably be recommended to u1. This follows the presumption, on
which CF is based, that if user u shares an opinion with user v, they are inclined to share
other opinions as well.

The essential di�erence between CF and CBF, perhaps evident by now, is that CBF is
limited by the content and its features when making recommendations, while CF makes rec-
ommendations based on the users’ preferences and the preferences of similar users. However,
CF does not naturally incorporate item features in its model as CBF does [1].

There are two major classes of CF, memory-based and model-based [10]. In memory-
based CF, user-item ratings are stored in memory and used unaltered to find recommenda-
tions based on some similarity function [58], for example cosine similarity. Model-based CF
develops a model, often by applying a machine learning approach beforehand that predicts
user ratings [49]. There are di�erent machine learning algorithms that can be applied to es-
timate the model, and we will focus on latent feature extraction which will be presented in
the next section.

23

2. Theory and method

2.4.1 Matrix factorization
Matrix factorization (MF) subsumes a group of methods that factorize a matrix into prod-
ucts of smaller matrices, and are among the most used and e�ective methods of latent factor
modeling [34]. Latent factor models are used to estimate ratings based on unknown low-
dimensional representations, i.e., latent features [48]. For instance, one factor might repre-
sent popularity, another might represent salty food, and a third might explain if a person
has children or not. Even though the last mentioned example might seem peculiar, it is im-
portant to note that the system itself cannot contextualize the patterns, it only finds those
that seem to accurately represent the users. Therefore, ethical considerations may need to be
accounted for [40], for instance, the model may find patterns based on ethnicity or sexuality,
which could in turn enforce stereotypes.

2.4.2 Singular value decomposition
Singular value decomposition (SVD) is a type of MF that gained a lot of popularity during
the Netflix prize. Simon Funk developed an approach to incorporate a SVD-based model to
CF [16], as conventional SVD would result in unsatisfactory results. This is mainly due to
the interaction matrix being sparse, and using only the few known entries would result in
overfitting the model [32]. Figure 2.3 illustrates how a matrix A is factorized into two low
rank matrices Uk and Vk , and a diagonal matrix Σk , where k is the rank of the matrix. It
is important to note that the result will be an approximation of the original matrix A. The
reconstructed matrix Ak , which is the product of Uk , Σk , and Vk, is obtained in a way such
that it minimizes the Frobenius norm, which is equivalent to the L2-norm, i.e., ||A − Ak ||2.

Figure 2.3: An example of a matrix A factorized into two low rank
matrices Uk and Vk , and a diagonal matrix Σk , using SVD. Note that
the resulting matrix is an approximation of the original matrix A.

The solution to the previous problem with the matrix being sparse is to fill the unknown
entries with average ratings based on users and items, called user- and item bias, which would
later be recalculated based on the SVD-algorithm. The predicted rating is estimated as

r̂ui = bu + bi + qT
i pu, (2.4)

where bu is the user bias, bi the item bias, and qi and pu are the factor vectors for the items and
users, respectively. The estimation of the parameters is done by minimizing the regularized

24

2.4 Collaborative filtering

squared error according to

min
p∗,q∗,b∗

∑
(u,i)∈κ

(rui − bu − bi − pT
u qi)2 + λ(||pu||

2 + ||qi ||
2 + b2

u + b2
i), (2.5)

where κ is the set of user-item pairs for which rui is known. From Eq. 2.5, the parameters are
tuned in the opposite direction of the gradient according to

bu ←− bu + γ(eui − λbu) (2.6)
bi ←− bu + γ(eui − λbu) (2.7)
pu ←− pu + γ(eui ∗ qi − λpu) (2.8)
qi ←− qi + γ(eui ∗ pu − λqi) (2.9)

where γ is the learning rate, λ the regularization term, and eui = rui − r̂ui . This procedure is
repeated for every user-item pair, over a specified number of epochs.

2.4.3 Alternating least squares
Alternating least squares (ALS) is another method that belongs to the category of MF algo-
rithms. This method is used both for explicit and implicit feedback [46, 26], while SVD is
more common to use for explicit feedback. Both methods work well with sparse matrices,
e.g., an interaction matrix. Broadly speaking, the algorithm iteratively tries to find the two
low rank matrices Uk and Vk , as explained in Section 2.4.2, by first initializing them and then
alternating between solving for the row factors (users in Uk), and column factors (items in
Vk). This is done until some convergence is reached, typically within some tolerance. Ordi-
nary least squares is used to solve for the row and column factors, respectively.

The details of the implementation can be found in [26], which will be used later to fac-
torize an implicit interaction matrix.

2.4.4 Hybrid model- Weighted approximate-rank pair-
wise loss function

A hybrid model combines CBF and CF in the sense that it implements the latent factor model
with item features. In this section, an implicit feedback hybrid model used in this project
will be presented.

The role of loss functions is to measure an error between the algorithm’s output, the pre-
dicted values, and the input, the true values, for the sake of optimizing the model. The error
depends on the loss function, therefore in order to optimize the algorithm for a specific prob-
lem, a loss function that finds the appropriate error should be incorporated. A commonly
used loss function is the squared distance, which sums up the squared errors between each
true and predicted user-item pair [14] according to

L(yui, ŷui) = (yui − ŷui)2, (2.10)

where yui is the true interaction score and ŷui is the predicted interaction score for an ob-
served user-item pair.

25

2. Theory and method

Weighted approximate-rank pairwise (WARP) loss is a loss function that measures the precision@k,
explained in Section 2.6.2, [59]. The ranking of labels i ∈ Y of an example u is the recurrent
objective. For the labeled pairs (u, y), a randomly sampled correct yi is considered correct.

WARP loss will randomly sample output labeled pairs (u, y) of a model for a specific u,
until it finds a pair that it knows are wrongly labeled, and will then apply an update to these
two incorrectly labeled examples. This is done in the following way:
For user u we have a target vector y, which contains the Boolean representation for all
the items determined by user-item-interactions, i.e., 1’s for interactions and 0’s for non-
interactions. Every item has a ranking score provided by the model. The score of the true user-
item-interaction (u, ŷi) is compared to the score of a randomly sampled user-item-interaction
(u, ŷ j 6=i). If ŷi ≥ ŷ j then the score of a new random sample is compared to the score of the true
sample. This is done until the occurrence where a random sample has a score greater than the
true sample or the entirety of the vector has been iterated, which in the second case results
in an accurate ranking prediction of the model. In the first case the loop is interrupted, and
the error is

error(ranki) = ŷ j − ŷi. (2.11)

A second step of the loss function is to include a factor which determined how well the
ranking of the true label was in some regard to the entire set of items, and that is

L = ln(
X − 1

N
)(ŷ j − ŷi), (2.12)

where X is the number of items and N is the number of randomly sampled items. This is done
for every labeled pair in the data set. How this loss function is then implemented to find the
stochastic gradient descent of the training of the model is somewhat more complicated and
is therefore excluded from the report, but can be found in [59].

2.4.5 Other methods
Other methods were tried out in this project that have not been presented yet. For instance,
non-negative matrix factorization (NMF) is an example of a method related to SVD. They are
both matrix factorization techniques, however, the conceptual di�erence is that the low rank
matrices Uk and Vk , as explained in Section 2.4.2, are constructed in a way such that there
are only positive entries, which explains the name of the method. Also, NMF does not find a
Σ matrix that contains singular values on the diagonal. This method gave similar results or
worse compared to SVD, which is why it will not be further investigated.

Another example that was investigated is the SVD++ algorithm. This algorithm is similar
to SVD, which only takes explicit information into account, while SVD++ also takes the im-
plicit information into account. The reason for doing this is that it is more likely that a user
likes an item that they actually rated compared to a random item. More details about SVD++
can be read in [33]. As with NMF, SVD++ did not yield better results compared to regular
SVD, and was therefore not further investigated.

2.5 Summary of methods
In this section, some benefits and drawbacks regarding CBF and CF will be presented.

26

2.6 Metrics

2.5.1 CBF- advantages and disadvantages
In a scenario where the users outnumber the items by far, item-item CBF can easily scale to
numerous users. This is due to the fact that the recommendations do not depend on other
users, only the item matters. However, if there are a lot of items, finding similar items could
take a lot of time.

A major drawback with CBF lies in the content, which often is hand-engineered. For
instance, if an item has a vague description, it is unlikely that similar items will get a high
similarity score and eventually get recommended. Thus, it is important that the category,
tags, description, etc., are well-thought-out. Another problem with CBF lies in the absence
of serendipity, which in this context means that the model cannot discover new user interests.
This is the result of only using the interaction history of one user at a time, and not others,
like CF does.

2.5.2 CF- advantages and disadvantages
CF has many advantages and has in fact been the most commonly used technique when it
comes to the implementation of RS [2]. A major benefit with CF is the ability to include
serendipity in the recommendations. From a human perspective, seemingly irrational rec-
ommendations could be provided by CF. However, as long as similar users have purchased
other items, these items have a good chance of being recommended. CBF does not include
much serendipity, at least not when implemented in an item-item fashion.

A common problem with CF is referred to as the cold-start problem [52]. New users, i.e.,
users that have not made their first purchase yet, are the definition of cold starters. Since
no information regarding interactions is present, MF models cannot find the user factors.
However, there are ways to somewhat get around this problem, as will be discussed in Chapter
4.

2.6 Metrics
There are multiple ways to evaluate a recommender system, and it is not always clear what the
best metric would be in a given situation. Schröder et al. [53] introduce four major classes
that most metrics belong to: predictive accuracy metrics, classification accuracy metrics,
rank accuracy metrics, and non-accuracy metrics. Depending on whether the user feedback
is implicit or explicit, di�erent measures are more or less suitable. Before presenting some
examples of each category that are used as metrics in this report, some basic quantities are
defined below.

True Positives (TP): Correctly classified positive samples
False Positives (FP): Incorrectly classified positive samples
True Negatives (TN): Correctly classified negative samples
False Negatives (FN): Incorrectly classified negative samples

To give an example, looking at the confusion matrix in Table 2.1, a TP would be, in the

27

2. Theory and method

case of implicit feedback, that we predict an interaction between user u and item i while this
is true.

Table 2.1: Confusion matrix, general scheme.

Predicted:
True: interaction no interaction Total
interaction TP FP TP + FP
no interaction FN TN FN + TN
Total TP + FN FP + TN n

2.6.1 Root mean squared error
Root Mean Squared Error (RMSE) is a predictive accuracy metric, and it is one of the most
commonly used metrics to evaluate a recommender system [7], at least when explicit feed-
back is available. When only implicit feedback is available, RMSE does not have the same
relevance, since the prediction would turn into a binary classification problem instead. For
instance, if a prediction for user u on item i is 0.9, and u actually has interacted with i (a
score of 1), it would be unfair to interpret this as an error of 0.1.

As the name indicates, RMSE is calculated by taking the sum of the squared errors, i.e.,
the di�erence between the observed ratings ri and the corresponding predicted ratings r̂i ,
then averaged by dividing with the number of observed ratings N , and finally taking the
square root of the average, as

RMSE =

√∑N
i=1 (ri − r̂i)2

N
. (2.13)

As can be seen in Eq. 2.13, the errors are squared before they are averaged. This means
that a higher weight is given to large errors, i.e., the measure is sensitive to outliers. This is
important when large errors are undesirable. RMSE as a measure is intuitive and gives an
indication of the quality of the predictions. The lower the value of RMSE, the closer the
predicted values are to the observed values. This metric will be used to evaluate SVD in
Chapter 4.

2.6.2 Precision@k
Precision@k is an example of a classification accuracy metric, also commonly used to evaluate
RS [43]. Ignoring the k at the moment, precision is defined as

Precision =
∑

TP∑
TP + FP

. (2.14)

Another way of defining precision would be as the proportion of the predicted successes
that are true successes, i.e., the proportion of recommended items that are relevant for a
user. Following this, precision@k is the proportion of recommended relevant items in the
k most confident recommendations. This means that the measure completely ignores what

28

2.6 Metrics

happens after k. For instance, if user u gets 5 recommendations where 3 of them are relevant,
precision@k would be 0.6, regardless of the relevance of the remaining recommendations,
whereas precision would take this into account.

The reason for using precision@k instead of precision is simple. For instance, in a real life
situation where a user interacts with some kind of application with a recommender system,
lets say YouTube, the user would hardly care about what is not shown to them. Even though
the engine can produce countless recommendations, with the most confident ones at the
top, most recommendations will probably not be displayed anyway. If the 5 most confident
recommendations will be displayed to a user, then only these should be taken into account
when evaluating the metric while the remaining recommendations, which are not displayed
to the user, should not. However, the order of the recommendations is not taken into account
with this metric [30], meaning that equal weight is given to each item within the top-k items
when evaluating precision@k.

2.6.3 Recall@k
Recall@k is also an example of a commonly used classification accuracy metric [43]. Tem-
porarily ignoring the k, it is defined according to

Recall =
∑

TP∑
TP + FN

. (2.15)

Introducing the k again, the definition is equivalently described as the proportion of the true
successes that have been correctly classified as successes in the top-k candidates, or, equiv-
alently, as the proportion of relevant items that are recommended to a user in the top-k
candidates. This metric is useful in combination with precision@k, since precision is some-
what dependent on recall. For instance, if recall gets a score of zero, this would lead to the
same score for precision. If no relevant items are in the top-k candidates, then precision@k
cannot be anything apart from zero.

2.6.4 Subjective evaluation
This is an example of a non-accuracy metric, since nothing except subjective opinion is used
for evaluation. Clearly, this alone cannot be used to motivate why a model is preferred over
another, but it can still be useful to look over some recommendations and see if the results
look somewhat reasonable. For instance, suppose an algorithm is evaluated as better com-
pared to some baseline, according to precision@k. If the algorithm, due to some reason,
predicts the same items to everybody, lets say the most popular items, then this would not
be discovered if no subjective assessment was involved. Therefore, as a rule of thumb, one
should always look over the recommendations manually.

2.6.5 Other metrics
Any closely related metric of RMSE, e.g., Mean Average Error (MAE), could also be useful
for evaluation. However, the objective function in SVD is minimizing the RMSE, which is
why this is preferred.

29

2. Theory and method

Mean reciprocal rank was another classification metric that was investigated. The metric
returns a score of how high the correct interaction is in the rankings of the predictions. As
this metric only regards the first relevant prediction, it proved to be a worse alternative to
precision@k and was therefore not included in further investigations.

Area under the receiver operating characteristics (ROC) curve (AUC) is the probability
that, given a random pair of observations, where one is a true positive (TP) and one is a
true negative (TN), the TP has a higher predicted probability of being a true prediction than
the TN has. Thus, the AUC gives the probability that the model correctly ranks such pairs
of observations, which can be useful to know when evaluating RS. However, AUC was not
included in the results as it did not provide any useful information.

2.7 Clustering evaluation methods
There are a few techniques that can be used when evaluating clusters. The ones used in this
project are Adjusted Rand index (ARI) and accuracy. ARI compares how similar clusterings
are, which is to say that the method is unconcerned with class labelling [17]. When comparing
two clusterings, X and Y , with the same number of clusters, of a set S using Rand index, every
pair of elements in S is defined as [27]:

• type (i): the elements of the pair are found in the same cluster for X and for Y

• type (ii): the elements of the pair are found in di�erent clusters for X and Y

• type (iii): the elements of the pair are found in di�erent clusters for X and the same
cluster for Y

• type (iv): the elements of the pair are found in the same cluster for X and di�erent
clusters for Y

The Rand index is then calculated as

R =
(i) + (ii)

(i) + (ii) + (iii) + (iv)
=

number o f agreeing pairs
number o f pairs

. (2.16)

The ARI takes into account that both clusterings may not use the same label for the same
clusters and uses a random model in order to correct this. A score of 0 corresponds to inde-
pendent clusterings and 1 corresponds to identical clusterings.

The other metric used was accuracy score for classification, which computes the subset
accuracy, i.e., how many of the elements that were correctly labelled for each subset [45]
according to

accuracy(y, ŷ) =
1
n

n−1∑
i=1

1(ŷi = yi), (2.17)

where n is the number of elements, y the true label and ŷ is the predicted label.

30

Chapter 3

Approach

This section contains considerations regarding the data set and the implementations of the
models, as well as methods used in succeeding chapters.

3.1 Data description
As stated in Chapter 1, a data set containing various information was provided by WEIQ,
given as a dump of relational databases, stored in a Structured Query Language (SQL) file.
To be able to read this file in a programming language like Python, we converted it to a
Hierarchical Data Format (HDF5) file, and finally, to Pandas Data Frames [37, 56], one for
each table. There is no need for describing the whole data set since most of the information
provided is probably redundant for a RS. The data frames of interest contain information
about users, sellers (the restaurants), items (the products of the restaurants), item categories,
and item tags. Table 3.1 shows an example of how a row from the data frame could look like.

Table 3.1: Example of how the data is stored.

user-ref seller-ref item-ref category-ref tag

b5202025... 3bf6a892... c09b0c1e... 0ac5832a... Vegetarian

Each row has a user reference, an item reference, a seller reference, a category reference,
and in some cases one or more tags. If one would like to know what the real item, seller or
category is, the reference maps to this information in another data frame. The tags are not
masked with a reference. However, the users are anonymous as far as the reference goes. This
kind of data can be useful as an input to a RS, to analyze the preferences of the users. Table
3.2 illustrates how the data frame in Table 3.1 can be interpreted.

31

3. Approach

Table 3.2: Interpretation of the data.

user restaurant item category tag

Anna Joe’s Pizza Place Margherita Pizza Vegetarian

In this example, Anna went to Joe’s Pizza Place and bought a Margherita, which is in
the category "Pizza" and has the tag "Vegetarian". However, items sometimes comes with a
description, which, due to illustration purposes, is not shown in Tables 3.1 and 3.2. As is show
in Chapter 4, the descriptions, among with categories and tags, will be used as an input to
the content-based RS.

3.2 Overview and statistics
In Table 3.3, some statistics of the data are presented. The first column is regarding the full
data set, with over 100 unique sellers and almost 70000 users. In Figure 3.1, the distribution
of number of purchased unique items per user is shown.

Figure 3.1: Distribution of number of purchased unique items per
user for the full data set and Seller A. Note that the figure is cropped
due to the small proportion of users who bought more than 15
unique items.

As can be seen in the figure, two distributions are shown at the same time. The blue bars
represent the full data set, while the orange represents a specific seller. From now on, the
data set of this seller will be referred to as Seller A. We decided to reduce the data set to this
particular seller due to several reasons. Firstly, as can be confirmed in Figure 3.2, Seller A has
the highest amount of sold items of all restaurants in the full data set. Secondly, Seller A has
a wide range of items, see Table 3.3, o�ering 119 di�erent products. The range of the items
somewhat represents the full data set, without risking losing too many important patterns.

32

3.2 Overview and statistics

Lastly, the distributions of purchased unique items are quite similar for the full data set and
Seller A, confirmed in Figure 3.1, but the interaction density of Seller A, as can be seen in the
second column of Table 3.3, is almost 50 times higher compared to the full data set. This is
the most important reason for choosing Seller A, and we believe this data will be less noisy
compared to the full data set, and thereby easier to analyze. If this is not the case, this will
confirm that it is unlikely that a model could be estimated for every single restaurant, since
this restaurant has one of the best qualifications among all sellers.

Figure 3.2: The number of sold items for the 15 biggest sellers in the
full data set.

Interaction density is calculated according to

ρ =
number o f interactions

number o f users · number o f items
(3.1)

which is the same as degree of filling in the interaction matrix. In the field of RS, it is known
that it could be hard to extract user behavior if the users have interacted with too few items.
Herlocker et al. discuss this and suggest that for MF algorithms an interaction density below
5% could be hard to work with [23]. Unfortunately, the interaction density of both the full
data set and Seller A is below 5%.

Furthermore, looking at Figure 3.1, about 40% of the users have only made 1 or 2 pur-
chases, both for the full data set and for Seller A. This could be a major problem, since these
users will be cold starters. To be precise, users that have not made their first purchase yet, as
explained in Section 2.5.2, which are not included in our data set, are the definition of cold
starters. However, users with a few purchases will likely su�er from the same e�ect and not
contribute with valuable data to the RS, at least when working with CF. Therefore, we re-
move all the users with less than 3 purchases, to somewhat prevent the e�ect of cold starters.
Removing 40% of the data is definitely not desirable, since we from start have very limited
data to work with, but to our best understanding, it will do more good than harm.

33

3. Approach

Table 3.3: Statistics of the full data set and Seller A.

full data set Seller A
unique users 68604 6335
unique items 5272 119
unique sellers 113 1
unique categories 239 7
unique tags 348 17
items with tags 67% 81%
items with description 68% 76%
mean amount of items/user 3.8 3.6
σ of items/user 3.0 2.5
max amount of items/user 67 24
interaction density 0.07% 3.8%

3.3 Input data for modelling
When estimating the performance of a model, it is important to make a fair assessment. To
do this, the data from which the model-performance is estimated needs to be separated from
the data that the model is trained on. Normally, the dataset is divided into a train set and
a test set, by some fraction. However, when working with RS and interaction matrices, the
way to estimate performance is to mask user-item interactions in the train set, according to
Figure 3.3. When the model predicts the user-item interactions, these masked entries should
hopefully be included in the top recommended items for the users. One important aspect of
this data division is that entries cannot be masked entirely at random, as that could result
in some users having one or no interactions with items whatsoever. Therefore, a threshold
needed to be utilized, limiting the masking of entries to users that had more interactions
than the threshold.

Figure 3.3: Representation of how a data set for RS is split into train
set and test set by masking, in comparison to a normal data split in
ML. Image from [42].

34

3.4 Item features

As will be described in Section 3.8, the models’ hyperparameters are optimized. Thus, to
keep the integrity of the data, the data is divided into train, validation, and a test set, with
the hyperparameters optimized on the validation set. With that said, we decided to mask
30% of the entries, split equally between the validation and test set.

3.4 Item features
Item features are defined by the metadata that describes the items. The metadata for items
available in this project, as mentioned in Section 3.1, are categories, tags, and item descrip-
tions. To give an example of how the categories and tags can look like in the WEIQ app,
in Figure 3.4, the categories are ALLA (ALL), MAT (FOOD) and DRYCK (DRINKS), and the
first three tags are Varmrätt (Main), Förrätt (Starters) and Öl (Beer). A description can also be
seen in the figure for the dish Örtdresserad lammfile med grönsaker (Filet of lamb with vegetables),
although, in this case, the description is the same as the name of the dish.

Figure 3.4: An example of how the categories and tags can look like
in the WEIQ app.

Categories are supposed to be general and let a user filter between products, for instance,
food and drinks. Tags should be more specific and let the user narrow the search after they
have chosen a category. For example, a cheeseburger could belong to the category Food and
have the tag Hamburger. As this would give the cheeseburger the same tag as any other type
of burger in that restaurant, this information is useful to connect items. Since di�erent

35

3. Approach

restaurants usually have at least some similar items, it would be desirable if they used the
same categories and tags for similar items, as this would connect these items between them.
However, due to the fact that restaurants write their own categories and tags, this is seldom
the case. Furthermore, it could be problematic that every item has a category attached to
it, but not always a tag. Since the sellers themselves choose the specific tags and categories,
this could lead to redundant categorizations, i.e., that di�erent tags or categories are used by
di�erent restaurants to describe the same type of food. In order to appropriately use these
categorizations as item features in the RS, they need to be cleaned by removing redundant
features that would not give any beneficial information, i.e., to cluster them together. This
clustering of item features would not be needed if tags and categories were predefined, e.g.,
that the sellers would have a finite number of tags and categories to choose from.

3.5 Pseudo explicit ratings
The data we have in this project is implicit feedback. No user has rated any items, only
the frequency of user-item interactions is registered. However, we will try two di�erent
approaches, one where we treat the data as it is, i.e., implicit, and one where we interpret the
data as explicit. For the second approach, we make the assumption that users who bought
items several times probably like the items, even though we cannot be certain. Therefore,
we convert the interaction matrix to a matrix with what we call a pseudo explicit rating
scale from 1-3, where 1 and 2 correspond to 1 and 2 interactions, respectively, and 3 or more
interactions are represented by a score of 3. Most users try new items once in a while, which
could be unsatisfactory. If this is the case, they would in all likelihood not buy the item
again. However, if a user buys an item twice, it is more probable that the user actually likes
the item. Finally, buying an item 3 times or more should probably be enough for making
the assumption that the user actually prefers the item. With these two types of interaction
matrices, we will perform di�erent MF methods, suitable for implicit and explicit feedback,
respectively. In addition to this, we will use WARP, as described in Section 2.4.4, on the
implicit data set.

3.6 Level of confidence
So far, implicit feedback has been presented as binary, i.e., either an interaction between a
user u and an item i is present or not. This is true, however, one could argue that if u interacts
several times with i, u probably likes i, even though u has not expressed this explicitly. In
fact, the interaction matrix in Figure 2.1 could be seen as implicit, without replacing all
numbers that are non-zero with 1. Accordingly, the numerical value of implicit feedback,
which represents frequency, could be interpreted as level of confidence [26]. For instance,
if u interacts with something only one time, the confidence would be 1. The reason for this
could be that u bought the item for a friend, u tried a new item they did not like, or simply
that u bought the item, was happy with it and still never bought it again. The point is, as
stated before, that implicit feedback does not tell the user preference, however, it is more
likely that frequently occurring interactions with the same items reflect the user opinion.

36

3.7 Inverse propensity weights

3.7 Inverse propensity weights
Popular items are the ones most frequently interacted with by the users. The problem with
popular items is that they tend to outscore most of the other items when making recom-
mendations. The result is that everyone gets recommended the same popular product. One
solution to this is to weigh down the popular items in the interaction matrix, in order to get
less biased recommendations. The weighing method used is Inverse Propensity Weighing [9].
Having an interaction matrix, the weighing function takes the total number of users (rows)
in U divided by the number of the users that have interacted with item i [35]. To give an
example, having an interaction matrix A and applying the weighing function, followed by a
normalization between 0 and 1, would result in

A =


0 0 1
1 1 0
1 0 0
1 1 0


W(A)
====⇒


0 0 4/1

4/3 4/2 0
4/3 0 0
4/3 4/2 0


Normalize
=======⇒


0 0 1

1/3 1/2 0
1/3 0 0
1/3 1/2 0

 . (3.2)

The augmented interaction matrix obtained is now unbiased toward item frequency. Results
concerning this method can be found in Section 4.

3.8 Hyperparameter optimization
Hyper-parameters are parameters whose function is to decide the model selection by con-
trolling the learning process of the model [6]. They determine for instance the regularization
and learning rate of an algorithm and are later fixed during the fitting of the model.

Hyper-parameter optimization is the process of identifying values for the hyper-parameters
of the model that will minimize/maximize the objective function [5]. Our objective is to find
the hyper-parameter setup that maximizes precision@k. The optimization function [12] is
defined as

θ∗ = argmax
θ

C(pte, qte, rte,M(ptr , qtr , rtr , θ)) (3.3)

where C is the function determining precision@k, M is the modeling function. θ contains
the hyper-parameters. ptr and qtr are the item- and user-features vectors for the training set,
and pte and qte are the item- and user-features vectors for the test set. rtr and rte are the true
interaction vectors.

There are several ways to search for the optimal hyper-parameter setup, but two common
ones are grid search and random search. When using grid search, a range of values is manually
chosen for each hyper-parameter. This set of ranges make up a grid of hyper-parameter values.
Each sampled parameter setup of the grid is iterated, and a precision@k score is obtained.
The setup which gained the highest score is then assumed to be the optimal hyper-parameter
setup. Random search functions similarly to grid search, however instead of manually choos-
ing the hyper-parameter values, a distribution is chosen for each hyper-parameter. As shown
in appendix A.1, the hyper-parameters available for optimization di�er for the models based
on the framework used to implement the model. The e�ectiveness of hyper-parameter opti-
mization on our model is further discussed in Chapter 4.

37

3. Approach

38

Chapter 4

Results and discussion

4.1 Item feature clustering using NLP
Due to the length and variation of the quality of the item descriptions, they were only in-
cluded as item features for the CBF. As can be seen in Table 3.3, there are 239 unique cat-
egories and 348 unique tags in the full data set. Two approaches to cluster the tags and
categories were proposed. The first was an ad-hoc approach, to manually classify the tags
and categories, in order to reduce the redundances. This approach, while also being time-
consuming, would not be feasible outside this project, since the sellers would still be able
to create new categories and tags, which in turn would dilute the set and reduce the qual-
ity of the item features. The second approach is to use the unsupervised clustering method,
k-means, as described in Section 2.2.2. Some preprocessing was done on the categories and
tags to reduce the redundant tags, for example by removing unnecessary spaces, symbols, and
lowering capital letters. After the preprocessing step, 31 excessive categories and 41 excessive
tags were removed. The manually classified tags were divided into three classes, respectively:
food, drink, and miscellaneous (misc), summarized in Table 4.1. The misc class contains the cat-
egories and tags that are unrelated to food or beverages, e.g., Children, which from the context
could mean children’s menu.

Table 4.1: The three classes the categories and tags were manually
divided into, used for classification.

type food drink misc total
Categories 88 59 61 208

Tags 141 123 44 307

39

4. Results and discussion

4.1.1 Clustering of tags

The tags were clustered using k-means, as described in Section 2.2.2. Three clusters are com-
pared to the labelled classes presented in Table 4.1.

The results from the tag clustering are presented as a confusion matrix in Table 4.2, and
as scatter plots in Figure 4.1. As can be deduced from the confusion matrix, the majority of
the food and misc tags are appropriately classified, while drink is mostly misclassified as misc.
Similarly, the misclassified food tags were also classified as misc. This is reasonable given the
fact that there are three clusters and that the misc class contains tags that are vague, making
its cluster vaster than the others. The scatter plot to the left and right in Figure 4.1 displays
the manually assigned tags and the k-means clustering of the tags, respectively. The use of
more than 3 clusters was investigated, however, due to several outliers, the k-means algorithm
made each outlier into a singular cluster.

The overall accuracy of the clustering was 0.62 and the adjusted rand score was 0.29,
both scores being low. The overlapping clusters are not necessarily an issue, as items should
be able to have several tags. However, due to the unsatisfactory scores, we decided against
implementing these clustered tags in the item features used by the models.

Table 4.2: Confusion matrix of the labelled tags and the predicted
labels clustered using k-means.

Predicted
food drink misc

A
ct

ua
l food 100 0 41

drink 4 57 62

misc 7 3 34

Figure 4.1: Scatter plots of the tags in the 2-dimensional vector
space. The left plot displays the manually assigned tags for the origi-
nal tags and the right-most plot shows the k-means clustering of the
tags.

40

4.1 Item feature clustering using NLP

4.1.2 Clustering of categories

The clustering of the categories was conducted in the same fashion as the clustering of the
tags, using k-means and the manually labelled classes displayed in Table 4.1. As can be seen in
the table, a larger portion of the categories are labelled misc than for tags, which presumably
will make this clustering more di�cult.

The clustering of the categories is presented in the confusion matrix in Table 4.3 and the
scatter plots in Figure 4.2. Judging from the confusion matrix, there are more misclassifica-
tions overall. Approximately half of the predicted food and drink categories are misclassified
as misc, and 35 of 61 misc labels are misclassified as food. The same issues that were discussed
previously about the clustering of tags are present here as well but to a greater extent. In the
left scatter plot of Figure 4.2 there is no clear structure to the classes, i.e., a great amount
of overlapping, which in turn makes it di�cult to cluster the categories satisfactorily. The
resulting accuracy score was 0.47 and the adjusted rand score was 0.14, both of which also
condemns the k-means clustering of categories. For the same reason as with the clustering of
tags, but to a greater degree, we concluded that the results were too unsatisfactory to consider
using these clusters as item features.

Table 4.3: Confusion matrix of the labelled categories and the pre-
dicted labels clustered using k-means.

Predicted
food drink misc

A
ct

ua
l food 42 6 40

drink 0 31 27

misc 35 1 25

Figure 4.2: Scatter plots of the categories of the full set in the 2-
dimensional vector space. The plots are showing the dimensionality
of the embeddings reduced with singular value decomposition. The
clustering method is k-mean with three clusters.

41

4. Results and discussion

4.2 Content-based filtering
Due to the lack of demographic information about the users, as mentioned in Section 2.3,
this method was implemented in an item-item fashion, independent of which user the rec-
ommendation is based on. Therefore, there is no good way to make an objective assessment
of this method, since all the users will get the same recommendations for the same item. In
Table 4.4, the top 5 recommendations together with their similarity score are shown for a
couple of frequently sold items from Seller A. The similarity scores were calculated from a
TFIDF representation of the words in the documents. In this case, the documents consisted
of the tags, categories, and item descriptions, in a bag-of-words representation. To be clear,
the same bag was used, not several with di�erent weights. Another option would be to use
three di�erent bags and put di�erent weights on them. However, this was never further
investigated, due to the varying quality or absence of tags and item descriptions.

Table 4.4: Recommendations made for 3 frequently bought items
from Seller A, together with its similarity score, using CBF.

Husets burgare Miss Behave IPA Coca Cola
Thempehburgare, 0.32 Cirrus Cloudy Lager, 1.0 Coca cola Zero, 1.0
Tropical burger, 0.31 Kona Fire Rock, Pale Ale, 0.80 Fanta, 1.0
Sweet potato fries, 0.13 Kona Big wave, 0.80 Loka, 1.0
Räkfrossa, 0.11 Kona Hana Lei IPA, 0.80 Sprite, 1.0
Popcorn, 0.10 Kona Wheat Ale, 0.80 Codorniu alkfritt, 0.63

As explained above, subjective assessment has to be used in this case, and it is hard to say
if the recommendations are good or not, although most of them have something in common
with their respective item. However, remarks can be made regarding the scores. For example,
looking at the recommendations for Husets burgare, the scores are significantly lower com-
pared to the recommendations made to the beer and soda. A longer description is present
for all the recommendations made from Husets burgare, which explain why the scores are
lower, compared to a short or no description for the other recommendations. In the case
when the recommended items get a score of 1.0, the same, or, more likely, no description at
all is present, together with the same category and tags. Considering how the cosine simi-
larity of the document vector is calculated, described in Section 2.2.4, the same description,
category, and tag will of course give the highest score of 1.0. However, when there exist a de-
scription containing a couple of words or more, it gets more di�cult to match all the words
and get a higher score. This does not mean that a thorough item description, which probably
is more than a few words long, is a bad thing. The better the description, the more we can
distinguish the items.

4.3 Pseudo explicit filtering
As is common when working with ML, a naive predictor, called a baseline, is often used
to have a reference to compare the predictions of the models to. Our first thought was to
compare with a random predictor, which randomly predicts the rating rui user u gave to item
i, on the test set between 1 and 3 without using any information or context. We realized

42

4.3 Pseudo explicit filtering

that it is probably easy to beat such a predictor, and that better predictors for comparison
can be constructed. If we instead compare with the global mean rating µ, a better baseline is
achieved. This would be a fairly reasonable predictor, since it takes all the rating in the data
set into account. Some users tend to rate items di�erently than other users, despite the fact
that both liked or disliked the item. Therefore, it is reasonable to also include the user bias
bu in the predictor. The same reasoning goes for the items, since some items tend to have
higher ratings than other items, due to the fact that some items are more popular than other
items, which is why the item bias bi also should be included. As a final attempt to improve
our comparative predictor, we construct the baseline rating bui as

r̂ui = bui =
µ + bu + bi

3
(4.1)

which takes the global mean, the user bias, and the item bias into account.
In Figure 4.3, the RMSE using SVD and the baseline, for the full data set and Seller A

is displayed, as a function of latent factors. Note that the baseline is constant, and does not
depend on the number of factors.

Figure 4.3: RMSE from pseudo explicit feedback, for the full data
set (left), and Seller A (right).

The reason for displaying the RMSE for di�erent latent factors is that, as explained in
Section 2.4.1, we seek the least number of factors to explain as most variability as possible.
Normally, we would expect the curve to look more like a positive quadratic function, i.e.,
that the RMSE would start at some value, decrease until the best number of latent factors
is found, and then increase again. As can be seen in the figure, the curve looks more like a
slightly sloping straight line, both for the full data set (left) and Seller A (right). The RMSE
does not decrease for any factor but 1. In practice, 1 latent factor is essentially representing
the most popular item [29], which certainly makes an algorithm like SVD unnecessary to use
in this case.

In Section 3.5, we introduced the concept of pseudo explicit interpretation of the data.
From the beginning of this project, we assumed that this approach would be reasonable.
However, the simple one-to-one mapping between interaction and preference that we as-
sumed may be too simplistic [41, 44]. The previous work regarding converting implicit feed-
back to explicit suggests some form of parametric mapping. This is something that would
have been more thoroughly investigated if we knew this from the start and had more time. It
is hard to say if the potentially simplistic mapping is the reason for the SVD not performing

43

4. Results and discussion

significantly better compared to the baseline, or that the interaction density is too low to find
any patterns. Furthermore, using the rating prediction metric RMSE to achieve satisfactory
recommendations may not be the ideal way to go. The task for rating prediction metrics is to
inspect the rating precision on the entire data set, which does not favor the top k recommen-
dations and therefore will not optimize the model for the recommendations relevant for our
task. Nonetheless, a pseudo explicit interpretation of the implicit data set is, judging from
the poor results and the reasons stated, not a good enough approach for this problem.

4.4 Implicit filtering

The baseline for implicit filtering was not constructed in the same way as for explicit filtering,
with an average of the global mean µ, the user bias bu, and the item bias bi . This is due
to the fact that implicit feedback does not incorporate rating in the same way as explicit
feedback does. Instead, as a baseline, we used the WARP and ALS algorithm with only one
latent factor, respectively, essentially corresponding to the most popular item, as described
in Section 4.3. Since the baseline only uses one latent factor, it is constant.

4.4.1 Implicit filtering with WARP

Figure 4.4 displays precision@k (left) and recall@k (right) against latent factors for the
WARP-model with item features, the WARP-model with inverse propensity weights, and
the baseline for the full data set. This time, the results look more like expected, i.e., as a
negative quadratic function, compared to the results for SVD in Section 4.3 (in contrast to
RMSE, precision@k and recall@k is suppose to be as high as possible, which is why a neg-
ative quadratic function instead of a positive is expected). As can be seen in the figure, the
WARP-model with inverse propensity weights performs the best. Precision@k and recall@k
are strongly correlated. Both of the models outperform the baseline and the optimal number
of latent factors for the WARP-model and the inverse propensity weighted WARP-model are
approximately 10 and 20, respectively. The hyper-parameters for the models can be found in
Table A.1 in Appendix A.1.

44

4.4 Implicit filtering

Figure 4.4: Precision@k (left) and recall@k (right) from implicit
feedback for the full data set. The blue curve represents the WARP-
model, and the green curve represents the WARP-model with the
inverse propensity weights-implementation, and the orange curve
represents the baseline.

Figure 4.5 displays the same scores and models as above for Seller A. The baseline proved
hard to outperform for the WARP-models. In contrast, the baseline predictor for the full
data set was significantly easier to outperform. The reason behind this, we assume, is that the
popular items of the whole data set are limited to the items from several popular restaurants.
Accordingly, the baseline predictor for Seller A is much better, as it recommends the popular
items from only one restaurant.

Both models decline rapidly, especially the standard WARP-model which immediately
drops below the baseline. The linear decline is understandable as there is no valuable in-
formation contained in the less significant latent factors, i.e., the model is overfitting. The
initial quadratic slope does, however, indicate that there is some kind of important pattern
in the more significant latent factors, but it is strange that these worsen the score (almost like
an anti-correlation). This rapid decline may be due to the data set being too small, resulting
in there being no significant pattern aside from popularity. Solely based on these metrics, it
is di�cult to determine how many latent factors that would ultimately give the best recom-
mendations for the users. Intuitively the best number of latent factors to use would be 5 and
15, for the WARP-model and the inverse propensity weighted WARP-model respectively, as
at approximately these numbers of latent factors the curves decline linearly. However, based
on the precision@k and recall@k the optimal number of latent factors would be 1. It would
be appropriate to evaluate the top-k recommendations subjectively instead.

45

4. Results and discussion

Figure 4.5: Precision@k (left) and recall@k (right) from implicit
feedback for Seller A. The blue curve represents the WARP-model,
and the green curve represents the WARP-model with the inverse
propensity weights-implementation, and the orange curve repre-
sents the baseline.

4.4.2 Implicit filtering with ALS
In Figure 4.6, precision@k (left) and recall@k (right) using ALS and a baseline for the full
data set is displayed, as a function of latent factors. Similarly to the results concerning WARP
in Section 4.4.1, these results also look more like expected. As can be seen in the figure,
ALS significantly outperforms the baseline. Again, precision@k and recall@k are strongly
correlated, which is why the curves look similar. The optimal number of latent factors seem
to be at approximately 35. The hyper-parameters for the model can be found in Table A.1 in
Appendix A.1.

Figure 4.6: Precision@k (left) and recall@k (right) from implicit
feedback for the full data set.

In Figure 4.7, precision@k (left) and recall@k (right) using ALS and the baseline for
Seller A is displayed, as a function of latent factors. A bit surprising, the results for Seller
A are worse compared to the full data set, at least when looking at the shape of the curves.

46

4.5 Subjective evaluation

It does not seem like the ALS can beat the baseline, and both precision@k and recall@k
decreases with the number of factors. Essentially this means that the use of ALS on this data
set is unnecessary according to these metrics. Important to note here is that the baseline is
much higher for Seller A compared to the full data set, which might be due to the same reason
mentioned in Section 4.4.1. The hyper-parameters for the model can be found in Table A.2
in Appendix A.1.

Figure 4.7: Precision@k (left) and recall@k (right) from implicit
feedback for Seller A.

4.5 Subjective evaluation
In Appendix B.1 and B.2, tables regarding recommendations for two users u1 and u2 are made,
regarding the full data set and Seller A, respectively. The di�erent tables contain the true
interactions, i.e., what the users have bought previously, and the recommendations made by
the di�erent algorithms, including the baseline. In the example of recommendations for the
full data set, in Tables B.1 and B.2, we see that the ALS-model and the WARP-model with
inverse propensity weights gave similar and relevant recommendations, while the normal
WARP-model recommended di�erent items, although still somewhat relevant. For u2 in
Tables B.3-B.4, it is more di�cult to determine which recommendations are better suited
for the user. The WARP-models gave similar recommendations, while the ALS-model gave
entirely di�erent recommendations. This is in line with our previous results, that the models
performed poorly for Seller A.

47

4. Results and discussion

48

Chapter 5

Conclusion and future work

Overall, the results achieved in this project are a bit ambiguous, judging from the objective
results. Despite the fact that the baseline predictions achieve higher scores for Seller A’s data
set, this does not necessarily mean that the recommendations are satisfactory, instead it may
suggest that the metrics when evaluating for such a small set are too biased toward popularity.
Even in a situation where promising results are achieved, this does not guarantee that the RS
will be useful in reality. The only way to know if the RS, for instance, at an e-commerce web
page, actually creates value for the users, is to monitor and collect statistics from the user
interactions with the displayed recommendations.

As previously mentioned in Section 4.3 the SVD-model was disregarded as both the re-
sults were unsatisfactory, and the RMSE was not an appropriate metric for evaluating top-k
recommendations. When comparing the results for the implicit models, both behaved simi-
larly for both data sets, although the ALS-model scored significantly higher than the WARP-
model. This is due to the di�erent frameworks being used for the respective models and their
evaluation methods, which implemented the precision@k metrics slightly di�erently. The
performance of the models on Seller A’s data set was deemed worse, as none of the models
outperformed the baseline. While surprising, as we thought the higher interaction density
would result in better performance overall, the trade-o� of having a smaller data set was so
significant that there were no other latent factors than popularity to be considered.

As discussed in Section 2.5, the cold-start problem will occur for CF when new users,
which have no interactions with items, are added to the RS. One possible solution to this
could be to simply recommend the popular items of the restaurant. Then, after the first
purchase was made, regardless of the item bought was from the popular items recommenda-
tion or not, CBF could be used for recommending products based on the previously bought
item. Again, it does not matter if the user purchases an item belonging to the list of recom-
mendations or not, the important thing is that the user gets some interactions with items.
After a couple of interactions from the new user, CF will overcome the cold-start problem
and can start to make personalized recommendations, instead of popular- or similar items
recommendations. Note that this would not have helped us in this project, although, it is a

49

5. Conclusion and future work

suggestion to make some form of recommendation to cold-starters in a CF system, without
using actual CF.

A collection of data sets called MovieLens, created by GroupLens Research [22], has be-
come popular for research purposes. In these data sets, all the users have rated at least 20
di�erent movies. There is a major di�erence between the MovieLens data set, and the one
used in this project. It would, most likely, have been easier to extract information if there
was more data available, and especially, a higher interaction density. The data set provided
by WEIQ is also unique in the sense that the users cannot, in practice, access every item at
all times, as they are geographically restricted.

In conclusion, the data set is too small to be able to make a satisfactory RS, even with
the di�erent improvements and approaches used. There are, however, areas of improvement
that are worth considering in the future.

5.1 Future work
Popularity-based cold-start recommendations, as discussed previously in this section, are not
personal. A suggestion to make them somewhat personal would be to introduce new users
to the app by giving them the option to answer a short survey about their preferences. For
instance, letting them choose between meat, chicken, vegetarian, and vegan. If a user chooses
chicken, out of the popularity-based recommendations, the chicken related dishes could be
displayed. However, important to note is that users may not want to be kept from using the
application by answering a survey.

Another thing that could improve the RS with the help of an application feature is to use
users search queries and implement them into the RS. The user input into the search field
will likely be some item feature, e.g, a tag, and could therefore be used to help improve the
recommendations.

As stated in Section 4.2, the CBF was implemented in an item-item fashion, indepen-
dent of the users. While this is true, there are ways to make it user specific, and thereby, an
objective assessment could be done. One could make the CBF user specific by simply calcu-
lating the TFIDF representation of a user’s previously bought items in the train set, taking
the average of this vector and repeat the same procedure as before, i.e., compute the cosine
similarity between this vector and every item that is not seen in the train set. Finally, the
items with the highest scores could be recommended, and compared to the items the user
already interacted with in the test set.

Regarding the way categories and tags are chosen by the sellers, there is room for im-
provement. If the categories and tags to choose from were predefined, as stated in Section
3.4, this would lead to more consistency. It would be desirable if this is the case in the future,
as it probably is easier to relate di�erent items for the CBF and improve item feature usage
in the WARP hybrid model.

50

References

[1] Gediminas Adomavicius and Alexander Tuzhilin. “Context-aware recommender sys-
tems”. In: Recommender systems handbook. Springer, 2011, pp. 217–253.

[2] Abhinav Ajitsaria. Build a Recommendation Engine With Collaborative Filtering. 2019.

[3] Joeran Beel et al. “Research-paper recommender systems : a literature survey”. In: In-
ternational Journal on Digital Libraries 17.4 (2016), pp. 305–338.

[4] James Bennett and Stan Lanning. The Netflix Prize. 2007.

[5] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter optimiza-
tion.” In: Journal of machine learning research 13.2 (2012).

[6] James Bergstra et al. “Algorithms for hyper-parameter optimization”. In: 25th annual
conference on neural information processing systems (NIPS 2011). Vol. 24. Neural Informa-
tion Processing Systems Foundation. 2011.

[7] Jesus Bobadilla et al. “A framework for collaborative filtering recommender systems”.
In: Expert Systems with Applications 38.12 (2011), pp. 14609–14623.

[8] Piotr Bojanowski et al. “Enriching Word Vectors with Subword Information”. In: (2016).

[9] Stephen Bonner and Flavian Vasile. “Causal Embeddings for Recommendation”. In:
CoRR (2017).

[10] John S. Breese, David Heckerman, and Carl Kadie. Empirical Analysis of Predictive Algo-
rithms for Collaborative Filtering. 2013.

[11] Robin Burke, Alexander Felfernig, and Mehmet Göker. “Recommender Systems: An
Overview”. In: Ai Magazine 32 (Sept. 2011), pp. 13–18.

[12] Simon Chan, Philip Treleaven, and Licia Capra. “Continuous hyperparameter opti-
mization for large-scale recommender systems”. In: 2013 IEEE International Conference
on Big Data. IEEE. 2013, pp. 350–358.

[13] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. “Are We Really
Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Ap-
proaches”. In: Proceedings of the 13th ACM Conference on Recommender Systems. RecSys ’19.
Copenhagen, Denmark: Association for Computing Machinery, 2019, pp. 101–109.

51

https://link.springer.com/chapter/10.1007/978-0-387-85820-3_7
https://link.springer.com/chapter/10.1007/978-0-387-85820-3_7
https://realpython.com/build-recommendation-engine-collaborative-filtering/
https://www.readcube.com/articles/10.1007/s00799-015-0156-0
https://web.archive.org/web/20070927051207/http://www.netflixprize.com/assets/NetflixPrizeKDD_to_appear.pdf
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://papers.nips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0957417411008049?casa_token=PjmSTwVavO8AAAAA:4E9J67v5tltx2sXhHDFxBYTlGPgAjiQhdJSpVfvt7NqXTLZC6W_LTuqcQbhVtPf1arxYE9IT
https://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1706.07639
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.8315&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.8315&rep=rep1&type=pdf
https://ojs.aaai.org/index.php/aimagazine/article/view/2361
https://ojs.aaai.org/index.php/aimagazine/article/view/2361
https://core.ac.uk/download/pdf/188666622.pdf
https://core.ac.uk/download/pdf/188666622.pdf
https://arxiv.org/pdf/1907.06902.pdf
https://arxiv.org/pdf/1907.06902.pdf
https://arxiv.org/pdf/1907.06902.pdf

REFERENCES

[14] Google Developers. Machine Learning Crash Course. 2018.

[15] Jingtao Ding et al. “Improving Implicit Recommender Systems with View Data.” In:
IJCAI. 2018, pp. 3343–3349.

[16] Simon Funk. Netflix Update: Try This at Home. Dec. 2006.

[17] Alexander J Gates and Yong-Yeol Ahn. The Impact of Random Models on Clustering Sim-
ilarity. 2017.

[18] David Goldberg et al. “Using Collaborative Filtering to Weave an Information Tapestry”.
In: Commun. ACM 35.12 (Dec. 1992), pp. 61–70.

[19] Carlos A. Gomez-Uribe and Neil Hunt. “The Netflix Recommender System: Algo-
rithms, Business Value, and Innovation”. In: ACM Trans. Manage. Inf. Syst. 6.4 (Dec.
2016).

[20] Edouard Grave et al. “Learning Word Vectors for 157 Languages”. In: Proceedings of the
International Conference on Language Resources and Evaluation (LREC 2018). 2018.

[21] Jiawei Han, Micheline Kamber, and Jian Pei. “2 - Getting to Know Your Data”. In:
Data Mining (Third Edition). Ed. by Jiawei Han, Micheline Kamber, and Jian Pei. Third
Edition. The Morgan Kaufmann Series in Data Management Systems. Boston: Morgan
Kaufmann, 2012, pp. 39–82.

[22] F. Maxwell Harper and Joseph A. Konstan. “The MovieLens Datasets: History and Con-
text”. In: ACM Trans. Interact. Intell. Syst. 5.4 (Dec. 2015).

[23] Jonathan L. Herlocker et al. “Evaluating Collaborative Filtering Recommender Sys-
tems”. In: ACM Trans. Inf. Syst. 22.1 (Jan. 2004), pp. 5–53.

[24] Geo�rey Hinton and Sam Roweis. “Stochastic Neighbor Embedding”. In: 15 (June
2003).

[25] Thom Hopmans. A recommendation system for blogs: Setting up the prerequisites (part 1).
2015.

[26] Yifan Hu, Yehuda Koren, and Chris Volinsky. “Collaborative Filtering for Implicit
Feedback Datasets”. In: 2008 Eighth IEEE International Conference on Data Mining. 2008,
pp. 263–272.

[27] Lawrence Hubert and Phipps Arabie. “Comparing partitions”. In: Journal of classifica-
tion 2.1 (1985), pp. 193–218.

[28] Hosein Jafarkarimi. “A naive recommendation model for large databases”. In: Interna-
tional Journal of Information and Education Technology 2 (June 2012).

[29] Dietmar Jannach et al. “What Recommenders Recommend – An Analysis of Accuracy,
Popularity, and Sales Diversity E�ects”. In: User Modeling, Adaptation, and Personaliza-
tion. Ed. by Sandra Carberry et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 25–37.

[30] Kalervo Järvelin and Jaana Kekäläinen. “IR Evaluation Methods for Retrieving Highly
Relevant Documents”. In: SIGIR Forum 51.2 (Aug. 2017), pp. 243–250.

[31] Joseph A Konstan and John Riedl. “Recommender systems: from algorithms to user
experience”. In: User modeling and user-adapted interaction 22.1 (2012), pp. 101–123.

52

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://www.ijcai.org/Proceedings/2018/0464.pdf
https://sifter.org/simon/journal/20061211.html
https://arxiv.org/abs/1701.06508
https://arxiv.org/abs/1701.06508
https://doi.org/10.1145/138859.138867
https://doi.org/10.1145/2843948
https://doi.org/10.1145/2843948
https://arxiv.org/abs/1802.06893
https://doi.org/10.1016/B978-0-12-381479-1.00002-2
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.5270&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.5270&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.8882&rep=rep1&type=pdf
https://www.themarketingtechnologist.co/building-a-recommendation-engine-for-geek-setting-up-the-prerequisites-13/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4781121
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4781121
https://link.springer.com/content/pdf/10.1007/BF01908075.pdf
https://www.researchgate.net/profile/Hosein-Jafarkarimi/publication/261288573_A_naive_recommendation_model_for_large_databases/links/54f81ee00cf210398e943d9e/A-naive-recommendation-model-for-large-databases.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-642-38844-6.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-642-38844-6.pdf
https://sigir.org/wp-content/uploads/2017/06/p243.pdf
https://sigir.org/wp-content/uploads/2017/06/p243.pdf
https://link.springer.com/article/10.1007/s11257-011-9112-x
https://link.springer.com/article/10.1007/s11257-011-9112-x

REFERENCES

[32] Yehuda Koren. “Factorization Meets the Neighborhood: A Multifaceted Collabora-
tive Filtering Model”. In: New York, NY, USA: Association for Computing Machinery,
2008.

[33] Yehuda Koren. “Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model”. In: Proceedings of the 14th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. 2008, pp. 426–434.

[34] Yehuda Koren, Robert Bell, and Chris Volinsky. “Matrix factorization techniques for
recommender systems”. In: Computer 42.8 (2009), pp. 30–37.

[35] Dawen Liang, Laurent Charlin, and David M Blei. “Causal inference for recommenda-
tion”. In: Causation: Foundation to Application, Workshop at UAI. AUAI. 2016.

[36] Ian MacKenzie, Chris Meyer, and Steve Noble. How retailers can keep up with consumers.
2013.

[37] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Proceedings
of the 9th Python in Science Conference. 2010, pp. 56–61.

[38] Tomas Mikolov et al. “Advances in Pre-Training Distributed Word Representations”.
In: Proceedings of the International Conference on Language Resources and Evaluation (LREC
2018). 2018.

[39] Tomas Mikolov et al. E�cient Estimation of Word Representations in Vector Space. 2013.

[40] Silvia Milano, Mariarosaria Taddeo, and Luciano Floridi. Recommender Systems and their
Ethical Challenges. Apr. 2019.

[41] David M. Nichols. “Implicit rating and filtering”. In: In Proceedings of the Fifth DELOS
Workshop on Filtering and Collaborative Filtering. 1998, pp. 31–36.

[42] Parul Pandey. Recommendation Systems in the Real world. 2019.

[43] Giorgos Papachristoudis. Popular evaluation metrics in recommender systems explained.
Apr. 2019.

[44] Denis Parra et al. “Implicit feedback recommendation via implicit-to-explicit ordinal
logistic regression mapping”. In: Proceedings of the CARS-2011 5 (2011).

[45] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[46] István Pilászy, Dávid Zibriczky, and Domonkos Tikk. “Fast Als-Based Matrix Factor-
ization for Explicit and Implicit Feedback Datasets”. In: Proceedings of the Fourth ACM
Conference on Recommender Systems. RecSys ’10. Barcelona, Spain: Association for Com-
puting Machinery, 2010, pp. 71–78.

[47] Anand Rajaraman and Je�rey David Ullman. “Data Mining”. In: Mining of Massive
Datasets. Cambridge University Press, 2011, pp. 1–17.

[48] “Latent Factor Models and Matrix Factorizations”. In: Encyclopedia of Machine Learning.
Ed. by Claude Sammut and Geo�rey I. Webb. Boston, MA: Springer US, 2010, pp. 571–
571.

[49] Badrul Sarwar et al. “Item-based collaborative filtering recommendation algorithms”.
In: Proceedings of the 10th international conference on World Wide Web. 2001, pp. 285–295.

53

https://dl.acm.org/doi/10.1145/1401890.1401944
https://dl.acm.org/doi/10.1145/1401890.1401944
https://dl.acm.org/doi/pdf/10.1145/1401890.1401944
https://dl.acm.org/doi/pdf/10.1145/1401890.1401944
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5197422
http://www.its.caltech.edu/~fehardt/UAI2016WS/papers/Liang.pdf
http://www.its.caltech.edu/~fehardt/UAI2016WS/papers/Liang.pdf
https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://arxiv.org/abs/1712.09405
https://arxiv.org/pdf/1301.3781.pdf
https://link.springer.com/content/pdf/10.1007/s00146-020-00950-y.pdf
https://link.springer.com/content/pdf/10.1007/s00146-020-00950-y.pdf
https://eprints.lancs.ac.uk/id/eprint/11650/1/nichols_implicit_rating.pdf
https://towardsdatascience.com/recommendation-systems-in-the-real-world-51e3948772f3
https://medium.com/qloo/popular-evaluation-metrics-in-recommender-systems-explained-324ff2fb427d
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.408.956&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.408.956&rep=rep1&type=pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://dl.acm.org/doi/pdf/10.1145/1864708.1864726
https://dl.acm.org/doi/pdf/10.1145/1864708.1864726
https://www.researchgate.net/publication/336466084_Sentiment_Analysis_of_College_Reviews_using_Machine_Learning_Data_Mining
https://doi.org/10.1007/978-0-387-30164-8_887
https://dl.acm.org/doi/pdf/10.1145/371920.372071?casa_token=6zjdw7gB4_8AAAAA:wSA9C3MFjWIQEfI6dDz9OjeqA2L50doQ9Ugcg_WddmAEcEHaa31dMI0fm2OK36OoH3IOLk9CORzf

REFERENCES

[50] Ben Schafer et al. “Collaborative Filtering Recommender Systems”. In: Jan. 2007.

[51] J. Ben Schafer, Joseph A. Konstan, and John Riedl. “E-Commerce Recommendation
Applications”. In: Data Mining and Knowledge Discovery 33.4 (2001), pp. 115–153.

[52] Andrew I. Schein et al. “Methods and Metrics for Cold-Start Recommendations”. In:
2002.

[53] Gunnar Schröder, Maik Thiele, and Wolfgang Lehner. “Setting Goals and Choosing
Metrics for Recommender System Evaluations”. In: 811 (Jan. 2011).

[54] Amit Singhal and I. Google. “Modern Information Retrieval: A Brief Overview”. In:
IEEE Data Engineering Bulletin 24 (Jan. 2001).

[55] J. Solsman. YouTube’s AI is the puppet master over most of what you watch. 2018.

[56] The pandas development team. pandas-dev/pandas: Pandas. Version latest. Feb. 2020.

[57] Ulrike Von Luxburg. “A tutorial on spectral clustering”. In: Statistics and computing 17.4
(2007), pp. 395–416.

[58] Jun Wang, Arjen P De Vries, and Marcel JT Reinders. “Unifying user-based and item-
based collaborative filtering approaches by similarity fusion”. In: Proceedings of the 29th
annual international ACM SIGIR conference on Research and development in information
retrieval. 2006, pp. 501–508.

[59] Jason Weston, Samy Bengio, and Nicolas Usunier. “Wsabie: Scaling up to large vocab-
ulary image annotation”. In: (2011).

[60] Shuai Zhang et al. “Deep learning based recommender system: A survey and new per-
spectives”. In: ACM Computing Surveys (CSUR) 52.1 (2019), pp. 1–38.

54

https://www.researchgate.net/publication/200121027_Collaborative_Filtering_Recommender_Systems
https://doi.org/10.1023/A:1009804230409
https://doi.org/10.1023/A:1009804230409
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1141&context=cis_papers
https://www.researchgate.net/publication/268381252_Setting_Goals_and_Choosing_Metrics_for_Recommender_System_Evaluations
https://www.researchgate.net/publication/268381252_Setting_Goals_and_Choosing_Metrics_for_Recommender_System_Evaluations
http://singhal.info/ieee2001.pdf
https://www.cnet.com/news/youtube-ces-2018-neal-mohan/
https://doi.org/10.5281/zenodo.3509134
https://link.springer.com/content/pdf/10.1007/s11222-007-9033-z.pdf
https://dl.acm.org/doi/pdf/10.1145/1148170.1148257?casa_token=L1FqfChrWhAAAAAA:-omD5tnkuepIFad7gAwEjrB0SDLJtG4G8VdozZlW_3kdmjy4lGr-1DDrcIbQR0cK9M6FZ6-Q70Mw
https://dl.acm.org/doi/pdf/10.1145/1148170.1148257?casa_token=L1FqfChrWhAAAAAA:-omD5tnkuepIFad7gAwEjrB0SDLJtG4G8VdozZlW_3kdmjy4lGr-1DDrcIbQR0cK9M6FZ6-Q70Mw
http://www.thespermwhale.com/jaseweston/papers/wsabie-ijcai.pdf
http://www.thespermwhale.com/jaseweston/papers/wsabie-ijcai.pdf
https://dl.acm.org/doi/pdf/10.1145/3285029
https://dl.acm.org/doi/pdf/10.1145/3285029

Appendices

55

Appendix A

Hyperparameters

A.1 Optimal hyperparameter setup

Table A.1: The optimal hyperparameter setup (x = available) for the
models trained on the full data set.

model latent factors epochs regularization term learning rate item α user α
SVD 5 20 0.4 0.01 - -
WARP 39 26 - 0.027 4.17e-8 4.35e-8
WARP inv 21 20 - 0.018 1.19e-8 1.25e-8
ALS 39 24 0.011 - - -

Table A.2: The optimal hyperparameter setup (x = available) for the
models trained on the Seller A data set.

model latent factors epochs regularization term learning rate item α user α
SVD 10 20 0.4 0.05 - -
WARP 19 25 - 0.015 6.13e-9 1.21e-8
WARP inv 41 14 0.014 - 1.83e-9 3.09e-9
ALS 44 21 0.008 - - -

57

A. Hyperparameters

58

Appendix B

Example of recommendations

B.1 Example of recommendations- full data

Table B.1: Recommendations (rec.) for user u1 from the full data
set, based on all the items bought by user u1, using WARP with and
without inverse propensity weights, respectively.

True interactions rec. WARP rec. WARP inv rec. baseline
Fidel castro Sol Mojito Öl
Filippa fizz Husets lager Vodka redbull Extra lantpommes
P2 Gin & Tonic Hot shot Vatten
Melleruds pilsner eko Briska pear cider Gin & tonic Vitt vin
Razz & sprite Cola zero Frozen daiquiri Mjukglass
Tom collins
Rom & cola

Table B.2: Recommendations (rec.) for user u1 from the full data
set, based on all the items bought by user u1, using ALS.

True interactions rec. ALS rec. baseline
Fidel castro Mojito Fish & Chips
Filippa fizz Vodka redbull Coca Cola Zero
P2 Hot shot Coca Cola
Melleruds pilsner eko Sol Shauns Pannkakstallrik
Razz & sprite Tequila shot Extra lantpommes
Tom collins
Rom & cola

59

B. Example of recommendations

B.2 Example of recommendations- Seller A

Table B.3: Recommendations (rec.) for user u2 from Seller A, based
on all the items bought by user u2, using WARP with and without
inverse propensity weights, respectively.

True interactions rec. WARP rec. WARP inv rec. baseline
Ginger Beer Husets burgare Bao buns Husets lager
Husets lager Coca cola Zero Husets burgare Husets burgare
A ship full of IPA (alk.fritt) Bao buns Sweet potato fries Kruzovice på fat

Coca cola Don pedros sommarsallad Sweet potato fries
Tropical burger Tropical burger Gin Tonic

Table B.4: Recommendations (rec.) for user u2 from Seller A, based
on all the items bought by user u2, using ALS.

True interactions rec. ALS rec. baseline
Ginger Beer Sjöslagssallad Husets lager
Husets Lager Gin Tonic Husets burgare
A ship full of IPA (alk.fritt) Dark & stormy Kruzovice på fat

Picarones Bao buns
Ekologiskt Ka�e Sweet potato fries

60

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2021-06-10

EXAMENSARBETE Considerations when Constructing a Food Recommender System
with Sparse Data
STUDENTER Axel Falk, Johan Sievert Lindeskog
HANDLEDARE Dennis Medved (LTH)
EXAMINATOR Elin Anna Topp (LTH)

Att tänka på när man implementerar ett
rekommendationssystem baserat på
gles data

POPULÄRVETENSKAPLIG SAMMANFATTNING Axel Falk, Johan Sievert Lindeskog

I snabbt växande ekonomier är företag kopplade till e-handel mer eller mindre beroende
av ett bra rekommendationssystem. Systemet kan bidra till både förbättrad använ-
darvänlighet och ökad försäljning. Vi har i detta arbete undersökt möjligheterna att
implementera och evaluera ett rekommendationssystem för mat och dryck baserad på
ett begränsat, implicit dataset.

De flesta av oss har någon gång stött på någon
form av rekommendationssystem, kanske rent av
utan att tänka på det. Varje gång man sett klart
ett videoklipp på YouTube föreslås nya att se.
När man går in på Netflix möts man direkt av en
rad rekommendationer, skräddarsydda för just en
själv. Lägger man en vara i varukorgen på Ama-
zon.com dyker det upp förslag på vad man också
borde köpa till just denna varan. Stora som små
bolag kopplade till någon form av e-handel an-
vänder idag ofta ett rekommendationssystem för
att förbättra användarupplevelsen samt öka sin
försäljning.

Detta arbete har genomförts i samarbete med
MEIQ Systems AB. Från deras produkt WEIQ,
en app för beställning av mat och dryck, har data
avseende användare och tillhörande beställningar
samlats in. Med hjälp av denna data har vi
undersökt möjligheterna att implementera och
evaluera ett rekommendationssystem för mat
och dryck baserad på begränsad, implicit data.
För att kunna göra personliga rekommenda-
tioner finns två huvudstrategier: content-based
filtering (CBF) och collaborative filtering (CF).

CBF utgår från antingen information om an-
vändarna, t.ex. demografisk information, eller
information om själva artiklarna, t.ex. kategori
och taggar. CF utgår istället från preferenser
av andra användare. Om två användare har
köpt samma artiklar anses de ha liknande
preferenser, och man kan därmed göra rekom-
mendationer utifrån detta. Ett exempel av båda
typer av rekommendationer finns nedan (Bild från
https://www.themarketingtechnologist.co/building-
a-recommendation-engine-for-geek-setting-up-
the-prerequisites-13).

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2021-06-10

EXAMENSARBETE Considerations when Constructing a Food Recommender System
with Sparse Data
STUDENTER Axel Falk, Johan Sievert Lindeskog
HANDLEDARE Dennis Medved (LTH)
EXAMINATOR Elin Anna Topp (LTH)

Som tidigare nämnt är datan vi jobbat med im-
plicit. Det betyder att användare inte explicit ut-
tryckt sin åsikt avseende en artikel i form av betyg,
t.ex. mellan 1 och 5. Istället finns det registrerat
vilka användare som köpt vad, vilket ger indika-
tioner till vad en användare tycker om. Då det är
enklare att jobba med explicit data, gjordes ett
försök till att konvertera den implicita datan till
explicit baserat på köpfrekvens, det vill säga att
en vara som köpts flera gånger av en användare
motsvarar ett högre betyg.

Rekommendationssystem sattes upp för både
denna frekvensbaserade explicita datan och den
ursprungliga implicita datan. Utvärderingar
av rekommendationssystemen visade att rekom-
mendationssystemet konstruerat av den implicita
datan var generellt sett bättre, men att även
denna inte var helt tillfredställande. Trots att vi
provade olika modeller och datauppdelningar, så
konstaterade vi slutligen att huvudproblemet var
den väldigt begränsade och brusiga datan.

	Acronyms and nomenclatures
	List of figures and tables
	Introduction
	MEIQ Systems AB and WEIQ
	Historical background of recommender systems
	Related work
	Focus of this work
	Method
	Contributions
	Thesis outline

	Theory and method
	Data interpretation
	Explicit feedback
	Implicit feedback

	Natural language processing
	Word embeddings
	Clustering methods
	Term frequency–inverse document frequency
	Cosine similarity

	Content-based filtering
	Item-item
	User-user

	Collaborative filtering
	Matrix factorization
	Singular value decomposition
	Alternating least squares
	Hybrid model- Weighted approximate-rank pairwise loss function
	Other methods

	Summary of methods
	CBF- advantages and disadvantages
	CF- advantages and disadvantages

	Metrics
	Root mean squared error
	Precision@k
	Recall@k
	Subjective evaluation
	Other metrics

	Clustering evaluation methods

	Approach
	Data description
	Overview and statistics
	Input data for modelling
	Item features
	Pseudo explicit ratings
	Level of confidence
	Inverse propensity weights
	Hyperparameter optimization

	Results and discussion
	Item feature clustering using NLP
	Clustering of tags
	Clustering of categories

	Content-based filtering
	Pseudo explicit filtering
	Implicit filtering
	Implicit filtering with WARP
	Implicit filtering with ALS

	Subjective evaluation

	Conclusion and future work
	Future work

	Appendix Hyperparameters
	Optimal hyperparameter setup

	Appendix Example of recommendations
	Example of recommendations- full data
	Example of recommendations- Seller A

	Tom sida

