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Abstract

In this work, the hardware implementation of Classic McEliece has been assessed
for side-channel leakage through a power analysis. The official, unprotected, de-
cryption procedure of Classic McEliece was implemented on a Xilinx Atix7 field-
programmable gate array and incorporated into the ChipWhisperer framework.
Traces captured during decryption was assessed for information leakage and it
was concluded that the implementation leaks information at multiple points. A
procedure for a partial message-recovery on Classic McEliece was suggested where
a neural network was employed to predict the distribution of bit values in the
plaintext. The suggested attack procedure managed to predict if the Hamming
weight of the first half plaintext bits was greater than 32 or not with an accuracy of
78 %. During the attack, only a single trace was used for predicting the Hamming
weight. The suggested attack procedure targets the last step of decryption where
plaintext bits are recovered. More specifically, the suggested attack procedure
exploits leakage from the incremental storage of plaintext bits in a shift register.
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Popular science summary

So, you came up with a strong password used when signing into government web-
sites. Well, then you don’t need to worry that anyone else can get access to your
data, or should you worry? In this work, it is shown that strong passwords alone
do not guarantee that personal data will be kept confidential.

More and more of our daily activities such as work, social interaction, and
contact with authorizes are performed with an ever-increasing number of electronic
devices around us all connected to the Internet. Often we transmit sensitive data,
like bank account numbers, private messages over some social platform, or images
from our home security camera over the Internet. Many people do not concern
themselves about security when they transmit sensitive data over the Internet, and
why should they? After all, they used a strong password to authorize themselves
before sending any sensitive information over the Internet.

National authorities also handle a lot of information that needs to be kept
confidential, both for keeping the integrity of citizens and for national safety. Au-
thorities might be more aware of how to keep sensitive data secure while it sent
over the Internet. But, both authorizes and ordinary people rely on that their
sensitive data is encrypted before it is sent over the Internet. This is possible since
serval cryptosystems have been developed throughout the years where a private
key is used to encrypt sensitive data. In an ideal cryptosystem, only the holder of
the private key should be able to retrieve the original data that was encrypted.

However, now and then some cryptosystems are reported as broken as someone
has figured out how to get their hands on sensitive encrypted data without having
access to the private key. Typically, cryptographic systems rely on that some
mathematical problems that take a long time to solve without knowledge of the
private key. When a cryptosystem is broken, someone has typically found a flaw in
the used mathematical problem that allows them to solve the problem in a short
time. And by solving the problem the encrypted data can be decrypted without
access to the private key.

A big concern for many of today’s cryptosystems is the increased research and
development of quantum computers. If or when a sufficiently powerful quantum
computer becomes a reality, many of the mathematical problems used in today’s
cryptosystems will be easily solved. This is a well-known fact in the research
community, and in an attempt to fuel the development of new quantum com-
puter resistant cryptosystems, the US agency National Institute of Standards and
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Technology launched a competition for finding new cryptosystems. Currently, the
competition is in its last round and one of the finalists is called Classic McEliece.

Since Classic McEliece made it to the final there is a high hope that this
cryptosystem is quantum computer resistant. However, as a cryptosystem is im-
plemented on an electronic device another possible threat opens up. Since 1996 it
has been known that by measuring the power consumption of an electronic device
it is sometimes possible to retrieve the private key of a cryptosystem. Thereby, an
attacker can bypass the tedious work of solving the underlying mathematical prob-
lem of the cryptosystem. Therefore, it is important to assess if potential future
cryptosystems can be broken by observing the power consumption of the device
where the cryptosystem is implemented.

Since Classic McEliece is a possible future standard cryptosystem there is
an interest to evaluate this system in multiple ways. In this thesis, the power
consumption of Classic McEliece was measured while decryptions were executed.
It turned out that a straightforward implementation of Classic McEliece suffers
from a lot of information leakage that potentially could be exploited by an attacker,
even without a quantum computer.
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Chapter 1
Introduction

This chapter presents the background, goals, and contributions of this work. Re-
lated works are also presented in this chapter.

1.1 Background

To meet the security threat of quantum computers, the US agency national in-
stitute of standards and technology (NIST) announced a competition for post-
quantum cryptography (PQC) [13]. The goal of the competition is to find new
algorithms which are believed to be secure even after large quantum computers be-
come available. The competition consists of four rounds and in each round, some
of the suggested algorithms are selected to advance to the next round. Currently,
the competition has entered its last round. Four finalists for public-key encryption
and three for digital signature algorithms remain in the competition.

One of the finalists in the NIST PQC competition is Classic McEliece which is a
code-based cryptosystem derived from Niederreiter’s cryptosystem [1]. It belongs
to the family of code-based cryptography and the underlying security has been
investigated for more than 40 years. The name of the proposed cryptosystem was
chosen to honor Robert J. McEliece, the inventor of the first cryptosystem based
on coding theory. However, despite its name Classic McEliece is based on the
public-key cryptosystem (PKC) suggested by Niederreiter which is a variant of
the PKC initially proposed by McEliece. The two cryptosystems introduced by
McEliece and Niederreiter are equal from a security perspective as if one mange
to break one of them, the other can also be broken.

One drawback with McEliece PKC, Niederreiter PKC, and Classic McEliece
is the huge size of both public and private keys. This makes software implementa-
tions in embedded systems unsuitable since keys would occupy a large fraction of
the available on-chip memory. However, in the case Classic McEliece is selected by
NIST as the new standard the algorithm will likely be made available to embedded
systems as hardware implementations. Therefore, it is of practical significance that
side-channel leakage of such hardware implementations is investigated. Previously
one publication regarding a side-channel attack (SCA) on hardware implementa-
tions of Classic McEliece has been found where a message-recovery attack was
suggested [9]. However, it is still unclear if a key-recovery attack could be con-
ducted which could be a much stronger attack.
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2 Introduction

1.2 Thesis goal and contributions

The goal of this project was to investigate side-channel leakage of the official field-
programmable gate array (FPGA) implementation of Classic McEliece through
power analysis. Based on this the following research questions were formed.

1. Does the hardware implementation of Classic McEliece leak side-channel
information through its power consumption during decryption?

2. If so, how can this be used during a message-recovery attack?

To answer stated questions, the project was divided into the following sub-goals

• Port the official FPGA decryption implementation of Classic McEliece to
the ChipWhisperer platform.

• Acquire power traces from the FPGA as decryption is executed and search
for leakage points.

• Investigate possible procedures that could be used to perform a message-
recovery attack.

Contributions of this work are

• a detailed analysis of the official Classic McEliece hardware implementation.

• integration of Classic McEliece to the ChipWhisperer framework.

• leakage assessment during decryption procedure.

• a suggested procedure for a partial message-recovery attack.

1.3 Related work

The first SCA on McEliece was reported in 2008 [20]. the authors of this paper
showed that a straightforward software implementation of the McEliece cryptosys-
tem may leak information in several side channels. In the paper, a successful timing
attack was performed which recovered the error vector that was added to the plain-
text during encryption. This was achieved by applying bit-flips to the ciphertext
and measuring the execution time of the decoding algorithm. More specifically,
the attack measured the execution time of the extended greatest common divider
(XGCD) during error vector reconstruction. However, since the attack only re-
trieved the error vector an attack had to be relaunched for every ciphertext as the
error vector is randomly generated for each message. The authors of the paper
also suggested a power analysis attack that could be performed during the key
generation procedure of McEliece.

One of the first SCA on hardware implantation of McEliece was investigated
in 2010 [18]. In this work, it was suggested that the random error vector could be
retrieved by measuring execution times during decryption. The attack procedure
was similar to [20]. But, instead of measuring execution time during error vector
reconstruction, the time during error locater polynomial (ELP) calculation was
measured. The side channel found in this work was caused by a break condition
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during the calculation of ELP. However, the attack was only simulated for an
FPGA and no real measurements were performed.

Probably the first power analysis attack on a software implementation of
McEliece was performed during 2010 where simple power analysis (SPA) was used
[7]. The attack was launched against different implementations suitable for 8-bit
micro-controllers. In this work, the secret key was recovered by observing power
consumption during decryption of ciphertext with Hamming weight (HW) equal
to one, i.e. HW=1.

The first attack with real measurements on a hardware implementation of
McEliece was reported in [12]. In this paper, the same side-channel leakage as in
[18] was exploited. But, instead of measuring execution time, the power consump-
tion during ELP calculation was measured. By tracing the power consumption,
the number of iterations during XGCD was estimated. The target of the attack
was an FPGA implementation of McEliece. During the attack, a single bit-flip
was introduced in the ciphertext and after repeated bit-flips, the error vector was
retrieved. The error vector was then used to recover the plaintext message.

In [15] differential power analysis (DPA) was employed instead of SPA. In this
paper, a software implementation of McEliece was targeted. More specifically, the
authors attacked different versions of the decryption procedure which employed a
permutation of the ciphertext as the first step of decoding. These decoders are
considered less secure. But, they are considered more suitable in constrained hard-
ware like embedded systems. During the attack, the secret permutation matrix
was recovered.

Another plaintext recovery attack was presented in 2020 [9]. In this paper, the
work done in [18] was transformed to attacking the Niederreiter cryptosystem, i.e.
the same system that is used in Classic McEliece. The attack was performed on
the FPGA reference implementation of Classic McEliece. Side-channel information
was acquired by measuring electromagnetic (EM) leakage and the authors managed
to recover plaintexts of encrypted messages.

1.4 Scope

This thesis mainly focuses on the decryption primitive used in Classic McEliece.
There exist multiple methods for side-channel leakage assessment, but in this the-
sis, only one method was used. The same goes for side-channel attack methods
where this thesis mainly focuses on using a neural network to predict sensitive
information in the FPGA during decryption. Apart from the aforementioned lim-
itations, this thesis mainly focuses on a message-recovery attack. But, some parts
are also relevant for a key-recovery attack.

1.5 Outline

This thesis is organized as follows. In chapter 2, a theoretical background of Clas-
sic McEliece is given along with an introduction to side-channel attacks, leakage
assessment, FPGA’s, and neural networks. In chapter 3, the implemented hard-
ware of the Niederreiter decryption core is presented. The interface between the
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decryption core and the CW is explained. This chapter also gives detailed infor-
mation on how keys were generated, how traces were captured, and how leakage
assessment was performed. Furthermore, in chapter 3, a procedure is presented for
a partial message-recovery attack. Results of leakage assessment and performance
of suggested attack procedure are presented in chapter 4. Finally, in chapter 5,
the results are discussed and the work is concluded in chapter 6.



Chapter 2
Theory

In this chapter, a brief introduction to coding theory is presented. The three cryp-
tosystems McEliece PKC, Niederreiter PKC, and Classic McEliece are introduced
and explained. Further, a brief introduction to FPGAs is given as well as an in-
troduction to SCA. At the end of the chapter, Welch’s t-test is introduced and its
use for leakage assessment is discussed.

2.1 Coding theory

The purpose of this section is to briefly introduce finite fields and linear codes
which are used extensively in this thesis. For more in-depth information on these
topics, the reader is referred to [8] which is used as a reference for this section.

2.1.1 Finite fields

A field F is a set of elements together with two binary operations, called addition
and multiplication, for which the result is an element in F. Performing addition
or multiplication between elements a, b, and c of F should satisfy

• Associativity, a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c

• Commutativity, a+ b = b+ a and a · b = b · a

• Distributivity, a · (b+ c) = (a · b) + (a · c)

and there should for every element a in F

• exist an element, denoted 0, in F such that a+ 0 = a (additive identity)

• exist an element, denoted 1, in F such that a ·1 = a (multiplicative identity)

• exist an element, denoted −a, in F such that a+(−a) = 0 (additive inverses)

• exist an element, denoted a−1, in F such that a · a−1 = 1 (multiplicative
inverses)

A finite field is a field where the number of elements is finite. The order or size
of a finite field is determined by the number of elements in it. A finite field of order
q only exists if q = pk where p is a prime number and is k a positive integer. An
example of a finite field is integers modulo a prime number p, commonly denoted

5
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Z/pZ. When q is a prime number, i.e. when k = 1, the finite field is called a prime
field denoted Fp, when k > 1, the field is called an extension field denoted Fpk .
Moreover, a finite field is commonly called a Galois field. The notation GF(pk) is
commonly used in literature to denote a finite field of order q = pk. In this thesis,
only fields with p = 2 are used.

A polynomial f(x) with coefficients in Fq, i.e.

f(x) =

n∑
i=0

ci · xi (2.1)

where all ci are elements in Fq, is called a polynomial over Fq. The degree of f(x)
is given by the largest j ≤ n for which cj 6= 0 and if cj = 1, the polynomial is called
a monic polynomial. The set of polynomials over Fq is denoted Fq[x]. However,
the set Fq[x] is not finite.

An irreducible polynomial over Fq is a non-constant polynomial that cannot
be constructed as a product of two or more non-constant polynomials from Fq[x].
Given an irreducible polynomial f(x) over Fq, a finite field of polynomials can
be formed by taking the polynomials modulo f(x). This is commonly written
Fq[x]/f(x)Fq[x], which can be compared to the finite field Z/pZ given previously,
Fq[x] constitutes the elements in the set like Z does and f(x) plays the same role
as the prime p does. When working with the set Fq[x]/f(x)Fq[x], coefficients of
polynomials are module q and the polynomials are modulo f(x). In the following
chapters, the notation GF(pk) will be used to denote the set Fq[x], i.e. the set of
polynomials over Fq where q = pk.

2.1.2 Linear code

An n-dimensional vector space over a finite field Fq consists of a set of qn vectors.
Each vector can be represented by a sequence of n elements (an−1, · · · a0) where
each ai is an element in Fq. The n-dimensional vector space over Fq is denoted Fn

q

A [n, k] linear code C is a subset of Fn
q , consisting of qk vectors. Each vector

in C is called a codeword c. Thus, code C has qk codewords. The parameter n is
called the code length and k is called the code dimension. In a linear [n, k] code,
n-dimensional codewords are constructed from k-dimensional words by encoding
the words. A linear code is commonly represented by a generator matrix G or a
parity check matrix H.

A generator matrix G is any k×n matrix whose rows form a basis for the code,
vector space, C. In general, there exist many G for a given code and a generator
matrix of the form [Ik | A], where Ik is the k × k identity matrix, is called to be
in systematic form.

A parity check matrix H of the code C is an (n− k)× n matrix defined by

H =
{
c | HcT = 0

}
(2.2)

where c is a codeword of C. In general, there exist many H for a given C and a
parity check matrix of the form [B | In−k], where In−k is the (n − k) × (n − k)
identity matrix, is called to be in systematic form.
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If a code C is given by either H or G in systematic form, i.e. G = [Ik | A]
or H = [B | In−k], the other can be derived in systematic form by the relation
B = −AT.

To encode a k-dimensional vector x using a code C, the vector is mapped to
a codeword c as c = xG. Keep in mind that adding and multiplying is done
over Fn

q . Since c has a higher dimension than x, redundancy can be added to the
codeword which later can be used to detect or correct possible errors introduced
while transmitting the codeword. The number of errors that can be detected or
corrected depends on the employed code C.

The syndrome s of a codeword c for given C is defined by

s = HcT. (2.3)

Thus, every valid codeword of C will have a syndrome equal to 0. This can be
used to detect and correct errors in a received codeword.

There exist many types of codes C but in this thesis, only Goppa codes are
considered as this is the type of code used in Classic McEliece. The reason for
using Goppa codes is that they have god error-correcting capability and it is hard
to distinguish the parity check matrix of a Goppa code from a random matrix.

2.2 McEliece cryptosystem

In 1978, McEliece proposed the first public-key encryption scheme based on cod-
ing theory [11]. Today, this encryption scheme is known as the McEliece PKC.
The idea behind the proposed cryptosystem was the existence of fast decoding al-
gorithms for general Goppa code while no decoding algorithm existed for general
linear codes.

McEliece cryptosystem is defined by two parameters, code length n, and the
number of added errors t. To construct the secret key, a random irreducible
polynomial over GF(2m) is chosen with n = 2m. To each irreducible polynomial
over GF(2m), there exist a Goppa code of length n = 2m and dimension k ≥ n−mt
capable of correcting up to t errors. The generator matrix G of size k × n for the
Goppa code is then derived. Next, a random dense non-nonsingular scramble
matrix S of size k×k is constructed as well as a random permutation matrix P of
size n×n. The three matrices G, S, and P are the secret key of the cryptosystem.
The public key is an obfuscated generator matrix G′, constructed from the private
key as G′ = SGP.

Data to be encrypted is first split into k-bit words ui. The ciphertext ci for
each block ui is generated by ci = uiG

′ + e where e is a random n-bit word with
Hamming weight= t.

During decryption, the secret key is first used to undo the permutation of
the ciphertext to form c′i = ciP

−1 which is a codeword of the chosen Goppa
code. Next, a decoding algorithm in conjunction with the secret generator matrix
G is used to recover the scrambled data uiS. Finally, the secret key is used to
unscramble the data as ui = uiSS

−1.
The security of McEliece PKC relies on the hardness of decoding a general

linear code and distinguishing the public-key matrix from a random matrix.
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A drawback of the McEliece cryptosystem is the large key sizes. The public
key G′ can be transformed to a systematic form, so there is no need to store the
identity matrix part of the generator matrix. But still, the matrix will be of size
k × (n− k).

2.3 Niederreiter cryptosystem

In 1986, Niederreiter proposed a code-based cryptosystem in which a parity check
matrix Hpub was used as the public key [14]. Niederreiter suggested using Reed-
Solomon codes but later this turned out to be insecure. Niederreiter also mentioned
that Goppa codes could be used. Later, it was shown that by using Goppa codes
the security of the Niederreiter cryptosystem is equivalent to the security of the
McEliece cryptosystem.

To construct keys Niederreiter suggested to selects a linear [n, k] code C capable
of correcting t errors. Then, the parity check matrix H of C is derived. The public
key Hpub is obtained by Hpub = MHP, where M is a random non-singular matrix
of size (n− k)× (n− k) and P a random permutation matrix of size n× n. The
matrices M, H, and P are kept as the secret key.

During encryption, data is encoded to n-bit long blocks ui with weight t.
The ciphertext ci of each block is then obtained by ci = Hpubui. Since the ui

is multiplied by a parity check matrix ci can be viewed as the syndrome of the
erroneous codeword ui in C.

In decryption, a ciphertext ci is first multiplied by the inverse of M to get
M−1ui = M−1MHPui = HPuT

i = H(uiP
T )T . Since uiP

T is of weight t, a
syndrome decoding algorithm can be used to retrieve uiP

T from HPuT
i . Lastly,

the plaintext, i.e. the error causing the syndrome ui, is retrieved by multiplying
uiP

T with the inverse of P.
Just as the McEliece cryptosystem, the security of the Niederreiter cryptosys-

tem relies on the hardness of decoding a random linear code and distinguishing
the public-key matrix from a random matrix.

2.4 Classic McEliece

Classic McEliece is one of the finalists in the PQC competition. The name, Classic
McEliece, of the proposed cryptosystem, is to honor the inventor of the first cryp-
tosystem based on coding theory Robert J. McEliece. Despite the name, Classic
McEliece is built on top of the Niederreiter cryptosystem.

Niederreiter, as well as the original McEliece, was designed to be secure against
a one-way chosen-plaintext attack (OW-CPA). This means that it is infeasible to
recover the complete plaintext of a ciphertext given that the public key is available
to an attacker. Classic McEliece is presented as a key encapsulation mechanism
(KEM) indistinguishably under adaptive chosen ciphertext attack (IND-CCA2)
which is an interactive form of chosen-ciphertext attack (CCA). A KEM is used to
establish symmetric keys in a secure way using a public-key cryptosystem. Public-
key schemes are in general inefficient when it comes to encrypting large amounts of
data. Thus, PKC’s are mostly used to transmit short messages, like a symmetric
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sessions key which can be used to efficiently encrypt/decrypt large amounts of
data [19].

Under the settings of IND-CCA2, an attacker can initially decrypt arbitrarily
chosen ciphertexts. Eventually, the attacker sends two plaintexts m0 and m1 to
the cryptosystem. The cryptosystem then arbitrarily selects b = 0 or b = 1 and
encrypts a message mb and returns the ciphertext cb. The attacker can then again
decrypt arbitrarily chosen ciphertexts, except the received ciphertext cb. For a
system to be IND-CCA2 secure, an attacker should not be able to determine b at
a higher probability that could be achieved by randomly guessing the value of b.

As this thesis focus on the Niederreiter decryption algorithm used in Classic
McEliece, the way IND-CCA2 is achieved will not be discussed further. However,
details can be found in [1]. The submission of Classic McEliece consists of both
a software and a hardware implementation but this thesis solely focuses on the
FPGA hardware implementation.

2.5 Field programmable gate array

An FPGA is an integrated circuit used to implement digital designs. The key
benefit of using an FPGA is that the design implemented on it can be reconfig-
ured. Thus, FPGAs are commonly used during prototyping. An FPGA is also
rather cheap compared to manufacturing an application-specific integrated circuit
(ASIC). Thus for low-volume production, it is more economical to use an FPGA
over an ASIC.

Figure 2.1 shows a simplified picture of the internals of an FPGA. It mainly
consists of three parts; configurable logic block (CLB), programmable interconnect,
and input-output block (IOB). A CLB consists of different logic resources like
flip-flops, look-up tables, and shift registers. CLBs are used to implement logical
functions of a digital design. IOBs are the interface between logic inside the FPGA
and circuits outside of the FPGA. Commonly IOBs can be configured according to
different logic standards depending on application needs. The actual connection
between the FPGA and other parts of a circuit is accomplished by using copper
traces on a printed circuit board (PCB) onto which electronic components are
soldered. The programmable interconnects, routed between CLBs and IOBs, are
used to connect logic functions and to connect external signals to the internal logic
of the FPGA through IOBs.

CLB

InterconnectsIOB

Figure 2.1: Simplified internals of an FPGA consisting of CLBs,
IOBs, and programmable interconnect.
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As logic functions inside the FPGA are built out of transistors, the power
consumption of an FPGA can be divided into static and dynamic power consump-
tion. Static power consumption occurs all the time and is caused by leakage in
transistors. Static power highly depends on temperature, manufacture variations,
and the logic state of the design, i.e. number of signals assigned a high or low
value. Dynamic power consumption mainly occurs when values stored in transis-
tors changes value. Thus, this part of the power consumption is highly dependent
on the processed data. According to experiments done in [17], the static power
was estimated to constitute 5-20% of the total power consumption.

2.6 Side-channel attack

During SCAs information about a cryptographic device is gathered while the device
performs some cryptographic operations, like decryption of ciphertext. The goal
of an attacker is to get information about the internal state of a cryptographic
algorithm such that an attacker can either retrieve an encrypted message or acquire
the secret key used by the cryptographic algorithm.

An SCA can be classified as either passive or active [10]. In the former, an
attacker can manipulate inputs and outputs of a device as well as the environ-
ment, such as temperature or supply voltage. Typically, the attacker strives to
create conditions where the device starts to operate abnormally and might expose
sensitive information. In the case of a passive attack, the device is operated as in-
tended and the attacker can just observe the behavior of a device while it performs
cryptographic operations.

SCAs are also classified as either invasive or non-invasive [10]. During an
invasive attack, there are no limits on what can be done to retrieve sensitive infor-
mation. For example, a cryptographic chip, i.e. an integrated circuit (IC), can be
de-packaged and passivation layers removed such that the bare IC becomes accessi-
ble for measurements in a probe station. In the case of a non-invasive attack, only
the intended interface of a cryptographic device is accessible for measurements.

The channel used to gather information about a cryptographic device can be
of many types. Lately, timing, power, and electromagnetic side channels have
gained a lot of interest. A timing attack consists of observing the execution time
of an algorithm and then inferring something about secrets based on the measured
time. A power attack is based on observing the power consumption of a device and
then inferring something about the internal state of the device based on measured
power consumption. During an EM attack, the emission of EM radiation, typically
caused by transistor switching, is measured. For the rest of this thesis, power will
be employed as the side-channel of interest. Other side channels could be used
similarly. But, with a different measurement technique.

A power attack is typically performed by placing a resistor in series with the
power line of the target device. Then, the power consumption can be indirectly
recorded by measuring the voltage across the resistor and making use of Ohm’s law.
The data obtained by measuring the power consumption during a cryptographic
operation is commonly called a trace. To successfully conduct an attack many
traces are required with different inputs patterns to the device. A critical step
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before performing any analysis of captured traces is to make sure that they are
well aligned. Such that power consumption of the same operation, with different
inputs, can be compared.

There exist many methods to conduct side-channels attacks. During a SPA
captured traces are visually inspected to find obvious patterns of the consumption
which are directly related to secrets of the device. There exist statistical methods
like DPA during which a hypothetical model of a device’s power consumption is
compared to the measured power. The power model should be a function that
computes an intermediate value of the cryptographic algorithm based on a small
part of the secret key and some other input, like plaintext, ciphertext, or a previ-
ous intermediate value. The benefit of DPA is that it typically does not require
detailed information about the cryptographic device. But, a large number of
traces are needed to evaluate the dependency between processed data and power
consumption.

2.6.1 Neural network

In recent years, deep learning algorithms such as multiple layer perceptron (MLP)
network or convolutional neural network (CNN), have been used during SCA with
performance comparable to existing state-of-the-art SCAs [4].

An MLP consists of j layers. The first layer is called the input layer, the last
is called the output layer and the layers in between are called hidden layers. Each
layer consists of ik, k = 0, 1, . . . j nodes called neurons which are connected to
neurons in the previous layer in a certain way. In this thesis, only fully connected
layers are considered where each neuron is connected to all neurons in the previous
layer as shown in figure 2.2.

fΣ

fΣ

fΣ

fΣ

fΣ

fΣ

fΣ

fΣ

1 1

fΣ z3,0

1

z0,0

z0,1

z0,2
w0,2,3

w3,1,3

w3,0,2

b0,3
b0,2b0,1

Figure 2.2: A fully connected neural network with a single hidden
layer and a single output, j = 3 and ik = {3, 4, 4, 1}.

The output zm,n of neuron m in layer n is described by

zm,n = f

(
bm,n +

in−1−1∑
p=0

zp,n−1wm,n,p

)
(2.4)

where wm,n,p is the weight of the connection between neuron m in layer n and
neuron p in layer n − 1, bm,n is the bias input to neuron m in layer n, f is a
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function commonly called activation function, z(0, q), q = 0, . . . , i0 are input the
to the network and z(j, r), r = 0, · · · , ij are the output of the network.

Before training a neural network, all biases and weights are initialized ac-
cording to some scheme, like picking values from a standard normal distribution.
Training of the network is then performed by calculating output values when la-
beled input vectors are propagated through the network. The error made by the
network is calculated by comparing the predicted labels ŷi with the known labels
yi using a chosen loss function L. Starting at the output layer and going towards
the input layer, the loss contribution of each neuron is evaluated. Subsequently,
an optimization algorithm is used to tune all biases and weights to reduce the loss,
i.e. making better predictions. Then, a new set of inputs are propagated through
the network, the loss is calculated and parameters are tuned. The number of train-
ing samples used during each pass is called the batch size and when all training
samples have been propagated an epoch is completed. The complete procedure,
except initialization of biases and weight, is then repeated for a selected number
of epochs.

Different loss functions L are used depending on the prediction task. If a
network should perform a binary classification task, the binary cross-entropy loss
function

L = − 1

NB

NB∑
i=1

(
yi · log(ŷi) + (1− yi) · log(1− ŷi)

)
(2.5)

is commonly used where yi is the true class, ŷi is the predicted class of the network,
and NB is the batch size. To use the binary cross-entropy loss, the activation
function of the output layer must generate values between 0 and 1. A common
activation function used for this purpose is the sigmoid function

fsigmoid(x) =
1

1 + e−x
. (2.6)

For hidden layers, the rectified linear unit (ReLU) activation function

frelu(x) = max(0, x) (2.7)

is commonly used as it is fast to compute.
There exist several optimization algorithms to use for updating parameters

after each batch of training. A widely used optimizer is the adaptive moment
estimation (ADAM) which is an extension of stochastic gradient descent. It is
used to estimate how biases and weights should be adjusted to reduce the loss L.
An important parameter of ADAM is the learning rate which controls how far to
move in the direction of minimizing the loss function; selecting a too high value
might lead to missing a local minimum but picking a too low value requires more
training rounds and thus longer computation time.

All in all, a neural network has many parameters that need to be tuned to
achieve good performance. Typically, one makes use of a tuning algorithm that
tests combinations of different parameters. The amount of combinations that can
be tested depends on available computational power and time.
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2.7 Leakage assessment

To successfully conduct an SCA against a cryptographic device, the device must
of course leak sensitive information in some side-channel. During the NIST non-
invasive attack testing workshop in 2011, Welch’s t-test was suggested to be used
for leakage assessment [6]. This method has been used in several works to de-
termine if and where a cryptographic algorithm leaks sensitive information [3][5].
The purpose of using Welch’s t-test is to determine if samples picked from two
sets are from the same population or not. When performing leakage assessment
traces are split into two sets depending on some feature. The test is then used to
determine if traces of the two sets have the same mean, i.e. they come from the
same population. If traces from the two sets do not have equal mean the device is
considered to leakage information.

Welch’s t-test can be conducted in many ways. The test can be either univari-
ate or multivariate. In the former, tests are performed individually at each sample
point whereas. In the multivariate case, leakage from different sample points is
first weighted with some function and then the t-test is performed on the weighted
result. In [16], the authors suggest using a univariate test for hardware imple-
mentations as computations with secret shares are conducted in parallel and the
leakage at a given point is the sum of all individual computations.

The t-test can be either specific or non-specific. In the former case, the clas-
sification of sets is based on some intermediate value during the cryptographic
process. However, as there might be many distinct intermediate values many tests
need to be performed before one can conclude if samples are from the same popu-
lation or not. In the case of a non-specific test, the classification of sets is instead
based on the input pattern to the cryptographic device. The fixed-vs-random test
is an example of a non-specific test where the first set consists of traces from a fixed
input pattern and the second set consists of traces from random input patterns.

To perform a univariate t-test, captured traces are first assigned to one of two
sets Q0 or Q1. The test statistic t is then calculated as

t =
µ0 − µ1√
s20
n0

+
s21
n1

(2.8)

where µi, si and ni are the mean, standard deviation, and size of each set Qi,
i = 0, 1. Next, the degree of freedom v is calculated as

v =

( s20
n0

+
s21
n1

)2(
S2
0

n0

)2
n0−1 +

(
s21
n1

)2
n1−1

. (2.9)

However, in case s0 ≈ s1 and n0 ≈ n1 the degree of freedom can be estimated as

v ≈ n0 + n1. (2.10)

The test statistic t and degree of freedom v is then used to construct a Student’s
t-distribution

f(t, v) =
Γ( v+1

2 )
√
πvΓ(v

2 )

(
1 +

t2

v

)− v+1
2

(2.11)
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where Γ is the gamma function. The p-value of the two-tailored Welsh’s t-test is
given by

p = 2

∫ ∞
|t|

f(t, v)dt (2.12)

where a small p gives evidence to reject the null hypotheses, i.e. the two sets Q0

and Q1 do not have the same mean value.
In literature related to side-channel attacks, a threshold of |t| > 4.5 is com-

monly used to decide if the null hypothesis should be rejected [16]. The rationale
behind this is that

p = 2

∫ ∞
|t|

f(|t| ≥ 4.5, v)dt < 0.00001 (2.13)

if v > 1000 which gives a confidence level of 99.999% to reject the null hypothesis.
Thus, the computation time of Welsh’s t-test can be reduced by performing the test
based on the test statistic t in equation 2.8 as long as s0 ≈ s1 and n0 ≈ n1 ≈ 500.
In this case, the null hypothesis is rejected if |t| > 4.5 at a confidence level of
99.999 %.



Chapter 3
Classic McEliece for ChipWhisperer platform

3.1 Implementation of hardware modules

In this section, a high-level overview of the hardware system is given. The official
hardware implementation of Classic McEliece is investigated in terms of operation,
execution time, and signal interface. A description of how the hardware decryption
core of Classic McEliece can be integrated into the CW system is also given in this
section.

3.1.1 Overview

To collect traces an ADC is needed and commonly oscilloscopes are used for this
purpose. Additionally, an amplifier might be used to increase the magnitude of
measured traces. The reason for using an amplifier stems from the way power
consumption is measured. Typically, a resistor is placed in series with the power
line to a device. According to Ohm’s law, a larger resistor will have a larger voltage
drop compared to a small resistor for a given current. However, a large voltage
drop across the resistor is unwanted as this might cause the device to malfunction
due to insufficient supply voltage. Thus, commonly a small resistor in combination
with an amplifier is used. Instead of using a standalone oscilloscope and amplifier,
this project makes use of CW, a commercially available low-cost solution for SCA.
A benefit of this is that the results of this work can be made available to a broader
community.

At its core, CW consists of an amplifier and a 10-bit ADC as shown in fig-
ure 3.1. One of the key features of CW is that the ADC sampling can be driven by
the same clock as used by the cryptographic target device. Furthermore, the ADC
sampling can be triggered by a signal from the target device. Thus, sample points
get well-aligned with operations performed by the target device. Since capturing
multiple traces can be triggered and driven by the same clock, all traces will be
well-aligned which eliminates the need for resynchronizing traces.

Besides features of sample synchronized traces, the CW also comes with a
USB interface which can be used both for controlling CW and transferring cap-
tured traces to a PC. The CW is controlled through an open-source application
programming interface (API) written in Python.

The company suppling CW has also developed several add-on boards which

15
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AMP ADC

TRIGGER

Target

Figure 3.1: Simplified block diagram of CW, consisting of an ADC
and amplifier, connected to a target device.

are equipped with different micro-controllers or FPGAs. All add-on boards are
specially designed to ease the process of performing SCA. Most of the add-on
boards can be programmed through CW to test different cryptographic algorithms.
As this work focus on SCA of a hardware implementation, the add-on board
CW305 from NewAE was chosen as a platform for development. The CW305 is
a more complex add-on board compared to other micro-controller add-on boards
from NewAE. The CW305 contains an Artix7 FPGA, USB transceiver, power
supply filtering, and an amplifier for measuring the power consumption of the
FPGA. It can be controlled through the same Python API as CW and some open-
source implementations are available, such as a 128-bit AES core.

Figure 3.2 shows a high-level block diagram of how the CW, CW305, and a PC
are connected to form the complete SCA system. The system operates as follows.
First, the PC connects to CW. Then, the PC programs the CW305 and loads the
secret key and the ciphertext. Then, the PC issues a start command and CW305
starts to decrypt the ciphertext. At the same time, the CW starts to capture a
power trace of the CW305 FPGA. Lastly, the PC reads the captured trace from
CW and performs further operations to carry out an SCA.

PC ChipWisperer FPGA
CW305

Figure 3.2: System overview consisting of a PC, CW, and the
add-on board CW305.

To get a fully functional system a couple of tasks were conducted. The refer-
ence decryption implementation of Classic McEliece was ported to a Xilinx Artix7
FPGA and an interface between the FPGA and PC was developed. For the latter,
an open-source implementation of a 128-bit AES was used as a starting point. Fig-
ure 3.3 shows a block diagram of the developed FPGA implementation consisting
of three blocks. The USB Interface communicates with the USB transceiver of
CW305 which in turn communicates with a PC. The USB transceiver issues either
a read or write to the USB Interface which decodes where data should be read or
written and generates an address accordingly. Actual data is sent in chunks of 8
bits between the transceiver and interface. Subsequently, the Decryption Register
controls when and where data should be stored or read depending on signals from
the USB Interface. The Decryption Register also contains logic for cross-clock
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domain synchronization. Finally, the Decryption Module contains the reference
decryption implementation of Classic McEliece, i.e. the Niederreiter decryption
core. The Decryption Module also contains memories for storing the secret keys,
ciphertext, and recovered plaintext.

USB
Interface

Decryption
Register

Decryption
Moduledata

address address
data
start
busy

USB data

USB clock

USB address

Decryption clock
Decryption trigger

USB R/W

Figure 3.3: Overview of FPGA implementations consisting of three
modules.

3.1.2 Decryption core

The submission of Classic McEliece to the NIST PQC competition consists of both
a software and hardware implementation. However, the hardware implementation
only consists of modules for key generation, encryption, and decryption. Details
of these modules are given in [22]. The three modules are configured by a set of
system parameters where the three most important are the field sizem, code length
n, and the number of correctable errors t. As this thesis focus on decryption, the
key generation and encryption modules will not be discussed further. Information
about these modules is given in [22] and [21].

In figure 3.4 a block diagram of the decryption core is given. It consists of
the four blocks Additive FFT, Double Syndrome constructor, Berlekamp-Massey
decoder, and Error Locater.

Additive
FFT

Double
syndrome

Berlekamp
Massey

Error
Locater

P

g(x)

Ciphertext

Plaintext

Figure 3.4: Overview of decryption core used in Classic McEliece.

The decryption algorithm consists of five steps. First, the Additive FFT poly-
nomial evaluator is used to evaluate the secret Goppa polynomial g(x) for all
elements in the field GF(2m). The output of this step only depends on the se-
cret Goppa polynomial and the execution time is constant. In the second step, a
double-size syndrome H(2) is calculated as S(2) = H(2) × (c | 0) where c is the



18 Classic McEliece for ChipWhisperer platform

Parameter Description
m Field size, GF(2m)
n Code length
t Number of correctable errors
Block Design parameter for Double Syndrome
Sec Design parameter for Additive FFT
Factor Design parameter for Additive FFT
MulSecBM Design parameter for Berlekamp-Massey
MulSecBMStep Design parameter for Berlekamp-Massey

Table 3.1: Crypto and design parameters of decryption core.

input ciphertext. The parity check matrix H is first constructed by reading the
secret support P = {α0, α1, . . . αn−1} from external memory. Support points are
read one at a time but αi is only read if the corresponding bit in the ciphertext
is a high, i.e. ci = 1. Thus, the execution time of the Double Syndrome depends
on the number of 1’s in the ciphertext. During step three, the S(2) is read by a
constant-time Berlekamp-Massey (BM) decoder to produce an error locater poly-
nomial (ELP). At step four, the same Additive FFT module as in step one is
reused to evaluate the ELP at all elements of GF(2m). Lastly, in step five, bits
of the plaintext are constructed by making use of the secret support P and the
evaluated ELP.

The authors of [22] made the Niederreiter hardware modules available as an
open-source build system. To create hardware modules, the build system was
installed on a Linux computer along with SageMath1. The Niederreiter build
system consists of multiple SageMath and Python scripts that based on user-
selected design parameters generate Verilog2 source files. In the build system,
SageMath is mainly used to carry out calculations over finite fields.

To build source files for the decryption module, all seven design parameters
in table 3.1 must be set. The three first parameters m, n, and t are related to
setting the security level of the system. According to [1] using the parameter set
kem/mceliece348864 with m = 12, n = 3488 and t = 64 corresponds to a security
level equivalent to exhaustive key search of AES-128. Other parameters of table 3.1
are related to optimization of the hardware implementation where a user can make
a trade-off between usage of logic resources (area) and speed (number of required
clock cycles). Table 3.2 shows all chosen parameters used in this work. For further
information on design parameters, the reader is referred to [22].

1SageMath is an open source mathematics software built on top of many other open
source packages. The key feature of SageMath is that it gives access to all of these
packages through a common Python based language

2Verilog is a hardware description language used to synthesize hardware in FPGAs or
ASICs.
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Parameter Used value
m 12
n 3488
t 64
Block 20
Sec 4
Factor 0
MulSecBM 20
MulSecBMStep 20

Table 3.2: Crypto and design parameters used when building the
decryption core.

3.1.3 Analysis of reference implementation

Figure 3.5 shows the hardware interface of the generated decryption core by using
parameters of table 3.2. The interface consists of five input and four output signals.
The operation of the core is driven by a clock signal clk. Decryption is started by
setting start to a logic high level for one clock cycle. The secret Goppa polynomial
is supplied through the signal poly_g as a binary vector. For the secret support
P , a memory interface is used consisting of the signals P_rd_en, P_rd_addr,
and P_out. When P_rd_en is set to a logic high, the memory row pointed by
P_rd_addr is expected to be available at P_out after one clock cycle. When
decryption is finished, the signal done is set high for one clock cycle and the
recovered plaintext becomes available through the error_recovered signal as a
binary vector.

Decryption
Core

clk
start

cipher[767:0] error_recovered[3487:0]poly_g[779:0]
doneP_dout[11:0]

P_rd_addr[11:0]
P_rd_en

Figure 3.5: Implemented decryption core interface.

The secret Goppa polynomial should be of degree t = 64 over the field GF(2m) =
GF(212). Therefore, t+1 = 64+1 = 65 coefficients gi are needed to represent this
polynomial. Since the polynomial is over GF(212), 12 bits are needed to encode
each coefficient aij of gi. Thus, the width of poly_g is (t+1)·m = (64+1)·12 = 780
bits. Figure 3.6 shows how bits of poly_g are organized where each gi is the 12-bit
coefficient of xi of the Goppa polynomial. The decryption core expects to read a
monic polynomial. Thus, the x64-coefficient g64 must be equal to 1 as shown in
figure 3.6.

The secret support P is accessed by the decryption core through a memory
interface. The secret support consists of n = 3488 distinct points of the field
GF(2m) = GF(212). Thus, each point is encoded by 12 bits. The decryption core
expects that each point is stored as a row in a memory with the first point at the
first row as depicted in figure 3.7. Bits of each point should be arranged in the



20 Classic McEliece for ChipWhisperer platform

0000 0000 0001

g64 g63 g62 g1 g0gi

···ai11
ai10

ai1 ai0

··· ···
bit 779 bit 0

Figure 3.6: Organization of bits in the signal poly_g.

same way as the secret polynomial, i.e. the least significant bit at the lowest bit
position in the memory.

α0[11:0]

α1[11:0]

αn-1[11:0]

···R
ow

0

1

n-1

P_rd_addr[11:0] P_dout[11:0]

Figure 3.7: Organization of bits in the secret support memory.

Bit orientation of error_recovered is not important as long as the original
plaintext and the recovered plaintext are interpreted in the same way. The cipher-
text c is generated by multiplying the plaintext p with the public key c = Hpubp,
whereas Hpub is a binary mt × n matrix and the plaintext p is an n-bit column
vector. Thus, c will be a column vector of length mt = 12 · 64 = 768. The de-
cryption expects that these bits are organized as shown in figure 3.8, where the
lowest bit corresponds to the multiplication between the first row of Hpub and p.
All multiplications are carried out in GF(2). Thus, the result is either 0 or 1.

bit 767 bit 0

Hpub
row63
p Hpub

row62
p ··· Hpub

row1
p Hpub

row0
p

Figure 3.8: Organization of bits of the ciphertext.

After source files of the decryption core were generated, the design was in-
spected and simulated in Vivado3. In particular, the execution time in terms of
clocks cycles was studied. It was concluded that for all decryption steps except
the double syndrome calculation, the execution times were fixed and did not de-
pend on inputs. Table 3.3 shows the number of clock cycles needed for each of the
four constant decryption steps. It should be noted that even though the number
of clocks cycles in table 3.3 does not depend on inputs, they do depend on de-
sign parameters. Thus, values given in the table are only valid when the design
parameters of table 3.2 are used.

3Vivado is a tool used to design and implement digital circuits in Xilinx’s FPGAs
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Step Clock cycles
Goppa polynomial evaluation (additive FFT) 1095
BM decoder 1921
ELP evaluation (additive FFT) 1095
Error locater 3498

Table 3.3: Clock cycles for each of the four constant steps of
decryption.

The number of clock cycles for the double syndrome calculation was derived
as

Double syndrome clks = 14 + d#(ones in ciphertext)/20e · 130 +A (3.1)

through analysis of the source code, where A is the number of bits in the ciphertext
until 20 1’s are found counting from most towards the least significant bit of the
ciphertext. Thus, the execution time of the double syndrome as well as the whole
decryption depends on how bits are distributed in the ciphertext. This in turn
depends on the plaintext and public key used during encryption. The validity of
expressions 3.1 was also verified by simulations in Vivado.

3.1.4 Interfacing the decryption core

As the decryption core should communicate with a PC, a serial-to-parallel inter-
face was needed in between due to the wide signals of the decryption core. Since
the CW305 board includes a USB transceiver, this interface was used for commu-
nication between the decryption core and PC. Furthermore, a hardware driver for
sending and receiving data between the FPGA and USB transceiver of the CW305
was available as part of a 128-bit AES implementation 4. Figure 3.9 shows a sim-
plified block diagram of parts used for USB communication. The PC either send

PC USB
Transceiver

USB
interface

CW305 FPGA

USB cable Address, data, and control signals

Figure 3.9: Block diagram of the interface between PC and FPGA
of CW305

a read or write request to the USB transceiver. In the case of a write operation,
the address to write and data are decoded from the payload. The address and
data along with the control signal (read-write signal and USB clock) are routed
to the USB interface implemented in the FPGA, which stores data in a register
pointed by the address. During a read request, the USB interface fetches data

4https://github.com/newaetech/chipwhisperer
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from a pointed register and sends it to the USB transceiver, which in turn sends
data to the PC using USB.

Figure 3.10 shows the payload of a USB transaction. The part dlen specifies
how many bytes to either write or read at the register pointed by reg. In the case
of a read operation, the payload only consists of the first two fields dlen and addr.
Both dlen and addr are 32 bits wide and transmitted as the least significant byte
first. However, due to hardware limitations, the accessible address space is limited
to 21-bits. The value specified in addr decides where the first byte, byte0, should
be stored. Following bytes are stored at ascending address locations. Thus, it is
important to have an agreement between software and hardware on how registers
are accessed.

8 bits32 bits

···addr datadlendata1data0

8 bits

dlen

32 bits

dlenbyte dlenbyte dlenbyte dlenbyte addrbyte addrbyte addrbyte addrbyte

8 bits

0 1 32 0 1 32

Figure 3.10: USB payload.

The AES example code provided by NewAE divides the addr part of the
payload into two parts as shown in figure 3.11. The first part reg_addr is used to

bit 0

reg_addr addr_within_reg
67bit 20

Figure 3.11: USB AES address format.

access different registers in the AES example FPGA implementation according to
the upper part of table 3.4. The lowest 8 bits addr_within_reg are always written
as zeros as the USB transceiver generates this part. For example, if dlen = 3 and
addr = 0116 = 000000012, the USB transceiver decodes the address as 10000002
for the first byte of the payload, 10000012 for the second byte, and 10000102.
Thus, the maximum size of a register is 27 = 128 bytes. This is too small for the
implemented decryption core as the largest key, the secret support has a size of
41856 bits. Thus the address format was changed to allow a maximum register
size of 213 = 8192 bytes.

Figure 3.12 shows the new address format used for communication between
the PC and decryption core. The first field selects which memory to interact with.
The second field specifies which bank within the memory to access. The last field is
used by the USB transceiver to access individual bytes within a bank. The reason

bit 0

reg_addr addr_within_reg
1415bit 20

addr_offset
7 4

Figure 3.12: USB address format fo implemented decryption core.

of selecting this address format is based on requirements of writing to the largest
memory, the secret support, in the implemented design. If the number of bytes in
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Name Register address Comment
REG_CLKSETTINGS 0x00
REG_USER_LED 0x01
REG_CRYPT_TYPE 0x02
REG_CRYPT_REV 0x03
REG_IDENTIFY 0x04
REG_CRYPT_GO 0x05
REG_CRYPT_TEXTIN 0x06 Removed in this work
REG_CRYPT_CIPHERIN 0x07 Removed in this work
REG_CRYPT_TEXTOUT 0x08 Removed in this work
REG_CRYPT_CIPHEROUT 0x09 Removed in this work
REG_CRYPT_KEY 0x0A Removed in this work
REG_BUILDTIME 0x0B
REG_P_MATRIX_IN 0x0C Added in this work
REG_POLY_G_IN 0x0D Added in this work
REG_CIPHER_IN 0x0E Added in this work
REG_REC_ERR_OUT 0x0F Added in this work

Table 3.4: Register addresses.

each transfer is limited to 32 bytes, a total of (2 · 3488)/32 = 218 transactions are
needed to write the secret support. Thus, dlog2 218e = 8 bits are needed for base
register address offset, and dlog2 32e = 5 bits are needed to address memory rows
within each transaction. Conceptually, each memory is divided into banks of 32
bytes and during a USB operation, a complete bank is written. Additionally, four
new registers were added and five removed as depicted in table 3.4 to better suit
the implemented decryption core.

3.1.5 Storing decryption inputs

To store the ciphertext and secret key in the FPGA, three memories were imple-
mented as shown in figure 3.13. Furthermore, the memories were implemented
by using available RAM blocks in the FPGA as using distributed RAM (flip-flops
and look-up tables) would result in a high resources utilization of the FPGA. This
in turn would make it harder and maybe impossible for the synthesis tool to im-
plement the complete design. Figure 3.14 shows the memory used for storing the
secret Goppa polynomial. It consists of four dual-port memories which are only
partially used. Port one of the memories is of size 8 bit × 32 but only the first
16 rows are used. The reason for this is that the decryption core needs to read all
bits of secret polynomial during one clock cycle and the core does not have the
functionality to address the memories. Therefore, port 2 of the memories is of size
256 bit × 2, but the address is fixed to row 0. Thus, each dual-port memory can
store 256 bits and since the secret polynomial consists of 780 bits, four dual-port
memories were connected in parallel.
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Decryption
Core

address

Permutation
Daul-port
Memory

Polynomial
Daul-port
Memory

Output
Multiplexer

Plaintext

USB clock

Ciphertext
Daul-port
Memory

Decryption clock

data write

Figure 3.13: Overview of the decryption module consisting of the
decryption core, three memories, and a multiplexer.
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Figure 3.14: Memory for storing secret Goppa polynomial.



Classic McEliece for ChipWhisperer platform 25

The complete ciphertext should also be available for the decryption core to read
during a single clock cycle. Thus, the ciphertext was stored in a memory similar to
the secret Goppa polynomial. Figure 3.15 shows the implemented memory which
in comparison to the Goppa polynomial memory only contains three dual-port
memories since the cipher text only consists of 768 bits.

Dual port
Memory

Ciphertext memory

ENA1

ADDR1[5:0]

DATA1[7:0]

ADDR[6:5]

[0, ADDR[4:0]]
ADDR2[0]

DATA2[255:0]

0

DATA[7:0] CIPHER[255:0]

=00

Dual port
Memory

ENA1

ADDR1[5:0]

DATA1[7:0]

ADDR2[0]

DATA2[255:0]

0

CIPHER[511:256]

=01

Dual port
Memory

ENA1

ADDR1[5:0]

DATA1[7:0]

ADDR2[0]

DATA2[255:0]

0

CIPHER[767:512]

=10

CIPHER[767:0]

ADDR[6:0]

Figure 3.15: Memory for storing ciphertext.

Storing the secret support was done similarly, but since the decryption core
utilizes a memory interface for reading the support row by row, the address of port
2 is connected to the decryption core rather than to a fixed value. Since data at
port 1 is written 8 bits at a time and the decryption core expects to read 12 bits,
2 dual-port memories were connected in parallel as shown in figure 3.16. The first
memory stored the 8 lowest bits of each field point and the second memory stored
the upper 4 bits.

Dual port
Memory

Secret support memory

WEA1

ADDR1[11:0]

DATA1[7:0]

ADDR_WR[0]

ADDR_WR[12:1]
ADDR2[11:0]

DATA2[7:0]
DATA[7:0]

=0

P_OUT[11:8]

=1

P_OUT[11:0]

ADDR_WR[12:0]

ENA1

Dual port
MemoryWEA1

ADDR1[11:0]

DATA1[7:0]

ADDR2[11:0]

DATA2[7:0]

ENA1

ENA

P_OUT[7:0]

ADDR_RD[11:0]

Figure 3.16: Memory for storing secret support.

Once decryption is done, the recovered error is stored in 3488 flip-flops in-
side the decryption core. A 3488-to-8 bit multiplexer was then used to read the
recovered plaintext by 8 bits at a time.

3.2 Software modules

In this section, four different software modules developed during this project are
presented. First, a module for generating the secret and public keys is explained.
A module for collecting traces is introduced and also a module for performing
leakage assessment is given. Last, the idea of a partial message-recovery attack is
presented.
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3.2.1 Classic McEliece Python module

To perform decryption, a plaintext must first be encrypted. To support this,
a McEliece Python module was developed. The module contains functions for
generating private and public keys as well as generating random plaintexts and
encrypting plaintexts. The source code of this module is available in Appendix A.

Key generation starts with finding a random irreducible polynomial g(x) of
degree t. This was done similarly as in [21]. First, a random polynomial h(x)
over GF(2m) with deg(h) = t was selected. This polynomial was used to create
the field GF(2m)[x]/h(x) from which a random element r(x) of degree t − 1 was
selected. The monic polynomial of least degree that fulfills g(r(x)) = 0 will be a
minimal, i.e. irreducible, polynomial with coefficients in GF(2m). Since r(x) is of
degree t − 1, the minimal polynomial g(x) will be of degree t if it exists. To find
the minimal polynomial g(x) of r(x) suppose

g(x) = g0 + g1x
1 + . . . gt−1x

t−1 + xt (3.2)

and

r(x) = r0 + r1x
1 + · · ·+ rt−1x

t−1 (3.3)

where g(x) is in monic form since gt = 1. Then, the minimal polynomial of r(x)
must fulfill

g(r(x)) = g0 + g1r(x) + g2r
2(x) + · · ·+ gt−1r

t−1(x) + rt(x) = 0. (3.4)

From equation 3.4 a system of t linear equations can be formed as

(r)t−1g1 + (r2)t−1g2 + . . . + (rt−1)t−1gt−1 = (rt)t−1
(r)t−2g1 + (r2)t−2g2 + . . . + (rt−1)t−2gt−1 = (rt)t−2

...
...

. . .
...

...
(r)1g1 + (r2)1g2 + . . . + (rt−1)1gt−1 = (rt)1

g0 + (r)0g1 + (r2)0g2 + . . . + (rt−1)0gt−1 = (rt)0

(3.5)

where (ri)j is the xj coefficient after calculating ri(x) over GF(2m)[x]/h(x). By
treating gi as variables, the minimal polynomial can be obtained by solving the
system. This can be done by forming the augmented matrix as

0 (r)t−1 (r2)t−1 . . . (rt−1)t−1 (rt)t−1
0 (r)t−2 (r2)t−2 . . . (rt−1)t−2 (rt)t−2
...

...
...

. . .
...

...
0 (r)1 (r2)1 . . . (rt−1)1 (rt)1
1 (r)0 (r2)0 . . . (rt−1)0 (rt)0

 . (3.6)

Then, by bringing the augmented matrix to reduced row-echelon form, i.e.
1 0 0 . . . 0 0 g0
0 1 0 . . . 0 0 g1
...

...
...

. . .
...

...
...

0 0 0 . . . 1 0 gt−2
0 0 0 . . . 0 1 gt−1

 (3.7)
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the coefficients of g(x) can be found by extracting the last column of the matrix
in 3.7 and by setting gt = 1.

The next step in the key generation was to construct the secret support P
consisting of n distinct elements (α0, α1, . . . , αn−1) ∈ GF(2m). This was done by
randomly selecting n distinct integers in the range [0, 2m−1) and interpreting the
integers as elements in GF(2m).

Next, the public key Hpub was constructed. First, 2m integers were generated
where each integer ki = i, i = 0, 1, . . . , 2m − 1 was binary encoded with m-bits
as ki = 2m−1kim−1

+ 2m−2kim−2
+ · · · + 21ki1 + 20ki0 , where kim−1

was the most
significant bit. The integers ki were then used to create a list of all elements ai
of GF(2m) as ai = ki0x

m−1 + ki1x
m−2 + · · · + ki2m−1

x0. This means that each
ki was interpreted in reversed bit order. The reason for this is to follow how the
hardware decryption implementation interprets integers of the secret support P .
After this, all elements ai were evaluated by the minimal polynomial g(x) and the
matrix

Z =



1
g(a0)

0 . . . 0 0

0 1
g(a1)

. . . 0 0

0 0 1
g(a3)

0 0
...

...
...

. . .
...

0 0 . . . 0 0 1
g(am−1)

 (3.8)

was formed. If any g(ai) = 0 the process was aborted and a new private key was
generated. Then, another matrix was generated as

Y =


1 1 . . . 1
a0 a1 . . . an−1
a20 a21 . . . a2n−1
...

...
. . .

...
at−10 at−11 . . . at−1n−1

 . (3.9)

A 2m × 2m permutation matrix Pperm was constructed as

Ppermi,j
=

{
1 , if i = Pj

0 , otherwise , (3.10)

i.e. in each column j of Pperm only the row given by element j in the secret support
P was set to 1. Finally, the public key was computed as

Hpub = YZPperm (3.11)

Now, each element Hpubi,j
of Hpub was an element in the field GF(2m) and thus

each element was represented by m-bits. The binary matrix was then constructed
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by picking the first n columns of Hpub and stacking the bits as

Hpubbin
=



Hpub0,00
Hpub0,10

. . . Hpub0,n−10

Hpub0,01
Hpub0,11

. . . Hpub0,n−11

...
...

. . .
...

Hpub0,0m−1
Hpub0,1m−1

. . . Hpub0,n−1m−1

Hpub1,01
Hpub1,11

. . . Hpub1,n−11

...
...

. . .
...

Hpubt−1,01
Hpubt−1,11

. . . Hpubt−1,n−11

...
...

. . .
...

Hpubt−1,0m−1
Hpubt−1,1m−1

. . . Hpubt−1,n−1m−1



. (3.12)

Finally, Hpubbin
was brought to systematic form such that the first mt columns

were the identity matrix, i.e. Hpubsys
= [I | Kpub]. If Hpubbin

could not be
brought to systematic form the whole key generation process was restarted with
the generation of a new private key. According to [21], the success probability of
getting a public key that can be brought into systematic form is 29%. To encrypt
a message the plaintext p is multiplied with Hpubsys

over the field GF(2), i.e.
addition is performed by using the xor operator.

The implemented McEliece module also contains some support functions for
storing and loading keys as well as functions for formatting the private key and
ciphertext such that they can be loaded to the CW305 FPGA.

3.2.2 Trace capture

To integrate trace capturing of Classic McEliece decryption into the CW frame-
work, the source code of the existing Python API for the AES implementation
was extended. Functions for sending and receiving data to the CW305 FPGA
were added according to the specification given under section 3.1.4. The added
functions are found in Appendix B.

To capture traces during the decryption procedure another Python script was
written which can be found in Appendix C. Figure 3.17 shows the procedure used
to capture traces. First, the script connects the PC to the CW and CW305 through
USB. The FPGA of CW305 was programmed with the hardware description ac-
cording to section 3.1. The CW was then configured with parameters related to
sampling. The sampling clock was configured to be derived from the decryption
clock used by the FPGA. The sample trigger was set to be the same as the signal
that started the decryption procedure. The gain A = [0, 56] dB of the amplifier in
front of the ADC was configured as well as the number of samples ns = (0, 24400]
to capture for each trace.

The script then created a McEliece object from the module described in sec-
tion 3.2.1 with m = 12, t = 64, and n = 3488. Public and private keys were either
created or loaded. Next, the FPGA supply voltage and operating frequency were
set. The secret key was also transferred to the FPGA.

Then, the number of batches and traces in each batch were configured. The
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Figure 3.17: Procedure for trace capturing.

reason for dividing captured traces into batches was to reduce the amount of RAM
that was needed to store variables before they were written to the hard drive.

Then, the type of plaintext generation was specified. The plaintext could be
of three types. The first option was to solely generate random plaintext for each
trace. The second option was to, with equal probability, select either a fix or
random plaintext. The last option was to only use a fixed plaintext.

Since the CW is only capable of collecting a maximum of 244400 samples
during a trace and the decryption procedure takes around 10200 clock cycles, it
was only possible to have a maximum sampling rate of two times the decryption
clock. To increase the maximum sampling rate another option was introduced.
These options specified if the trace should be of the whole decryption procedure
or only the last step, the error locater step in figure 3.4. Thus, by only sampling
the last step, the sampling rate could be increased to six times the decryption
clock frequency. The reason for only implementing this feature for the last step
was that during the last step, the plaintext was recovered bit-by-bit and it was
believed that this could be used for a plaintext-recovery attack.

Once all settings were configured, the trace capture began. For the number of
specified batches and traces in each batch, a plaintext was generated depending
on the selected option. The ciphertext was generated by encrypting the plaintext
and then transferred to the FPGA. A start signal for decryption, as well as trace
capture, was generated. Once the decryption was done, the recovered plaintext was
read from the FPGA and the trace was transferred from CW to the PC. As a sanity
check, the recovered plaintext was compared with the one used for generating the
ciphertext. If they were unequal the capture procedure was aborted. Once a full
batch of traces had been collected, all traces, as well as corresponding plaintexts,
and ciphertexts were written to the hard drive.
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3.2.3 Evaluation of side-channel leakage

After capturing traces, a leakage assessment was performed on collected traces
according to section 2.7. As summing up a large number of values can cause
numerical instability, the procedure suggested by [16] was used. First, each trace
was assigned to one out of two sets, Qi i = 0, 1, by using a function f(plaintext)
which outputs a 0 or 1 depending on some feature of the plaintext. Then for each
set, three variables were initialized as ni = 0, µi = 0, 0, . . . , 0 and CSi = 0, 0, . . . , 0.
The first was used for counting the number of traces in each set. The second was
for estimating the mean of each set. The last was for calculating the central sum
which later was used to estimate the variance. Note that the two latter variables
µi and CSi had the same number of elements as sample points in traces. For each
trace in a set Q〉 the three variables were updated as

n+i = ni + 1 (3.13)

µ+
i = µi +

trace− µi

ni
(3.14)

CS+
i = CSi +

(trace− µi)
2(ni − 1)

ni
(3.15)

where i ∈ {0, 1} was assigned a value depending on the function f(plaintext).
After going through all traces the variance was estimated as

σ2
i =

CSi

ni
(3.16)

and the t-statistic was calculated as given in equation 2.8.
If traces were captured for the whole decryption, the samples corresponding

to the double size syndrome calculation were removed before calculating the t-
statistic. The reason for this is that the double syndrome was of non-constant time.
Thus, if this part was kept, subsequent samples in traces would not correspond to
the same operation. Equation 3.1 was used to determine which samples in a trace
that corresponds to the double syndrome.

Depending on how the selection function f(plaintext) was specified, the sizes
of Q0 and Q1 could become quite unequal. This, in turn, would make the simpli-
fication given equation 2.10 invalid. Therefore, after traces had been assigned to
sets, the largest set was shrunk to the size of the smallest set by randomly picking
traces.

3.3 Partial message-recovery attack on Classic McEliece

The hardware decryption implementation was thoroughly studied to identify pos-
sible weaknesses that could be exploited during a message-recovery attack. The
last stage, step five, seemed like a promising starting point as the plaintext was
reconstructed bit-by-bit during this stage. Figure 3.18 shows a simplified block
diagram of how plaintext bits were reconstructed. The first element, P_OUT, of
the secret support was read from the memory. The seven most significant bits of
P_OUT were used as an address to read a block of 32 field elements from the ELP
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evaluation performed during step four. Based on bit four of P_OUT, either the
upper or lower 16 field elements were stored in a register. From the 16 stored field
elements, either the upper or lower 8 field elements were stored in another regis-
ter depending on bit 3 of P_OUT. This procedure is repeated until a single field
element was stored in a register. If this single element was equal to all zeros the
first, most significant, plaintext bit was set to a 1 otherwise it was set to a 0. The
value of the plaintext bit was subsequently stored in a shift register. This whole
procedure was then repeated 3488 times to reconstruct all plaintext bits. During
each cycle, the recovered plaintext, stored in the shift register, was updated with
a new bit at the least significant bit position.
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P_OUT[0]P_OUT[1]
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Figure 3.18: Simplified block diagram of the last decryption step.

However, the procedure for recovering plaintext bits was not done in strictly
sequential order as a pipelined design was employed. Figure 3.19 shows the 8-
stage pipeline used to recover plaintext bits. Thus, during each clock cycle, eight
plaintext bits are evaluated in the different stages of the pipeline. This might make
it harder to perform a message-recovery attack as power consumption during a
single clock cycle will not solely depend on the value of one-single plaintext bit.

To retrieve information that could be used during a message-recovery attack,
captured traces were divided into two classes based on the HW of the corresponding
plaintext. For each trace, the HW of the plaintext was evaluated inside a window,
HW window. The window was then moved one-bit position and the HW inside the
window was recorded. This procedure was repeated and when a window extended
beyond the last bit of the plaintext it was wrapped around to the beginning of the
plaintext. Figure 3.20 shows how the HW window was swept across the plaintext.
The window width was set to m/2 = 3488/2 = 1744 and a total of m = 3488
windows was used.

Thus, for each trace i a total of 3488 HWs were calculated as

HWij =

{ ∑j+1743
k=j pik , if j <= 1744∑j+1743 mod 3488
k=0 pik +

∑3487
k=j pik , if j > 1744

(3.17)
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Figure 3.19: Pipeline structure used in the hardware decryption
implementation during plaintext recovery.

pt3487pt1745··· pt1744 ···pt1pt0

HW window

Figure 3.20: Sweeping HW window across a plaintext. The HW of
the plaintext inside the windows was calculated for each window
position.
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Layer type (input, output) shape # Parameters
Dense (v, v) v · v + v
Dense (v, v/2) v · v/2 + v/2

Dense, Sigmoid (v/2, 1) v/2 + 1

Table 3.5: Neural network architecture used to classify traces
based on HW windows.

where pik was bit k in the plaintext of trace i and j was the HW window number.
For each HW window number j, all traces were divided into two classes where
the first contained traces with Hij > 32 and the second consisted of traces with
Hij <= 32. A PCA was performed on traces to reduce the dimensionality of
captured traces. The number of new features to keep after the PCA was adjusted
such that 85 % of the variance was kept. The new features were then used to
train 3488 neural networks, one for each HW window number. Table 3.5 shows
the neural network architecture used to predict which class a trace belonged to.
The parameter v in table 3.5 was the number of features after a PCA had been
performed. During training, a total of 80000 traces were used and each network
was trained for 12 epochs.

Another set of 3488 neural networks for binary classification of HWij < 32
was conducted in the same way as for the classification of HWij > 32 where the
same traces and PCA were used.
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Chapter 4
Result

4.1 Trace capture metrics

Table 4.1 shows the FPGA resource requirements of the implemented hardware
system. Most resources are used by the decryption core but storing inputs, i.e. se-
cret key and ciphertext require roughly 23 % of available 36 KB RAM blocks. The
memories for the ciphertext and secret Goppa polynomial were not fully utilized.
A high number of memories was needed because signals needed to be supplied in
parallel to the decryption core. The memory used for storing the secret permuta-
tion was better utilized. This was possible since the core used a memory interface
for reading the secret support.

Part LUTs Flip-flops Muxes RAM
18KB

RAM
36 KB

Decryption core 12953 22972 16 4 19
Ciphertext memory 2 0 0 0 12

Secret Goppa memory 2 0 0 0 16
Support memory 4 0 0 0 3

Error rec 646 0 672 0 0
USB interface 29 65 0 0 0

Total 13938 23038 688 7 47
Utilization 22% 18% 2% 3% 35%

Table 4.1: FPGA resource requirements and utilization.

The execution times for the implemented key generation Python module are
given in table 4.2. The costliest operations were the calculation of Y and the
matrix multiplication Hpup = YZPperm. Execution times were measured on a
virtual machine running Ubuntu OS with 11 GB RAM and 2 CPU cores. The
host of the virtual machine was a 2.7 GHz Intel i7 CPU with 16 GB RAM. On
average, three attempts were needed to get a public key that was in systematic
form. Therefore, approximately 13 minutes was needed to successfully generate
keys. The generated keys were stored as Python Numpy arrays and the total key
size, i.e. both public and private key, was 2.59 MB.
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Key generation step Execution time
Minimal polynomial g(x) 1.9 s
Secret support P 0.007 s
Matrix Y 93.1 s
Matrix Z 2.7 s
Matrix Pperm 0.15 s
Matrix Hpup 150 s
Matrix Hpupbin 13.1 s
Total 261 s

Table 4.2: Execution time for key generation.

Table 4.3 shows the execution time for setting up and capturing traces. The
three top lines were only executed once. So, for a large number of traces, the
average time needed to capture a trace was 0.31 s. Execution times were measured
on the same virtual machine as times given in table 4.2. The decryption frequency
was set to 5 MHz and a total of 20988 points were sampled during each trace
capture. This resulted in traces of 168 KB each.

Trace capture step Execution time
Connect to CW 3.0 s
Program FPGA 7.1 s
Load keys to FPGA 0.13 s
Generate random plaintext 0.005 s
Encrypt and load to FPGA 0.074 s
Decryption/trace capture 0.12 s
Read trace 5 · 10−6 s
Read recovered plaintext 0.10 s
Verify recovered plaintext 0.007 s
Total 11 s
Total capture loop 0.31 s

Table 4.3: Execution time for trace capturing.

4.2 Leakage evaluation

Figure 4.1 shows the mean of 1000 traces captured during decryption of a fixed
randomly selected ciphertext. Decryption was driven by a 5 MHz clock and traces
were sampled at a rate of 10 MHz. To avoid saturation, i.e. peak clipping, in the
ADC a total amplification of 45 dB was used. Voltage was the actual quantity
measured by the ADC. But, assuming the voltage was measured over an ideal
resistor the captured trace corresponds to the power consumption of the FPGA.
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Figure 4.1: Mean measured voltage of 1000 traces using a fixed,
randomly selected, ciphertext.

In Figure 4.1, the five steps of decryption are clearly visible. Step one and
four have a similar shape which is probably due to that the same additive FFT
block was used during both steps. During step two, 20 negative peaks can be seen
which corresponds to the block-wise computation of the double syndrome. The
ciphertext used as input consisted of 384 ones which were divided into blocks of size
of 20. This resulted in 20 blocks that agree well with the observed trace. However,
one should keep in mind that the maximum block size is a design parameter, see
table 3.2, which can vary between implementations. During step three, the BM
decoder gradually reads vectors of the double syndrome and stores them in a shift
register. The recovered plaintext was successively calculated bit-by-bit during step
five. However, as the decryption implementation utilized a pipelined design during
step five, no visual correlation could bee seen between the plaintext and the power
consumption.

Figure 4.2 visualizes the measured voltage distribution of 1000 decryption cy-
cles using random ciphertexts. Decryption was driven by a 5 MHz clock, sampling
was performed at 10 MHz and a gain of 45 dB was used. The distribution shows
two clusters. The clusters centered around −0.26 V, corresponds to samples taken
at the rising edge of the decryption clock. The cluster around 0.03 V, corresponds
to samples taken at the falling edge of the decryption clock. As all values in the
decryption module were updated on the rising clock edge, the left cluster should
have a stronger correlation with the dynamic power consumption. One can also
observe that the left cluster seems to have a larger variance compared to the right
cluster. However, the distribution does not tell if the larger variance was due to the
randomly selected inputs, i.e ciphertexts, or the way the hardware was designed.

Figure 4.3 shows the absolute value of Welch’s t-statistic. The first set con-
sisted of traces captured with a fixed ciphertext and the second set consisted of
traces captured with random ciphertexts. Decryption was performed at 5 MHz
and traces were sampled at 10 MHz with a gain of 45 dB. Before calculating the
t-statistic the size of each set was truncated to n0 = n1 = 2984. As decryp-
tion step 2, the double syndrome calculation was of non-constant time this part
was removed from traces before evaluating the t-statistic. The graph in figure 4.3
clearly shows that leakage was present during steps 3 and 4. Some leakage was also
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Figure 4.2: Distribution of measured voltage of 1000 decryption
cycles using random ciphertexts.

present during step 5. No leakage was detected during step 1. This was expected
as the execution of step 1 depended on the secret key which was the same for all
traces.

Figure 4.3: Fixed vs. random ciphertext leakage assessment with
set sizes n0 = n1 = 2984.

For the t-statistic in fig 4.4, traces were assigned to one of two sets depending
on the HW of the first half of the corresponding plaintext. The first set contained
traces where the HW > 32 in the first half of the plaintext. The second set
contained all traces where the HW <= 32. As before, the second decryption step
was removed before calculating the t-statistic. Traces were captured at a rate
twice the decryption frequency, .i.e. 10 MHz, and a gain of 45 dB was used

Figure 4.5 shows the t-statistic where only the last part of decryption was
captured. Traces were sorted into classes based on HW like before. In comparison
to figure 4.4 trace in 4.5 were sampled at 30 MHz. Thus, six samples during each
decryption clock cycle were captured. Furthermore, the gain was increased to 50
dB. The t-statistic in figure 4.5 clearly shows that leakage is present when traces
are categorized based on HW.

Figure 4.6 shows t-statistics using only one of the six sample points for each
decryption clock, i.e. figure 4.6 shows the six individual sample offsets of figure 4.5.
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Figure 4.4: Leakage assessment where traces were sorted into sets
based on HW of the first half of plaintexts.

Figure 4.5: Leakage assessment of the last decryption step where
traces were sorted into sets based on HW of the first half of
plaintexts.
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As seen, leakage seems to be present at 0, 3/6, and 4/6 offsets, i.e. most leakage
appears to happen during the rising and falling edge of the decryption clock.

(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Leakage assessment using samples with different
offsets from the rising edge of decryption clock, (a) 0 offset, (b)
1/6 clk offset, (c) 2/6 clk offset, (d) 3/6 clk offset, (e) 4/6 clk
offset and (f) 5/6 clk offset.

Figure 4.7 shows the t-statistic of a modified version of the last decryption
step. In the modified hardware the shift register was removed from the pipeline
in figure 3.19. Traces were samples at 30 MHz with a gain of 50 dB. During the
calculation of t-statistic traces were sorted into sets based on HW like before.

4.3 Partial message-recovery attack

Figure 4.8 shows the accuracy of predicting which class the first HW window,
HWi0, belonged to for 80000 traces. Different sample offsets were tested. The two
single offsets that gave the best result were 0 and 3/6, i.e. the samples captured
at the rising and falling edge of the decryption clock. Furthermore, using the two
best offsets during training increased the accuracy even further. Using all offsets
did not lead to higher accuracy when a maximum of 50 epochs was used.

When performing a PCA using the two best offsets dimensionally was reduced
from 2 · 3498 to 547 while keeping 85 % of the variance. The final architecture of
the neural network is given in table 4.4.

Figure 4.9 shows the prediction accuracy of classifying if traces belonged to
plaintexts with HW ≥ 32 within a window. The accuracy was calculated by using
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Figure 4.7: Leakage assessment of last decryption step where the
shift register was removed from the hardware.

Figure 4.8: Prediction accuracy using samples with different offsets
from the rising edge of decryption clock.

Layer type (input, output) shape # Parameters
Dense, ReLU (547, 547) 299756
Dense, ReLU (547, 273) 149604
Dense, sigmoid (273, 1) 274

Table 4.4: By using a PCA dimensionality was reduced to 547
features leading to a neural network with 449634 parameters.
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a test set of 5000 traces. On average, the accuracy was 78 %. This should be
compared to the case when traces are always classified as belonging to the ≤ 32-
class in which case the accuracy was 55 % due to the distribution of HW.

Figure 4.9: Prediction accuracy of HW windows belonging to the
class with HW > 32. The graph also shows the true fraction of
traces belonging to the other class with HW ≤ 32.

Figure 4.10 shows accuracy for the other set of 3488 neural networks used to
predict if the HW was less than 32. The accuracy was similar to 4.9 with an
average accuracy of 78 %.

Figure 4.10: Prediction accuracy of HW windows belonging to the
class with HW < 32. The graph also shows the true fraction of
traces belonging to the other class with HW ≥ 32.

Figure 4.11 shows the prediction accuracy of using different HW window sizes.
For each window size x, the MLP was trained to classify if HWi0 >

64
3488x, i.e.

if the HW of x first bits of the plaintexts was greater than the average for a
given window size x. Figure 4.11 also shows the accuracy when traces always were
classified as belonging to the largest of the two sets, i.e. either HWi0 >

64
3488x or

HWi0 ≤ 64
3488x.

In figure 4.12, the accuracy of predicting HWi0 > 32 is shown for both the
previously used decryption hardware and modified hardware without shift register
in the last decryption step. A new PCA was performed on traces from the modified
hardware before training the neural network but the same MLP architecture was
used.
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Figure 4.11: Prediction accuracy using different HW window sizes.

Figure 4.12: Comparison of prediction accuracy when removing
the shift register from the decryption pipeline.
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Chapter 5
Discussion

The outcome of this thesis is twofold. Some parts are most relevant to an evaluator
of the cryptosystem who can modify the system. Other parts are more relevant to
an attacker who only can use the system as it is. Therefore the discussion is split
into 2 sections.

5.1 From an evaluators point of view

The implemented hardware requires approximately a fifth of the available resources
of the CW305 FPGA. Thus there is room to implement more functionality in the
FPGA to speed up trace capturing. Inspecting table 4.3 reveals that reading back
the recovered plaintext makes up a third of the time needed to capture a trace.
However, this is an important step since it is needed to verify that decryption
works as intended. Since there is plenty of resources available in the FPGA another
approach could have been used. Initially, the capture software could generate a
random plaintext and send it to the FPGA. After decryption had finished, a hash
function implemented on the FPGA could be used to generate a new plaintext from
the recovered plaintext. Then, by also implementing encryption in the FPGA a
new ciphertext could be generated. Once a fixed number of decryptions had been
performed, the PC could read the last recovered plaintext. Then, by using the
initial plaintext along with the same hash function the PC could calculate the
expected value of the last recovered plaintext and compare it to the last recovered
plaintext. This would essentially reduce the capture time by almost a third.

Another way to speed up trace capturing is to increase the decryption fre-
quency. The sampling frequency could be fixed to two times the decryption fre-
quency as a higher sample rate did not provide more information. Since the CW
has a maximum sampling frequency of 96 MHz the decryption frequency could be
increased from 5 MHz to 48 MHz which would reduce the trace capture time by
almost a third. Thus combining the two suggestions would lead to a trace capture
time of approximately 0.1 s. However, when the system was evaluated at higher
decryption frequencies, severe distortion, ringing, was observed in captured traces.
It is not clear if the distortion was caused by the CW, FPGA, or a combination
of both.

Another suggested improvement is based on the observations in figures 4.2 and
4.5. As most leakage seems to happen during the rising edge of the decryption
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clock it make sense to capture this part as accurately as possible. However, as
seen in figure 4.2 the distribution of samples at the rising decryption clock edge is
restricted to the range −0.37 V to −0.17 V. Thus only 20 % of the ADC dynamic
range is used. Thus, by modifying the CW hardware it would be possible to
increase the dynamic range of captured traces by almost five times. This in turn
would reduce the noise in traces caused by quantization.

5.2 From an attackers point of view

The fixed-vs-random leakage assessment in figure 4.3 clearly shows that leakage
was present during all steps of decryption except for the first step. However, this
was expected since the execution of the first step only depends on, same for all
traces, minimal polynomial g(x). With the suggested approach to split traces
into sets depending on HW inside windows of the plaintext, only leakage seems to
be present during the last decryption step. But one should be aware that using
another trace partitioning might lead to different results

As shown in figure 4.8, using more than two samples within each decryption
clock cycle does not seem to provide more information. The reason why two
samples were better than one is probably due to the way memory cells inside the
FPGA is built. Unfortunately, Xilinx does not tell which flip-flop architecture
they use in their FPGAs. However, many common flip-flop architectures operate
on both the rising and falling edge of the driving clock. For some architectures,
data is sampled on one clock edge and propagated through the flip-flop at the
other edge. For other architectures, transistors inside the flip-flop are charged to a
logic high value at one clock edge and then, possibly, discharged on the other clock
edge depending on data present at the flip-flop input [2]. Thus, when targeting
leakage of memory cells built out of flip-flops in an FPGA it makes sense to sample
at twice the decryption frequency. In case the sample clock is not synchronous to
the decryption clock a higher sample rate is probably needed to get equally good
measurements.

From figures 4.7 and 4.12 it seems clear that the main leakage point for the
purposed attack scenario is the shift register in the pipeline of the last decryption
step. As the shift register is the main contributor of leakage, the magnitude of
power leaked should be proportional to the number of bits inside the shift register
that changes value from zero to one or the other way around. Since the plaintext
consists of 64 ones and 3488− 64 zeros, most of the ones will be led and tailed by
a zero. Thus, using the name HW window might be a bit misleading as what was
measured were the sum of 0-to-1 and 1-to-0 transitions. But as mentioned, the
low fraction of ones in the plaintext means that the number of transitions will be,
approximately, twice the HW of plaintext bits within a given window.

The suggested approach to label traces before training the neural network
seems to perform well. It is stressed that predictions were made on single traces,
i.e. no averaging of traces was performed. For a message-recovery attack, this
is a reasonable setting as a message is typically only transmitted once. However,
the information gathered from the neural network in this work is not sufficient
to recover the plaintext from a ciphertext. However, the retrieved information
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tells an attacker how bits, i.e. zeros and ones, of the plaintext are distributed.
Additionally, as seen in figure 4.11 it should be possible to use multiple HW window
sizes. By using more HW windows sizes it should be possible to get even more
detailed information on the distribution of plaintext bits.

As observed in figure 4.11, the prediction accuracy was rather low for small
and large HW window sizes. The reason for this is not obvious. One possible
explanation of this is given in Appendix D. For small or large windows the expected
number of ones in the two prediction classes are closer together compared to when
a window size of 1744 is used. This might explain why prediction is more accurate
with window sizes around 1744. This would also mean that prediction accuracy
should be low when it comes to predicting the class of a trace where the true HW
is close to the threshold used to divide the two classes. However, from this work, it
is not possible to confirm this. Another reason why the network has low accuracy
for small or large window sizes could be due to a low number of training samples in
one of the prediction classes. For example, when using an HW window size of 109,
traces are classified depending on the HW of the first 109 plaintext bits. If the HW
is above 2, a trace is assigned to set Qhigh otherwise it is assigned to Qlow. Thus,
the first set only contains plaintexts with HW= 0, 1, 2 but the other set contains
plaintext with HW= 3, 4, . . . , 63, 64. For this case, as shown in Appendix D, the
probability that a randomly generated plaintext belongs to Qlow is 68%. This can
be compared to 55 % when using a window size of 1744. Thus, in the latter case
sizes of the two classes become more equal.
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Chapter 6
Conclusion

In this thesis, the Niederreiter decryption core used by Classic McEliece, one of
the NIST PQC competition finalists, has been implemented on an Artix 7 FPGA
along with an interface for communication over USB with the CW. A Python
module for generating keys and encrypting messages has been developed and the
CW API has been extended to handle communication with the decryption core.

A fixed-vs-random leakage assessment has been performed on captured traces.
This showed that the hardware implementation suffers many leakage points that
could, potentially, be exploited during a side-channel attack. Performing a leakage
assessment where traces were assigned to a set depending on the HW of a subpart
of plaintext bits showed a large number of leakage points during the last step of
decryption.

Training of neural networks showed that a sampling frequency greater than
two times the decryption frequency did not lead to higher prediction accuracy.
By using a sampling frequency of two times the decryption frequency, employing
a PCA to reduce dimensionally and training 3488 rather simple neural networks,
the HW of subparts of plaintexts could be predicted to be either greater or lower
than 32 with an accuracy of 78 % using only a single trace for prediction.
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Appendix A
McEliece Python module

import numpy as np
import random as rd
import g a l o i s
import b i t a r r ay as ba

class mce l i e ce ( ) :

def __init__( s e l f , m, n , t ) :
"""Creates a new McEliece object
Parameters :

m ( int ) : Size of binary f i e l d
n ( int ) : Code length ( length of p la in tex t )
t ( int ) : number of errors"""

s e l f .__m = m
s e l f .__n = n
s e l f .__t = t
s e l f . __irr_poly = g a l o i s . i r r educ ib l e_po ly (2 , m, method=" sma l l e s t " )
s e l f .__GF = ga l o i s .GF(2∗∗m, i r r educ ib l e_po ly=s e l f . __irr_poly )
s e l f . __min_poly = s e l f .__GF(0)
s e l f .__P = [ ]
s e l f .__H = s e l f .__GF. Zeros ( [ s e l f .__t, s e l f .__n] )

def rand_irr_poly ( s e l f , r = None ) :
# Get the f i r s t lex icographic i r reduc ib l e polynomial of GF(2)
p_mod = ga l o i s . i r r educ ib l e_po ly (2 , s e l f .__t, method=" sma l l e s t " ) ;
p_mod2 = ga l o i s . Poly (p_mod. c o e f f s , f i e l d=s e l f .__GF)

i f ( r i s None ) :
r = g a l o i s . Poly .Random( s e l f .__t−1, f i e l d=s e l f .__GF)

r i = g a l o i s . Poly (1 , f i e l d=s e l f .__GF)
c o e f f = s e l f .__GF. Zeros ( [ s e l f .__t, s e l f .__t+1])

for i in range ( s e l f .__t+1) :
for j in range ( s e l f .__t) :

i f r i . degree >= j :
c o e f f [ j , i ] = r i . c o e f f s [ : : − 1 ] [ j ]

r i = ( r i ∗ r ) % p_mod2

coe f f_gs = c o e f f . row_reduce ( )
min_poly = g a l o i s . Poly (np . concatenate ( ( [ 1 ] , [ 0 ] ∗ ( s e l f .__t) ) ) ,

f i e l d=s e l f .__GF)
min_poly = min_poly + g a l o i s . Poly ( coe f f_gs [ : , −1 ] [ : : −1 ] , f i e l d=s e l f .__GF)

return min_poly

def convert ( s e l f , beta , num) :
r e t = s e l f .__GF(0)
for i in range ( len ( beta ) ) :

i f (num >> i ) % 2 :
r e t += beta [ i ]

return r e t

def parity_check_matrix ( s e l f ) :
b a s i s = s e l f .__GF(2∗∗( np . arange ( s e l f .__m) [ : : − 1 ] ) )
alpha = [ ]
for i in range (2∗∗ s e l f .__m) :

alpha . append ( s e l f .__GF( s e l f . convert ( bas i s , i ) ) )
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poly_eval = [ ]

for i in range (2∗∗ s e l f .__m) :
poly_eval . append ( s e l f . __min_poly( alpha [ i ] ) )
i f ( poly_eval [ i ] == s e l f .__GF. Zeros (1) ) :

return False

Y = s e l f .__GF. Zeros ( [ s e l f .__t, 2∗∗ s e l f .__m] )
for i in range (2∗∗ s e l f .__m) :

Y[ 0 , i ] = s e l f .__GF. Ones (1)
for j in range (1 , s e l f .__t) :

Y[ j , i ] = Y[ j −1, i ] ∗ alpha [ i ]

Z = s e l f .__GF. Zeros ( [ 2∗∗ s e l f .__m, 2∗∗ s e l f .__m] )
for i in range (2∗∗ s e l f .__m) :

Z [ i , i ] = poly_eval [ i ]∗∗(−1)

P_trans = s e l f .__GF. Zeros ( [ 2∗∗ s e l f .__m, 2∗∗ s e l f .__m] )
for i in range (2∗∗ s e l f .__m) :

row = s e l f .__P[ i ]
P_trans [ row , i ] = 1

H_tmp = np . dot (np . dot (Y, Z) , P_trans )

# Transform the pari ty check matrix to systematic form
GF2 = ga l o i s .GF(2)
H_bits_tmp = GF2( s e l f . unpack_bits (np . array (H_tmp [ : , 0 : s e l f .__n] ) ) )
s e l f .__H = H_bits_tmp . row_reduce ( )

# Check that the pari ty check matrix i s in systematic form
iden_matrix = GF2. Id en t i t y ( s e l f .__m∗ s e l f .__t)
#iden_matrix = np . iden t i t y ( s e l f .m∗ s e l f . t )
i f ( s e l f .__H[ : s e l f .__t∗ s e l f .__m, : s e l f .__t∗ s e l f .__m]

!= iden_matrix ) .any ( ) :
print ( "Error , ␣ could ␣not␣ br ing ␣H␣ to ␣ sys temat i c ␣ form ! " +

"␣Trying␣new␣keys . " )
return False

return True

def random_elements ( s e l f ) :
P = rd . sample ( range (2∗∗ s e l f .__m) , 2∗∗ s e l f .__m)
return P

def unpack_bits ( s e l f , x ) :
num_bits = s e l f .__m
xshape = l i s t ( x . shape )
x = x . reshape ( [ −1 ,1 ] , order=’F ’ )
mask = 2∗∗np . arange ( num_bits , dtype=x . dtype ) . reshape ( [ 1 , num_bits ] )
return np . t ranspose ( ( x & mask) . astype (bool ) . astype ( int ) ) . reshape (

[ xshape [ 0 ] ∗ num_bits , xshape [ 1 ] ] , order=’F ’ )

def gen_private_key ( s e l f ) :
s e l f . __min_poly = s e l f . rand_irr_poly ( )
s e l f .__P = s e l f . random_elements ( )

def generate_keys ( s e l f ) :
while (1 ) :

s e l f . gen_private_key ( )
i f ( s e l f . parity_check_matrix ( ) ) :

return
print ( "Test ing ␣new␣key" )

def generate_random_plaintext ( s e l f ) :
p l a i n t e x t = [ 1 ] ∗ s e l f .__t + [ 0 ] ∗ ( s e l f .__n − s e l f .__t)
rd . s h u f f l e ( p l a i n t e x t )
return p l a i n t e x t

def encrypt ( s e l f , p l a i n t e x t ) :
return np . dot (np . array ( s e l f .__H) , p l a i n t e x t ) % 2

def c iphertext_as_bytearray ( s e l f , c i phe r t ex t ) :
i f ( ( len ( c i phe r t ex t ) % 8) != 0) :

c i phe r t ex t = np . append ( [ 0 ] ∗ ( len ( c i phe r t ex t ) % 8) , c i phe r t ex t )

c i phe r t ex t = c iphe r t ex t . reshape ( [ −1 ,8 ] )
weights = 2∗∗np . arange (8) [ : : −1 ]
c i phe r t ex t = np . dot ( c ipher t ext , weights )
c i phe r t ex t = np . array ( c ipher t ext , dtype=np . u int8 )
return bytearray ( c i phe r t ex t [ : : − 1 ] )
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def support_as_bytearray ( s e l f ) :
return bytearray (np . array ( s e l f . __alpha ) )

def min_poly_as_bytearray ( s e l f ) :
bytes_per_coef f = int (np . c e i l ( s e l f .__m/8) )
min_poly_coeff = np . z e ro s ( [ bytes_per_coef f ∗( s e l f .__t+1) ] ,

dtype=np . u int8 )
for i in reversed ( range ( s e l f .__t+1) ) :

tmp_coeff = bytearray (np . array ( [ s e l f . __min_poly . c o e f f s [ i ] ] ) )
for j in range ( len ( tmp_coeff ) ) :

min_poly_coeff [ ( s e l f .__t − i )∗bytes_per_coef f + j ] = (
tmp_coeff [ j ] )

return bytearray ( min_poly_coeff )

def save_H( s e l f , path ) :
np . save ( path , np . array ( s e l f .__H) )

def load_H( s e l f , path ) :
GF2 = ga l o i s .GF(2)
s e l f .__H = GF2(np . load ( path ) )

def save_min_poly ( s e l f , path ) :
np . save ( path , np . array ( s e l f . __min_poly . c o e f f s ) )

def load_min_poly ( s e l f , path ) :
c o e f f s = np . load ( path )
s e l f . __min_poly = g a l o i s . Poly ( c o e f f s , f i e l d=s e l f .__GF)

def save_P( s e l f , path ) :
np . save ( path , np . array ( s e l f .__P) )

def load_P( s e l f , path ) :
s e l f .__P = l i s t (np . load ( path ) )
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Appendix B
Extension of CW305 API

import l ogg ing
import time
import random
from datetime import datetime
import os . path
import re
import i o
from . _base import TargetTemplate
from ch ipwhi spere r . hardware . naeusb . naeusb import NAEUSB, packuint32
from ch ipwhi spere r . hardware . naeusb . pl l_cdce906 import PLLCDCE906
from ch ipwhi spere r . hardware . naeusb . fpga import FPGA
from ch ipwhi spere r . common . u t i l s import u t i l
from ch ipwhi spere r . common . u t i l s . u t i l import camel_case_deprecated
from ch ipwhi spere r . common . u t i l s . u t i l import fw_ver_required

from b i t a r r ay import b i t a r r ay
from .CW305 import CW305
from .CW305 import CW305_USB
import numpy as np

class CW305MC(CW305) :
_name = "ChipWhisperer␣CW305␣ ( Artix−7)"
BATCHRUN_START = 0x1
BATCHRUN_RANDOM_KEY = 0x2
BATCHRUN_RANDOM_PT = 0x4

def __init__( s e l f ) :
import ch ipwhi spere r as cw

TargetTemplate . __init__( s e l f )
s e l f . _naeusb = NAEUSB()
s e l f . p l l = PLLCDCE906( s e l f . _naeusb , r e f_ f r eq = 12.0E6)
s e l f . fpga = FPGA( s e l f . _naeusb )

s e l f . hw = None
s e l f . oa = None

s e l f . _woffset_sam3U = 0x000
s e l f . d e f au l t_ve r i l og_de f i n e s = ’ cw305_defines . v ’
s e l f . de fau l t_ver i l og_de f ines_fu l l_path = os . path . dirname (cw . __file__) +

’ / . . / . . / hardware/ v i c t ims / cw305_art ixtarget / fpga /common/ ’ +
s e l f . d e f au l t_ve r i l og_de f i n e s

s e l f . bytecount_size = 7 # pBYTECNT_SIZE in Verilog
s e l f . r e g i s t e r s = 16 # number of r eg i s t e r s we expect to f ind
s e l f . address_bits = 8 # (maximum) number of addresses in each reg i s t e r

s e l f .m = 12 # size of f i e l d , GF(2^m)
s e l f . t = 64 # weight of error vector
s e l f . n = 3488 # code length

s e l f . poly_g_path = ""
s e l f . p_matrix_path = ""
s e l f . H_pub_path = ""

s e l f . _c lks leept ime = 1
s e l f . _c lkusbautoof f = True

s e l f . last_key = bytearray ( [ 0 ]∗ 1 6 )
s e l f . p_matrix = [ ]
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s e l f . poly_g = [ ]
s e l f .H_pub = [ ]
s e l f . l a s t_c ipher = [ ]
s e l f . l a s t_e r r o r = [ ]

s e l f . e r r o r = b i t a r r ay ( )

s e l f . target_name = ’McEliece ’

def chunk_array ( s e l f , arr , n ) :
chunk_size = [ n ]∗ ( len ( a r r ) //n) + [ len ( a r r )%n ]∗ ( len ( a r r )%n != 0)

tmp_list = [ ]
s t a r t=0
stop = 0
for i in range ( len ( chunk_size ) ) :

stop += chunk_size [ i ]
tmp_list . append ( ar r [ s t a r t : stop ] )
s t a r t += chunk_size [ i ]

return tmp_list

def pack_bits_to_bytearray ( s e l f , arr , bits_per_element ) :
fmt = " {0 :0 " + str ( bits_per_element ) + "b}"
b i t_st r = ""
for i in range ( len ( a r r ) ) :

b i t_st r += fmt . format ( a r r [ i ] )

# Zero pad i f needed
b i t_st r = "0"∗( len ( b i t_st r )%8) + bi t_st r

# construct bytes of the s tr ing s tar t ing with LSB f i r s t
byte_lst = [ ]
for i in reversed ( range (0 , len ( b i t_st r ) , 8) ) :

byte_lst . append ( int ( b i t_st r [ i : i +8] ,2) )

# Convert to bytearray
return bytearray ( byte_lst )

def pack_alpha_bits_to_bytearray ( s e l f , a r r ) :
# Create format for converting ints to b i t s t r ing
fmt = " {0 :0 " + str (16) + "b}"
byte_lst = [ ]
for i in range ( len ( a r r ) ) :

tmp_str = fmt . format ( a r r [ i ] )
byte_lst . append ( int ( tmp_str [ 8 : 1 6 ] , 2 ) )
byte_lst . append ( int ( tmp_str [ 0 : 8 ] , 2 ) )

return bytearray ( byte_lst )

def load_support_from_bytearray ( s e l f , alpha ) :
packed_bits = s e l f . pack_alpha_bits_to_bytearray ( alpha )
s e l f . p_matrix = s e l f . chunk_array ( packed_bits , 32)

for i in range (0 , len ( s e l f . p_matrix ) ) :
s e l f . fpga_write ( addr=s e l f .REG_P_MATRIX_IN, o f f s e t= i ,

data=s e l f . p_matrix [ i ] )

def load_poly_g_from_bytearray ( s e l f , min_poly ) :
packed_bits = s e l f . pack_bits_to_bytearray (min_poly , s e l f .m)
s e l f . poly_g = s e l f . chunk_array ( packed_bits , 32)

for i in range (0 , len ( s e l f . poly_g ) ) :
s e l f . fpga_write ( addr=s e l f .REG_POLY_G_IN, o f f s e t=i ,

data=s e l f . poly_g [ i ] )

def load_cipher_from_bytearray ( s e l f , c iphe r ) :
packed_bits = s e l f . pack_bits_to_bytearray ( c ipher , 1)
s e l f . l a s t_c ipher = s e l f . chunk_array ( packed_bits , 32)

for i in range (0 , len ( s e l f . l a s t_c ipher ) ) :
s e l f . fpga_write ( addr=s e l f .REG_CIPHER_IN, o f f s e t=i , data=s e l f .

l a s t_c ipher [ i ] )

def read_error ( s e l f ) :
s e l f . l a s t_e r ro r = [ ]

for i in range (0 , 14) :
i f ( i < 13) :

s e l f . l a s t_e r ro r . append (bytearray (
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s e l f . fpga_read ( addr=s e l f .REG_REC_ERR_OUT,
o f f s e t=i , r ead l en=32) [ : : − 1 ] ) )

else :
s e l f . l a s t_e r r o r . append (bytearray (

s e l f . fpga_read ( addr=s e l f .REG_REC_ERR_OUT,
o f f s e t=i , r ead l en=20) [ : : − 1 ] ) )

def fpga_write ( s e l f , addr , o f f s e t , data ) :
addr = ( ( addr << s e l f . address_bits ) + o f f s e t ) << s e l f . bytecount_size
return s e l f . _naeusb . cmdWriteMem( addr , data )

def fpga_read ( s e l f , addr , o f f s e t , r ead l en ) :
addr = ( ( addr << s e l f . address_bits ) + o f f s e t ) << s e l f . bytecount_size
data = s e l f . _naeusb . cmdReadMem( addr , r ead l en )
return data

def is_done ( s e l f ) :
r e s u l t = s e l f . fpga_read ( addr= s e l f .REG_CRYPT_GO, o f f s e t =0,

read l en=1) [ 0 ]
i f r e s u l t == 0x01 :

return False
else :

s e l f . fpga_write ( addr=s e l f .REG_USER_LED, o f f s e t =0, data =[0 ] )
return True
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Appendix C
Trace capture script

import ch ipwhi spere r as cw
import pandas as pd
import random as rd
import p i c k l e
from b i t a r r ay import b i t a r r ay
import numpy as np
import mce l i e ce as mce l i e ce
import j son
import f eature_extract_he lper as fh
import time

########################################################
# Configure trace capturing
########################################################

# Configure number of traces to capture . Total numer of
# traces i s (number_of_batch − batch_start_num) ∗ nT
number_of_batch = 100 # Number of batches to capture
batch_start_num = 50 # At which batch number to s tar t
nT = 1000 # Number of traces in each batch

# Configure type of p la in tex t
# 0 : only f i xed p la in tex t
# 1 : f i xed or random with equal probab i l i t y
# 2 : only random pla in tex t
pla intext_type = 2

# Configure which part to capture
# I f set to f a l s e capture s tar t s at the beginning of decryption
# I f set to true capture s tar t s at beginning of step f ive , error locater
only_capture_last_part = True

sample_points = 24400
i f only_capture_last_part :

sample_points = 3498∗6

#Path to trace and data storage . For each batch four f i l e s
#are stored , traces , p la intex ts , c ipher tex t s and type .
#Fi les are stored as
#<trace_path> + <pre_str> + "_traces_batch" + {batch numer} +
# <post_str> + ".npy"
#<trace_path> + <pre_str> + "_plaintexts_batch" + {batch numer} +
# <post_str> + ".npy"
#<trace_path> + <pre_str> + "_ciphertexts_batch" + {batch numer} +
# <post_str> + ".npy"
#<trace_path> + <pre_str> + "_type_batch" + {batch numer} +
# <post_str> + ".npy"
trace_path = "/home/ t r a c e s /"
pre_str = "capture_id_0"
post_str = ""

########################################################
# Connect to ChipWhisperer
########################################################
scope = cw . scope ( )

########################################################
# Connect to CW305 target and program FPGA
########################################################
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t a r g e t = cw . t a rg e t (
scope ,
cw . t a r g e t s .CW305MC,
f o r c e=True ,
b s f i l e=’ /home/mc/hw/cw305_top . b i t ’ ,
d e f i n e s_ f i l e s =[ ’ /home/hw/cw305_defines . v ’ ] ,
s l u rp=True )

########################################################
# Confiure ChipWhisperer
########################################################
decimate = 1

scope . gain . db = 30

scope . adc . samples = sample_points
scope . adc . decimate = decimate
scope . adc . o f f s e t = 0
scope . adc . presamples=0
scope . adc . basic_mode = " r i s ing_edge "

scope . c l o ck . adc_src = "clkgen_x1"
scope . c l o ck . adc_phase = 0

scope . c l o ck . c lkgen_src = " ex t c l k "
scope . c l o ck . clkgen_mul = 6
scope . c l o ck . clkgen_div = 1

scope . t r i g g e r . t r i g g e r s = " t i o 4 "

scope . i o . t i o 1 = " s e r i a l_rx "
scope . i o . t i o 2 = " s e r i a l_tx "
scope . i o . hs2 = " d i sab l ed "

########################################################
# Create McEliece object and load/generate keys
# generate keys
########################################################
m=12 # Field s i ze
n=3488 # Code length
t=64 # Number of correctab le errors

mc = mce l i e ce . mce l i e c e (m, n , t )

# This part i s for using previous ly generated keys
key_path = "/home/mc/key/"
mc . load_H( key_path + "key_id_0_H . npy" )
mc . load_P( key_path + "key_id_0_P . npy" )
mc . load_min_poly ( key_path + "key_id_0_min_poly . npy" )

f ixed_pt = mc . generate_random_plaintext ( )

########################################################
# Configure CW305
########################################################
t a r g e t . vcc int_set ( 1 . 0 )
crypto_freq = 5e6

ta rg e t . p l l . p l l_enable_set (True )
t a r g e t . p l l . p l l_outenable_set ( False , 0)
t a r g e t . p l l . p l l_outenable_set (True , 1)
t a r g e t . p l l . p l l_outenable_set ( False , 2)

t a r g e t . p l l . p l l_out f req_set ( crypto_freq , 1)

t a r g e t . c l ku sbau too f f = True
ta rg e t . c l k s l e ep t ime = np . c e i l ( ( sample_points / crypto_freq ) ∗1000 +

1) . astype ( " i n t " )

# Load private key to FPGA
t a r g e t . load_support_from_bytearray (mc . get_P ( ) )
t a r g e t . load_poly_g_from_bytearray (mc . get_min_poly ( ) . c o e f f s )

scope . c l o ck . reset_dcms ( )
scope . c l o ck . reset_adc ( )
a s s e r t ( scope . c l o ck . adc_locked ) , "ADC␣ f a i l e d ␣ to ␣ lock "
time . s l e ep ( 0 . 5 )
print ( scope . c l o ck . adc_freq )

########################################################
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# Main trace capture loop
########################################################
for batch_num in range ( batch_start_num , number_of_batch ) :

print ( "Batch : ␣" + str (batch_num + 1) )

t r a c e s = [ ]
p l a i n t e x t s = [ ]
c i ph e r t e x t s = [ ]
pt_types = [ ]

for i in range (nT) :
operation_ok = True
pt = 0
pt_type = 0 # 0 fixed , 1 random

i f pla intext_type == 0 :
pt = fixed_pt
pt_type = 0

e l i f pla intext_type == 1 :
i f ( rd . randint (0 , 9 ) < 5) :

pt = fixed_pt
pt_type = 0

else :
pt = mc . generate_random_plaintext ( )
pt_type = 1

else :
pt = mc . generate_random_plaintext ( )
pt_type = 1

ct = mc . encrypt ( pt )
t a rg e t . load_cipher_from_bytearray ( ct )

i f only_capture_last_part :
double_syndrome_clk = fh . calculate_double_syndrome_clks ( ct )
scope . adc . o f f s e t = (1095 + double_syndrome_clk + 1921 +

1095) ∗ scope . c l o ck . clkgen_mul
else :

scope . adc . o f f s e t = 0

scope . arm ( )
t a rg e t . go ( )
r e t = scope . capture ( )

timeout = 0
while (not t a r g e t . is_done ( ) ) :

i i += 1
time . s l e ep ( 0 . 0 5 )
i f timeout > 100 :

print ( "Target ␣did ␣not␣ f i n i s h ␣ operat ion " )
operation_ok = False

i f r e t :
print ( "Timeout␣happened␣during ␣ capture " )
operation_ok = False

t r a c e = scope . get_last_trace ( )
t a r g e t . read_error ( )

rec_pt = bytearray ( )
for word in reversed ( t a r g e t . l a s t_e r ro r ) :

rec_pt . extend (word )

for j in range ( len ( rec_pt ) ) :
tmp_byte = np . dot ( pt [ j ∗8 : j ∗8 + 8 ] , 2∗∗(np . arange (8) [ : : − 1 ] ) )
i f not tmp_byte == rec_pt [ j ] :

print ( "Recovered␣ p l a i n t e x t ␣doesn ’ t ␣match␣known␣ p l a i n t e x t ! " )
operation_ok = False

i f operation_ok == False :
print ( "An␣ e r r o r ␣ occoured , ␣ abort ing ␣ operat ion ␣ at ␣ t ra c e ␣number␣" +

str ( i ) )
break

t r a c e s . append ( t ra c e )
p l a i n t e x t s . append ( pt )
c i ph e r t e x t s . append ( ct )
pt_types . append ( pt_type )

batch_str = "_batch" + str (batch_num)
np . save ( trace_path + pre_str + "_traces " + batch_str + post_str +
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" . npy" , np . array ( t r a c e s ) , a l low_pick le=False )
np . save ( trace_path + pre_str + "_pla intexts " + batch_str + post_str +

" . npy" , np . array ( p l a i n t ex t s , dtype=" uint8 " ) , a l low_pick le=False )
np . save ( trace_path + pre_str + "_ciphertexts " + batch_str + post_str +

" . npy" , np . array ( c iphe r t ex t s , dtype=" uint8 " ) , a l low_pick le=False )
np . save ( trace_path + pre_str + "_error_types " + batch_str + post_str +

" . npy" , np . array ( pt_types , dtype=" uint8 " ) , a l low_pick le=False )

capture_set t ings = {
" batches " : number_of_batch ,
" samples " : scope . adc . samples ,
" type␣ o f ␣pt" : pla intext_type ,
" gain " : scope . gain . db ,
" t r i g g e r " : scope . adc . basic_mode ,
" presamples " : scope . adc . presamples ,
" decimate " : scope . adc . decimate ,
" sampling_freq " : scope . c l o ck . adc_freq ,
"adc_src" : scope . c l o ck . adc_src ,
" c lkgen_src " : scope . c l o ck . clkgen_src ,
"adc_phase" : scope . c l o ck . adc_phase ,
" clkgen_div " : scope . c l o ck . clkgen_div ,
"clkgen_mul" : scope . c l o ck . clkgen_mul

}

s e t t i n g_ f i l e = open( trace_path + pre_str + "_set t ings . j son " , "w" )
j son .dump( capture_sett ings , s e t t i n g_ f i l e )
s e t t i n g_ f i l e . c l o s e ( )

print ( "Done ! " )



Appendix D
Probability of HW in a window

Let D be a random binary vector of length n where t bits have value 1. Let X
denote the sub-vector consisting of the x first bits of D. Furthermore, let p denote
the number of 1’s in X. Then, the number of possible sub-vectors X is(

p

x

)
=

(p+ x− 1)!

p!(x− 1)!
=

Γ(p+ x)

Γ(p+ 1)Γ(x)
(D.1)

where Γ is the gamma function. Given that the first x bits of D have p 1’s, the
number of possible sub-vectors of the other part of D is(

t− p
n− x

)
=

(t− p+ n− x− 1)!

(t− p)!(n− x− 1)!
=

Γ(t− p+ n− x)

Γ(t− p+ 1)Γ(n− x)
. (D.2)

Thus, the total number of possible vectors D of length n with t 1’s where the
first x bits contains p 1’s is

Γ(p+ x)

Γ(p+ 1)Γ(x)

Γ(t− p+ n− x)

Γ(t− p+ 1)Γ(n− x)
. (D.3)

The total number of possible vectors D of length n with t 1’s is given by(
t

n

)
=

(t+ n− 1)!

t!(n− 1)!
=

Γ(t+ n)

Γ(t+ 1)Γ(n)
. (D.4)

The probability that a randomly generated vector D of length n with t 1’s has
exactly p 1’s in the first x bits is then given by

P (p, x, t, n) =
Γ(p+ x)

Γ(p+ 1)Γ(x)
· (D.5)

Γ(t− p+ n− x)

Γ(t− p+ 1)Γ(n− x)
· (D.6)

Γ(t+ 1)Γ(n)

Γ(t+ n)
. (D.7)

However, as the value of the gamma function rapidly grows with a larger argu-
ment is often necessary to approximate the gamma function with the log-gamma
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function ln Γ(·). Thus, p = ln(P ) can be approximated by

p = ln Γ(p+ x)− ln Γ(p+ 1)− ln Γ(x)+ (D.8)
ln Γ(t− p+ n− x)− ln Γ(t− p+ 1) ln Γ(n− x)+ (D.9)
ln Γ(t+ 1) + ln Γ(n)− ln Γ(t+ n) (D.10)

and then P can be approximated by

P = ep. (D.11)

In figure D.1 the probability mass function of D is shown for the three variable
sets (p = 58, x = 3161), (p = 32, x = 1744) and (p = 2, x = 109), in all three cases
n = 3488 and t = 64.

Figure D.1: Probability mass function of D where n = 3488 and
t = 64.

Now, the same settings as used during classification in figure 4.11 can be
employed where n = 3488 and t = 64. The first class consists of plaintexts having
2y , y = 1, 2, . . . , 29 or fever 1’s in first x = 109y bits, i.e. x denotes the HWwindow
size. Then, the probability mass function of each class and its complement class
can be derived from equation D.10. Figure D.2 shows the difference between the
expected value of the two classes for different HW window sizes.

Figure D.2: Difference between the expected value of the two
classes for different HW window sizes.


