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Abstract

In this text we continue the work of describing subalgebras of K[x]
of finite codimension that was started in “Describing subalgebras of K[x]
using derivatives” [2]. In the referenced paper, the authors present how
such subalgebras can be described by conditions on the values in certain
points and proceed to develop a large theoretical framework to under-
stand the nature of such conditions. The authors state and prove a Main
Theorem regarding the form that such conditions can exhibit. They also
propose a Main Conjecture, a sharpening of the Main Theorem. After
having restated the required theory from “Describing subalgebras of K[x]
using derivatives” [2], we will present a proof of the Main Conjecture.
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1 Introduction

Let K be an algebraically closed field of characteristic 0. Throughout this text
we shall be concerned with univariate polynomial subalgebras A ⊂ K[x] of finite
codimension. Usually such subalgebras would be described in terms of a basis.
For example, one might be interested in the subalgebra A that is generated by
the polynomials x3, x4 and x5. Then A consists of all polynomials where the
first, and second degree terms are all 0. In [2], an entire theory is developed
around the concept of describing such subalgebras in a new way, by the use of
equations. For example, the same subalgebra A can be written using conditions
as follows,

A = {f ∈ K[x] | f ′(0) = f ′′(0) = 0}.

Another less obvious example, let B = 〈x3−x, x2〉. This algebra can be written
using conditions as,

B = {f ∈ K[x] | f(1) = f(−1)}.

That these representations are equivalent may be unclear to the reader as of
now. However, once we have presented the necessary theory from [2], it will be
an easy thing to see.

In [2] the authors postulate a main conjecture regarding the possible forms sub-
algebra conditions can exhibit. In this text we shall present a proof of this
conjecture. But before we can even state, let alone prove, the conjecture we
need to restate some of the theory that is developed in the paper.
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2 BACKGROUND

In the remainder of this text, whenever we speak of an algebra, we mean a
univariate polynomial algebra over the scalar field K.

2 Background

We begin our journey by introducing some useful terminology regarding the
basis of an algebra.

2.1 Type and SAGBI Basis

2.1.1 Type of an Algebra

If A ⊂ K[x] is a subalgebra, the set S = {deg(f) | f ∈ A} of degrees of the
polynomials forms a numerical semigroup. Every numerical semigroup has a
unique finite minimal set of generators. This minimal generator set of S will
prove to be a useful property. Thus we introduce a new definition.

Definition 1. We define the type of a subalgebra A ⊆ K[x], written T (A), as
the minimal generator set of the numerical semigroup S = {deg f | f ∈ A} of
degrees in A. We write T (A) as a tuple and omit 0 as all subalgebras need to
contain the scalar field.

For example, let A = 〈x3, x5〉. Then any polynomial in A will have a lead-
ing term comprised of factors x3, x5. Hence T (A) = 〈3, 5〉. To deal with the
subtleties of more complicated examples, we need to define SAGBI bases.

2.1.2 SAGBI bases in Algebras of Univariate Polynomials

With the type defined we can now easily define what a SAGBI basis is. In a
multivariate setting, the definition of a SAGBI basis requires some care and
setup. Thankfully, in the univariate case the concept of a SAGBI basis is quite
simple, and we restrict our definitions accordingly.

Definition 2. A SAGBI basis of a subalgebra A ⊂ K[x] is a subset G ⊆ A
of polynomials such that for each degree d ∈ T (A), there is a polynomial p of
degree deg p = d in G.

Note that a SAGBI basis may contain redundant polynomials. If it does not
we call it a minimal SAGBI basis. Throughout this text, most if not all SAGBI
bases will be minimal.

Let G be a SAGBI basis for A. Then for any polynomial q ∈ A, we can find
polynomials p1, p2, . . . , pn ∈ G such that deg (

∏
pi) = deg q (due to the fact G

contains a generating set for the numerical semigroup of degrees). Hence there
exists some scalar α such that

deg
(
q − α

∏
pi

)
< deg q.
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2 BACKGROUND 2.2 Subalgebra Conditions

We may repeat these steps, each time obtaining a polynomial of lesser degree
until we find ourselves left with 0. This process is called subduction and shows
that a SAGBI basis in fact generates its algebra.

2.2 Subalgebra Conditions

2.2.1 Derivations and Equality Conditions

In the introduction we said that any subalgebra A can be represented by a set
of conditions. In this section we shall elaborate on what these conditions are.
In general, these conditions will be represented as kernels of different linear
functions from an algebra A to the scalar field K. Such functions are called
linear functionals. Only two different families of linear functionals are required.
The first are called derivations.

Definition 3. Let α ∈ K. An α-derivation over some subalgebra A ⊆ K[x] is a
linear functional D | A→ K such that for any f, g ∈ A we have

D(fg) = D(f)g(α) + f(α)D(g).

Note that the name is parameterized and that an α-derivation need not be the
same thing as a β-derivation if α 6= β.

Right away we see that D(f) = f ′(α) is an α-derivation in any subalgebra as
D(fg) = (fg)′(α) = f ′(α)g(α) + f(α)g′(α). That D is linear is immediately
clear. We can find more interesting examples if we consider the kernel of D,
namely A = {f ∈ K | f ′(α) = 0} (that A in fact is an algebra will be proved
shortly). In this algebra both D2(f) = f ′′(α) and D3(f) = f ′′′(α) are α-
derivations since

D2(fg) = f ′′(α)g(α) + 2f ′(α)g′(α) + f(α)g′′(α)

= f ′′(α)g(α) + f(α)g′′(α),

D3(fg) = f ′′′(α)g(α) + 3f ′′(α)g′(α) + 3f ′(α)g′′(α) + f(α)g′′′(α)

= f ′′′(α)g(α) + f(α)g′′′(α).

Moreover, any linear combination of D2, D3 is an α-derivation. In fact, the set
of α-derivations forms a vector space over the same scalar field K as the algebra
they act upon. To see this, let D1, D2 be α-derivations. Then

(β1D1 + β2D2)(fg) = β1D1(fg) + β2D2(fg)

= β1(D1(f)g(α) + f(α)D1(g)) + β2(D2(f)g(α) + f(α)D2(g))

= (β1D1 + β2D2)(f)g(α) + f(α)(β1D1 + β2D2)(g).

We move on and define the second type of linear functional.

Definition 4. An equality condition over a subalgebra A ⊆ K[x] is a function
E | A→ K of the form

E(f) = c(f(α)− f(β))

for some scalars c, α 6= β ∈ K.
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We call these equality conditions as any polynomial p in the kernel of E(f) =
c(f(α)− f(β)) satisfies p(α) = p(β).

Note that the kernel of any α-derivation or equality condition is a subalgebra. As
both functionals are linear, we only need to show closure under multiplication.
Let A ⊆ K[x] be a subalgebra of finite codimension, D be an α-derivation over
A, and E(f) = f(β1) − f(β2) be an equality condition. Then if f, g ∈ ker(D)
we have D(fg) = f(α)D(g) +D(f)g(α) = 0 + 0 whence fg ∈ ker(D). If instead
f, g ∈ ker(E) we have E(fg) = f(α)g(α) − f(β)g(β). But f, g ∈ ker(E) so
f(α) = f(β) and the same for g. Hence E(fg) = 0 and fg ∈ ker(E).

It will be useful to have some lemmas regarding linear functionals under our
belt so we include these here.

Lemma 5. Let V be a vector space over the field K and let f : V → K be a
linear functional. Then ker(f) is either trivial or has codimension 1.

Proof. If f = 0 then ker(f) is trivial so let f 6= 0. Then there exist some v0 ∈ V
such that f(v0) = 1. Now for any v ∈ V we have f(f(v)v0) = f(v)f(v0) = f(v),
hence v − f(v)v0 ∈ ker(f). It follows that any v ∈ V may be written as
v = f(v)v0 + u for some u ∈ ker(f). In other words, ker(f) + 〈v0〉 = V and we
are done.

Lemma 6. Let f, g be two non-trivial linear functionals from V to K. If
ker(f) = ker(g), then f = cg for some c ∈ K.

Proof. Let v0 ∈ V such that f(v0) = 1. As above, we may write any v ∈ V as
v = f(v)v0 + u for some u ∈ ker(f). Looking at g we get g(v) = g(v0)f(v) +
g(u) = g(v0)f(v) as the functionals share the same kernel. Hence for any v ∈ V ,
g(v) = g(v0)f(v) and the statement of the lemma holds with c = g(v0).

Finally, we reformulate the two previous lemmas in a way that will be more
applicable later on when we tackle the Main Conjecture.

Lemma 7. Let A be a subalgebra of K[x] and L1, L2 be two linear functionals
over A. If L2(f) = 0 for all f ∈ ker(L1), then L2 = cL1 for some c ∈ K.

Proof. If L2 = 0 then the statement holds with c = 0. If L1 = 0, then ker(L1) =
V so L2(f) = 0 for all f ∈ V whence L2 = 0. So assume that both derivations
are non-trivial. By Lemma 5, both ker(L1) and ker(L2) have codimension 1 in
A, and as ker(L1) ⊂ ker(L2) we have ker(L1) = ker(L2). Now applying Lemma
6 yields the statement of the lemma.

2.2.2 Subalgebras of Codimension 1

In this section we will completely classify all subalgebras of codimension 1. This
will serve as an important base case for an inductive proof later on.
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Let A ⊆ K[x] be a subalgebra of codimension 1. First note that any subalgebra
that contains x also must contain all polynomials in x and therefore be all of
K[x]. Hence A can’t contain any polynomials of degree 1. By our codimension
assumption, it follows that A can be generated by a second and third degree
polynomial.

Theorem 8. Let A ⊆ K[x] be a subalgebra of codimension 1. Then A is the
kernel of either D(f) = cf ′(α) or E(f) = cf(β1) − cf(β2) in K[x] for some
scalars α, β1 6= β2 and c.

Proof. As A has codimension 1, there exist a SAGBI basis of the form g2(x) =
x2 + a2x, g3(x) = x3 + a3x (the second degree term in g3 can be annihilated by
subtraction of kg2 for some suitable scalar k). We now wish to show that there
either exist some β1, β2 such that

g2(β1)− g2(β2) = g3(β1)− g3(β2) = 0,

or there exist an α such that

g′2(α) = g′3(α) = 0

This would be enough since the kernels of both E and D are subalgebras and
would therefore need to include A if they contain g2, g3. That A would be equal
to whichever kernel can be seen by noting that neither kernel can include linear
polynomials and would therefore have codimension of at least 1.

We are now ready for the proof. The symmetry line of g2 is given by x = −a2/2
which means that for any scalar b we have g2(−a2/2 + b)− g2(−a3/2− b) = 0.
Thus we need to find a non-zero value of b such that

0 = g3(−a2/2 + b)− g3(−a2/2− b)
= (−a2/2 + b)3 + a3(−a2/2 + b)− (−a2/2− b)3 − a3(−a2/2− b)

=
3a22b

2
+ 2b3 + 2a3b,

and as b 6= 0 we get

3a22 + 4b2 + 4a3 = 0⇒ b2 =
3a22 + 4a3

4
.

We can always find such b since our field K is algebraically complete. However,
we need b 6= 0, which corresponds to 3a22 6= −4a3. But if 3a22 = −4a3 we have

g′3(−a2/2) =
3a22
4

+ a3

= −a3 + a3

= 0,

whence g′2(−a2/2) = g′3(−a2/2) = 0 and we are done.
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2.2.3 Conditions Can Represent Subalgebras of Finite Codimension

The workhorse underpinning this entire theory is a theorem proved in [1]. We
shall state it here without proof.

Theorem 9. Any subalgebra A ⊆ K[x] of finite codimension n > 1 is contained
in some subalgebra B ⊆ K[x] of codimension n−1 where A is the kernel of some
derivation or equality condition in B.

We can use Theorem 9 inductively over codimension to show that any subalgebra
A ⊆ K[x] of finite codimension can be written as the intersection of kernels of
derivations and equality conditions. Here Theorem 8 serves as a base case.

2.3 The Spectrum of a Subalgebra

Before we begin with the mathematics in this section, we introduce some termi-
nology that will aid our ease of expression. We say that the scalar α categorizes
a derivation D if D is an α-derivation. We say that the scalars β1, β2 define an
equality condition E if E(f) = c(f(β1)− f(β2)) for some scalar c.

We now define another important property of univariate polynomial subalge-
bras.

Definition 10. Let A ⊆ K[x] be a subalgebra of finite codimension. Then a
scalar α belongs to the spectrum of A, Sp(A), if either f ′(α) = 0 for all f ∈ A
or there exist some β 6= α such that f(α) = f(β) for all f ∈ A.

A quick aside. This definition is not entirely complete without Lemma 15. The
lemma depends on the current definition though so we need to state things in
this order. But for now, the reader should accept that in the kernel of any
α-derivation, we have either f ′(α) = 0 for all f or f(α) = f(β) for all f and
some scalar β. Hence the spectrum will contain any scalars that define equality
conditions or categorizes derivations by which the algebra can be described.

For example, if A = {f ∈ K[x] | f(−1) = f(1), f ′(1)− 2f ′(−1) = 0, f ′(3) = 0},
then {−1, 1, 3} ⊆ Sp(A) Again, it will be easy to see that A is, in fact, an alge-
bra once the reader has finished this section.

Note that if we create a new subalgebra by adding a condition to A, the resulting
spectrum will be a superset of the old one. This is important enough to warrant
its own lemma.

Lemma 11. If A,B ⊆ K[x] are two subalgebras of finite codimension and
A ⊆ B, then Sp(B) ⊆ Sp(A).

Proof. Any condition that holds in B also holds in A.

Now in the previous example we wrote {−1, 1, 3} ⊆ Sp(A), but in fact, equality
holds and {−1, 1, 3} = Sp(A). This can be seen by applying the following the-
orem.
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Theorem 12. Let A ⊆ K[x] be a subalgebra of finite codimension and let D
be an α-derivation over A. If λ 6∈ Sp(A) ∪ {α} we have λ 6∈ Sp(kerD). Also let
E(f) = f(α)− f(β). Then if λ 6∈ Sp(A) ∪ {α, β} we have λ 6∈ Sp(A).

A proof can be found in [2].

This theorem along with the previous lemma essentially state that there are no
”ghost” elements in the spectrum of a subalgebra. If A is obtained as the kernel
of a set of derivations and equality conditions, the spectrum consists of exactly
the scalars that define the equality conditions and categorize the derivations.

There is also a natural and important equivalence relation that we can define
on the spectrum.

Definition 13. Let A ⊆ K[x] be a subalgebra of finite codimension. Then
two spectral elements α, β ∈ Sp(A) are said to belong to the same cluster if
f(α) = f(β) for all f ∈ A. If this is the case, we write α ∼ β and say that α is
equivalent to β.

So basically, two spectral elements α, β are equivalent in a subalgebra if they
define one of the equality conditions that hold in the subalgebra.

An interesting property of equivalent spectral elements is that they share the
same derivation space. To see this, let α ∼ β be equivalent spectral elements in
some subalgebra A ⊆ K[x] of finite codimension and let D be an α-derivation.
Then D(fg) = D(f)g(α) + f(α)D(g), but since α ∼ β we have f(α) = f(β)
and g(α) = g(β). Hence D(fg) = D(f)g(β)+f(β)D(g) and D is a β-derivation
as well. So for example, if f(1) = f(−1) for all f in some algebra, we have
that D(f) = f ′(1)−2f ′(−1) is both a 1-derivation and a −1-derivation. Now it
should be easy to see that {f ∈ K[x] | f(−1) = f(1), f ′(1)−2f ′(−1) = 0, f ′(3) =
0} is an algebra.

2.4 The Main Theorem and the Main Conjecture

In this section we will deepen our understanding of derivations by proving our
prior claim that all derivations are linear combinations of derivatives evaluated
at elements in the spectrum. We will also state the Main Conjecture. First, we
need one more definition.

Definition 14. An α-derivation D over a subalgebra A ⊆ K[x] of finite codi-
mension is called trivial if α 6∈ Sp(A).

All trivial derivations are fully characterized in the following lemma.

Lemma 15. Let A ⊆ K[x] be a subalgebra of finite codimension and D be a
trivial α-derivation over A. Then D(f) = cf ′(α) for some scalar c.

The proof is complicated and we therefore direct the interested reader to [2].
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Now, there are a couple of theorems we need before we can deal with the Main
Theorem. The first one shows that every subalgebra of finite codimension con-
tains a particularly useful ideal.

Theorem 16. Let A ⊆ K[x] be subalgebra of finite codimension n and spec-
trum Sp(A) = {α1, α2, . . . , αs}. Then there exist an integer N > 1 such that
p(x)π(x)N ∈ A for all p ∈ K[x] where π(x) =

∏
αi∈Sp(A)(x− αi)

Proof. We use induction on the codimension n to prove this. If n = 1, then by
Theorem 8, we know that either π(x) = (x− α), N = 2 or π(x) = (x− β1)(x−
β2), N = 1 will work (here we used the same scalars as in Theorem 8).

We now let n > 1 and consider the induction step. Let A be obtained from
B as the kernel of some equality condition or derivation L. Let πB(x) =∏
αi∈Sp(B)(x − αi), and NB be the integer that is guaranteed by the induc-

tion hypothesis.

We consider first the case when L is an equality condition, L(f) = f(α)− f(β).
If both α, β ∈ Sp(B) we have L(pπB) = 0 for any polynomial p(x) ∈ K[x]
hence pπNB

B ∈ A and the theorem statement holds with N = NB . If in-
stead only one element belongs to the spectrum of B, say α ∈ Sp(B) but
β ∈ Sp(B). Then πA = (x − β)πB so by the induction hypothesis we have
pπNB

A = p(x− β)NBπNB

B ∈ B for any p ∈ K[x] and this in conjunction with the

fact that L(pπNB

A ) = 0 yields the theorem statement with N = NB . Finally, con-
sider the case where neither element is in the spectrum of B, α, β 6∈ Sp(B). Then
as before the induction hypothesis yields pπNB

A = p(x−β)NB (x−α)NBπNB

B ∈ B
and this case is proved in an identical manner.

Now let L be an α-derivation. If L is non-trivial, then define q to be the
polynomial we get by removing the (x−α) factor from πB . I.e q(x) = πB(x)/(x−
α). Now, for any polynomial p ∈ K[x] we have that

L(p(x)π2NB

A ) =L(p(x)(x− α)2NBq2NB (x))

=L
(
p(x)(x− α)NBqNB (x)

)
(α− α)NBqNB (α)

+ p(α)(α− α)NBqNB (α)L
(
(x− α)NBqNB

)
=0,

hence the statement holds with N = 2NB . If L is trivial in B we get the same
result by simply performing the same steps as above but with L(pπ2NB

A ) =

L(p(x− α)2NBπ2NB

B ) as our starting point.

We have now exhausted all cases and the proof is done.

Finally, we are ready for the Main Theorem.

Theorem 17 (Main Theorem). Let A ⊆ K[x] be a subalgebra of finite codi-
mension n and spectrum Sp(A) = {α1, α2, . . . , αs}. Then there exist an integer
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N such that A can be written as the intersection of the kernels of n functions
of the form

D(f) =

N−1∑
i=0

s∑
j=1

cijf
(i)(αj).

Proof. Throughout this proof we shall consider A as a vector space. It fol-
lows from Theorem 16 that we can construct a linearly independent set V2 =
{xiπN (x)|i ∈ N} that span a subspace of A. Let V1 be another (minimal) sub-
set of A such that V = V1 ∪ V2 forms a basis for A. As codim(A) = n and
codim(〈V2〉) = Ns (since deg(π) = s) we have that dim(〈V1〉) = Ns− n.

Now consider the vector space K of linear functions that can be written as

D(f) =

N−1∑
i=0

s∑
j=1

cijf
(i)(αj),

and satisfy D(q) = 0 for all q ∈ V1. If D is a function that may be written
as above, the system of equations D(q) = 0 ∀q ∈ V1 consists of Ns − n ho-
mogeneous linear equations and has Ns degrees of freedom (each of the cij).
Moreover, if q is a polynomial where deg(q) = m, then q(m) 6= 0 and q(k) = 0
for all k > m. As no two elements in V1 are of the same degree, and they all
have degree less than N , the system of equations has full rank. It follows that
there are n linearly independent solutions and dim(K) = n.

Now, note that if q ∈ V2, then q has roots in every element of the spectrum of
multiplicity at least N . Thus if αi ∈ Sp(A) and k < N we have q(k)(αi) = 0.
Hence D(q) = 0 for all D ∈ K and q ∈ V2 as well. It follows that all functions in
K annihilate all of A and A ⊆

⋂
D∈K ker(D). But as dim(K) = n, repeated ap-

plication of Lemma 5 over basis elements of K yields codim
(⋂

D∈K ker(D)
)

= n
and thus A =

⋂
D∈K ker(D). Any basis for K will now provide us with the n

conditions that were promised in the theorem statement.

Now we present another version of the Main Theorem that will be easier to work
with in this text.

Corollary 18. Let A ⊆ K[x] be a subalgebra of finite codimension n and
spectrum Sp(A) = {α1, α2, . . . , αs}. Then there exist an integer N such any
derivation D over A can be written as

D(f) =

N−1∑
i=0

s∑
j=1

cijf
(i)(αj).

Proof. As D is a derivation, A′ = ker(D) is a subalgebra of A. We now adopt the
terminology of the previous proof. Let K,K ′ be the vector spaces of functions of
desired form that annihilate A and A′ respectively. As A′ ⊂ A, we have K ⊂ K ′.
By Lemma 5 it follows that codim(A′) = codim(A) + 1 and from our results in
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the previous proof, codim(A) = dim(K) = n, codim(A′) = dim(K ′) = n + 1.
Thus K has codimension 1 in K ′. Let V be a basis for K. We can complete
V with one element, F ∈ K ′ to create a basis for K ′. As ker(D) = ker(F ), it
follows from Lemma 6 that D = cF for some scalar c whence D adheres to the
desired form.

We will now state the Main Conjecture.

Theorem 19 (Main Conjecture). Let A ⊆ K[x] be a subalgebra of finite codi-
mension n. Then there exist an integer N such that any non trivial α-derivation
D can be written as

D(f) =

N−1∑
i=1

∑
α̂∼α

cijf
(i)(α̂).

As you can see, the Main Conjecture is a sharpening of the Main Theorem
wherein any derivation only contains derivatives evaluated in one cluster (and
no regular f (0)(α) evaluations).

3 Proving the Main Conjecture

We are now ready to prove the Main Conjecture. We begin with two Lemmas
that are required for correctness.

Lemma 20. Let A be a subalgebra of K[x] where β 6∼ δ. Then the equality
condition E(f) = f(β)− f(δ) is not an α-derivation. Note that α can be non-
equivalent to both elements β, δ or equivalent to either one of them (but not
both as β 6∼ δ).

Proof. As β 6∼ δ, we can find g ∈ A such that g(β) = −1 and g(δ) = 0. Then
E(g) = E(g3) = −1, E(g2) = 1. Using the previous equlaities, if E were to be
an α-derivation we would have

1 = E(g2) = 2g(α)E(g) = −2g(α),

but also
−1 = E(g3) = 3g2(α)E(g) = 3g2(α),

which is impossible.

Lemma 21. Let A be a subalgebra of K[x] where α 6∼ β. If L is some linear
functional over A, then α ∼ β in ker(L) if and only if L is an equality condition.

Proof. If α ∼ β in ker(L), then ker(L) ⊆ ker(f → f(α) − f(β)), and we have
that L = cf(α)− cf(β) by Lemma 7. The other implication is immediate.

The previous two lemmas allow us to add any number of derivation conditions
to a subalgebra and be sure that the cluster structure remains unchanged.

11
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We are now ready to start approaching the Main Theorem. Our approach will
rely on inductively iterating through an inclusion chain of subalgebras. At each
step we will apply the following lemma, which in some regard is a special case
of the Main Theorem.

Lemma 22. Let A ⊂ K[x] be a subalgebra of finite codimension where α 6∼ β
and f (i)(β) = 0 for all 0 < i < m and f ∈ A, and there exist some f ∈ A such
that f (m)(β) 6= 0. Then

D(f) = f (m)(β) +
∑
αi∼α

N∑
j=0

cijf
(j)(αi)

can’t be an α-derivation.

Proof. Let p, q ∈ A such that p(m)(β) 6= 0 and q(α) 6= q(β). Moreover define

f(x) =
p(x)− p(β)

p(m)(β)
, g(x) =

q(x)− q(α)

q(β)− q(α)
.

Then f(β) = 0, f (m)(β) = 1 and g(α) = 0, g(β) = 1. Now let h = gN+1. Then

D(fh) = (fh)(m)(β) +
∑
αi∼α

N∑
j=0

cij(fh)(j)(αi)

= f(β)h(m)(β) + h(β)f (m)(β) +
∑
αi∼α

N∑
j=0

cij

j∑
k=0

f (j−k)(αi)h
(k)(αi)

= 0 + 1 + 0

= 1,

where the sum is zero as h = gN+1 has roots in each αi ∼ α of multiplicity at
least N + 1. Now, if D were to be an α-derivation, we would have

D(fh) = D(f)h(α) + f(α)D(h)

= f(α)D(h)

= f(α)

h(m)(β) +
∑
αi∼α

N∑
j=0

cijh
(j)(αi)


= f(α)h(m)(β).

In the remaining segments we will use f [a] to denote polynomial evaluation
when the polynomial is a complicated expression. Collecting the above results
we get 1 = f(α)h(m)(β). But we chose f and h independently. Hence for all
f, h selected in the way above, we must have f(α) = a, h(m)(β) = b for some
constants a, b where ab = 1. This means that for all p ∈ A where p(m)(β) 6= 0,
we have (

p− p(β)

p(m)(β)

)
[α] = a⇒ p(α)− p(β) = ap(m)(β), (1)

12



3 PROVING THE MAIN CONJECTURE

and for all q ∈ A where q(α) 6= q(β), we have((
q − q(α)

q(β)− q(α)

)N+1
)(m)

[β] = b,

which yields

b(q(β)− q(α))N+1 =
(
(q − q(α))N+1

)(m)
[β]

=

(
N+1∑
k=0

(
N + 1

k

)
qk(−q(α))N+1−k

)(m)

[β]

=

N+1∑
k=0

(
N + 1

k

)
(qk)(m)(β)(−q(α))N+1−k. (2)

Now f → f(α) − f(β) is not a β-derivation by Lemma 20, but f → af (m)(β)
clearly is (by our assumptions of A). Thus by equation 1, there must exist
a polynomial P (x) such that P (m)(β) = 0 and P (α) 6= P (β). If not f(α) −
f(β) = af (m)(β) for all f ∈ A which is not allowed since a functional can’t
simultaneously be a derivation and a non-derivation. But now P qualifies for
equality 2 and we get

b(P (β)− P (α))N+1 =

N+1∑
k=0

(
N + 1

k

)
(P k)(m)(β)(−P (α)N+1−k).

If we expand (P k)(m)(β) according to Faà di Bruno’s formula, we get a sum of
terms that all contain some factor P (l)(β) where 1 ≤ l ≤ m. Thus we get the
contradictory equation b(P (β)− P (α))N+1 = 0 and we are done.

The following lemma will be used at the tip of the inclusion chain.

Lemma 23. Let A ⊆ K[x] be a subalgebra of finite codimension where M is a
set of non-equivalent spectral elements. If D is an α-derivation and

D =
∑
αi∈M

cif(αi),

then all ci = 0 and D is the zero derivation. Note that we allow both α ∈ M
and α 6∈M .

Proof. Let α1, α2, . . . αn be a labeling of the elements in M . Now we define
Ai to be the subalgebra of A obtained by adding the set of conditions f(α) =
f(α1), f(α) = f(α2), . . . , f(α) = f(αi). In An all elements in M are equivalent
to α thus we have that D(f) = cf(α) for some scalar c. This is not an α-
derivation for c 6= 0, hence D(f) = 0 for all f ∈ An. Now consider An−1. In

13
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this subalgebra we have that An = ker(f → f(α) − f(αn)) ⊆ ker(D), hence
D(f) = c(f(α) − f(αi)) for all f ∈ An−1 and some scalar c. By Lemma 20 we
know that the c(f(α)− f(αi)) isn’t a derivation for non-zero c, and we see that
D(f) = 0 for all f ∈ An−1. The step above may be repeated all the way up the
inclusion chain until we arrive at the theorem statement.

Now, the Main Conjecture.

Proof of the Main Conjecture. Let C1, C2, . . . , Cn be the clusters in A, and as-
sume that α ∈ C1. Let D be a α-derivation over A. By the Main Theorem, we
know that we can write

D = F +D1 +D2 + . . .+Dn

where

Di =
∑
αj∈Ci

N∑
k=1

cijkf
(k)(αj),

and
F =

∑
αi∈M

c′if(αi)

Now, let α1, α2, . . . , αm be a labeling of the elements of Sp(A). We define Ai,j
to be the subalgebra of A obtained by adding the conditions f (k)(αl) = 0 for
all αl and 1 ≤ k ≤ i− 1 and also the conditions f (i)(αl) for all 1 ≤ l ≤ j. Note
that in each Ai,j we have the same cluster structure as in A by Lemma 21. The
subalgebras form an inclusion chain

AN,m ⊆ AN,m−1 ⊆ AN,m−2 ⊆ . . . ⊆ AN,1 ⊆ AN−1,m ⊆ . . . ⊆ A1,1 ⊆ A,

along which the proof will traverse inductively. An alternative picture of the
chain that emphasizes its recursive nature may be seen bellow.

A1,1 = A ∩ ker(f → f (1)(α1)),

A1,2 = A1,1 ∩ ker(f → f (1)(α2)),

...

A1,m = A1,m−1 ∩ ker(f → f (1)(αm)),

A2,1 = A1,m ∩ ker(f → f (2)(α1)),

...

AN,m = AN,m−1 ∩ ker(f → f (N)(αm)).

14
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As Ai,j ⊆ A we have that D is an α-derivation over each Ai,j . Moreover,
Di(f) = 0 for all f ∈ AN,m and 1 ≤ i ≤ n. Hence D = F in AN,m. As we
already know from Lemma 23, F has to be the zero derivation so D(f) = 0 for
all f ∈ AN,m. Now we move one step up along the inclusion chain. If m > 1, the
algebra one step up along the chain is AN,m−1 and if m = 1 it is AN−1,m. Either
way we denote the next algebra by B. In both cases AN,m may be obtained from
B as the kernel of f → f (N)(αm). Thus An,M = ker(f → f (N)(αm)) ⊆ ker(D)
in B hence D(f) = cf (N)(αm) for all f ∈ B. If αm 6∼ α we invoke Lemma 22
to obtain c = 0 and otherwise continue. Repeating the above steps all the way
up the inclusion chain we only keep terms in D where derivatives are evaluated
at spectral elements equivalent to α. The others are zeroed out by Lemma 22.
What remains at the top is that

D(f) =
∑
αi∼α

N∑
j=1

cijf
(j)(αi).

for all f ∈ A.
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