
MASTER’S THESIS 2021

Pedestrian detection and
tracking in 3D point cloud data
on limited systems
Jacob Berntsson, William Winberg

ISSN 1650-2884
LU-CS-EX: 2021-30

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

MASTER’S THESIS
Computer science

LU-CS-EX: 2021-30

Pedestrian detection and tracking in 3D
point cloud data on limited systems

Persondetektering och spårning med
LiDAR på begränsade system

Jacob Berntsson, William Winberg

Pedestrian detection and tracking in 3D
point cloud data on limited systems

Jacob Berntsson
ja8421be-s@student.lu.se

William Winberg
wi2203wi-s@student.lu.se

September 3, 2021

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Niklas Hansson
Carl-Axel Alm

Elin Anna Topp, elin_anna.topp@cs.lth.se

Examiner: Jacek Malec, Jacek.Malec@cs.lth.se

mailto:ja8421be-s@student.lu.se
mailto:wi2203wi-s@student.lu.se
mailto:elin_anna.topp@cs.lth.se,
mailto:Jacek.Malec@cs.lth.se

Abstract

The purpose of this Master’s Thesis is to detect, track and classify pedestrians
in stationary LiDAR point cloud data, and investigate if this is possible to do so
on systems with limited hardware. To do this we implement an complete pipeline
solving all aforementioned steps, with interchangeable parts so that di�erent
methods can be tested and compared. The pedestrian detection was achieved
using a combination of background filtration and clustering, with several dif-
ferent background filtration methods implemented and tested. The pedestrian
tracking was done by implementing a tracking system matching pedestrians be-
tween frames based of proximity, and several state estimation techniques to be
able to accurately propagate the pedestrian’s position between frames. To ac-
curately classify pedestrians, traditional machine learning methods were used
and compared to more advanced neural network classifiers. The classifiers were
trained on data extracted from a simulated environment. The complete pipeline
was then tested on a small single board computer to see if it was possible to do
the pedestrian detection and tracking in real time. By limiting the frames per
second, as well as by discarding di�erent ratios of the point cloud we were able
to run the entire solution in real time on the limited system with only small
changes in the detection, tracking and classification performance.

Keywords: LiDAR, Point cloud, Tracking, Classification, 3D data processing, Limited
Systems

2

Acknowledgements

We would like to thank our supervisors Niklas Hansson and Carl-Axel Alm for always quickly
providing the material and information we needed to succeed, and for their kind words and
support. We would also like to thank our supervisor Elin-Anna Topp for great advice and
pointing us in the right direction, as well as helping us produce an excellent Master’s Thesis
paper.

3

4

Contents

1 Introduction 7
1.1 Task and purpose . 8

1.1.1 Testing on a limited system . 9
1.2 LiDAR . 9
1.3 Related work . 10
1.4 Disposition . 11
1.5 Ethics . 11
1.6 Statement of Contribution . 12

2 Background 13
2.1 Data Gathering . 13

2.1.1 Cepton LiDAR . 14
2.1.2 Simulated Data . 14
2.1.3 Open-Source data sets . 15

2.2 Dynamic Object detection . 16
2.2.1 Background filtration . 16
2.2.2 Clustering . 18

2.3 Object tracking . 18
2.3.1 State estimation . 19

2.4 Classification . 20
2.4.1 SVM - Support-Vector Machine . 21
2.4.2 CNN - Convolutional neural network 22

3 Method & implementation 25
3.1 Data gathering . 25

3.1.1 Simulation . 27
3.1.2 Real-World . 29

3.2 Dynamic Object detection . 29
3.2.1 Background Filtration . 29
3.2.2 Clustering . 32

5

CONTENTS

3.3 Object Tracking . 32
3.3.1 Kalman Filter . 33
3.3.2 Particle filter . 36

3.4 Classification . 37
3.4.1 SVM - Support-Vector Machine . 38
3.4.2 CNN - Convolutional neural network 38

3.5 Testing on a limited system . 42

4 Results 43
4.1 Dynamic Object detection . 43

4.1.1 Background Filtration . 43
4.1.2 Clustering . 46

4.2 Object Tracking . 49
4.3 Classification . 52

4.3.1 SVM - Support-Vector Machine . 54
4.3.2 CNN - Convolutional neural network 55
4.3.3 Testing on a limited system . 56

5 Discussion 57
5.1 Data Gathering . 57
5.2 Dynamic object detection . 58

5.2.1 Background Filtration . 58
5.2.2 Clustering . 60

5.3 Object tracking . 61
5.4 Classification . 62
5.5 Testing on a limited system . 64
5.6 General discussion . 65
5.7 Future work . 66

6

Chapter 1

Introduction

Surveillance systems are widely used in today’s society in the form of security solutions able to
monitor locations and record the movement of individuals and objects within the monitored
scene. These systems are often installed in remote locations, and since high latency can be very
costly, i.e., when monitoring critical infrastructure, it is desirable to run the data processing
locally on the device.

Detecting and tracking pedestrians has many applications in security and automotive
industries. Several di�erent sensors, such as RGB camera, thermal cameras and radar are
currently standards within the industry, however, not all of these technologies are applicable
to all use cases, and they each come with their own advantages and disadvantages.

In this thesis we explored the use of Light detection and ranging (LiDAR) to try and
improve performance on use cases for pedestrian detection and tracking where already es-
tablished technologies fail to perform.

We implemented a pipeline able to solve this problem using several di�erent already es-
tablished methods for LiDAR data processing, evaluating their performance and finally sug-
gesting an optimal combination of techniques. The pipeline will contain several well defined
steps where for each of these we created several solutions and compare their performance on
both simulated data and data collected from an actual LiDAR device.

It is especially in our interest to explore which established techniques perform well on
hardware with limited memory and processing power to minimize monetary costs of using
LiDAR to solve the aforementioned problem.

With this thesis we hope to increase understanding of the benefits and limits of LiDAR
technology, both in computational metrics and investigation on how the LiDAR sensor per-
forms in use cases where other sensors struggle.

This paper will first look into and discuss several di�erent solutions to the pedestrian de-
tection and tracking problem, giving an explanation of the implementation and performance
of each of these, as well as discussing eventual problems and briefly suggesting solutions to
these. We also aim to give the reader a better understanding of LiDAR technology and 3D
data processing.

7

1. Introduction

1.1 Task and purpose
The purpose of this thesis is to explore how to increase the number of possible applications
for LiDAR by minimizing the computational cost, and thus the hardware cost, of point cloud
processing. We do this in the context of pedestrian tracking and classification. We hope that
by investigating this we will enable pedestrian tracking to run in real-time locally on the Li-
DAR device. We imagine that this would open up for several new applications for LiDAR
due to removing need for bulky and expensive processors or extensive cloud computing. Li-
DAR technology is becoming cheaper to produce as its adoption becomes wider, and with
that a number of new possible applications are emerging.

The task were to investigate several di�erent pedestrian tracking and detection tech-
niques which have already been established, and evaluate their performance and relevance
for use in limited systems. The task were divided into four distinct parts which are data
gathering, dynamic object detection, object tracking and pedestrian classification. We im-
plemented several di�erent solutions to each part, so that we could then compare di�erent
combinations of them and conclude which approach/approaches were the most viable. We
also explored the trade o� between processing speed, tracking and classification accuracy.

The data gathering focused on creating and extracting data from a simulated environ-
ment. In this thesis we used the simulator Carla [1], an open source driving simulator, to
create several scenes containing labeled LiDAR data. Using a simulator enabled us to auto-
mate the data gathering and labeling to create an extensive LiDAR data set, as well as creating
several environments to test the performance of our implementation. We also investigated
whether it is possible to use the simulated data to create a model able to perform equally well
on actual real life LiDAR data.

Due to the curse of dimensionality [2] processing 3D data requires significantly more
computationally heavy operations for clustering, tracking and classification than at lower
dimensions. LiDAR data is represented as a set of points in 3D space, from now on referred
to as a point cloud. To be able to perform these steps in real time on a limited system, we
believed that it would be necessary to perform extensive pre-processing on the point cloud
data to separate measurements coming from dynamic objects of interest from those resulting
from static objects belonging to the background. The dynamic object detection separates
these measurements and then clusters them into individual objects of interest.

The object tracking uses di�erent techniques to estimate the position and velocity (state)
of tracked objects. It then uses these state estimations to propagate the position of tracked
objects within the scene to more accurately map them to new observation in sequential Li-
DAR frames. This step also includes determining whether any newly observed object should
be tracked, and determining when an object should no longer be tracked and considered lost.
By estimating the state of the object, we could also approximate its future position which is
necessary to improve the tracking and separate objects within close proximity to one another,
as well as tracking objects which are partially or entirely obscured for a short amount of time.
Our goal was to achieve multi target tracking, allowing us to track several dynamic objects
simultaneously.

The pedestrian classification were partly based on simple assumptions about the size,
speed and movement pattern of humans. Defining some basic properties and their limits for,
e.g., human shape and movement helped us get an initial idea of whether it is likely for an
observation to have come from a pedestrian. We then applied traditional machine learning

8

1.2 LiDAR

methods on the objects which we deem being human-like to classify objects into two classes,
pedestrian and other. We explored traditional machine learning algorithms using manual
feature extraction, as well as neural networks with automatic feature extraction, to classify
pedestrians.

1.1.1 Testing on a limited system
One of the main focuses of this thesis is to investigate whether it is possible to perform pedes-
trian detection and tracking on a single-board computer with limited processing power. A
single-board computer is a functional computer made on a single circuit board. In order for
the circuit board to function as a normal computer it contains microprocessors, memory, in-
put/output devices and other features. The goal is to use one of these single-board computers
to get the tracking and detection system to run in real time and to do this we have employed
several methods that we imagine will bring down the processing requirements significantly.

1.2 LiDAR
LiDAR has been used for decades in applications, such as satellite tracking, meteorology
measuring equipment, military targeting and surface mapping of the moon, as well as the
more recent use in self-driving cars and robotics. With the development of more cost e�ective
and more accurate LiDAR devices in the last decade, there has been a lot of progress using
LiDAR for object detection and collision avoidance systems in autonomous vehicles. This
includes detecting moving objects like pedestrians, animals and other vehicles, as well as
stationary objects like signs, lampposts and buildings. The use of of LiDAR in autonomous
vehicles is mainly due to its performance in non optimal conditions, such as darkness or
when the pedestrian is wearing colors camouflaging them against the background, where
other methods to detect pedestrians, e.g., RGB cameras, loose their reliability.

The advances in pedestrian detection raise an interest in LiDAR technology as an im-
provement in fields where RGB and heat cameras have previously been the primary sensor.

A LiDAR device is able to measure distances by illuminating its surroundings with laser
light, and measuring the time it takes for the laser to reflect back into a sensor located on
the device. By illuminating a limited field of view (FOV) with many laser beams the device
is able to construct a point cloud representing a 3D image of the surrounding area. Since the
origin of the light is the LiDAR itself, it has an advantage over normal cameras since it is able
to capture its surroundings even when no other light source is present. Using the 3D point
cloud from the camera it is also possible to derive other useful information, like the distance
between two objects, their speed and acceleration in 3D space, in a more accurate way than
some other recording devices.

Due to the main purpose being to explore new potential uses by maximizing computa-
tional e�ciency, and us imagining the most computationally heavy part to be data handling,
we limit ourselves to a stationary LiDAR with a limited FOV. Using a stationary LiDAR will
hopefully enable us to e�ciently filter out everything but the necessary data, and the limited
FOV will greatly reduce the scale of the data.

We expect that the LiDAR device will need some initial calibration upon being mounted.

9

1. Introduction

This calibration will most likely include fine tuning parameters, and/or creating a back-
ground model through some pre-processing steps.

While it is possible to detect and track many di�erent things using LiDAR, this report
will focus only on pedestrian tracking. We will consider pedestrians moving in scenes with a
flat ground plane, as well as curved surfaces.

1.3 Related work
Since this report only considers stationary LiDAR’s there will be a static background present
in every scene. Di�erent methods of extracting the background from the 3D point cloud have
been explored in [3], [4], [5], [6], [7], and [8].

In [3] they implement a 3D density statistic filter (3D-DSF) able to separate static back-
ground points from dynamic foreground points.

In [4] they model the background by recording for each horizontal and vertical angle
combination the recorded maximum distance over some initial frames.

In the same article they also determine if a point is static or dynamic by taking the points
from the current point cloud and counting the number of near lying points in a past point
cloud.

In [6] they use an octree structure to represent the 3D space scanned by the LiDAR.
Similarly, in [5] they use Dempster Shafer Theory for creating a 3D occupancy grid also rep-
resented by an octree structure which describes whether a small subspace in the scanned area
is occupied or not.

In [8] they use an Bayesian approach to estimate the probability of a point matching
a pre-defined motion model, which in the scope of their report is the movements of a car
between frames.

One of the most used methods for clustering points is called Density-based spatial clus-
tering of applications with noise (DBSCAN) [9]. DBSCAN is a data clustering algorithm
that given a set of points in some space is able to group points together into separate clusters
based on proximity.

Another method for clustering is the Mean shift algorithm [10], which is a centroid based
clustering algorithm.

A way of clustering the point clouds generated by a LiDAR in an e�cient way has been
explored in [11]. In the article, they introduce Lisco, an algorithm for Euclidean-distance
based clustering of LiDAR point clouds.

Several methods of tracking a dynamic object as it moves through the scene has been
explored in [12], [13] and [14].

In [12] they compare using a Kalman filter and a particle filter to recursively update the
position and velocity state of a spherical item moving through the LiDAR point cloud scene.

In [13] they track pedestrians and other dynamic objects with a particle filter by estimat-
ing state variables x, y, z positioning and their velocity vx, vy, vz in those directions.

In [14] they describe several uses of the Particle filter, one of them being target tracking.
They also use Rao–Blackwellization which is using a particle filter in combination with a
Kalman filter to achieve better accuracy in the state estimations.

Accurately classifying clustered 3D point clouds as pedestrians has been explored in [15],
[16], [17] and [18]. In [15] they discuss which features are the most important for the clas-

10

1.4 Disposition

sification, and investigate how well SVM, Random forest classifiers and K-means classifiers
manage to perform on the task.

In [16] they train two CNN’s to detect pedestrians using the 2D depth map and reflec-
tively map resulting from a LiDAR point cloud, and use a form of sensor fusion to combine
the classifiers for better accuracy.

In [17] they create a voxel representation of the area using the 3D point cloud, and then
use a 3D CNN to create a model able to accurately classify pedestrians.

In [18] they train a deep neural network able to classify objects based only on the point
cloud set without having to transform the data into a voxelization or other representation.

1.4 Disposition
The outline of the thesis is as follows: Chapter 2 includes the theory and tools used in the
thesis and also the proposed solution to the object detection and tracking methods. The
chapter summarizes information regarding already established techniques for data gathering,
followed by object detection and lastly it covers object tracking and classification.

In Chapter 3 we present the metrics and methods used to evaluate the dynamic object de-
tection, as well as explain our specific implementation of the techniques presented in chapter
2.

In chapter 4 we will present the performance of our di�erent implementations in a con-
cise and visual way.

In chapter 5 we will discuss the results presented in chapter 4 and also present which
techniques seem to perform best in di�erent scenarios. We will present our suggested optimal
implementation of the pipeline, as well as discussing in which areas it excels and where it falls
short.

1.5 Ethics
Pedestrian tracking using LiDAR data has ethical advantages over other established tech-
niques like RGB cameras, one being that no detailed features like facial structure or hair
color that could be used to identify individual people’s identities are present in the data.
When a pedestrian moves through the 3D point cloud scene the only discernible features are
their height, width and stride. While these features are definitely enough to identify people
to some degree, especially when trying to find a known individual, they are significantly less
distinct features than those captured by regular cameras.

Privacy is a huge concern when recording RGB video, especially with new regulation,
such as GDPR, since individuals are often identifiable from the footage alone. Replacing the
video with LiDAR data would partially protect the identities of the people being recorded
in public settings without their explicit consent.

Recording and tracking movements of pedestrians has a lot of uses in automotive applica-
tions, security and robotics, where the LiDAR is used to help avoiding collisions, or enabling
interaction with humans. Robust tracking and detecting of pedestrians is a huge requirement
for deployment of autonomous vehicles, since they are some of the most vulnerable actors
in tra�c. Each year roughly 1.35 million people are killed in avoidable tra�c accidents, and

11

1. Introduction

creating safer and more e�cient tra�c by removing the human factor would greatly improve
world wide health.

Detecting and tracking human movement can also be used with ill intent in, e.g., mili-
tary applications, such as automatic targeting for ballistics. As we will show in this report,
a LiDAR is very capable of determining the relative position of objects moving in the scene,
and to further use this information to automatically aim a turret towards the detected object
would be trivial. More common sensors like RGB cameras can surely be used in similar ways,
and it is unclear if LiDAR technology o�ers any further improvements over already estab-
lished techniques in this area. Since they are also anonymous in their detection, it would
be di�cult to discern enemy combatants from friendly ones, which limits its use in military
applications.

The company which hired us to do this thesis are part of an initiative called the UN
Global Compact and have pledged to adhere to several principles, two of which are

Principle 1: Businesses should support and respect the protection of internationally pro-
claimed human rights; and Principle 2: make sure that they are not complicit in human rights
abuses.

1.6 Statement of Contribution
The work behind this thesis has been divided equally between the two authors. William was
responsible for the tracker and state estimations, while Jacob focused on the simulator and
data gathering. The rest of the programming, testing, and writing of the report was done in
unison.

12

Chapter 2

Background

In this chapter we present many of the techniques mentioned in the related work section,
as well as the motivation between the selection of each of these. We will also present the
di�erent data sets available to us.

The first section in this chapter will be about the acquisition of data. The gathered data
will be used to generate data sets which will be used to train the classification models. The
three major steps for data processing, which are data acquisition, data labeling and improve-
ment of existing data will be presented. The pros and cons between collected data, simulated
data and open-source data sets will also be discussed.

The dynamic object detection section will discuss both background filtration and clus-
tering.

Object tracking will be about both Kalman filters and particle filters and how they can
be used to estimate the state of tracked objects.

The last section will be about classification methods and how they can be used in order
to determine class belonging of di�erent objects.

2.1 Data Gathering
The most important step when it comes to solve any supervised machine learning task is the
data gathering, since the accuracy of a classifier greatly depends on the quality of the data
set. So how does one acquire a good data set for training models? According to [19] there
are mainly three steps that can be used for data processing, namely data acquisition, data
labeling and improvements on existing data and models. Data acquisition is the method to
use if there is little or no data available initially. In order to acquire more data one could, for
instance, search for pertinent data sets on the Web or create own data sets by using hardware
to gather images, readings and so forth.

When the desired amount of data has been acquired it is time to label individual exam-
ples from the data. Di�erent techniques, that are explained in [19], can be used depending

13

2. Background

on how much of the data has already been labeled. For instance, if the data contains enough
labels it can enable a self labeling semi-supervised learning technique, which makes predic-
tion by exploiting both the labeled and unlabeled data. However, if not much labeled data is
available, one way is to label the data manually with the help of, e.g., active learning which fo-
cuses on selecting the most interesting unlabeled examples or crowd-sourcing which focuses
on labeling lots of data with less accuracy.

The last step can be used in order to improve already labeled data sets or enable active
learning in the model. Techniques for data cleaning, such as HoloClean [20] and Active-
Clean [21], could be used in order to remove unwanted noise or biases from the data set.
Both HoloClean and ActiveClean are able to detect and correct corrupt or inaccurate data.
The di�erence between the two is that HoloClean uses probabilistic inference and a two-
layer neural network model in order to repair data, while ActiveClean uses a progressive and
iterative clustering techniques to identify the dirty data. The data set can then be re-labeled
in order to improve the quality of the data set. In order to improve the model training trans-
fer learning could be applied to the model. This means that an existing well-trained model
is used to gradually train a new improved model.

2.1.1 Cepton LiDAR
The physical LiDAR that we have available for testing is a Cepton Vista-P60 [22]. According
to the specifications, the Cepton Vista-P60 is able to measure at a range of 200 meters with a
reflectivity of 30%. It has a fixed field of view, 60° horizontal and 22° vertical, and an angular
resolution of 0.25° x 0.25°. It has a scan rate of 10 scans per second. The Cepton Vista-P60
LiDAR has been used to gather real-world data from several di�erent environments, e.g.,
construction sites, parking lots and train stations. The collected data is raw measurements
from the LiDAR, which means that each measurement contains the coordinates of the objects
hit by the laser beams in relation to the LiDAR itself, as well as an intensity which refers to
the ratio between emitted and reflected light of the object hit. It also contains the horizontal
and vertical angle of the points and the distance to the object hit. The generated data is
unlabeled which means that it has to be labeled manually.

2.1.2 Simulated Data
Another way of acquiring data is to simulate it with the help of game engines and/or graphics
engines. In [23] they used a video game in order to simulate data that was used to train
computer vision models that were able to achieve similar results compared to real-world data
sets. An advantage of using simulated data is that the annotation of data becomes a much
easier task since it is easy to get information of di�erent objects in a scene. The possibilities
of adapting the data to one’s own liking are also an advantage with simulated data.

A tool for simulating data is described in the subsection below.

Carla simulator
Carla [1] is an open-source autonomous driving simulator created for autonomous driving
research. It has been developed from the ground up in order to support development, training
and validation of autonomous driving models. Carla has been implemented as an open-source

14

2.1 Data Gathering

layer over Unreal Engine 4 [24] which provides modern lifelike render quality and realistic
physics. An example of a scene from the simulator can be seen in figure 2.1.

Figure 2.1: A frame from the Carla simulator including vehicles and
pedestrians.

Carla is a server-client system, where the server is in charge of the simulation and graph-
ical rendering of the scene. The client is a Python API in charge of the interactions between
an agent and the server. Carla contains a multitude of assets and methods for simulating an
urban driving environment containing 3D models of both static and dynamic objects, such as
pedestrians and buildings. Sensors like RBG cameras or LiDAR devices can be placed within
the environment and record images of the 3D environment and the objects moving within
it. It is also possible to change the environmental settings of the simulator, settings, such as
di�erent kinds of weather and the time of day. There is also a navigation system that can be
used to simulate and control the movements of cars and pedestrians moving through the 3D
landscape. These are just some examples of what Carla provides, for a full list visit Carla’s
o�cial website [25]. In order to suite Carla to a specific need, a developer can modify exist-
ing assets and methods, as well as add their own assets and scripts in order to better suite a
specific area of use.

2.1.3 Open-Source data sets
There is a multitude of articles that use open-source data sets in order to evaluate di�erent
models. For instance, Qi et al. (2017) use the ModelNet40 [26] shape classification benchmark
in order to evaluate the performance of the model in their article [18]. The ModelNet data
set was created in order to evaluate the 3D shapenet [27] model. ModelNet is a large-scale
object data set consisting of 3D CAD models generated with modern high quality computer
graphics. The ModelNet40 data set contains the 40 most common object categories from the
ModelNet data set. The data set is labeled which means no labeling is required. However,
the models in the di�erent categories of the ModelNet40 data set are not very lifelike, i.e.,

15

2. Background

the models in the person category may tend to look more like a cartoon than a real human
being.

2.2 Dynamic Object detection
Detecting a dynamic object is done by dividing up the points in the cloud into two sets,
static and dynamic. Individual dynamic objects can then be found by using distance based
clustering on the dynamic set. We mean to explore several di�erent methods that achieve
this so that we can compare their performance.

2.2.1 Background filtration
Since we have limited ourselves to stationary LiDAR data we know that there will be a rela-
tively constant static background present in any scene. We wish to explore di�erent methods
of creating a representation of that background. The dynamic object detection is based on
the assumption that any dynamic object will not be part of the background, and therefore
all remaining points in the foreground must be dynamic. By creating a su�ciently accurate
model of the background we will be able to label each point in the cloud as dynamic or static.

The background filtering methods all work by creating a 3D space representation of the
background from analyzing subsequent scans from the LiDAR, and most of the methods need
a pre-processing step to determine the background model. This also means that it will not
perform well in some use cases when the background changes regularly, e.g., when monitoring
parking spaces or train stations.

We have implemented some of the methods discussed in related work [4] [3]. They are
discussed in further detail in this chapter, and these were primarily chosen due to their proven
performance and our delimitation of only using stationary LiDAR data.

In [8] the state belonging (static, dynamic) is determined by using an Bayesian approach
to estimate each points probability of belonging to a dynamic or static object. The polar
space is subdivided into many cells each containing a mixture of Gaussian’s able to accurately
model the non-gaussian probability of an observation emerging from a dynamic object. We
have chosen to not use this method as [4] and [3] performed better in our specific use case.

In [5] and [6] they use a octree, which is a tree data structure able to divide 3D spaces into
8 octants, which becomes the children of the root node. These octants are then recursively
divided into 8 more octants, which in turn become their children in the tree. This structure
enabled them to more e�ciently determine if a octan was occupied, by considering an octan
to be occupied if 5 or more of its children nodes were occupied. We opted against this since
the methods described in [3] and [4] had similar performance, and due to the background
filtration step being only a small step of the entire process pipeline.

Maximum angular distance filter
The data recorded by the LiDAR contains the horizontal and vertical angle, as well as the
distance to every measurement. By recording the maximum distance measured for each angle
combination it is possible to create a model of the static background present in a scene.

16

2.2 Dynamic Object detection

Then when the LiDAR performs subsequent scans it determines if a point belongs to the
background or not by comparing the measured distance to the maximum distance for that
angle combination. All points that are further than a threshold from the maximum distance
can then be classified as belonging to the dynamic set.

Nearest Neighbour filter
By comparing point clouds separated by a short temporal window it is possible to separate
the foreground from the background. This works because measurements coming from static
objects will be very similar in both point clouds. When a new point cloud is recorded by the
LiDAR it is possible to count the number of close neighbours in the past point cloud, and
since the static points accumulate they will have a lot of close neighbours while the dynamic
points will not, which enables separation of the two sets.

3D density filter
This method works by dividing the scene into many 3D sub-spaces (cubes) and measuring the
number of points present in each subspace over several LiDAR frames. Since static objects
result in similar measurements the sub-spaces containing background objects will have a lot
of measurements recorded within them, and it becomes possible to separate the background
from the foreground based on the number of points detected in each subspace. This attribute
is generally referred to as the density of the subspace.

Plane segmentation filter
Another way of removing static points from the point cloud is to use plane segmentation. In
order to successfully identify the ground plane the well known RANdom SAmple Consensus
(RANSAC) algorithm is used [28]. The RANSAC algorithm for ground plane segmentation
works by sampling some number of points present in the point cloud and from these con-
structing a plane in 3D space. It then calculates the number of other points within a threshold
distance from this plane, these points are referred to as the inlier set. This process is repeated
a pre-defined number of times with di�erent points used to construct the plane at each it-
eration, and at last returns the plane it calculated to contain the maximum number of other
points, also known as the maximum inlier set.

Point cloud distance filter
The point cloud distance filter is based on background subtraction methods commonly used
with other sensors, such as RGB cameras. In order to achieve background subtraction an
octree [29] can be used to store a background point cloud containing a static environment
without moving objects. An example where this has been done can be found in the article [30].
Then the current point cloud is added to the octree and a comparison algorithm is executed
on the respective points of the background point cloud and the current point cloud. The
resulting octree will contain distance values, where a low value indicates it is a static point
and a high value indicates that it is a dynamic point. By determining which parts of the scene
remain unchanged over time, i.e., belong to the static background, it is possible to remove

17

2. Background

these in every scene. To determine if a part of the scene does not change over time, it is
possible to use the distance to the closest point when comparing two point clouds.

2.2.2 Clustering
To discover individual dynamic objects from the filtered data we used clustering methods to
group together dynamic points into separate individual objects. Since we do not know the
numbers of objects present in the scene during this step, we must employ methods able to
dynamically calculate the number of clusters in a scene. Clustering points in 3D space is very
computationally heavy, and the performance of the methods depends greatly on the number
of points present in a scene. It might be necessary to reduce the filtered point clouds even
further to achieve real time execution. This can be done by reducing the density of objects
in the point cloud by randomly discarding a number of points before clustering.

A k-d tree is a binary search tree where the leaves in the tree are k-dimensional points. [31]
It is structured such that every node that is not a leaf node divides a k dimensional space into
two halves. This structure takes points in k-dimensional space and organizes them so that
points that are close in proximity are also close in the tree. This structure enables e�cient
searching of close neighbours in the point cloud.

Mean-shift discussed in [10] is not robust against noise, which is prevalent in LiDAR data.
Lisco [11] is a way to continuously cluster point clouds and eliminate need for search-

optimized data structures, such as k-d trees.
We chose to only implement and test DBSCAN due to it having similar time complexity

to Lisco when the k-d tree structure is used, and due to it being very robust against noise.

DBSCAN
DBSCAN is a density based clustering algorithm. This method first checks if each point
seems to belong to a cluster by checking the number of nearby neighbours within a short
radius r defined by the user, if they have over a certain amount of neighbours they are labeled
as core points. The clustering is based on creating edges from core points (nodes) to all points
within distance r, and all reachable points are considered to belong to the same cluster. If a
point is located in a low density region, and thus not reachable from any other point, it is
considered an outlier (noise) and is not included in any cluster. It is very robust against noisy
measurements and outliers in the data set. The algorithm struggles to cluster point clouds
with high variety in the cluster density, since the radius r can not be appropriately chosen.

2.3 Object tracking
When an object has been detected we want to track its movements between di�erent frames
from the LiDAR. This step also includes determining which observations should be tracked,
and when a tracked object should be considered lost. To accurately match objects between
frames it is of outmost importance to be able to accurately determine the position and ve-
locity of an object, so that its future position in following frames can be predicted. This will
significantly improve our ability to accurately track objects moving in close proximity to one
another.

18

2.3 Object tracking

Measurements from the dynamic object detection are only in the form of noisy position
estimates Pk = (x, y, z)k , but the velocity state at time k, V k = (vx, vy, vz)k , can be naively
estimated with two position measurements and the time separating them, ∆t, as Pk−Pk−1

∆t =

VK . These estimates would however not be especially accurate and we need to employ some
techniques to produce more accurate state estimations.

The techniques we have decided to use are the Kalman filter, as well as the particle filter
both presented in [12]. The Kalman filter is known to perform well in position tracking, but
due to the Kalman filter being based on some assumptions about the distributions of the
noise and measurements that we can not assume are true for our position measurements we
also wish to try with a Particle filter to see if better performance is achieved.

2.3.1 State estimation
Kalman Filter
The Kalman filter is an algorithm that receives a series of noisy and inaccurate measurements,
and uses these to estimate unknown variables. The Kalman filter estimates a probability
distribution of the state variables at each time step that is significantly more accurate than
single measurements. The Kalman filter is a recursive estimator, meaning that only the state
from the past time step and current measurements are needed to make a new estimation. A
more in depth explanation of the process can be found in [32].

To create a Kalman filter for this specific process we need a state transition model Fk

able to propagate the state xk one time step, xk = Fkxk−1 + wk , where wk is process noise.
We also need an observation model Hk able to reduce our current state estimate to an

observation, zk = Hkxk + vk , where vk is observation noise.
The measurement and observation noise is assumed to be a zero mean multivariate nor-

mal distribution p(wk) ∼ N(0,Qk) and p(vk) ∼ N(0,Rk), where Qk is the covariance of the
process noise and Rk is the covariance of the observation noise.

The Kalman filter is designed to work on a linear system with Gaussian noise, and these
assumptions do not hold true for 3D position tracking, but it is empirically known to perform
su�ciently well even in non-linear cases as shown in [12].

The Kalman Filter algorithm is then performed as shown in algorithm 1 [32].

Input : sk−1, Pk−1

Output : sk
−, Pk

−

Initialize: P0, F,H,Q,R
Pk = F ∗ Pk−1 ∗ FT

sk = F ∗ sk−1

yk = okT − H ∗ sk

S = H ∗ Pk−1 ∗ HT + R
K = P ∗ H ∗ S−1

sk
− = sk + K ∗ yk

Pk
− = (I − K ∗ H) ∗ Pk

return sk
−, Pk

−

Algorithm 1: Kalman Filter

19

2. Background

Particle filter
A particle is a hypothesis, a possible state. By generating many particles Ξk = [ξk

1 , ξ
k
2ξ

k
N]

based on current state estimations, and selecting from them the ones to be most likely, we
are able to more accurately estimate the state, as shown in [12] and [14]. A more in depth
explanation of the process can be found in [33]

We define some posterior probability P(ξn|o) able to determine the whether a particle is
likely hypothesis of the state.

By sampling with replacement from Ξk with probability P(ξn|o) we are able to select the
most likely particles and our state can be estimated as the mean of these. This step is generally
referred to as importance re-sampling.

A particle filter makes no assumptions on linearity of the system or the distribution of
the noise, which makes us believe that it might provide more accurate estimates of the state
than the Kalman Filter.

The particle filter algorithm is shown in algorithm 2.

Input : ok , sk−1, N
Output : sk

Initialize: Ξk = [ξk
1 , ξ

k
2ξ

k
N]

Ξk = propagate_particles(Ξk−1)
Ξk
− = importance_re_sampling(Ξk , P(ξk

n |o))
sk = mean(Ξk

−)
Ξk = Ξk

−

return Ξk , sk

Algorithm 2: Particle Filter

We have opted for using both a Kalman filter and a Particle filter so that we can compare
the computational e�ciency and the accuracy of the state estimations.

2.4 Classification
The two classification methods we have decided to use are the Support-Vector Machine
(SVM) [15] and 3D-Convolutional Neural Network (3DCNN) [17]. While the methods dis-
cussed in [16] also seem interesting, creating the depth and intensity image seem unnecessary
and while we imagine that sensor fusion between these could perform well it seems more ap-
plicable to use a separate sensor, such as a heat or RGB camera, which we have also decided
are outside the scope of this thesis. The method described in [18] is only applicable to point
clouds with a consistent number of points, and since this consistency is not present in the
detected pedestrian point clouds we have decided not to use this method.

Supervised learning methods work by defining a loss function describing the error be-
tween the predicted classes of the model and the actual classes. Since the value of the loss
function is low when the model produces accurate predictions, supervised learning works
by minimizing the loss function using some form of optimization method. An optimiza-
tion method works by calculating a descent direction for the function, i.e., a way to modify
the parameters within the model to reduce the value of the loss function. This is done over

20

2.4 Classification

many iterations until the value of the loss function does not change significantly between
two iterations, this is referred to as the method converging to the minimum. In this thesis
we will use two optimization methods known as Stochastic Gradient Descent (SGD) and
ADAM. Stochastic gradient descent is based of regular gradient descent, where the direction
of the gradient of the objective function is chosen as the descent direction. SDG estimates
the gradient using only a randomly chosen subset of the data, which improves convergence
time in high dimensional spaces. Adam is based on SDG, but the descent direction is instead
calculated using running averages of the past gradients and their second moments.

2.4.1 SVM - Support-Vector Machine
Support vector machines (SVM) are a supervised learning method able to analyze data for
classification. Given a training set (x1, y1), ..., (xn, yn) where x is a feature vector in some
dimension and y the corresponding class label the support vector machine is able to create a
model that separates the training examples into the separate classes. The model does this by
creating a hyperplane in the same dimension as the feature vector that divides the training
set according to the labels, optimized on achieving the maximum margin between the two
classes. SVM’s are also commonly used to solve outlier detection and regression problems. In
[15] they managed to use an SVM to train a classifier able to accurately classify humans in a
point cloud with high accuracy.

A hyperplane with normal w and o�set from the origin b can be written as the set of
feature vectors satisfying

wT xi − b = 0 (2.1)

An example of a hyperplane separating 2d points is shown in figure 2.2.

Figure 2.2: A hyperplane that maximizes the margin between two
classes of 2d points

In a lot of cases the data is not linearly separable, and it is impossible to find a hyperplane
that fully divides the two classes. In this case one can instead use a soft margin SVM. Instead

21

2. Background

of finding a hyperplane that absolutely separates the two classes its is possible to train the
SVM by minimizing the hinge loss.

l(w) =

n∑
i=1

max{0, 1 − yi(w> · xi − b)} + λ||w||2 (2.2)

The hinge loss function is 0 when the feature vector lies on the correct side of the margin,
and when it is on the wrong side the value of the hinge loss scales with the vectors distance
from the margin. The parameter λ determines a trade o� between the size of the margin and
the importance of feature vectors being on the correct side of the margin.

2.4.2 CNN - Convolutional neural network
Convolution neural networks are a class of artificial neural networks which are common to
use in image analysis.

An artificial neural networks consists of an input layer that receives external data, an
output layer which produces the result and in between those zero or more hidden layers. The
first layer takes some input, modifies it, and passes it on to further layers. The final layer
then outputs useful information to the task at hand, i.e., the probability of belonging to an
object class. The connections between the layers, and how information is passed through
them resemble the connections present in the human brain.

In the three dimensional case the network takes as input a tensor with shape (N) ∗
(widthx) ∗ (widthy) ∗ (height) where N is the number of input images.

The tensor is then convoluted with several filters present in convolutional layers, ab-
stracting the tensor into several di�erent feature maps. This process is shown in figure 2.3.

Figure 2.3: A visualisation of the 3D data (blue) convoluted with a
filter (yellow) to abstract the data into a feature map (green)

After then convolution the feature map is put into a Max pooling layer, that extracts the
most prominent features from the feature map. This process is shown in figure 2.4.

22

2.4 Classification

Figure 2.4: A visualisation of the feature map subject to max pooling

As we train the networks, the filter weights are updated to be able to extract the most
relevant feature maps for classification.

Each feature map resulting from the convolution is passed through an activation function,
a non linear transformation performed on the feature map before it is sent to the next layer.
The activation function essentially decides which features maps should be propagated further
into the network. In the sense of convolutional neural network, each filter is viewed as a
neuron and the activation function decides if the neuron should fire, i.e., if the feature map
should be passed to the next layer.

These types of CNN’s have been shown to be able to classify 3D voxel images of pedestri-
ans in [17]. The exact implementation and structure of the network is presented in chapter
3.

23

2. Background

24

Chapter 3

Method & implementation

In this chapter we will discuss the di�erent techniques that we have chosen to use in our
system and the reason behind these choices. A detailed description on how we choose to
implement these techniques will also be included.

First of we will discuss data gathering and why the choice of simulated data is a superior
choice when it comes to annotation of data and creating our own data set. We will also
explain how the simulator was set up in order to produce results similar to the Cepton Vista-
P60 LiDAR. A section on how we collected real-world data for testing the classifier that was
trained on a simulated data set is also presented.

Next up is a presentation of the methods used for background filtration and clustering
of the point clouds and how they were implemented in our system.

Information regarding the implementation of the Kalman filter and particle filter that
we used for object tracking and the pipeline used in our system is presented in the section
object tracking.

We will also discuss the implementation of the support vector machine and convolutional
neural network that was used in our system and how the data that we fed into these classifiers
has to be preprocessed before it can be used by the classifiers.

Last up is the description of the methods we used in order to test our system on a single-
board computer, and methods to reduce the computational requirements.

A visualization of the pipeline can be seen in 3.1

3.1 Data gathering
Due to the labeling of data being very costly we have decided to focus mainly on data acquisi-
tion from the simulated environment due to our belief that manually annotating enough data
would take too much time and resources from the rest of the project. The Cepton Vista-P60
LiDAR is meant to be used mainly as a way to test if our models based on simulated data also

25

3. Method & implementation

Figure 3.1: A visualisation of the Pedestrian detection and tracking
pipeline

26

3.1 Data gathering

work for real world examples. We however plan to acquire a small test set of real life LiDAR
data to see how well our classifiers created from simulated data perform in a real world case.

3.1.1 Simulation
Carla can be used in order to gather simulated data with the help of the di�erent assets and
methods provided. The first measure should be to create an environment containing various
static 3D models in order to simulate, for instance, a tra�c junction. In our case we used
one of the existing city environments in Carla to act as our urban setting. This provided us
with an environment consisting of static 3D models, however, in order for the simulation to
look more realistic we also need to include dynamic 3D models. Carla has provided us with
example scripts that can be used to spawn actors that will move around in the environment,
i.e., simulating pedestrians, vehicles and other actors and their behavior in the environment.
We have used both example scripts provided with the Carla simulator, as well as writing our
own for the dynamic actors. When the urban environment is established it is time to gather
data with the help of a sensor. Carla has a high amount of sensors, such as RGB cameras,
IMU sensors and LiDAR sensors [34]. In our case, we used the semantic LiDAR sensor [35]
which operates as a spinning 360° LiDAR. The semantic LiDAR provides, in addition to the
position of each point, the label describing the class belonging of that point, i.e., if the point
was a result of the LiDAR scanning a pedestrian, car or tree. When using the sensors in Carla,
especially the LiDAR sensors, it is of great importance that the sensor and the server are in
sync. If a LiDAR sensor and the server become unsynchronized i.e, the tick rate of the server
is not the same as the tick rate of the LiDAR, it will result in the LiDAR spinning either too
fast or too slow. This will cause the LiDAR to measure incorrectly. This can be prevented by
specifying the tick of the LiDAR to be the same as the tick rate of the server resulting in a
complete 360° measurement from the LiDAR.

We choose to use the Carla simulator to generate our simulated data set since the data
that we gathered with the Cepton Vista-P60 would not be su�cient to train our classifier and
with Carla we can generate close to unlimited amounts of data. Another reason for choosing
the Carla simulator is that the data can be simulated to look more like the Cepton Vista-P60
generated LiDAR data, in contrast to online data sets, and be more adapted to our stationary
use case.

In order to make the semantic LiDAR sensor in Carla to simulate the Cepton LiDAR
some attributes had to be modified. The attributes of the Cepton Vista-P60 LiDAR has
been stated in 2.1.1. The attributes of the Carla semantic LiDAR sensor have been modified
in the following way.

Attribute Type Value Description
Channels int 128 Number of lasers.

Range float 100 Maximum distance to measure in meters.
points_per_second int 250000 The number of points in each point cloud frame.
rotation_frequency float 10 LIDAR rotation frequency per second.

upper_fov float 11 Angle of the highest laser vertically.
lower_fov float −11 Angle of the lowest laser vertically.

horizontal_fov float 60 Angle of the lowest and highest laser horizontally.
sensor_tick float 0.1 Simulation seconds between sensor captures.

27

3. Method & implementation

With these attributes the Carla semantic LiDAR simulates the Cepton Vista-P60 LiDAR
with great resemblance. Unfortunately, the semantic LiDAR sensor in Carla is not able to
add disturbances to the measurements which the normal LiDAR in Carla is able to do. Dis-
turbances, i.e., noise and drop-o�, have to manually be added to the data after it has been
gathered.

The gathering of data using the Carla simulator was done with the following procedure.
An urban environment populated with vehicles and pedestrians was arranged. In this envi-
ronment the semantic LiDAR sensor was attached to a vehicle that drove around in the urban
environment. With this setup the gathered data contained varying events, i.e., pedestrians
crossing the road, walking on the sidewalks, walking behind obstacles etc, as well as vehi-
cles driving in front of the LiDAR obstructing large parts of the pedestrians. The dynamic
setup enabled us to capture pedestrians from many di�erent angles and distances, which is
necessary to fully learn the possible attributes of a pedestrian.

We let the simulation run for a couple of hours, resulting in a data set consisting of around
33000 measurements. This raw data set was then split into training and validation sets con-
sisting of either people or other, where other is everything that is not labeled as a pedestrian.
This is possible since the semantic LiDAR sensor in Carla contains both semantic tags and
indices. For instance, in order to get a point cloud of a single pedestrian in a measurement
consisting of multiple pedestrians, vehicles and obstacles the following was done. For each
measurement in the gathered data, all the points belonging to the same semantic tag and
index of the object hit were saved as an individual point cloud. The index of the object hit
ensures that a point cloud will not contain, for instance, multiple pedestrians. An example
of how the data generated by the Carla semantic LiDAR looks like can be seen in figure 3.2

Figure 3.2: A frame from the Carla simulator Semantic LiDAR in-
cluding vehicles, pedestrians and other objects where pedestrians are
red, vehicles blue etc.

Before we save a point cloud we also apply uniform noise to the points, in order to further
simulate the Cepton Vista-P60 LiDAR. The final data set consists of 193000 people and

28

3.2 Dynamic Object detection

281000 other point clouds, these where then split into training and validation sets such that
90% of the data set is used for training and 10% is used for validation.

3.1.2 Real-World
To collect some real LiDAR data the LiDAR device described in the background chapter was
set up in and indoors environment shown in figure 3.3

Figure 3.3: A picture of the indoor scene recorded with the LiDAR
device (visible on the tripod)

We then had some adult males with slightly di�erent physiques walk around the scene
while we recorded them. The persons were instructed to sometimes act unpredictably, e.g., to
walk with their hands above their head, pick up and carry a trashcan or having an unnaturally
long stride. Due to the only dynamic objects being present in the scene being people and
due to the lack of dynamic background points and noise a labeled data set consisting of our
volunteers can be created simply by removing the background and clustering the remaining
(dynamic) points.

3.2 Dynamic Object detection
In this section we will go more into detail about our implementations of the background
filtering techniques discussed in the background chapter. We will also discuss how our chosen
clustering is used to perform clustering in both 2 and 3 dimensions .

3.2.1 Background Filtration
Maximum angular distance Filter
We implement the method described in [4]. The maximum distance measured from a laser
emitted at a specific horizontal and vertical angle over some initial frames is stored. We use

29

3. Method & implementation

this as our representation of the background. When we use this model to filter new data we
compare for each recorded angle how far the current distance is from the maximum distance.
If it is further away than some threshold we conclude that it must belong to the foreground,
and therefore belong to a dynamic object. The background model is stored as a dictionary
dict with keys and values dict((horizontal_angle, vertical_angle)) = max_distance

Nearest Neighbour

We also implement the other method described in [7]. We store between 10 and 30 past
point clouds representing 1 to 3 seconds in the past. When we receive a new point cloud we
compare it to the point cloud furthest in the past, and count the number of points in the
old cloud within a threshold radius of the individual new points. Since the position of the
static points remain constant over time, the points in the most recent LiDAR frame that are
static will have a lot of neighbours in the past point cloud, while dynamic points will have
relatively few. Using this we are able to separate the two sets by defining a threshold value
for the maximum number of neighbouring points a dynamic object is allowed to have. In this
application we chose 5 points within a 0.25m radius as the threshold value.

Density Filter

We also implement the method described in [3]. The scene is divided into cube sub-spaces,
and during a pre-processing step we increment for each new point in a given cloud the density
of the sub-space cube containing that point. Cubes belonging to the background will have a
much higher density than cubes belonging to the foreground. Thus, by defining some thresh-
old value we can separate the high density background from the low density foreground. The
threshold value depend greatly on the size of the cubes, and if dynamic objects are present in
the scene during the pre-processing step. Optimally, if there are no dynamic objects present
in the scene during creating of the background model the threshold can be set to 0.

The background model is stored as a dictionary dict with keys and values dict((x, y, z)) =

density where the (x, y, z) have been rounded to some decimal depending on the size of each
sub-space.

Plane segment Filter

Open3D [36], the library we used to store representations of our point clouds has a built in
RANSAC algorithm for ground plane detection that we decided to use instead of imple-
menting our own. When we receive the first point cloud from the LiDAR we sample 3 points
from it and define a plane in our 3D space from these points and calculate the inlier set. This
process is repeated 1000 times and the plane resulting in the maximum inlier set is saved
and used as a representation of the ground plane. For each future LiDAR frame, since we
only consider a stationary LiDAR, this same plane can be used to filter out the ground plane
without having to repeat the RANSAC algorithm. Each point within some short distance,
in our case 0.1m, of the ground plane is considered as belonging to the background of a scene
and therefore removed.

30

3.2 Dynamic Object detection

Point cloud distance Filter
Our implementation is an extended version of the compute point cloud distance method
from open3D [36]. In open3D the point clouds are stored in a k-d-tree structure enabling
nearest neighbour search with a time complexity of O(logn) [31].

The goal of the background subtraction method is to detect the objects that move by
comparing the di�erence between the source point cloud and a background model, where
the background model consists of an average of preceding point clouds. Then for each point
in the source point cloud it computes the distance to the closest point in the background
model, and the mean of all these distances. If a point has a larger distance to its closest
neighbour then the mean of all calculated distances, it is considered dynamic. Since static
points will be very close to points in the background model, and dynamic will be far, the two
sets can be separated.

In order to keep the background model updated the oldest point cloud is removed and
replaced by a newer point cloud. This happens every five-hundred frame and keeps the fil-
tering model able to adapt to scenarios where, for instance, a car parks in the middle of the
frame for a longer period.

Test environment
To test the performance of the background filtration methods a scene was created in the
Carla simulator. An example frame from this simulated scene is shown in figure 3.4.

Figure 3.4: A frame from the Carla simulator point cloud used for
testing the background filtration methods

31

3. Method & implementation

The scene consists of roughly 5 minutes of LiDAR data where several pedestrians walk
along a sidewalk next to an open square containing several structures, such as trees, plants,
sculptures and street lights. The metric we have chosen to determine the performance of the
filter is percentage of background points removed versus the number of pedestrian points
removed. This is mainly because some of the methods use libraries that take advantage of
lower level programming languages with better performance than our own implementations
in Python, and therefore measuring and comparing the execution times for filtering a frame
would be misleading. Our goal is therefore to maximize the number of background points
removed while minimizing the amount of pedestrian points removed, enabling us to perform
our clustering on the minimum amount of points while also minimizing the loss of informa-
tion for the classifiers.

3.2.2 Clustering
Due to the curse of dimensionality [2] we are interested in measuring the performance dif-
ference between clustering on 3D data (x, y, z) and reduced 2D data (x, y). The background
filtration techniques remove the ground plane, so projecting all points onto the xy plane will
not cause any separate pedestrian or background clusters to merge. We imagine that utilizing
this might reduce the execution time of the clustering without having significant e�ects on
the accuracy of the clustering.

To visualise to the reader the di�erence between these two scenarios two examples of the
di�erent point sets are shown in figure 3.5.

Figure 3.5: The filtered point cloud in 2D and 3D. In the right image
the arrows show the orientation of the space in x (red), y (green)
and z (blue) coordinates. This scene is the same as the unfiltered
one shown in 3.4

3.3 Object Tracking
For the object tracking we have created a scene in Carla consisting of a single pedestrian
walking and running around. The pedestrian moves erratically, often changing direction,
stopping, accelerating and moving in unpredictable ways. We record the true position of the
pedestrian as the mean of all points contained in the pedestrian cluster at each time step. We

32

3.3 Object Tracking

then compare the true position with the one estimated by our tracker. What is interesting
to us here is the execution time of the state estimations in each of the filters, as well as the
position tracking accuracy. The recorded data was collected at 10 frames per second, but in
the context of minimizing the processing requirements for the system, it is also in our interest
to see how the tracking performance deteriorates when the amount of frames per second is
reduced.

The tracking process starts with receiving a new frame from the LiDAR. We use the
techniques discussed in section Dynamic Object Detection to find objects within the scene,
we will refer to the centroid of each object as an observations of the objects position. We
refer to a currently tracked object as a track.

When the tracker receives a new observation it creates a new track and assigns the new
observation to it. The track is assigned a state vector sk =(x, y, z, vx, vy, vz)k containing the
position (x, y, z)k and the velocity in each of those directions (vx, vy, vz)k at time k.

Each new time step we want to propagate our current tracks so we know where to look
for them in the next LiDAR frame. To do this we propagate the position of each of our
tracks by adding their velocity to their position. Observations from the new LiDAR frame
are then matched to our current propagated tracks based on proximity. If a new observation
is not matched to a current track we initialize a new track. If a track is not matched to a new
observation we increment the decay of the track, and delete it from the tracker if the track
has not been matched with an observation for some number of frames.

Since only observations of the position are sent to the tracker, states (vx, vy, vz)k can be
naively estimated by checking the di�erence in position between frames Pk−Pk−1

∆t = VK , but
this will result in very noisy estimates since our position measurements also contain a lot of
noise. To be able to accurately propagate our tracks using the velocity we need to employ
tactics to improve the accuracy of our state estimate.

Therefore, if a track is matched to a new observation the observation is passed through a
filter to reduce the noise in its state vector.

The tracking pipeline we created is shown in figure 3.6

3.3.1 Kalman Filter
To be able to accurately estimate the state we need to define a state transition model able to
propagate the state in time.

Starting from the one dimensional case with state variables position x, velocity vx, accel-
eration ax, and time between frames as ∆t we can define a motion model as

xk = xk−1 + vk−1
x ∆t +

1
2

ak−1
x (∆t)2

vk
x = vk−1

x + ak−1
x ∆t

ak
x = ak−1

x

(3.1)

In the three dimensional case the state vector that we are to estimate becomes

sk = (x, y, z, vx, vy, vz, ax, ay, az)k (3.2)

While the tracker is only really interested in the position and velocity of an object, the
acceleration is necessary to include to be able to define a su�ciently accurate motion model.

33

3. Method & implementation

Figure 3.6: This figure is a flowchart describing the tracking process

34

3.3 Object Tracking

From this motion model we define the state transiton model F to be

F =

1 0 0 ∆t 0 0 1
2 (∆t)2 0 0

0 1 0 0 ∆t 0 0 1
2 (∆t)2 0

0 0 1 0 0 ∆t 0 0 1
2 (∆t)2

0 0 0 1 0 0 ∆t 0 0
0 0 0 0 1 0 0 ∆t 0
0 0 0 0 0 1 0 0 ∆t
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

(3.3)

This enables us to express to propagation of the state in time as

sk = Fsk−1 + w (3.4)

where w is the process noise defined as

p(w) ∼ N(0,Q) (3.5)

with Q being the covariance of the process noise. Here di�erent states are assumed to be
uncorrelated, and the values in the diagonal simply describe the expected variance of each
state between time steps. We draw our variances from analysis performed in [37]. Here the
average movement speed of a walking pedestrian is shown to be 1.4m/s and that it takes
roughly 0.5 seconds for a pedestrian to accelerate to full walking speed. Therefore we assume
that the variance of the position is 1.4(∆t) and the variance of the velocity is 1.4∆t

0.5 . When a
pedestrian goes from standing still to a normal walking speed the pedestrian accelerates very
sharply in the first few moments and therefore we have decided on a variance twice as large
as the velocity variance.

Q =

1.4(∆t) 0 0 0 0 0 0 0 0
0 1.4(∆t) 0 0 0 0 0 0 0
0 0 1.4(∆t) 0 0 0 0 0 0
0 0 0 2.8(∆t) 0 0 0 0 0
0 0 0 0 2.8(∆t) 0 0 0 0
0 0 0 0 0 2.8(∆t) 0 0 0
0 0 0 0 0 0 5.6(∆t) 0 0
0 0 0 0 0 0 0 5.6(∆t) 0
0 0 0 0 0 0 0 0 5.6(∆t)

(3.6)

The state of the Kalman filter is represented by two variables, our state vector sk , and the
matrix Pk describing the posteriori estimate covariance matrix, which can be interpreted as
a measurement of belief in our estimates. We want to initialise the covariance to capture the
assumed error between the intital state and the actual state. Since the initial position state is
based on the position of the observation it can be assumed to be an accurate representation of
the actual state, and we therefore set the variance to be 0.1, meaning that we assume that our
initial position is within 0.1m in each axis of the actual position. The velocity is initialized
as 0 in each axis and with an average pedestrian walking speed of 1.4m/s we set the velocity

35

3. Method & implementation

variance to be (0 − 1.4)2 and due to the error in the acceleration being harder to define we
set it to (2(0 − 1.4))2 mainly due to observing good results with this choice.

In summary, a high value signifies a low belief in our initial state, while a low value sig-
nifies a high belief.

We define our initial P0 as

P0 =

0.1 0 0 0 0 0 0 0 0
0 0.1 0 0 0 0 0 0 0
0 0 0.1 0 0 0 0 0 0
0 0 0 1.42 0 0 0 0 0
0 0 0 0 1.42 0 0 0 0
0 0 0 0 0 1.42 0 0 0
0 0 0 0 0 0 2.82 0 0
0 0 0 0 0 0 0 2.82 0
0 0 0 0 0 0 0 0 2.82

(3.7)

For the Kalman Filter to work we need to be able to transform our current state estimate
sk into an observation. The observation ok passed to the Kalman filter only contains the
position of the object (x, y, z), and we need to define an observation model H , able to reduce
our current state to an observation.

We define H as

H =

 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

 (3.8)

Now we can retrieve an observation zk from state sk

zk = Hk ∗ sk + v (3.9)

where

p(v) ∼ N(0,R) (3.10)

and with R being the covariance matrix of the observation noise. Since we assume that
our observations of the position are very accurate we give them a low variance.

R =

 0.01 0 0
0 0.01 0
0 0 0.01

 (3.11)

The exact co-variances and parameters were selected with a trial and error method and
and further analysis would be necessary to actually conclude that our Kalman Filter performs
optimally.

3.3.2 Particle filter
Each tracked object is assigned N particles, which are mutations of the current state where
we have added some Gaussian noise to each of the individual state variables. The states are
initialized in the same way as in the Kalman filter. We define this Gaussian noise as being

36

3.4 Classification

either motion noise (mn), describing possible changes in the velocity, and position noise
(pn), describing possible changes in position. In our implementation we choose mn = 0.4
and pn = 0.1 based on anecdotal evidence from experimentation.

When a new measurement is made, each particle is updated. We update each velocity

vx = vx + N(0,mn) (3.12)

we also propagate each position state, and add the position noise

x = x + vx/∆t + N(0, pn) (3.13)

To determine a probability distribution describing the likelihood of each particle being
the correct state, when we receive a new observation o we assign each propagated particle pn
a likelihood based on its euclidean distance from the observation

P(pn|o) = (1/distance(pn, o))/
N∑

(1/distance(pn, o) (3.14)

We then sample N particles from our current set of particles with replacement based on
this probability distribution. This step is called importance re-sampling, and allows us to
select the most likely hypothesis from our particle set.

We create our new state estimation from the mean of the re-sampled set.
Over several iterations, the particles produced by the filter will become more and more

accurate, and our state estimation will converge to the true state.

3.4 Classification
To create an e�cient decision process for deciding if a dynamic object is a pedestrian or
other, e.g., a car, a cat or a flag, we define some initial assumptions about the properties we
expect a pedestrian to have in the point cloud.

We define the feature points per distance (ppd) to be the number of points contained in
an object divided by the distance from the LiDAR. Initial experiments tell us that for our
LiDAR setup the cluster belonging to a grown man has roughly 150 points when standing
at 10 meter distance, giving us a ppd of 1500. We establish that one of our conditions for
an object to be put up for further consideration is that the ppd is within a range centered
around 1500. A second condition is that the detected object must have a velocity above a
certain threshold to be further considered.

The two classification methods we have decided to use both are in need of a consistent
amount of features to be able to classify objects. Since the number of points in each detected
object can vary greatly we need to be able to reduce the points into a consistent feature space.
We do this by creating a voxelization of the point cluster. An example of such a voxelization
can be seen in figure 3.7

For our two methods, we want to compare the prediction accuracy, as well as the execu-
tion time of the feature extraction and the prediction step.

The training data used for creating models consists of 50000 pedestrian voxelizations
and 50000 other object voxelizations extracted from the Carla simulator.

37

3. Method & implementation

Figure 3.7: Figure showing a 10x5x10 voxelization of a pedestrian
point cloud

3.4.1 SVM - Support-Vector Machine
The features we have decided to use consist of a subset of the features presented in [15] which
are the width along the x axis and y axis, the height, points per distance and the voxelization.
We have specifically selected only the most prominent features from their SVM to improve
the execution time of the feature extraction step.

The point cloud is reduced to a voxelization of dimension 10x5x10. A voxel is either filled
or empty. The 10x5x10 voxel matrix is then flattened to a 500x1 vector, which represent the
first 500 features in our feature vector.

As additional features we also append the detected objects width in x and y dimension,
as well as their height. We also finally add our previously defined feature ppd.

In summary, the feature vector xi consists of 500 voxel values vi , widthx, widthy, height,
points per distance (ppd)

xi = [v1, ..., v500,widthx,widthy, height, ppd] (3.15)

The loss function used for our SVM is the hinge loss function described in chapter 2. The
optimization method used to minimize the loss function is stochastic gradient descent [38].

3.4.2 CNN - Convolutional neural network
For our 3D CNN we are interested in testing the prediction accuracy and execution time of
feature extraction and prediction on di�erent resolution images. We do this in hope of being

38

3.4 Classification

able to get determine a good trade o� between execution time, information loss and predic-
tion accuracy. The resolutions we have decided to test are 8x8x8, 16x16x16 and 24x24x24
voxelizations.

For every layer of our neural network we have chosen the Rectified Linear Unit (ReLU) as
our activation function, the equation can be seen in 3.16 and figure 3.8 visualizes the function.

ReLU(x) = max(0, x) (3.16)

Figure 3.8: Figure showing the ReLU activation function

ReLU converts negative inputs to 0, which results in that only the most prominent feature
maps are propagated through the network.

The feature maps output from the convolutional layers are very sensitive to the spatial
location of the features in the input. One way to reduce the sensitivity is to use max pooling
to down sample the feature map. By max pooling we extract the most relevant features from
the feature map, reducing the importance of the spatial location of features within an image.

The final dense layer only has only one neuron and uses a sigmoid activation function.

S(x) =
1

1 + ex (3.17)

A plot of the sigmoid function can be seen in figure 3.9
Thus, the output from the network will be a probability p between 0 and 1 where the

probability of belonging to each class is P(pedestrian) = p and P(other) = 1 − p.
The loss function we optimize over is binary crossentropy

Loss = −
1
N

N∑
i=1

yi · log ŷi + (1 − yi) · log (1 − ŷi) (3.18)

where yi are the actual labels and ŷi are the labels predicted by the network. We use the
binary crossentropy loss function due having having only two classes, pedestrian and other.

The loss function is minimized using ADAM, a stochastic optimization algorithm [39].

39

3. Method & implementation

Figure 3.9: Figure showing the sigmoid activation function

We want to test the performance of the classification and feature extraction for di�erent
resolution voxelizations images. Some examples of the di�erent resolution images can be
seen in figure 3.10 and 3.11.

Figure 3.10: Example image of the same pedestrian for 8x8x8 voxels
(left) and 16x16x16x voxels (middle) and 24x24x24 voxels (right)

The structure of our 3DCNN can be seen in figure 3.12.

40

3.4 Classification

Figure 3.11: Example image of the same street light for 8x8x8 voxels
(left) and 16x16x16x voxels (middle) and 24x24x24 voxels (right)

Figure 3.12: The structure of the 3DCNN

41

3. Method & implementation

3.5 Testing on a limited system
As mentioned in the background chapter and discussed above one of the main focuses of this
thesis is to investigate whether it is possible to perform pedestrian detection and tracking on
a system with limited processing power. To do this we have acquired a Coral Dev Board [40],
which runs the Mendel Linux distribution.

Since the Coral Dev Board has limited processing powers di�erent approaches on low-
ering the workload of the system can be used. Since all LiDAR data discussed in this report
has been recorded at 10fps a very simple method to reduce the computational requirements
of the system is to simply reduce the frame rate. Halving the frame rate will halve the total
processing cost of the entire system, speeding up the process significantly. As mentioned
in the background chapter each frame of the LiDAR data consists of roughly 30 000 points
which makes the filtration and the clustering steps very cumbersome, and we plan to inves-
tigate whether it is possible to discard many of these points randomly without significant
deterioration of the tracking and classification process.

42

Chapter 4

Results

This chapter covers the results that were obtained for object detection, object tracking and
classification.

4.1 Dynamic Object detection

4.1.1 Background Filtration

Maximum distance Filter

Unfortunately we were unable to get the maximum distance filter to work on simulated data
as neither the vertical angle nor the distance to the measurement is present in the Carla point
cloud data. Therefore the results here had to be extracted from unlabeled point cloud data
acquired from the Cepton LiDAR. This means the performance metric displayed will only
consider total points removed. The performance of the filter is shown in figure 4.1.

43

4. Results

Figure 4.1: This figure shows the percentage of points removed from
the data

Nearest Neighbour
The performance of the Nearest Neighbour filter is presented in 4.2. The search radius is the
distance points can be separated by and still considered to be near. For each filtration we
only looked at the closest 5 points for e�ciency, and if all of them where within the search
radius distance we labeled the point as belonging to the background.

Figure 4.2: The percentage of background points vs pedestrian
points removed for di�erent search radius

44

4.1 Dynamic Object detection

Density filter
The performance of the Density Filter can be seen in 4.3. The cube size Cs parameter defines
the side length of each cube such that their volume is Cs ∗Cs ∗Cs.

Figure 4.3: The percentage of background points vs pedestrian
points removed for di�erent cube side lengths

We can see that while having a larger cube size seems to remove more points overall,
the smaller it is the more points we manage to keep on the pedestrians. The amount of
background points removed isn’t e�ected as much by the cube side, and good performance
is achieved with all di�erent sizes.

Point cloud distance filter
In figure 4.4 the result of the point cloud distance filter with di�erent values of the number of
points parameters can be seen. The number of points parameter refers to how many points that
should be taken in to consideration when calculating the mean of the background model.

Figure 4.4: The percentage of pedestrian points (left) and the back-
ground points (right) that were filtered out with the point cloud
distance filter with di�erent values of the number of points parame-
ter.

As can be seen in figure 4.4 the percentage of background points that were filtered out
is almost identical which implies that the point cloud distance filter is good at detecting

45

4. Results

static points. When it comes to retain as much information as possible of a pedestrian a
higher value of the number of points parameter is better. However, when a value of 3000 or
higher is used, the percentage of background points that were filtered out starts to decrease
rapidly. A decrease of 0.5% were observed between 2000 number of points and 3000 number of
points compared to 0.1% between the other values and an even higher value of number of points
decreases the percentage of background points that were filtered out even further.

Plane segment filter
In figure 4.5 we show the performance of the plane segment filter with di�erent thresholds.
The threshold distance parameter is the distance a point can be from the plane and still con-
sidered as being contained within it.

Figure 4.5: The percentage of pedestrian points (left) and the back-
ground points (right) that were filtered out with di�erent distance
thresholds

Having a large distance threshold removes the lower part of pedestrians walking on the
ground plane. The better performance of the background removal with a high distance
threshold is mainly due to objects, i.e., trashcans, trees and fences that are standing on the
ground plane also have their bottoms removed.

4.1.2 Clustering
Using DBSCAN [9] works very well to cluster the entire point cloud in real time when it has
been reduced by some filter, it is also very robust against noise in the data. Some problems
we have noticed is that when a very large dynamic object, such as a truck driving close to the
LiDAR, enters the scene the number of points in the filtered point cloud rises drastically and
significantly slows down the clustering.

The average time for the DBSCAN clustering for the original 3D point cloud and the
reduced dimension 2D point cloud are shown in figure 4.6. The individual execution time of
the DBSCAN clustering for di�erent sized point cloud is shown in figure 4.7. Not all point
cloud sizes were encountered during the measurements, and as a result some of the results
are taken from interpolating over the observed measurements.

46

4.1 Dynamic Object detection

Figure 4.6: This figure shows the execution time of the clustering
for 3D points and 2D points

Figure 4.7: This figure shows the execution time of the clustering for
3D points and 2D points for di�erent sized point clouds

The graph in figure 4.7 has been smoothed using a Savitsky-Golay filter [41] to make the
performance more readable. It works by fitting a polynomial to a small moving window of
the points using least squares with the intention of smoothing the graph. While one might
expect that the graph would always be increasing over the x axis the performance of the
DBSCAN algorithm is very dependant on the amount of noise and outliers in the data which
sometimes causes the execution time to spike even for a low number of points. However, it

47

4. Results

is still observable that the 2D clustering performs better than the 3D variant, and that this
performance di�erence grows with the number of points clustered upon.

We can see in figure 4.7 and 4.6 that while clustering in 2D is generally faster, it also
squeezes sparse points along the z axis together and it more often labels background points
from measurements on, e.g., trees as coming from a dynamic object. This phenomenon can
be observed in figure 4.8 and 4.9

Figure 4.8: Images of the clusters DBSCAN found in the 2D point
cloud. Colored points have been determined as belonging to a clus-
ter.

Figure 4.9: Images of the clusters DBSCAN found in the 3D point
cloud. Colored points have been determined as belonging to a clus-
ter.

48

4.2 Object Tracking

4.2 Object Tracking
In figure 4.10 the execution time of the state estimation for the Kalman filter and the Particle
filter with di�erent numbers of particles are shown. In figure 4.11 we see the mean distance
di�erence of the estimated position (x, y, z) by the tracker and true position (xt, yt, zt). In
figure 4.11 only the Particle filters with at least 50 particles were used, as the tracker eventually
lost sight of the pedestrian when fewer particles were used.

Figure 4.10: This figure shows the execution time of the update step
of the Kalman filter and Particle filter with N particles

Figure 4.11: This figure show the mean position di�erence between
estimates and true positions of the Kalman filter and Particle filter
with N particles

49

4. Results

As we can see in figure 4.11 the position estimate using the Particle filter did not improve
significantly when more than 100 particles were used, and in our further comparisons we will
only consider the Particle filter with 100 particles.

In figure 4.12, 4.13 and 4.14 we display the estimated and true position in (x,y) coordinates.
The object first enters the scene at (19,-11) and the long straight line leading up to this is due
to the object not being present in the first few frames and us then defining its position as
(0,0). The tracker picks up the object some frames after it has entered the scene, which creates
a bit of a lag between when the actual position and the estimated position is displayed.

Figure 4.12: The true position and the estimated position using the
Kalman filter (left) and the Particle filter with 100 particles (right)
at 10fps. The estimated position was sampled once per second

Figure 4.13: The true position and the estimated position using the
Kalman filter (left) and the Particle filter with 100 particles (right)
at 5fps. The estimated position was sampled once per second

50

4.2 Object Tracking

Figure 4.14: The true position and the estimated position using the
Kalman filter (left) and the Particle filter with 100 particles (right)
at 2fps. The estimated position was sampled once per second

Figure 4.15 shows the mean euclidean distance between the true position and the estimate
calculated over all frames in the test scene.

Figure 4.15: This figure show the mean distance di�erence between
our estimate and the true positon for di�erent fps

51

4. Results

4.3 Classification
The results presented here will be the properties of the trained model and networks, as well as
their classification accuracy and speed. The two classifiers tested were the SVM and 3DCNN
described in chapter 3.4. The 3DCNN designed to work on 8x8x8 voxelizations is named
cnn_8, and the other resolution 3DCNN’s in a similar fashion. In figure 4.16 we show the
classification accuracy acquired on the simulated test data set, and in figure 4.17 we show the
classification accuracy on the real life data set described in the chapter 3.1. The di�erence
in the classification accuracy between the simulated data and the real-life data are due to
the two di�erent models di�erent ability adapt to data that it has not been trained on with
slightly di�erent characteristics.

Figure 4.16: This graph shows the accuracy of the di�erent classi-
fiers.

Figure 4.17: This graph shows the accuracy of the di�erent classifiers
on real life LiDAR data.

52

4.3 Classification

In figure 4.18 we display the time it takes to extract the features from an object used in
the di�erent classifier methods.

Figure 4.18: This graph shows the time it takes to extract the features
from one object.

The features extracted are the height, width etc., as well as the di�erent resolution vox-
elizations required by the di�erent classifiers. Since the number of features grow rapidly with
the increasing resolution, both cnn_24, and cnn_16 have significantly longer execution time
than cnn_8 and the SVM.

In figure 4.19 we display the time it takes for our di�erent classifiers to predict the class
belonging of an object.

Figure 4.19: This graph shows the time it takes to predict one object
with the di�erent classifiers.

53

4. Results

We can see that the predict time di�ers significantly depending on the resolution of the
image. Although there is a significant di�erence between the SVM and the fastest 3DCNN
(cnn_8), the predict time is very fast relative to other time costs in the pipeline.

4.3.1 SVM - Support-Vector Machine
The significance of the learned feature weights for our SVM is presented in figure 4.20.

Figure 4.20: This figure show the significance of di�erent features
in our SVM implementation

The training and validation accuracy are displayed in figure 4.21.

Figure 4.21: This figure show accuracy on the training and validation
data set for the SVM classifier

54

4.3 Classification

The training accuracy over the training examples deteriorates since larger data sets are
harder to fully capture with a simple model. However, the larger training set increases the
validation accuracy

4.3.2 CNN - Convolutional neural network
In figure 4.22, 4.23 and 4.24 we show the epoch loss and epoch accuracy for the di�erent
resolution 3DCNN.

Figure 4.22: The epoch accuracy (left) and epoch loss (right) of the 8-
voxel CNN classifier. The orange curve is the training accuracy/loss
and the blue curve is the validation accuracy/loss.

Figure 4.23: The epoch accuracy (left) and epoch loss (right) of the
16-voxel CNN classifier. The orange curve is the training accu-
racy/loss and the blue curve is the validation accuracy/loss.

Figure 4.24: The epoch accuracy (left) and epoch loss (right) of the
24-voxel CNN classifier. The orange curve is the training accu-
racy/loss and the blue curve is the validation accuracy/loss.

55

4. Results

As can be seen in figure 4.22, 4.23 and 4.24 the 8-voxel CNN classifier is able to achieve a
validation accuracy of around 94% and a validation loss of around 0.15 in 50 epochs and the
results of the voxel classifiers get worse in ascending order. The results indicates that in our
case the training of a classifier on voxels with higher resolution yields worse results compared
to the 8-voxel CNN classifier.

4.3.3 Testing on a limited system
The results shown in 4.1 display the percentage of points that need to be discarded before the
point cloud is fed through the pipeline to achieve real time execution. A flat surface means
that there is a ground flat plane present in the scene, and curved surface means that there is
no flat ground plane present in the scene.

FPS Points removed Surface
10 80% Curved
5 55% Curved
2 0% Curved
10 65% Flat
5 35% Flat
2 0% Flat

Table 4.1: The percentage of points needed to be removed to achieve
real time execution of the LiDAR tracking pipeline for curved and
flat surfaces.

The di�erence between the results for the curved surfaces and the flat surfaces result
from the ability to remove many points e�ciently using the plane segment filter if there is a
ground plane present in the scene, significantly speeding up the filtration step.

56

Chapter 5

Discussion

5.1 Data Gathering
While using Carla enabled us to create a huge data set containing point cloud data of our two
classes, pedestrian and other, the pedestrian models do not fully capture the range of human
shape and motion present in the real world. While Carla has both female and male, adult
and child models, it does not provide examples of pedestrians that would be common to see
in a real world scenario, e.g., someone carrying a large suitcase, walking with a limp, carrying
a small child, using a wheelchair or simply a pedestrian being severely overweight. Also,
since each pedestrian was extracted based on an object ID present in the Carla simulator, the
data set does not contain any pedestrians that have been clustered together as one object,
something that would be common in a crowded real life LiDAR scene. The pedestrians does
not display any other behaviour than walking, di�erent behaviors, such as sitting on a bench,
reading a book, bending over to tie their shoes or leaning against a wall would more closely
represent a real life scenario.

Currently the pedestrians possess a limited amount of animations, such as walking for-
ward, running forward and jumping. These animations are very repetitive and make the
simulation of a pedestrian walking around in an urban environment seem unnatural. So a
real case scenario where pedestrians interact with one another, avoid collisions and behave
more like a human and less like a robot is hard to simulate with the help of Carla. Also, the
absence of di�erent dynamic objects, such as animals in the Carla simulator makes it hard
to obtain measurements from objects that look similar to humans. Therefore, a more realis-
tic simulation would be desired in order to create a data set that looks more similar to real
world data. In order to make the simulations more realistic a plethora of dynamic objects
with di�erent shapes, sizes and animations would need to be added to the simulation. This
would ease the classification of other dynamic object classes and also make the classifier more
robust to objects that look similar to a pedestrian. Since the Carla simulator is built using
Unreal engine adding a more diverse range of pedestrians is possible, as well as adding custom

57

5. Discussion

animation to these but we have decided that this is outside the scope of this thesis.
The great advantage with using a simulated environment is that the data gathering can

be automated, but the automated process also creates some problems. As stated in chapter
3.1 the final data set we managed to extract from the Carla simulator consisted of 193 000
pedestrians and 281 000 other objects, creating a data set containing 474 000 individual
objects. The size of the data set makes it very hard to confirm whether there are strange data
entries that do not accurately enough represent one of the two classes, e.g., only a single or a
few points of an object were observed and labeled as one of the classes.

Our initial detection, tracking and classification pipeline, with the classifier trained on
simulated data, is still very able to detect pedestrians that move predictably in real life LiDAR
scenes. If an object behaves predictably when it first enters the scene it will be classified as
a pedestrian, and since an object is tracked while it is present in the LiDAR scene, even if it
starts behaving unpredictably, the objects can have their point clouds extracted to create a
more extensive data set containing these movements and orientations of limbs not present in
the Carla simulator. We believe that to create the best data set to train the classifiers on, we
would use our pipeline to extract pedestrians images from some real world scenes, and when
enough data has been acquired the classifiers could be retrained on the real life data set for
better performance.

5.2 Dynamic object detection

5.2.1 Background Filtration
The performance of the di�erent background filters can be seen in the results chapter. In this
section we will discuss the individual performance of the background filters, highlighting
advantages and disadvantages with each of them.

The maximum distance filter managed to perform well when the distance threshold used
to separate the background from the foreground was high, filtering roughly 90% of points
from the cloud when the threshold was set to 1m. Having a high distance threshold will result
in points belonging to dynamic objects that are close to the background, e.g., a person leaning
against a wall, being removed. The necessity for a large threshold to achieve comparable
performance to the other filters is in part due to the angular noise, caused by vibrations in
the device, present in the data, as well as the angles present in the LiDAR being continuous.
This causes a need to discretize the angular data with such precision that a limited amount
of measured angles are grouped together, as well as making sure that the measured angle
pairs during the pre-processing are actually encountered again when performing the filtering.
While it may be possible to fine tune the precision to acquire better results than shown in
this report, our di�erent attempts always resulted in one of the two problems mentioned
above. To create the background model consisting of angular pairs and distances the LiDAR
needs to record data from the scene during a pre-processing step. The time it takes to create
an accurate enough background model depends on the scene itself and the moving objects
present in it, e.g., if the scene consists of a busy road with a sidewalk next to it the background
model will take longer to be created with su�cient accuracy than if the scene contains no
dynamic objects. This is due to the actual maximum distance for some angle pair will take
longer to be encountered since a dynamic object will often block the static background for

58

5.2 Dynamic object detection

some time. Another problem is if the background changes, e.g., when monitoring a parking
lot some of the vehicles present in the scene drive away, the background model needs to be
recomputed to take the changing background into account.

The nearest neighbour filter also manages to perform very well, filtering out the major-
ity of the background while leaving most dynamic objects untouched. A similar problem
to the one mentioned above in the maximum distance filter is if a pedestrian moves close
to a static object their number of neighbours will increase drastically and due to this being
the metric used to separate the background from the foreground they will often be classi-
fied as belonging to the background. Since the number of close neighbours in the current
point cloud is counted using a point cloud measured some time interval before, and this past
point cloud continuously being updated so that the temporal di�erence between the current
point cloud and the past remains the same, the background model is able to handle changing
backgrounds, e.g., the parking lot example mentioned above. However, this also results in a
dynamic object entering the scene and remaining stationary for some time eventually being
considered part of the background and filtered out.

The density filter is one of the best ones we have implemented, and it comes with several
advantages over many of the other filters. The main advantage is the ability to adapt to
di�erent scenes depending on the background by changing the dimensions of the sub spaces.
If the background is mostly consisting of static points, using a small cube size enables us to
define the background with a very high precision and to accurately capture small or thin static
objects, e.g., poles, cones and fences without including too much of the space surrounding
these objects. If a larger dimension subspace is used it instead becomes very robust against
noise and dynamic background points, e.g., trees, flags and bushes, by including a larger space
around these objects in the background, enabling them to sway in the wind without leaving
the defined background space. Very small vibrations and changes in the LiDARs position
can create large changes in the position of the points measured far away from the LiDAR,
but these e�ects can also generally be mitigated by using larger sub spaces since it enables the
background to shift slightly and still be captured by the background model. The time needed
to create the background model is e�ected by the scene it is supposed to capture, needing
more time if the scene contains a lot of moving objects, and less if the scene is empty at the
beginning of the computation of the background model. In a similar way as the maximum
distance filter it is not currently able to handle changing backgrounds, and if the background
changes, the background model needs to be re-computed.

The point cloud distance filter works extremely well, and is able to filter out the majority
of the background without a long pre-processing step. This is because the background model
consists only of some past point clouds, enabling the background model to be created almost
instantaneously from the first few frames acquired from the LiDAR. It is able to capture
small background objects with high precision, as well as very successfully handle dynamic
background objects present in the scene. Since new point clouds are continuously acquired
by the LiDAR it becomes very easy to update the background model when changes occur in
the scene.

One drawback of this method is that it becomes computationally heavy when using a
large amount of preceding point clouds for the background model. Also, when the threshold
parameter is not tuned correctly, the method tends to filter out too much of the foreground
points. For instance, the legs of a pedestrian might be considered as background, since the
distance between their legs and the ground is smaller than the threshold.

59

5. Discussion

The plane segment filter works well if there is a constant ground plane present in the
scene. Since the ground plane does not change significantly between frames of the LiDAR,
the first frame acquired by the device can be used to detect the plane with very high precision,
and the resulting plane can be used to filter the ground plane in following frames.

The advantages of the first 4 methods mentioned are that they also work well for scenes
containing curved surfaces and elevation di�erences.

If there is a constant ground plane present in the scene we highly recommend first using
the plane segment filter, since it is very e�cient and the majority of points are usually con-
tained within the ground plane, and then using one of the other filters to remove the points
not contained in the ground plane.

Each filtration step after the first become less and less costly since fewer points are con-
sidered, and it is possible to use several filters in sequence without significantly increasing
the execution time of the filtration step.

5.2.2 Clustering
The results displayed in figure 4.7 show that there is a slight performance increase when
reducing the points located in the LiDAR data into two dimensions. While the performance
between the two methods are more similar for a smaller amount of points the di�erence
grows with the size of the point cloud.

As also displayed in 4.6 and 4.7 the execution time of the clustering is one of the more
computationally heavy aspects of the pipeline, and in cases where a large number of points
remain after the filtration there might be a significant advantage to reduce the points to two
dimensions. The reduced dimensionality also comes with some slight disadvantages, since
measurements separated by a large distance on the Z axis would be pressed closely together
in the XY plane. The results of this can mainly be observed by measurements coming from,
e.g., trees or pillars being pressed closer together and therefore also being clustered together
and considered an observation of a dynamic object when the opposite is true. This problem
is generally avoided when clustering in a higher dimension, with the price of increased exe-
cution time. It is possible that this problem could be avoided altogether by creating better
performing background filters more suited for dealing with dynamic background objects.

A problem with both methods is that pedestrians walking in close proximity to one an-
other will be clustered together as a single object. Since the observation passed to the tracker
refer to a position based on the center of the clusters it will be skewed significantly from
two objects being clustered together and the tracker receiving only one observation for two
separate tracked objects. Since DBSCAN clusters points together based on proximity low-
ering the threshold for what is considered close could separate objects previously clustered
together. A drawback of lowering the threshold is that DBSCAN becomes unable to cluster
points coming from dynamic objects located far away from the LiDAR sensor, since the point
cloud becomes more sparse the further away an object is from the LiDAR device. One solu-
tion to this could be to further consider clusters that have a large amount of points in ratio to
their distance from the LiDAR device, clustering again on these with a lower threshold value.
It is also important to note that the distances between points shrink significantly when the
third dimension is removed, and fine tuning the parameters of the DBSCAN algorithm to
take this into consideration is also important.

Rather than declare that one of the methods is better than the other, we would like to

60

5.3 Object tracking

suggest two di�erent use cases where we imagine that the di�erent methods would perform
better than the other. In a scene where many dynamic objects are present, e.g., a train station
or a heavily tra�cked street where the majority of background points are from static objects,
e.g., buildings, it should be advantageous to use the 2D clustering since background models
are more able to fully remove the background points. In another scene where a lot of dynamic
background objects, e.g., trees or bushes are present, but we do not expect a large amount of
fully dynamic objects to appear it would be advantageous to use the 3D clustering method.

5.3 Object tracking
While we have managed to successfully achieve multi target tracking, the performance of
the object tracking scales badly with the number of observations and current tracks in each
LiDAR frame. The distance matrix defining the distance between each of the n tracks and
m observations is of size n*m, and this matrix needs to be fully searched n times to cor-
rectly match each of the tracks to an observation. This gives the tracker a time complexity
of O(n2 ∗ m) in relation to the number of tracks and observations. This could in turn re-
sult in severe performance deterioration when the LiDAR is monitoring a scene where many
dynamic objects are present, e.g., a train station or a heavily tra�cked street.

Due to this performance issue it is very important to have a sound and well defined deci-
sion process of when to add tracks and when to discard them, since the performance is very
much dependant on the number of tracks currently in the tracker.

In our implementation any observation that is not matched to a current track is initial-
ized as a new one and added to the tracker. A drawback of adding any new observation to the
tracker is that static objects not of interest that suddenly move due to strong winds, vibra-
tions, etc., will be added to the tracker. We imagine that adding a more sophisticated decision
process of when a track should be added could improve the performance of the tracker, since
non-interesting objects would not be considered in the first case. In the pedestrian track-
ing case this decision process could involve some easily extracted features from observations,
such as their dimensions and number of points.

The decay parameter discussed in the method section decides when a track not matched
to an observation for some time should be discarded. Having a low decay threshold enables
the tracker to quickly discard tracks from dynamic objects that have left the scene, but will
also cause the tracker to discard tracks that are still present within the scene but have been
entirely obscured for a short amount of time from, e.g., walking behind a car or another
background object. This need to be taken in to account when deciding the correct decay
threshold and di�erent thresholds might be best for di�erent scenes based on information
about the background objects and expected amount of dynamic objects.

As mentioned several times in this thesis, the estimation of the velocity and position
of each observation is of out-most importance to accurately map tracks to observations, es-
pecially in crowded scenes where several dynamic objects move in close proximity to one
another. When two pedestrians walk close to each other we often receive only a single obser-
vation from the dynamic object detection as these pedestrians have been clustered together
as a single object. Determining the direction of movement for each pedestrian then helps
accurately map the two separate tracks to the correct observations when the merged clus-
ter again separates into two separate objects. It is also necessary to update the position of

61

5. Discussion

tracks not matched to an observation for several frames when such an object moves behind
an obstacle.

As can be observed in the result section in figure 4.10 and 4.11, displaying the execution
time and mean position error for the Kalman Filter and Particle filter, the Kalman filter per-
forms significantly better in term of execution time. It also performs significantly better in
regard to position estimates for lower fps as can be observed in figure 4.15. While the particle
filter manages to perform slightly better when a large number of particles are used, the exe-
cution time grows rapidly with an increasing number of particles and the improved position
tracking is negated by the significantly increased time for each update step. Therefore we can
conclude that the Kalman filter algorithm is the best approach to take in the state estimation
of the tracked objects.

It is also important to note that while our state estimators both manage to provide solu-
tions to the given problem, they might not be optimally implemented. We therefore imagine
that the performance in sense of execution time and position accuracy could be further im-
proved upon by spending more time analysing the movement.

In our tracking solution the trails are matched with observations only based on proximity
even though more information regarding the properties of the tracks could be considered.
The LiDAR data contains in addition to the position of each point their intensity which is
the ratio between the emitted and reflected light by the LiDAR device. This ratio is decided
by the material properties and color of the objects hit, and would di�er significantly between
pedestrians wearing dark or light clothing. Therefore we imagine that the intensity returned
from the LiDAR could also be used to di�erentiate between di�erent pedestrians based on
their clothing since the intensity would be fairly constant between frames and unique to each
pedestrian. Other features, such as height and width could also be considered when matching
tracks, but we imagine that these would be less unique for individual pedestrians.

5.4 Classification
As mentioned in the method chapter our classification process begins with looking at some
easily extracted features, point per distance and the velocity, of tracked objects. Making as-
sumptions about these properties for a pedestrian helps decide which of the dynamic objects
detected should be put up for further consideration, and since the aforementioned features
are extracted very e�ciently from a tracked object compared to the features used in the SVM
and 3DCNN it speeds up the overall classification process. Some problems that arise from
these initial assumptions are, e.g., that a pedestrian can avoid being detected by moving very
slowly through the LiDAR scene. The assumption about points per distance is also based on
an assumption about linearity in the number of points over the increasing distances, some-
thing we can not be sure is true.

As observed in chapter 4.4 all of our di�erent classifiers manage to reach a classification
accuracy of around 90% on the simulated test data set, but due to the increasing feature ex-
traction and prediction time for high resolution 3D images we have decided to only further
consider the SVM classifier, as well as the 8x8x8 3DCNN classifier. Both of these methods
have a very similar feature extraction time and classification accuracy, but the SVM predic-
tion step is significantly more e�cient than the 3DCNN.

Since all of our classifiers have been trained on data extracted from the Carla simulator

62

5.4 Classification

we also wanted to observe how well they manage to perform on the real life data set described
in chapter 3.1. It can be observed that the 3DCNN manages to perform significantly better
on the real life data, reaching a classification accuracy of 82%, compared to the SVM classifier,
which reaches only 63% accuracy. While the SVM has better classification accuracy on the
simulated test data set, we believe this is mostly due to the lack of variation present in the
simulator, enabling the SVM to create a very accurate model describing a simulated pedes-
trian that fails to hold true in the real world case. The 3DCNN doesn’t only learn the size and
dimensions of a pedestrian, but is able to detect features of pedestrian, e.g., arms, legs and
head, and is better able to abstract these features so that it can detect their presence in new
3D images even if the location of these features are not consistent between the training and
test data. This is best explained with and example; all pedestrians present in the Carla simu-
lator move in the same way, with their arms swinging down by their sides and taking uniform
strides with their legs. Since the SVM works mainly by deciding which voxels in the image
are filled, if a pedestrian would suddenly raise their arms above their head, or start walking
in a longer stride the SVM would decide that this observed object does not look similar to
one of the objects it has been trained on and it would classify it as not being a pedestrian.
The 3DCNN instead works by finding features, such as arms, legs and head, and is able to
better understand if these features are present even if they are observed in an orientation
or position that is not present in the training data. Using the same example as above, if a
pedestrian raises their arms above their head the 3DCNN is still able to detect their presence
in the image, and therefore will reach a better classification accuracy compared to the SVM
when pedestrians start behaving in ways that di�er from the simulated environment.

When recording with the LiDAR device it is necessary to define several parameters, such
as height above ground plane and the angle of the sensor. We noticed that if these parame-
ters are not defined close enough to the actual angle and height the extracted voxelizations
will often be skewed in some ways, e.g., pedestrians are not standing upright but leaning
backwards. This in turn creates problems for the classifiers, especially the SVM, since the
voxelizations di�er more from the simulated data that the classifiers were trained upon.

To increase the accuracy of the classifier it is important to not only consider a single
observation of an object, since this would result in a high number of miss-classifications.
Thanks to the tracker we are able to follow objects as they move through the scene, and can
consider several images of the same object to reduce the number of miss-classifications. In
our implementation we decided on looking at 5 consecutive images of the same object, and
classifying it as a pedestrian only if at least 4 out of 5 of the observations were predicted as
coming from a pedestrian. The risk of miss-classifying a pedestrian is (1 − 0.82) = 0.18 for
the 3DCNN and (1 − 0.63) = 0.27 for the SVM and if each classification is uncorrelated to
the last, the risk of miss-classification can be reduced to 0.184 = 0.0011 for the 3DCNN and
0.274 = 0.005 for the SVM.

Since the feature extraction step is the most time consuming part of the classification
process it would be of very high interest to develop methods that do not require manual fea-
ture extraction, such as the method described in [18]. Being able to classify based only on the
points contained within an object could significantly improve the performance of the classi-
fier since such methods have been shown to be able to classify objects with a high accuracy.
However, since the number of points contained in the detected dynamic objects vary greatly,
and most deep learning methods are in need of consistent input size, each detected point
cloud would either need to be up-sampled or down-sampled to create a consistent input.

63

5. Discussion

To down-sample a point cloud one would simply randomly discard points until the desired
number is reached, but to up-sample a point cloud one has to first detect a surface area of the
object and then uniformly add points distributed across this area until the desired number
is reached. When we tried to do this we observed that the up-sampling step was very time
consuming, and the resulting point clouds were often simply shapes like triangles and squares
with points uniformly distributed over them, which we decided were not able to accurately
describe the shape of a pedestrian.

5.5 Testing on a limited system
Based on the results presented in Chapter 4.3.3 we can conclude that real time LiDAR point
cloud pedestrian detection and tracking is possible to run on very limited hardware. We
managed to achieve this by discarding points present in the point cloud randomly before
passing it through our pipeline, and in this section we will mainly discuss how this a�ects
the detection, tracking and classification of pedestrians.

Since our clustering step only considers something as a cluster if it contains more than 3
points separated by less than a meter, discarding many points reduces the distance that we
are able to detect pedestrians at. Assuming that the number of points present on an object
decreases linearly with the distance from the LiDAR device, discarding 50% of the points
would reduce the detection distance by 50%.

The same is true for the pedestrian tracking, since we are only able to track objects found
by the dynamic object detection. Another problem that arises in the tracking step is that
even though points are randomly discarded there is a slight chance that the points removed
are not uniformly distributed across the pedestrian, sometimes resulting in mainly the upper
or lower half being removed. Since the tracking only considers the center of the object,
removing only the lower or upper half has significant e�ects on the center of the object,
and will be interpreted as a fast movement in the same direction as the change between the
centers between two frames. This does not significantly a�ect the tracking at high frame rate
since the state estimators receive measurements at a higher frequency, but at lower frame rate
this can cause large inaccuracies in the velocity estimation and result in the tracker loosing
track of the pedestrian. The tracking accuracy also deteriorates when the amount of frames
per second is reduced, and it is important to find a good trade o� between points discarded
and reduced number of frames.

The classifiers work with an abstraction of the point cloud in the form of voxels, where
a voxel is considered filled if at least one point is present within it. Therefore, if a lot of
points are contained within the cluster, i.e., if it is close to the LiDAR device or very large,
removing even a large amount of points before the abstraction has no significant e�ect on the
voxel representation of the object. However, if a pedestrian point cloud is far away from the
LiDAR device and already very sparse, the classification accuracy will deteriorate. As stated
before, discarding points also has an e�ect on the distance that we are able to classify objects
at, but due to the abstraction of the point cloud this e�ect is not as significant as the e�ect
on the detection and tracking.

Based on observation and experimentation we conclude that we do not recommend re-
moving more than 50% of points and using at least 5fps. Our pipeline was only able to achieve
this when a flat ground plane was present in a scene, but we believe this could also be achieved

64

5.6 General discussion

on curved surfaces if the implementation was written in a more computationally e�cient
language than Python.

5.6 General discussion
In this section we will discuss the performance of the LiDAR and also compare it to some
other commonly used sensors. First we will define an example scenario where we have ob-
served problems arise when sensors, such as RGB cameras, heat cameras and radar are used.
Imagine a lone tree rooted from a grass patch next to a small road with a sidewalk. The tree
is swaying in strong winds, and so is the tall grass located next to the tree. When the RGB
camera is used for motion detection the swaying tree and grass will trigger the motion de-
tection even though they are clearly not areas of interest. Due to the unpredictable nature
of the wind and the movement of the tall grass and tree it is fairly hard to incorporate these
in some sort of background model, and actual objects of interest in close proximity to the
false movement might be missed. The same is true for the radar, as it becomes very hard to
di�erentiate the movement caused by the wind and objects standing in close proximity to
the moving greenery. Now imagine that the sun sets and there is a car driving past in the
dark with full beam headlights, casting light on the tree and surrounding area. The strong
light present in the scene causes the entire scene to change brightness, making it di�cult for
the RGB camera to di�erentiate this type of change from movement within the scene. The
headlight beams are also reflected in the leaves of the tree and the dew covered grass, as well
as making the tree cast a large moving shadow over the grassy area, confusing the RGB cam-
era as these reflections and shadows bear a lot of similarity to objects moving through the
scene. The car then decides to do a three point turn, pointing its headlights directly at the
RGB camera, essentially blinding it entirely until the car has turned completely and driven
away. Now the sun rises and clear skies cause strong sunlight to be cast on the entire scene,
the dark pavement area on the road and the sidewalk heats up to roughly 37 degrees Celsius.
The hot pavement makes it very di�cult for the heat camera to detect pedestrians and other
warm blooded creatures, essentially camouflaging them. The strong warm sunlight is also re-
flected against the leaves of the tree, causing problems for both the RGB camera and the heat
camera. The beautiful warm day causes a nearby lake to be very crowded, and due to lack of
parking spaces near the lake several drivers decide to park their cars on the grassy patch next
to the road. The large presence of metallic objects in the scene causes problems for the radar
device, making it unable to detect movement in close proximity to the vehicles. Now Peter
has heard that his friend Mark is going to the lake that day and is planning a prank on him,
he has donned a military ghillie suit that camouflages him against the background greenery
and is planning to sneak up on Peter and scare him. The similarity between the material and
color of the suit and the background makes it very di�cult for the RGB camera to detect
him, and the thick suit also camouflages the heat radiating from his body.

Most of the problems discussed above can be avoided by replacing these sensors with a
LiDAR device. Since its detection is not based on movement within the scene like radar, it is
very robust against a moving background like tall grass swaying in the wind. Problems instead
arise if the wind causes a dynamic background object to move enough to escape the area
defined as the background, which can happen with tall trees swaying in very strong winds,
but is generally avoided with smaller dynamic background objects like bushes and grass that

65

5. Discussion

do not move as much even in very windy conditions. It however struggles in the same way
as the radar in detecting objects standing close to dynamic background objects, since these
objects will have a space surrounding them defined as belonging to the background. Since the
LiDAR device emits its own light, and only registers the reflected lasers and not other light
phenomena present within the scene, it is not a�ected by the car’s headlights, even when they
are pointed directly at the LiDAR device. Since any object hit by the lasers emitted from the
LiDAR is registered, there really are not any reliable ways to attempt to camouflage oneself
against the background. It would be possible if an object is painted in such dark colors that
essentially no light was reflected back to the LiDAR device, but while such colors exist they
are not commonly found, especially not in pedestrian clothing. A problem that arises with
the LiDAR, especially in our implementation since we have a predefined background model,
is that if an object moves in very close proximity to the background, e.g., a person crawling
on the ground, it can avoid being detected. Also, if the position and angle of the LiDAR
device is changed by vibrations in the ground or someone poking it with a stick, it can cause
the scene to shift so much that it escapes the predefined background model, and will cause
the background to have to be recomputed before detection can be performed again.

Even though detection using LiDAR has some small disadvantages not present in other
sensors we believe that these are outweighed by the advantages, and conclude that a LiDAR
is a very robust sensor when it comes to object detection.

Our experiments show that while our implementation has problems classifying objects
that are very far from the LiDAR device, if an object is detected close to the LiDAR device
it can be followed until it is roughly 100m away from the device. While larger objects can
be detected further away from the LiDAR, a pedestrian 100m away from the device consists
of only 10 or less points, and while we are able to detect and track such small objects the
classification process becomes unreliable.

5.7 Future work
We were able to create a model that is able to classify if something is a pedestrian or not. A
reason for this is thanks to the data set that we collected with the help of the Carla Simulator.
But how good are data sets generated from simulated data in Carla compared to annotated
real-world data collected from a physical LiDAR? A future step would be to use the Carla
simulator in order to build a replica of an existing environment and fine tune the settings
of the Carla LiDAR to simulate the physical LiDAR as close as possible. Then a comparison
between the real-world generated data captured with the physical LiDAR from the real envi-
ronment and the simulated data generated from the Carla environment could be made. This
comparison could tell if it is worth to start using simulated data in order to train classifiers
or if there is still work to be done in order to simulate real-world data.

Since the Carla simulator currently contains a limited amount of animations and dynamic
objects there is room for improvements of our data set in the future. One way of improving
our current data set has already been discussed in the data gathering section in chapter 5.
Another way to improve the existing data set would be to let the existing model train on
real-world annotated data sets. This would increase the models capabilities to recognize and
classify both common and uncommon interactions and behaviours of dynamic objects.

The Cepton Vista-P60 LiDAR that we currently have access to is able to provide LiDAR

66

5.7 Future work

data which, with some slight modifications, is good enough to be used in our system. How-
ever, if a LiDAR with better performance would be introduced to the system an even better
result could be achieved. An increase in how far the LiDAR is able to measure, the angular
resolution and the scan rate would make it easier for our system to classify di�erent objects
more accurately and in a faster manner. However, the increased amount of data that would
need to be processed by the clustering method and classifier would require us to make some
modifications to the system in order to keep it running e�ciently enough.

The classifier has been trained on the whole data set that we generated with the help of the
Carla simulator and it performs well at classifying objects in our specific use case. However,
the classifier is only as good as the data it has been training on and if we would want a system
able to dynamically adapt to new patterns in the data, a method like online machine learning
could be used. The new data that we would like to feed into the classifier could either be
manually gathered and annotated data sets or data saved by the object tracker within our
system. The object tracker could be modified in such a way that it keeps the data of objects
until classification of the classifier has been done. If the classifier at a certain point says it
is a pedestrian we can save all the point clusters of that object from previous and upcoming
frames and feed that data into the classifier. The modification would make the system able to
learn new patterns just by being able to classify an object in one frame. Further investigation
in the performance and workload of such modification would be necessary.

Some advantages of the LiDAR are that it gives highly accurate depth values, measures
at great distances, and is able to generate a point cloud of the environment containing dif-
ferent 3D shapes. A major drawback is that the resolution of the output is not very high. In
order to tackle this problem sensor fusion could be used in order to either combine the data
from di�erent sensors or the results obtained by the di�erent sensors. The data fusion be-
tween a camera, which is a sensor that is able to provide high resolution outputs but does not
provide any depth information, and a LiDAR would give us a system capable of providing
high resolution output with accurate depth information. Sensor fusion could be beneficial
to our system since high resolution images are easier to classify compared to point clouds,
we would still retain the depth information of the pixels and the results from two di�erent
sensors would increase the confidence in the system. A radar is another sensor that could be
used together with the LiDAR. This would make the system also able to penetrate insulators
and determine exact position and velocity of a target.

Our approach of an object detection and tracking system is just one of many di�erent
approaches. One approach that is widely used is instead of dividing the system into di�erent
parts, such as background filtration and classification, feed the whole data set into a convo-
lutional neural network and let the network do the whole process of filtering and classifying.
This would require more extensive data sets in order to get the desired performance of the
system but could definitely be a future path to improve the system.

67

5. Discussion

68

References

[1] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
CARLA: An open urban driving simulator. In Proceedings of the 1st Annual Conference on
Robot Learning, pages 1–16, 2017.

[2] David Donoho. High-dimensional data analysis: The curses and blessings of dimension-
ality. AMS Math Challenges Lecture, pages 1–32, 01 2000.

[3] J. Wu, H. Xu, and J. Zheng. Automatic background filtering and lane identification with
roadside lidar data. In 2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), pages 1–6, 2017.

[4] Wen Xiao, Bruno Vallet, Konrad Schindler, and Nicolas Paparoditis. Simultaneous de-
tection and tracking of pedestrian from panoramic laser scanning data. ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information Sciences, III-3:295–302, 06 2016.

[5] G. Postica, A. Romanoni, and M. Matteucci. Robust moving objects detection in lidar
data exploiting visual cues. In 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1093–1098, 2016.

[6] A. Azim and O. Aycard. Detection, classification and tracking of moving objects in a
3d environment. In 2012 IEEE Intelligent Vehicles Symposium, pages 802–807, 2012.

[7] Y. Song, H. Zhang, Y. Liu, J. Liu, H. Zhang, and X. Song. Background filtering and object
detection with a stationary lidar using a layer-based method. IEEE Access, 8:184426–
184436, 2020.

[8] A. Dewan, T. Caselitz, G. D. Tipaldi, and W. Burgard. Motion-based detection and
tracking in 3d lidar scans. In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 4508–4513, 2016.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based al-
gorithm for discovering clusters in large spatial databases with noise. In Proceedings of
the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, page
226–231. AAAI Press, 1996.

69

REFERENCES

[10] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002.

[11] Hannaneh Najdataei, Yiannis Nikolakopoulos, Vincenzo Gulisano, and M. Papatri-
antafilou. Lisco: A continuous approach in lidar point-cloud clustering. ArXiv,
abs/1711.01853, 2017.

[12] Lvwen Huang, Siyuan Chen, Jianfeng Zhang, Bang Cheng, and Mingqing Liu. Real-
time motion tracking for indoor moving sphere objects with a lidar sensor. Sensors,
17(9), 2017.

[13] Y. Du, W. ShangGuan, and L. Chai. Particle filter based object tracking of 3d sparse
point clouds for autopilot. In 2018 Chinese Automation Congress (CAC), pages 1102–1107,
2018.

[14] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, and P. .
Nordlund. Particle filters for positioning, navigation, and tracking. IEEE Transactions
on Signal Processing, 50(2):425–437, 2002.

[15] Roy Andersson and Erik Andersson. Lidar pedestrian detector and semi-automatic
annotation tool for labeling of 3d data. Master’s Theses in Mathematical Sciences LTH,
2019. Student Paper.

[16] G. Melotti, A. Asvadi, and C. Premebida. Cnn-lidar pedestrian classification: combining
range and reflectance data. In 2018 IEEE International Conference on Vehicular Electronics
and Safety (ICVES), pages 1–6, 2018.

[17] Y. Tatebe, D. Deguchi, Y. Kawanishi, I. Ide, H. Murase, and U. Sakai. Pedestrian detection
from sparse point-cloud using 3dcnn. In 2018 International Workshop on Advanced Image
Technology (IWAIT), pages 1–4, 2018.

[18] R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J. Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 77–85, 2017.

[19] Yuji Roh, Geon Heo, and Steven Euijong Whang. A survey on data collection for ma-
chine learning: A big data - ai integration perspective. IEEE Transactions on Knowledge
and Data Engineering, 33(4):1328–1347, 2021.

[20] Theodoros Rekatsinas, Xu Chu, I. Ilyas, and C. Ré. Holoclean: Holistic data repairs
with probabilistic inference. Proc. VLDB Endow., 10:1190–1201, 2017.

[21] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. Franklin, and Ken Goldberg.
Activeclean: interactive data cleaning for statistical modeling. Proceedings of the VLDB
Endowment, 9(12):948 – 959, 2016.

[22] Cepton. Cepton vista-p60. https://www.cepton.com/products/vista-p.

[23] Alireza Shafaei, James J. Little, and Mark Schmidt. Play and learn: Using video games
to train computer vision models. ArXiv, abs/1608.01745., 2016.

70

https://www.cepton.com/products/vista-p

REFERENCES

[24] Epic Games. Unreal engine 4. https://www.unrealengine.com.

[25] Carla. Open-source simulator for autonomous driving research. https://carla.
org/.

[26] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. Modelnet40. https://modelnet.cs.princeton.edu/.

[27] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1912–1920, 2015.

[28] Wenlong Yue, Junguo Lu, Weihang Zhou, and Yubin Miao. A new plane segmentation
method of point cloud based on mean shift and ransac. 2018 Chinese Control And Decision
Conference (CCDC), Chinese Control And Decision Conference (CCDC), 2018, pages 1658 –
1663, 2018.

[29] Rensselaer Polytechnic Institute. Image Processing Laboratory and D.J.R. Meagher. Oc-
tree Encoding: a New Technique for the Representation, Manipulation and Display of Arbitrary
3-D Objects by Computer. 1980.

[30] Aditya A. V. Sastry. Background modelling using octree color quantization. ArXiv,
abs/1412.1945, 2014.

[31] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509–517, September 1975.

[32] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[33] Pierre Del Moral. Nonlinear filtering: Interacting particle resolution. Comptes Rendus
de l’Académie des Sciences - Series I - Mathematics, 325(6):653–658, 1997.

[34] Carla. Carla sensors reference. https://carla.readthedocs.io/en/latest/
ref_sensors/.

[35] Carla. Carla semantic lidar sensor. https://carla.readthedocs.io/en/latest/
ref_sensors/#semantic-lidar-sensor.

[36] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D data
processing. arXiv:1801.09847, 2018.

[37] J. Zbala, Piotr Ciepka, and Adam Reza. Pedestrian acceleration and speeds. 91:227–234,
01 2012.

[38] J. Kiefer and J. Wolfowitz. Stochastic Estimation of the Maximum of a Regression Func-
tion. The Annals of Mathematical Statistics, 23(3):462 – 466, 1952.

[39] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

[40] Coral. Coral dev board. https://coral.ai/products/dev-board.

71

https://www.unrealengine.com
https://carla.org/
https://carla.org/
https://modelnet.cs.princeton.edu/
https://carla.readthedocs.io/en/latest/ref_sensors/
https://carla.readthedocs.io/en/latest/ref_sensors/
https://carla.readthedocs.io/en/latest/ref_sensors/#semantic-lidar-sensor
https://carla.readthedocs.io/en/latest/ref_sensors/#semantic-lidar-sensor
https://coral.ai/products/dev-board

REFERENCES

[41] Abraham. Savitzky and M. J. E. Golay. Smoothing and di�erentiation of data by sim-
plified least squares procedures. Analytical Chemistry, 36(8):1627–1639, 1964.

72

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2021-06-10

EXAMENSARBETE Pedestrian detection and tracking in 3D point cloud data on limited systems

STUDENTER William Winberg, Jacob Berntsson
HANDLEDARE Elin-Anna Topp (LTH)
EXAMINATOR Jacek Malec (LTH)

Detektion och spårning av fotgängare
med 3D laserskanning

POPULÄRVETENSKAPLIG SAMMANFATTNING William Winberg, Jacob Berntsson

LiDAR (Light detection and ranging) är en teknologi som ständigt förbättras och
intresset att använda LiDAR för att detektera och spåra människor ökar. Vi har un-
dersökt vilka metoder som kan åstadkomma detta på system med begränsad hårdvara.

LiDAR-teknologi har förbättrats på senare tid
och intresset för att använda dessa sensorer för att
detektera och spåra människor som befinner sig på
platser de inte ska vara på har ökat. För att ut-
öka användningsområdena för LiDAR-sensorerna
krävs låga prestandakrav på datahanteringen och
bearbetningen, främst för att minska kostnaderna
i implementationen.
Vi har utvecklat en fullständig lösning för detek-

tering och spårning av människor, med ett flertal
utbytbara metoder i varje steg av processen för
att kunna analysera vilka som fungerar bäst i oli-
ka situationer. Vi har definierat tre tydliga steg
i processen som vi kallar dynamisk objektdetek-
tering, objektspårning och objektklassificering. Vi
har sedan analyserat prestandakraven för de olika
lösningarna för att kunna avgöra vilka som funge-
rar bäst på system med låg prestanda.
Genom att använda en simulator har vi skapat

en miljö för att kunna samla in LiDAR-data och
skapa ett flertal testfall för vår lösning. Den simu-
lerade miljön möjliggjorde skapandet av väldigt
stora annoterade dataset för träning av objekt-
klassificerarna, samt skapandet av varierade test-
miljöer för att undersöka för- och nackdelar med
LiDAR-sensorer jämfört med andra sensorer. Vi
har även analyserat övergången mellan simulerad
och riktig data för att undersöka om modeller som
skapats för objektklassificering också är applicer-

bara i verkliga scenarier.
Den fullständiga lösningen, se figur 1, har tes-

tats på ett system med begränsad hårdvara för att
undersöka om det är möjligt att utföra detektio-
nen och spårningen i realtid och de begränsningar
som måste införas för att åstadkomma detta.

Figur 1: Människor som klassificerats och håller
på att bli spårade.

Resultaten visar att exekvering i realtid är möj-
lig om begränsingar på antal skickade bilder per
sekund samt mängden data minskar innan objekt-
detektering och spårning utförs. Dessa begräns-
ningar leder till försämringar i varje steg av pro-
cessen, men dessa är så pass små så detektering
och spårning kan utföras med tillräcklig precision
för att uppnå önskat resultat.

	Introduction
	Task and purpose
	Testing on a limited system

	LiDAR
	Related work
	Disposition
	Ethics
	Statement of Contribution

	Background
	Data Gathering
	Cepton LiDAR
	Simulated Data
	Open-Source data sets

	Dynamic Object detection
	Background filtration
	Clustering

	Object tracking
	State estimation

	Classification
	SVM - Support-Vector Machine
	CNN - Convolutional neural network

	Method & implementation
	Data gathering
	Simulation
	Real-World

	Dynamic Object detection
	Background Filtration
	Clustering

	Object Tracking
	Kalman Filter
	Particle filter

	Classification
	SVM - Support-Vector Machine
	CNN - Convolutional neural network

	Testing on a limited system

	Results
	Dynamic Object detection
	Background Filtration
	Clustering

	Object Tracking
	Classification
	SVM - Support-Vector Machine
	CNN - Convolutional neural network
	Testing on a limited system

	Discussion
	Data Gathering
	Dynamic object detection
	Background Filtration
	Clustering

	Object tracking
	Classification
	Testing on a limited system
	General discussion
	Future work

	Tom sida

