
MASTER’S THESIS 2021

Applying Knowledge Tracing to
Predict Exercise Response Time
Shamiran Jaf, Sepehr Noorzadeh

ISSN 1650-2884
 LU-CS-EX: 2021-32

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2021-32

Applying Knowledge Tracing to Predict
Exercise Response Time

Tillämpning av knowledge tracing för
prediktion av svarstid

Shamiran Jaf, Sepehr Noorzadeh

Applying Knowledge Tracing to Predict
Exercise Response Time

Shamiran Jaf
shamiran.jaf@gmail.com

Sepehr Noorzadeh
se1711no-s@student.lth.se

June 5, 2021

Master’s thesis work carried out at Akribian AB.

Supervisors: Martin Hassler Hallstedt, martin@akribian.com
Pierre Nugues, pierre.nugues@cs.lth.se

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:shamiran.jaf@gmail.com
mailto:se1711no-s@student.lth.se
mailto:martin@akribian.com
mailto:pierre.nugues@cs.lth.se
mailto:jacek.malec@cs.lth.se

Abstract

Knowledge tracing is a relatively well-studied and recently popular application
of neural networks. It involves using an interaction history to predict some as-
pect of future interactions in an educational context. However, all research in
this topic has been focused on predicting the correctness of future exercises. This
thesis aims to adapt existing knowledge tracing models to instead predict the
response time of future exercises instead. To the best of our knowledge, this has
not been attempted before.

We found that using some adjustments to existing models, response time
prediction is possible. We believe that response time prediction can be a great
tool for calculating the fluency of students since fluency is strongly dependent
on the speed at which students solve exercises.

Keywords: MSc, knowledge tracing, RNN, LSTM, transformer, attention, education
technology

2

Acknowledgements

Firstly we would like to thank our supervisor, Pierre Nugues, for his invaluable supervision
and guidance throughout the thesis.

We would also like to thank everyone involved from Akribian for being so supportive of our
work: Martin Hassler Hallstedt, Henrik Rosvall, Cameron Green and Abbey Lewis. We are
especially thankful to Cameron for enduring our weekly stand-up meetings.

3

4

Contents

1 Introduction 7
1.1 Task formulation . 8

2 Related works 9
2.1 Bayesian knowledge tracing . 9
2.2 Deep Knowledge Tracing . 10
2.3 Self-Attentive Knowledge Tracing . 10
2.4 Relation-Aware Knowledge Tracing . 10
2.5 SAINT . 10
2.6 KEETAR . 11

3 Theory 13
3.1 Feedforward networks . 13
3.2 Recurrent Neural Networks . 13

3.2.1 Challenges . 14
3.3 Long Short-Term Memory . 14

3.3.1 Challenges . 16
3.4 Attention . 16
3.5 Transformer . 16

4 Datasets 21
4.1 Akribian dataset . 22
4.2 ASSISTments dataset . 23
4.3 Junyi Academy dataset . 24
4.4 EdNet dataset . 24

5 Approach 29
5.1 Data processing . 29

5.1.1 Formatting the data . 29
5.1.2 Sorting the datasets . 30

5

CONTENTS

5.1.3 Padding and windowing . 30
5.1.4 Feature engineering . 30
5.1.5 Types of features . 32
5.1.6 Feature embeddings . 32

5.2 Models . 34
5.2.1 DKT . 35
5.2.2 SAKT . 35
5.2.3 SAINT . 35
5.2.4 KEETAR . 36
5.2.5 Relation matrix . 37

6 Experimental settings 39
6.1 Code and implementation . 39
6.2 Training . 39
6.3 Loss functions . 40
6.4 Dropout . 40
6.5 Evaluation . 40

6.5.1 Evaluation Criterion . 40

7 Results and discussion 43
7.1 Correctness prediction . 43

7.1.1 Feature study . 44
7.1.2 E�ect of relation matrix . 46

7.2 Response time prediction . 46
7.2.1 Feature study . 47

7.3 Comparison between response time and correctness prediction 50

8 Conclusion and future work 51

References 53

6

Chapter 1

Introduction

Education is an important foundation for equality and societal prosperity, while teachers
struggle to give each student the time and personalized learning they need. Learning is at the
same time increasingly taking place on digital platforms, allowing for new opportunities to
help teachers achieve the goal of providing an optimal learning experience for every student.
The field of knowledge tracing aims to capitalize on one of these opportunities: the new-found
ability to track students interactions with curricula on an interaction-to-interaction basis.

Using online platforms such as intelligent tutoring systems, a wealth of new information
can be gathered for each interaction with an exercise. That information includes whether
the student has answered correctly or incorrectly and how much time s/he took to answer.
Previous attempts at quantifying student knowledge on an interaction-to-interaction basis
have used laboriously constructed algorithmic models. A new branch of knowledge tracing has
successfully applied di�erent AI models to predict student performance, measured by the
correctness of her/his response on exercises. These models don’t need to be explicitly pro-
grammed, and have shown performance improvements over their algorithmic counterparts.

However, current models that only predict correctness are limited in their potential ap-
plications; making choices in how to adapt learning paths for a student’s requires a deeper
understanding of the student’s fluency in the concepts that the learning path is composed of.

In this thesis, we show that the models used for correctness prediction can be adapted
to predicting response time, which is an important component of fluency. In addition, we
found that both response time and correctness prediction performance can be improved by
adding handcrafted features.

To the best of our knowledge, this is the first work to apply knowledge tracing models to
the task of response time prediction. To this end, we have managed to produce promising
results, where our models have a greater predictive performance than our baseline.

We hope that our findings can contribute to a more interpretative and detailed analysis
of each student’s knowledge state. This can in turn be used to create more adaptive and
personalized learning paths for each student.

7

1. Introduction

1.1 Task formulation
We denote a sequence of interactions between a student and exercises as [x1, x2, . . . , xn],
where the interaction xt consists of information about the exercise being answered et, along
with the student’s response to the previous exercise, denoted as rt−1. This thesis sets out to
solve two tasks pertaining to predicting the student’s response, rt :

1. The first task we addressed in this Master’s thesis is to predict the correctness of the
student’s response to the current exercise, denoted as rt, as shown in Figure 1.1.

Figure 1.1: A sequence of interactions where each response is either
correct or incorrect

2. The second task we addressed is to predict the response time – the time it takes for a
student to respond to an exercise – for the response rt , as shown in Figure 1.2.

Figure 1.2: A sequence of interactions where each response has a
response time measured in seconds

8

Chapter 2

Related works

The task of predicting student’s future responses has led to an emergent field of study called
knowledge tracing. Knowledge tracing refers to the usage of artificial intelligence or statistical
models to track the knowledge levels of students across di�erent subjects or concepts.

The goal of knowledge tracing is to, given a sequence of student interactions with a learn-
ing platform, predict some aspect of their future interactions. So far, the field of knowledge
tracing has been focused on the task of predicting the correctness of a response, which can be
either correct or incorrect. The related works below are thus all concerned with correctness.
Whereas this thesis is dedicated to improving upon that task, it also attempts to utilize the
techniques and models used for predicting correctness to predict response time.

2.1 Bayesian knowledge tracing
Bayesian models for knowledge tracing were introduced by Corbett and Anderson (1995)
and have since been a popular method for predicting a student’s ability to answer a question
correctly. In its original form, Bayesian Knowledge Tracing (BKT) modelled the probability
of a student learning a knowledge concept as an equation of probabilities and parameters,
which is updated after each student interaction.

Modern BKT variants still yield comparable results to early neural network models, as
reported by Khajah et al. (2016). It is also easy to interpret how the model arrives at a pre-
diction since the parameters underlying the prediction have been manually set. However,
BKT models require expert knowledge in order to both map each exercise to its correspond-
ing knowledge concepts and to correctly configure the model parameters. Furthermore, the
model is not able to automatically learn latent knowledge concepts, since the knowledge
concepts are explicitly programmed and fixed.

9

2. Related works

2.2 Deep Knowledge Tracing
Introduced in Piech et al. (2015), Deep Knowledge Tracing (DKT) refers to the application of
machine learning models to the task of knowledge tracing. Inspired by the success of recur-
rent neural networks in language processing, Long-Short Term Memory (LSTM) networks
were applied to the task of correctness prediction.

The authors were able to achieve a considerable improvement in performance compared
to BKT models when predicting correctness. In contrast to BKT models, the DKT model
– being a neural network – will itself learn the relationships between di�erent Knowledge
Concepts. Therefore, the DKT model does not require the same degree of expert knowledge
in the subject matter.

2.3 Self-Attentive Knowledge Tracing
Recurrent neural networks were augmented by a new mechanism called attention by Bah-
danau et al. (2015). Attention allowed neural networks to learn more long-term relations by
allowing any position in a time series to directly relate to an earlier position.

Eventually, it was discovered by Vaswani et al. (2017) that attention can be a powerful
mechanism on its own without being applied to an RNN. The paper introduced the multi-
headed self-attention layer which could model long term relationships between samples in time-
series data.

Multi-headed attention was applied to knowledge tracing by Pandey and Karypis (2019)
to create a new model called the Self Attentive Knowledge Tracing (SAKT).

The SAKT architecture showed an improvement in performance over earlier models.
In addition, the SAKT model is much faster to train on average than the aforementioned
models thanks to much higher training parallelism. This higher training parallelism is in
turn enabled by the lack of recurrent architecture, and the usage of multiple independently
trained attention heads.

2.4 Relation-Aware Knowledge Tracing
Pandey and Srivastava (2020) augmented the SAKT model by modeling student forgetfulness
and exercise relation. The forgetting behaviour was modelled by looking at the timestamp
fields typically found in knowledge tracing datasets. The exercise relation modelling was
made by comparing the text content of the exercises using natural language processing methods.

2.5 SAINT
Vaswani et al. (2017) not only introduced the multi-head self-attention layer, but utilized it
for natural language processing by arranging several layers of multi-head self-attention into
encoder and decoder blocks.

Choi et al. (2020a) used a similar architecture to create a new knowledge tracing model
called SAINT that outperformed the state of the art knowledge tracing models at the time.

10

2.6 KEETAR

The SAINT model was later augmented by Shin et al. (2021) by incorporating the tempo-
ral features available in the EdNet dataset to create SAINT+. SAINT+ uses new time-related
features such as response time and lag time to more accurately predict correctness for exercises
in the EdNet dataset (Choi et al., 2020b).

2.6 KEETAR
Jeon (2021) introduced a novel sequence-to-sequence architecture as a winning entry in the
Kaggle competition Riiid AIEd Challenge 2020. The architecture is noteworthy for combin-
ing an attention-based model with an RNN network. In addition, the model also utilizes
an engineering trick to reduce the complexity of the matrix multiplications associated with
training. This reduced training time (albeit at the cost of accuracy) allows for the use of
longer sequences to o�set the aforementioned loss of accuracy, for a net gain in performance.

11

2. Related works

12

Chapter 3

Theory

In order to understand the knowledge tracing models used in this thesis, some background
information and theory is required. What follows is an attempt to explain the theory behind
each model that we’ve used.

3.1 Feedforward networks
One of the simplest components employed in neural networks is a multi-layer perceptron,
also known as a feedforward network or FFN. A feedforward network works by multiplying
a trainable weight matrix with the input vector and adding a bias vector:

FFN(x) = xWT + b

where x is the input vector, W is the weight matrix and b is the bias vector.
By chaining several feedforward networks and using Rectified Linear Unit (ReLU) ac-

tivation layers in between, complex relations can be captured in the input data. However,
when dealing with time-series data, feedforward networks are not very useful because of their
fixed input length.

3.2 Recurrent Neural Networks
While Recurrent Neural Networks (RNNs) employ feedforward networks, they are able to
handle arbitrary input lengths and employ an internal state in order to remember meaningful
information from past inputs. This makes them suitable for the task of predicting future
performance, such as correctness and response time prediction.

After having first been introduced by Rumelhart and McClelland (1987), RNNs have
since taken many forms. While the conventional RNN is rarely used today in favor of its

13

3. Theory

successors, it is necessary to understand the conventional RNN since its successors share its
temporal features.

Conventional RNNs work by, for each step in a sequence of length T , taking in an input
vector xt, a hidden state ht−1 and producing an output vector ŷt and an updated hidden state
ht .

ht = tanh(Wihxt + bih +Whhh(t−1) + bhh)
ŷt = tanh(Wyht + by)

When processing the next input in the sequence, the updated hidden state is used as
an additional input into the RNN along with the next input, as can be seen in Figure 3.1.
Although each step in the sequence involves the same neural network, with unchanged weight
matrices, the internal state changes and the network can thus be seen as having a temporal
state.

Figure 3.1: Example of an unfolded Recurrent Neural Network

3.2.1 Challenges
The conventional RNN learns how to manipulate its internal state in order to capture mean-
ingful patterns across time. However, when considering patterns that play out during a long
span of time, the standard RNN runs into two types of problems; exploding and vanishing
gradients, as reported by Kolen and Kremer (2001).

Both problems stem from the fact that the back-propagation not only propagates the
error through the networks layers, but does so for each time-step in the sequence. This means
that the weight update for a time-step far back in time will be contingent on a long chain
of multiplications of partial derivatives, whose results will either converge towards zero or
diverge upwards. In the case of convergence towards zero, the update to the weight will be
insignificant, which can be interpreted as the model not being able to learn anything from
that time-step.

For the purpose of knowledge tracing, short-term memory is not enough for an accurate
model. Students learn across long sequences of interactions with a curriculum, and inter-
linked knowledge concepts may not be located close to each other.

3.3 Long Short-Term Memory
Long Short-Term Memory (LSTM), proposed by Hochreiter and Schmidhuber (1997), shares
the temporal connection and hidden state concepts of an RNN. It was designed to deal with

14

3.3 Long Short-Term Memory

the vanishing and exploding gradient problems through assuring a constant error flow back-
ward through time, thus allowing a longer memory than that of an RNN.

While the input and output from the LSTM network, as in the case for the RNN, is an
input vector xt, a hidden state ht−1, it also takes as an input a cell state Ct−1 and outputs
an updated cell state Ct as well as ht which acts as both the updated hidden state and the
output, as can be seen in Figure 3.2. As was the case for Figure 3.1, Figure 3.2 is a visualization
of a single LSTM with one set of weights which has been unrolled temporally.

Figure 3.2: An unrolled LSTM architecture from Olah (2015)
.

The novelty which grants LSTM its improved memory compared to its predecessor is the
deliberate manipulation of the cell state, which is controlled by three layers which are called
gates. The gates respectively control what information should be forgotten, stored and updated.

Forget gate The purpose of the forget gate, which was introduced by Gers et al. in
order to allow the LSTM to reset its own state, is to remove that information from the cell
state which is no longer necessary to remember. (Gers et al., 2000)

The forgetting is achieved by element-wise multiplication of the cell state with the vector
ft

Ct = ft � Ct−1
ft = σ(Wf[ht−1, xt] + b f),

where ft is computed using the sigmoid function, and thus has elements ranging from 0 to
1. This means that the point-wise multiplication will result in forgetting the values at those
indexes where the corresponding element in ft is zero.

Input gate In order to update the cell state, the input gate will first decide what indexes
to update by computing the vector it and also candidate values for every index, ~Ct

it = σ(Wt[ht−1, xt] + bi)
Ct = tanh(WC[ht−1, xt] + bC)

Point-wise multiplication of it and Ct will then control what candidate values will be
added to the cell state through point-wise addition.

15

3. Theory

Output gate In the same manner as in the previous two gates, the previous hidden
state. ht−1, and the input, xt, will be used to control which parts of the cell state that should
be passed through to the output by first passing them through a sigmoid layer. The output
of the sigmoid layer will then be point-wise multiplied with the update cell state, after it has
been passed through a tanh layer. The result is then passed on as the output ht .

3.3.1 Challenges
Although the LSTM architecture has managed to significantly reduce the problems stemming
from vanishing and exploding gradients by limiting the amount of multiplications that is
needed when back-propagating, it has not managed to eliminate them completely. This is
because of the sequential structure being the same, which means that the same lengthy and
costly back-propagation chains still exists.

3.4 Attention
Attention is a mechanism that allows for sequence-to-sequence training without being con-
strained by the sequentiality of the input time-series data. While it was originally proposed
by Bahdanau et al. (2015) as an enhancement to RNNs, attention was later found to be fairly
powerful when used on its own and became a common alternative to RNN (Vaswani et al.,
2017).

In an attention model, the input data, is projected into a series of linear matrices to create
three matrices named query, key and value, denoted as Q, K, and V. The attention score is
then calculated using the Scaled Dot-Product Attention

Attention(Q,K,V) = softmax(
QKT

√
n

)V,

where n is length of the sequences in the time-series.
This allows each point in the input data sequence to attune to another part of the input

data, regardless of the di�erence in position in the time series. However, in some models it
may be necessary to prevent a data point from attuning to data points in the future, in order
to enforce causality in the predictions. This can be done using future masking.

In a multi-headed attention model, multiple attention scores are calculated using mul-
tiple projections, called attention heads. Each attention head is attuned to a di�erent part of
the input, and is therefore likely to learn a di�erent type of relation between the elements
in the time series. The final output is constructed by concatenating the output from each
individual attention head.

3.5 Transformer
The transformer, proposed by Vaswani et al. (2017) utilizes the multi-headed attention archi-
tecture using two di�erent types of blocks, namely encoders and decoders, which both contain
multi-headed attention and FFN components. The architecture uses one uniform dimension
size, a common one being 512, which applies to the output and input of the encoder and

16

3.5 Transformer

decoder layers as well as the embedding size of the input and output. Together, they can take
variable length sequences and output variable length predictions, just as LSTM.

Encoder blocks The input sequence will first be embedded and positionally encoded
using sine and cosine waves and is passed to the first encoder block. It is then passed through
the encoder’s multi-headed attention component and a feedforward network in order to cre-
ate a representation of the sequence with the same dimension as the embedded input se-
quence. This representation will be passed to the decoder block, as well as the next encoder
block in the stack, if it exists.

After each multi-headed attention and FFN component a residual connection and nor-
malization takes place in order to allow for better flow of gradients and facilitate faster train-
ing.

Using several encoder blocks lets the transformer encode increasingly complex represen-
tations of the input sequence. This complexity is needed for the language related tasks that
transformers are developed for, but is not as necessary for the kind of relationships between
knowledge concepts, which aren’t as complex as human language.

Figure 3.3: Encoder block from Vaswani et al. (2017).

Decoder blocks The decoder blocks will both take the representations generated by
the encoder blocks, as well as the previous outputs from the decoder in order to generate a
prediction as to what the next output should be.

This is done through first routing the previous output embeddings through a future
masked multi-head attention layer, the output of which will then be used as the query value
in a second multi-head attention layer. This query value can be seen as a compressed rep-
resentation of the previous output. The output of the encoder blocks will then be used as
key and value, together with the query from the previous multi-head attention layer, as input
into a second multi-head attention layer. The output of the multi-head attention layer is ran
through a feedforward network before being output.

17

3. Theory

Figure 3.4: Decoder block from Vaswani et al. (2017).

Full Transformer architecture The full transformer architecture, as can be seen
in Figure 3.5, shows the connection between the encoder layers and decoder layers. The
output of the final decoder layer is run through a linear layer and a softmax function in order
to generate an output probability, which could for example be a one-hot encoding of a word.

While RNN networks use a chain of back-propagation in order to remember meaningful
relationships in a sequence, the attention mechanism lets transformers remember arbitrarily
long relationships. Each part of the sequence can itself contain information about what other
parts of the sequence is related to it. Because of this, important information far back in time
can be remembered just as clearly as information which is closer in time.

18

3.5 Transformer

Figure 3.5: Transformer architecture from Vaswani et al. (2017),
show N encoders to the left and N decoders to the right.

19

3. Theory

20

Chapter 4

Datasets

In order to train models, labeled training data is needed. Luckily online tutoring systems
have allowed for the collection of such data, and several publicly available datasets gathered
from tutoring systems have been used in this study. These datasets have been used in earlier
knowledge tracing studies. In addition to these datasets, we also have access to a private
dataset called the Akribian dataset.

Name Rows Categories Unique exercises Ratio of correct
answers

Akribian 71,413 239 787 90.0%
ASSISTments 2012 2,630,080 199 50,989 69.6%
Junyi Academy 16,217,311 10 1,327 70.4%
EdNet 101,230,332 7 13,525 65.7%

Table 4.1: Summary of datasets

Table 4.1 shows the size of the datasets, along with other information. The datasets are
largely similar with regards to structure and the type information they contain. Every dataset
is tabular and each row describes one interaction between a student and the tutoring system.
However, the datasets also di�er in many aspects. One such di�erence, as can be seen in
Table 4.1, is that the dataset of Akribian, which is a young startup company, is considerably
smaller than the public datasets. This depends on the fact that the public datasets have been
gathered from a larger number of users over a longer period of time.

Another di�erence is in the structure of the tutoring systems themselves. Akribian’s game
Count on me! is a linearly structured game, where most users follow the same pre-planned
route, in order to learn basic mathematical skills. On the other hand, the other tutoring
systems are closer to quiz systems for evaluating what the students have already learned in
class, rather than replacements for a traditional textbook. Therefore they select questions
using more complicated methods.

21

4. Datasets

The datasets also di�er with regards to the contents of the exercises. The Akribian dataset
consists of simple maths exercises aimed towards young children, while ASSISTments and
Junyi Academy dataset exercises are maths exercises meant for high school or university stu-
dents. The EdNet dataset is unique in the sense that it doesn’t contain any maths exercises,
instead consisting of exercises for learning English.

4.1 Akribian dataset
The Akribian dataset is extracted from the game Count on me! which can be played on tablets.
The purpose of the game is to teach 6-9 year old children basic maths. This is done in the
app by interspersing story driven segments and math segments. The game is divided into
a hierarchical structure where each individual exercise is a part of a learning sequence, and
every learning sequence is part of a learning task. The game’s progression is linear and per-
sonalization mainly consists of skipping or repeating learning sequences. As such, there isn’t
much variation in the sequence of questions answered by each student.

Field name Description
StudentId Unique identifier for each student
LearningSequenceTitle Title of the sequence the current exercise belongs to
ExerciseTitle Title of the exercise sequence being answered
SubmissionOutcomes An integer representing either a correct answer, an incorrect

answer or a timed out answer.
ExerciseResponseTime An integer representing the response time in milliseconds
FinishedOn A date-time string representing the timestamp for the inter-

action

Table 4.2: Relevant fields from the Akribian dataset

Table 4.2 shows the relevant information featured in each row of the Akribian dataset.
Each row of the dataset describes one question answered by the user of the app Count on
me!, and describes di�erent aspects of one response to an exercise. The SubmissionOutcomes
column consists of a series of answers given by the user, formatted as a string of integer values
separated by semicolons. The values can be 0 for a correct answer, 1 for an incorrect answer,
and 2 for a time-out. A time-out means the user did not answer the question after an extended
period of time.

In order for a user to move to the next question, the current question must be answered
correctly. Due to this property, a response can either be a single correct answer, or several
incorrect answers followed by either a correct answer or a time-out at the end. In order to
make the data suitable for usage as the label in a binary prediction problem, the response
data was reformatted into a single integer value. This value is 1 if the user answered correctly
on the first try, and 0 if the user answered incorrectly on the first try or timed out.

Figure 4.1 shows the distribution of the response time and correctness for exercises in the
Akribian dataset. It can be seen that some exercises have very low variance for response time
and correctness, which can be due to the small size of the dataset.

22

4.2 ASSISTments dataset

(a) Histogram of mean correctness (b) Histogram of correctness standard deviation

(c) Histogram of mean response time (d) Histogram of response time standard deviation

Figure 4.1: Histogram of mean and standard deviations per question
ID for the Akribian dataset. Response time values above the 90th
percentile have been deleted to remove outliers.

4.2 ASSISTments dataset

The ASSISTments dataset consists of user interactions with exercises in ASSISTments, an
online education tool described in Feng et al. (2009). ASSISTments is an online system that
allows teachers to assign exercises to students who then can use the platform to complete
exercise while receiving both automated hints and help from their teachers. Because of its size
and relatively long history of usage in e-learning, it is one of the most widely used datasets
in the field of knowledge tracing. There are several versions of the ASSISTments dataset
available publicly, and each dataset di�ers slightly with regards to the what type of data it
contains. ASSISTments 2012 was chosen for this thesis as it contains timestamps, which can
be used to engineer better features. In addition, it is the largest of the ASSISTments datasets.

Table 4.3 shows the relevant information featured in each row of the ASSISTments dataset.
Unlike the Akribian dataset, ASSISTments does not have a time-out response.

Figure 4.2 shows the distribution of the response time and correctness for exercise cat-
egories in the ASSISTments 2012 dataset. Similar to the Akribian dataset, many exercises
have very low variance in response time and correcntess. This is likely because the dataset
has a high number of exercises relative to the total number of responses, resulting in some
exercises having very few responses.

23

4. Datasets

Field name Description
user_id Unique identifier for each student
skill_name Category of the current exercise
problem_id Unique identifier for the current exercise
correct An integer representing either a correct answer or an incor-

rect answer
ms_first_response An integer representing the response time in milliseconds
end_time A date-time string representing the timestamp for the inter-

action

Table 4.3: Relevant fields from the ASSISTments 2012 dataset

4.3 Junyi Academy dataset
The Junyi Academy dataset consists of user interactions with exercises in Junyi Academy,
an online education tool derived from Khan Academy and mainly used in Taiwan. Junyi
Academy, similar to ASSISTments, is an online system for assigning and assessing maths
problems for students. The dataset is hierarchical with four levels of subdivision.

Field name Description
uuid Unique identifier for each student
level2_id Category of the exercise sequence being answered
ucid Unique identifier for being answered
is_correct An integer representing either a correct answer or an incor-

rect answer
total_sec_taken Response time in seconds, truncated down to an integer
timestamp_TW A date-time string representing the timestamp of the re-

sponse

Table 4.4: Relevant fields from the Junyi Academy dataset

Table 4.4 shows the relevant field in the Junyi Academy dataset. It is worth mention-
ing that the timestamp field in this dataset has a resolution of 15 minutes, unlike the other
datasets which have second precision.

Figure 4.3 shows the distribution of the response time and correctness for exercises in
the Junyi Academy dataset. Unlike the previous two datasets, Junyi Academy dataset has
few exercises and many responses.

4.4 EdNet dataset
The EdNet dataset as described by Choi et al. (2020b) is a large-scale hierarchical dataset
collected from Santa, a mobile app developed by Riiid! that tutors more than 780,000 South
Korean students in English. It has recently become a popular dataset in benchmarking the
performance of knowledge tracing models, largely thanks to a Kaggle competition where users
submitted models that competed on the dataset.

24

4.4 EdNet dataset

(a) Histogram of mean correctness (b) Histogram of correctness standard deviation

(c) Histogram of mean response time (d) Histogram of response time standard deviation

Figure 4.2: Histogram of mean and standard deviations per question
ID for the ASSISTments 2012 dataset. Response time values above
the 90th percentile have been deleted to remove outliers.

Table 4.5 shows the relevant fields from the EdNet dataset. The EdNet dataset is unique
in its representation of temporal data. The response time field represents the response time
of the previous response, rather than the current response. In addition, the timestamp field
is represented in seconds, rather than a date-time string, and is relative to the first exercise.

Figure 4.4 shows the distribution of the response time and correctness for exercises in
the EdNet dataset. Similar to the Junyi Academy dataset, EdNet has few exercises and many
responses.

25

4. Datasets

(a) Histogram of mean correctness (b) Histogram of correctness standard deviation

(c) Histogram of mean response time (d) Histogram of response time standard deviation

Figure 4.3: Histogram of mean and standard deviations per question
ID for the Junyi Academy dataset. Response time values above the
90th percentile have been deleted to remove outliers.

Field name Description
user_id Unique identifier for each student
part Category of the exercise sequence being answered
content_id Unique identifier for the exercise being answered
answered_correctly An integer representing either a correct answer or

an incorrect answer
prior_question_response_time A floating point value representing the response

time for the previous question, in milliseconds
timestamp An integer representing the total number of sec-

onds passed since the user answered their first ex-
ercise

Table 4.5: Relevant fields from the EdNet dataset

26

4.4 EdNet dataset

(a) Histogram of mean correctness (b) Histogram of correctness standard deviation

(c) Histogram of mean response time (d) Histogram of response time standard deviation

Figure 4.4: Histogram of mean and standard deviations per ques-
tion ID for the EdNet dataset. Response time values above the 90th
percentile have been deleted to remove outliers.

27

4. Datasets

28

Chapter 5

Approach

To solve the two tasks defined in the introduction, we have used several of the sequence-to-
sequence models that have previously been applied for correctness prediction. The models
are, in chronological order of introduction, DKT, SAKT, SAINT and KEETAR. In addition,
we used data processing to augment the datasets with additional features that can be used by
the models to model more complex relations.

5.1 Data processing
The datasets used in this study di�er in the quantity, types and format of their features.
Therefore it was necessary to implement a pipeline for processing the datasets so that they
all adhere to the same format and specifications. This allows every dataset to be used with
every model without the need for modifications to the model.

5.1.1 Formatting the data
The first modification was using integer indices for exercise and category identifiers. Nor-
mally these fields would either be represented by strings, representing either a human-readable
title, or a unique identifier used internally by a database. Since strings are not able to be turned
into embeddings for inputting into the model, these values were converted into integers.
This was done by creating lists of unique exercise and category identifiers and converting the
strings into integers representing their indices in these lists.

In addition, all timestamps were converted to the seconds since Unix Epoch format in order
to make it possible to calculate time di�erences in seconds. Rows lacking data were filtered
out, as well as rows containing response time values that were larger than the 90th percentile
of response time values. The reason for this was to filter out outliers resulting from users
leaving their computer devices without answering the exercise.

29

5. Approach

5.1.2 Sorting the datasets
Some of the datasets contain millions of entries and require several gigabytes of RAM mem-
ory to load. As such, they could not be read in their entirety in one pass. To address this
issue, we developed a framework to read the datasets a predetermined number of rows at a
time. The interactions in the datasets are stored in chronological order of the responses, since
that is the norm in most databases used in online services. This means that when reading the
dataset in parts, there would be no guarantee that the entire interactions history of the users
would be loaded into the memory at once. This could lead to the extraction of several dis-
joint user exercise histories that are actually fragments of the same user history. This issue
could damage the model’s performance since it wouldn’t have access to the entire exercise
interactions history of each user.

To solve this problem, we first sorted the database by user ID so that every user’s inter-
actions would be in continuous order. Each user’s interactions was then sorted by timestamp
in an increasing order to make sure that the exercises are in chronological order.

5.1.3 Padding and windowing
After sorting, we cut the exercise history for each user into windows of a specific size. Exercise
histories that were below the window size were padded to be the correct size, and those that
were over the window size were cut into several windows.

At first, we used the mean exercise length as the window size. However, following fur-
ther experimentation with the window size, it was concluded that a higher window size can
capture the entire interaction history of most users and therefore has better performance.
However, high window sizes proved to be slow to train owing to larger matrices which were
slow to multiply.

After some experimentation with windows of varying lengths, a window size close to the
90th percentile user history length proved to be good enough with regards to training time
and model performance for most datasets.

Initially, the windows were shifted one step at a time to maximize the number of time
sequences that could be used for training. This meant that users with long exercise histories
would end up creating many overlapping windows, providing more data for training. How-
ever, this proved infeasible for larger datasets like EdNet due to limited hard disk space and
long training times.

In addition, this would cause users with a very long exercise history to have dispropor-
tionate representation in the data and introduce unwanted bias to the model. Therefore a
window stride was introduced which decided how many steps the window would be shifted
each time when windowing. After some experimentation the window stride was set to half
the window size to create sequences with 50% overlap as a compromise between size and
performance.

5.1.4 Feature engineering
To gain as much information as possible from the relevant data in each dataset, we engineered
a series of features for each user interaction in users’ exercise histories.

30

5.1 Data processing

Time difference
The first engineered feature is the time that has passed between each exercise and the exercise
before it. This feature can e�ectively track how long it has been since the user last answered
a question.

The motivation for including this feature is that students tend to forget information over
time. By looking at how long it has been since a student last solved exercises, the model could
learn whether a student had forgotten some information and would likely perform worse.

The feature was created by calculating the di�erence between the submission timestamps
of each question and the question before it. In addition, the current question’s response
time was subtracted from this value to get the actual time di�erence between submitting the
answer to a question and starting the next question. This is similar to the lag time feature
used by Shin et al. (2021).

Mean response time per exercise
While response time is individual and dependent on the fluency of the student, it is also
highly dependent on the characteristics of the exercise itself. In other words, some exercises
take a longer or shorter time to solve, regardless of the user’s fluency.

This can depend both on the question’s di�culty and the time it takes to formulate the
question to the student. An example of the latter would be a question, which has a long text
description that takes a long time to read. By supplying the model with the mean response
time for each unique exercise, the model should be able to take this into account.

Standard scored (z-scored) response time
Response time has often been used as a feature in previous knowledge tracing studies. Past
studies simply used the response time in seconds as a new feature.

We hypothesized that if the model is given information about how the user performed
relative to other users, important information about the overall fluency of the user can be
inferred. In order to provide such information to the model, we decided to introduce a sort
of more relative response time feature.

One way to implement such a feature would be to use standard scoring over all response
latencies in the dataset. However, as mentioned before, di�erent exercises take di�erent
amount of time to complete on average. Since the mean response time is di�erent for each
exercise, the response time was normalized based on responses to the same exercise ID. We
started by first calculating the mean response time µ and standard deviation σ for each ex-
ercise. Afterwards, the standard score z for each response was calculated using

z =
x − µ
σ

,

where x is the response time in seconds.
This standard score is equivalent to how many standard deviations a single observed re-

sponse time is from the mean, when considering every other response time to the same ques-
tion. Therefore, a positive value would mean a slower than average response to the question
and a negative value would mean a faster than average response time.

31

5. Approach

Ratio of correct answers per exercise
By calculating the ratio of correct answers to the total answers per exercise, expressed as a
continuous value between 0 and 1, the model can be supplied with a measure of each unique
exercise’s di�culty.

5.1.5 Types of features
The input features used in every model are split into two types, depending on what type of
information they hold about a response to an exercise.

One type corresponds to information about the current exercise et and consists of the
unique identifier and the category of the exercise currently being answered, in addition to
the mean response time and correctness ratio for questions with the same identifier. This
category of features is called the query features.

The other type of input features consists of information about the past response rt−1, and
consists of the correctness, response time and the timestamp di�erence of the response and
is called the memory features.

In addition, attention-based models benefit from positional embeddings, which include in-
formation on the positions of the data points in a sequence. This is useful because attention
mechanism, unlike a recurrent neural network, does not operate sequentially on time-series
data and therefore does not keep track of the order of data points in a sequence. There-
fore, positional embeddings are added to both the query features and the memory features
in attention-based models.

5.1.6 Feature embeddings

Figure 5.1: Types of categorical encoding

Categorical data refers to data that belongs to a category, rather than being a continuous
measurement. This type of data is normally represented in one of two forms, both utilizing
a list of categories.

The first method is to represent each category as an integer corresponding to an index of
the category in the list. The second method is to use a vector with the same size as the list

32

5.1 Data processing

of categories, where all the values are 0 except for the value that has the same position as the
represented category in the list. The former method is known as label encoding and the latter
method is known as one-hot encoding. A visual representation of the two types of encoding
can be seen in Figure 5.1.

Problems with categorical data representation
There are problems with directly using categorical data as a feature, and they depend on the
type of encoding used to represent the data. In the case of label encoding, unrelated labels
that may follow each other will be interpreted as being related by the model when fed into
a model with linear components (for example, a multi-layer perceptron). An example of a
situation that can give rise to this problem is when using label encoding for words in an
alphabetically sorted list, where words with no semantic relation could have labels that are
very close to each other simply because of how they’re spelled.

One-hot encoding avoids this problem by using a long indexing vector instead of an inte-
ger label, avoiding similarity between unrelated but subsequent categories. However, one-hot
encoding gives rise to a new problem regarding the length of the vectors. Long category lists
could be too large to be used in practice for model training. For example, the ASSISTments
2012 dataset contains over 50,000 di�erent unique exercises, and using the one-hot encod-
ing of the exercise IDs as a feature will lead to models that are unfeasible to train on the
current generation of computers because of the large size of the input vector. In addition,
one-hot encoding does not allow for any measure of similarity between categories, which
could otherwise be beneficial to the performance of the model.

Embedding solves these two problems by using a relatively smaller vector with continuous
values. These values can be randomized to clearly distinguish between categories, or pre-
calculated to create meaningful relations between categories.

An example of pre-calculated embeddings is the GloVe embeddings (Pennington et al.,
2014) for words, which are calculated using an iterative method that ensures that words
with similar semantics will have embeddings that are similar, measured by cosine similar-
ity. Unfortunately, such sophisticated embeddings are not available for the exercise IDs and
exercise categories that are used in knowledge tracing. Therefore, categorical embeddings
with random values are used to ensure that each exercise and category is transformed into a
continuous-valued vector that is distinct from other categories. These embeddings are train-
able, and the model can possibly discover relations between exercises while training.

Continuous features
There are also features in this study that are not categorical, namely response time, timestamp
di�erence, mean response time and mean correctness. Normally, these features could be con-
catenated to the rest of the embeddings along the feature dimension. However, when using
additive embeddings similar to those described in Pandey and Karypis (2019) and Choi et al.
(2020a), this is not possible, as the features that are added need to have the same dimensions.

These features could be cast into integers and turned into embedding vectors with cor-
rect dimensions using random embeddings. However, the random nature of the embeddings
would prevent the model from utilizing the continuous nature of the values. For example,
the random categorical embeddings for an response time value of 4 seconds would on average

33

5. Approach

have the same similarity to the embeddings for 5 seconds and the embeddings for 50 seconds.
In reality, 4 seconds and 5 seconds are much closer to each other than to 50 seconds.

Continuous embeddings
In order to create embeddings that preserve this fundamental continuity in continuous val-
ues, a special type of embeddings known as continuous embeddings similar to those used by
Shin et al. (2021) were employed. These embeddings are trainable vectors with a length
equal to that of the categorical embeddings. These vectors are multiplied by their respec-
tive continuous-valued features to create embeddings with the same length as the categorical
embeddings. Thanks to this property, the continuous nature of the features are preserved
since they are multiples of the same embeddings vector. Shin et al. (2021) has shown that
for the SAINT model and for the response time feature, which takes on continuous values,
continuous embeddings result in better performance compared to categorical embeddings.

In addition to the categorical and continuous embeddings, the attention-based models
in this study use positional encoding as described by Vaswani et al. (2017).

Feature name Embeddings type
Exercise ID Categorical embedding
Exercise category Categorical embedding
Past correctness Categorical embedding
Response time Continuous embedding
Timestamp di�erence Continuous embedding
Mean response time Continuous embedding
Mean correctness Continuous embedding
Positional embeddings Positional Encoding

Table 5.1: Embedding types for di�erent features

Table 5.1 shows the types of embeddings used for each feature in the models employed in
this study.

5.2 Models
To find the best architecture for predicting question correctness, a series of di�erent knowl-
edge tracing models were implemented, namely Deep Knowledge Tracing (DKT), Self-Attentive
Knowledge Tracing (SAKT), Separated Self-Attentive Neural Knowledge Tracing (SAINT)
and Last Query Transformer RNN (KEETAR). The first model is purely RNN-based, the
next two are attention-based models, and the last model is a hybrid model that utilizes both
attention mechanism and an RNN layer. We implemented all models from code provided
by the authors or, in case such code is unavailable, by attempting to implement the model
architectures as described by the authors.

We ran each model according to the hyperparameters given by their authors, when avail-
able. Otherwise, we used manual hyperparameter tuning. Since most of the models had not
been run on most of the datasets in previous studies, it was necessary to run many tests to
manually optimize the hyperparameters for each model-dataset pair.

34

5.2 Models

For every model, the input features were transformed into a series of embeddings and
concatenated. These embeddings were then fed into a feedforward network to reduce the
total dimension of the input to the dimension of a single embedding, before being input into
the models.

5.2.1 DKT
DKT (Deep Knowledge Tracing) is an LSTM-based model first proposed by Piech et al. (2015).
It is the simplest model used in the study and consists of an LSTM layer followed by a feed-
forward network.

While the original DKT model uses an encoded set of tuples representing each posssi-
ble exercise tag and correctness value (correct or incorrect) as input features, the version of
DKT used in this thesis is modified to also incorporate temporal features (response time and
timestamps), as well as additional features (mean correctness and mean response time). All of
the the query and memory embeddings are concatenated and passed through a feedforward
network before being passed to the LSTM layer.

The output of the LSTM layer is then routed through the feedforward network whose
output is the final output of the model. The model is trained using a binary cross entropy
loss function for correctness prediction and a mean squared error loss function for response
time prediction.

5.2.2 SAKT
SAKT (Self-Attentive Knowledge Tracing) is an attention-based knowledge tracing model
first proposed by Pandey and Karypis (2019). It uses one or more multi-headed attention
layers, and an output multilayer perceptron layer. Since attention models are not constrained
by sequentiality during training, the SAKT model is very fast to train. The implemented
variant of SAKT also uses additional temporal features similar to DKT. The query for the
multi-head attention model consists of the query feature embeddings passed through a DNN
and the key and value consist of the memory features passed through a di�erent DNN for
key and value.

5.2.3 SAINT
SAINT (Separated Self-Attentive Neural Knowledge Tracing) is a Transformer-based model
developed by Riiid! and decribed by Choi et al. (2020a). It uses a transformer model with a
variable number of encoder and decoder layers, and an output multilayer perceptron layer,
as seen in Figure 5.2. The encoder and decoder layers have di�erent inputs: The encoder uses
the memory embeddings as query, key and value, and the decoder uses the query embeddings
as query and the encoder output as the key and value. Our variant of SAINT is more similar
to the proposed SAINT+ model described by Shin et al. (2021) owing to its use of temporal
features.

35

5. Approach

Figure 5.2: SAINT architecture from Choi et al. (2020a)

5.2.4 KEETAR
KEETAR (Last Query Transformer) is a hybrid model consisting of a SAKT-like multi-
headed attention layer connected to an LSTM layer and then an output multilayer perceptron
layer. It was proposed by Jeon (2021) and won the 2020 Riiid AIEd Challenge on Kaggle. The
architecture, as seen below, takes a sequence of L interactions, I1, I2, ..., IL, which are then
input into a single Transformer encoder. The output of the encoder passes through an LSTM
into a DNN (Deep Neural Network) which outputs the prediction. A visualization of the ar-
chitecture can be seen at Figure 5.3. The KEETAR model is noteworthy for a few innovations
in knowledge tracing architecture design, described in the sections below.

The Q-trick
The main novelty of the architecture pertains to how attention is calculated. Traditionally,
attention is calculated by matrix multiplication,

Attention(Q,K,V) = softmax(
QKT

√
n

)V,

where the query matrix, Q, is multiplied with the transposed key matrix, KT . The operation
has a complexity of O(L2) where L is the sequence length. The author realized that using only
the last query vector, instead of a matrix containing each query vector in the sequence, only
yielded minor performance losses while reducing the complexity of the matrix operation to
O(L). This optimization, called the Q-trick, allowed the author to substantially increase the
sequence length which yielded a net performance increase, even counting the loss resulting
from the optimized matrix multiplication.

36

5.2 Models

Figure 5.3: Last Query Transformer architecture from Jeon (2021).

Capturing sequence-related patterns with an LSTM
Whereas the output of transformer-based models are usually routed through a DNN before
being output as a prediction, the Last Query Transformer routes the output of the trans-
former through an LSTM before routing it through a DNN. Thus, the transformer encoder
is responsible for capturing relationships between questions, and the LSTM is responsible
for finding sequence-related patterns in the data. Intuitively this can be understood as the
encoder supplying the LSTM network with its understanding which is based on the rela-
tionships between every question and the LSTM network will use this information to find
meaningful sequential patterns, which the encoder cannot do by itself. In this sense, the
LSTM layer e�ectively has a role similar to the decoder in a Transformer neural network.

5.2.5 Relation matrix
In order to improve upon the results of the KEETAR model, we used an exercise relation matrix
similar to the one described by Pandey and Srivastava (2020). Since the datasets did not
contain the text contents of the questions, we were unable to calculate textual relations and
our relation matrix relied exclusively on the so-called φ-coe�cients between the correctness
of each question based on the questions that came before it. Our motivation for adding a
relation matrix was that by adding this value to the attention scores of a transformer model,
information about the long term correlation between the correctness of di�erent questions
can be obtained. This information would then complement the attention model’s more local,
short-term information, resulting in better predictions.

37

5. Approach

38

Chapter 6

Experimental settings

6.1 Code and implementation
When available, we used the author’s code for the models. However, some of the papers
lacked publicly available code. In some other papers, the code was written in old versions
of frameworks which could not be run on current Python environments or did not work
with current CUDA versions. In these cases, we re-implemented the models in PyTorch 1.7.1,
following the description of the model given in the respective model’s paper as closely as
possible.

6.2 Training
For training, we used several datasets in addition to the Akribian dataset, as described in
chapter 4. We ran each model was run on each dataset and logged the results for each run.
All models were trained on one Nvidia RTX 2070 GPU using cuDNN 8.0.4. The optimizer
used for training was Adam with a step size of 10−3 and β values of (0.9, 0.999).

For models whose hyperparameters are described in their paper, we used the mentioned
hyperparameters. Otherwise, we used manual hyperparameter tuning to find hyperparam-
eters that o�ered accuracy close to the author’s reported accuracy, while also taking care to
not increase training time too much.

In some cases, we weren’t able to match the authors’ reported results due to a lack of
transparency regarding the code, the hyperparameters and the datasets for the models. In
addition, some models had high variance in their final accuracy for each dataset, which im-
plies that better results are likely possible given a large enough number of training attempts.
This was not investigated due to time constraints, electing instead to run each model only a
few times.

39

6. Experimental settings

6.3 Loss functions
When predicting correctness, binary cross entropy defined as

L = − 1
N
∑N

i=1 � (yi, ŷi)

is used as a loss function, where the loss L is dependent on the ground truth correctness yi
and the predicted correctness ŷi and

� (y, ŷ) = yi log(ŷi) + (1 − yi) log(1 − ŷi),

was used as a loss function.
When predicting response time, mean square error (MSE) defined as

L = 1
N
∑N

i=1(ŷi − yi)2,

was instead used as a loss function.

6.4 Dropout
To prevent overfitting to the training data, we used dropout. After testing di�erent values, a
dropout rate of 0.2 showed the largest increase in validation AUC and was therefore chosen
as the default value.

6.5 Evaluation
We split each dataset into a training and a validation dataset with a 95:5 ratio. Instead of
shu�ing the datasets, each dataset was split into 20 sequential segments, and each segment
was split and concatenated into the training and validation datasets. This showed to be faster
and give better results for most of our datasets.

After training, each model was evaluated on the validation data sequences using the cor-
rect criterion for each task.

6.5.1 Evaluation Criterion
In order to measure and compare models within the tasks of correctness and response time
prediction suitable evaluation criterion are needed. Whereas correctness prediction is a bi-
nary classification problem with two classes (correct and incorrect), response time prediction
is a regression problem with a continuous range of possible values. Because of this inherent
di�erence between the tasks, two di�erent approaches have been used.

Evaluating correctness prediction
Since correctness prediction is a binary classification problem, when comparing two mod-
els the better model is able to better separate correct and incorrect answers. Area under

40

6.5 Evaluation

curve (AUC) e�ectively measures this separation by using a Receiver Operating Character-
istic (ROC) curve which plots the ratio between the True Positive Rate (TPR) and False
Positive Rate (FPR) for each possible threshold value.

Whereas a model’s predictions range in a continuous range from 0-1, a perfect model
would, for some arbitrary threshold value such as 0.5, be able to correctly output a value
below 0.5 for incorrect answers and output a value over 0.5 for correct answers. This perfect
separation would yield an AUC score of 1, whereas a model that is not able to achieve any
separation at all would yield a score of 0.5.

Evaluating response time prediction
For regression problems mean square error (MSE) and R2 are among the most common eval-
uation metrics.

MSE is an intuitive metric since it can be measured in actual time units and is thus suit-
able for comparing the performance of di�erent models on the same dataset. Since MSE is
dependent on the response time distribution of each dataset, it is not as suitable for evaluat-
ing models across di�erent datasets.

The R2 score, which measures the squared correlation of the predicted value and the
ground truth, is on the other hand more suitable for comparing di�erent datasets.

41

6. Experimental settings

42

Chapter 7

Results and discussion

7.1 Correctness prediction
The best results for each model and dataset can be seen in Table 7.1. In addition to the listed
models, a simple statistical baseline was created for comparing model performance.

The baseline consists of a dictionary that simply returns the mean correctness (the ratio of
correct answers per unique exercise) of each unique exercise in the training dataset, without
using any machine learning methods.

ASSISTments 2012 Junyi Academy EdNet Akribian
Baseline 0.720 0.688 0.717 0.830
DKT 0.980 0.793 0.770 0.965
SAKT 0.758 0.757 0.753 0.917
SAINT 0.741 0.767 0.764 0.919
KEETAR 0.948 0.794 0.792 0.940

Table 7.1: Table of models’ AUC score for correctness prediction
across datasets

While DKT and KEETAR clearly outperform SAKT and SAINT on the ASSISTments
and Akribian datasets, the models’ performance is more equal on the other datasets. When
analyzing Figures 4.1 and 4.2, a significantly higher degree of exercises with a standard devi-
ation of zero can be observed in comparison to the other datasets. That is, for a large set of
exercises in both ASSISTments and Akribian every student has answered uniformly accord-
ing to the mean for that exercise. The reason for this is that the ASSISTments and Akrib-
ian datasets have comparatively fewer entries per unique exercise than the Junyi and Ednet
datasets; ASSISTments and Akribian have on average 52 and 91 entries per unique exercise
while Junyi and Ednet have on average 12221 and 7485 entries per exercise, respectively.

43

7. Results and discussion

With so few entries per exercise, it might be the case that SAKT and SAINT, both being
models purely based on attention, do not have enough data to meaningfully model relation-
ships between exercises. DKT and KEETAR, on the other hand, may be able to leverage
the nature of their LSTM components to forego relationships between exercises and instead
focus on input features and the short-term performance of each student.

This phenomenon is most evident in the Akribian dataset, which is also by design heavily
skewed towards correct answers as seen in Figure 4.1(a). It is thus not surprising that Akribian
is the dataset with highest overall AUC scores.

7.1.1 Feature study
In order to assess the impact of di�erent features on model performance, a feature study con-
sisting of two phases has been conducted. In the first phase, the impact of adding individual
to a baseline is measured. In the second phase, the most promising features will be combined
in order to find the feature combinations that yield the best performance.

Individual features

Table 7.2: E�ect of individual features on performance of KEETAR correctness
prediction model on the ASSISTments 2012 dataset.

Baseline Baseline + Q Baseline + R Baseline + Z
AUC 0.910 0.801 0.909 0.929
AUC gain – -0.109 -0.001 +0.019

Baseline + T Baseline + S Baseline + MR Baseline + MC
AUC 0.837 0.910 0.940 0.948
AUC gain -0.073 0.000 +0.030 +0.038
Q Q-trick.
R Response time.
Z Z-scored response time.
T Timestamp di�erence.

MR Mean response time.
MC Mean correctness.
S Sine positional embeddings.

Table 7.2 shows the e�ects of applying additional features to a baseline model which
consists of exercise ID embeddings, exercise category embeddings, random positional em-
beddings and past correctness embeddings. Response time and sinusoidal positional embed-
dings had minimal e�ects on the final performance of the model. The application of the
Q-trick, and timestamp di�erence embeddings resulted in lower performance. However,
Z-scored response time, mean response time and mean correctness had a positive e�ect on
model performance.

Mean features The mean response time and mean correctness features have shown a con-
siderable increase in the performance of the model. Both of them may be a sensible starting
point for predicting correctness, as they provide a measure of the average di�culty of an ex-
ercise. This should be most evident in datasets with low variance in correctness per exercise,
as the model could simply predict a value close to the mean and be quite accurate.

44

7.1 Correctness prediction

Z-scored response time The performance increase from the Z-scored response
time could be due to the model learning to deduce the fluency level of the student. After all,
students who struggle with knowledge concepts might respond very slowly on the exercises
related to the knowledge concept. On the other hand, students with higher mastery of the
knowledge concept might respond quicker.

Q-trick The Q-trick, while providing some training time speed-up, had too much of a
negative impact on performance to warrant using it. It should be noted however that the
code for the KEETAR model code was not available. Therefore we had to implement it
from scratch by following the description given by Jeon (2021). This means that it is entirely
possible that our implementation of the KEETAR model is wrong, but we have no way to
confirm or deny this since we do not have access to the code.

Multiple features

In the second phase of the features study, the features that by themselves yielded improved
performance when added to the baseline model will be combined to study their synergy.
There is of course a possibility that features that by themselves did not improve performance
could do so when combined with other features. However, because of time-constraints we
have chosen to focus on the most promising features.

Table 7.3: Feature study for KEETAR correctness pre-
diction model on the ASSISTments 2012 dataset.

Z+MR+MC MR+MC Z+MC Z+MR
AUC 0.934 0.934 0.951 0.936
Z Z-scored response time.
MR Mean response time.
MC Mean correctness.

Table 7.3 shows the results of the multiple feature study. We see that any combination of
additional features is an improvement over the baseline. However, only one combination of
features has a higher performance than the maximum of its component features, namely the
combination of z-scored response time and mean correctness.

Z-scored response time and mean correctness Combining z-scored re-
sponse time and mean correctness yielded the best results when added to the baseline. In-
tuitively this does not seem surprising. Z-scored response time measures the students speed
compared to other students, which in turn correlates with fluency. Using this measure of
relative fluency, the model should be able to better compare the student to others than when
only using the student’s past correctness. It is possible that the understanding of the student’s
relative fluency can improve the model’s prediction, when coupled with the mean correctness
of the question, which can be seen as a measure of di�culty.

45

7. Results and discussion

Baseline Baseline and relation matrix
AUC 0.796 0.789

Table 7.4: E�ect of relation matrix on performance of KEETAR cor-
rectness prediction model on Junyi Academy dataset.

7.1.2 Effect of relation matrix
The relation matrix used in this study is somewhat di�erent from that used by Pandey and
Srivastava (2020). The main di�erence is that our relation matrix implementation does not
use textual relation between exercises, since we did not have access to the text for the ex-
ercises. Our relation matrix consists of only the φ correlation coe�cients, implemented by
following the equations in Pandey and Srivastava (2020).

The application of relation matrix to the KEETAR model did not result in an increase
in performance on any dataset. The specific test run shown in Table 7.4 uses the authors’
recommended thresholding hyperparameter θ = 0.8. Since the paper did not specify the
specific λ coe�cient which is used for blending, we used a value of 0.5. Additional trials
were run on di�erent datasets with di�erent values of θ and λ, but none showed an increase
in AUC compared to running the same model without a relation matrix.

In addition, certain practical constraints prevented the e�ective use of the relation ma-
trix on certain datasets. The ASSISTments 2012 dataset, for example, contains over 50,000
unique exercises, and as such produced a relation matrix that was over 20 GB in size. This
e�ectively prevented us from being able to use the relation matrix in our model since it was
far too large to fit on the GPU memory or the RAM.

7.2 Response time prediction
The best results for each model and dataset can be seen in Tables 7.5 and 7.6. A baseline was
created by calculating the mean response time for each exercise in the training set. For each
exercise in the test set, the calculated mean response time is used as the baseline’s prediction.

ASSISTments 2012 Junyi Academy Ednet Akribian
Baseline 10.65 13.91 6.40 1.30
DKT 10.67 13.95 3.465 0.572
SAKT 10.56 12.96 4.56 0.60
SAINT 12.21 12.951 5.35 0.74
KEETAR 9.350 13.68 4.03 0.58

Table 7.5: Table of models’ MAE score (in seconds) for response time
prediction across datasets

It can be seen that the results vary between datasets, with two of the datasets achieving
best results using the simpler DKT model. This is in contrast to correctness prediction where
KEETAR performed better on average. We believe this could mean that response time is more
dependent on short-term patterns in user behaviour, since RNN-based models are designed

46

7.2 Response time prediction

ASSISTments 2012 Junyi Academy Ednet Akribian
Baseline 0.264 0.176 0.128 0.574
DKT 0.494 0.156 0.639 0.994
SAKT 0.533 0.227 0.474 0.888
SAINT 0.459 0.235 0.361 0.856
KEETAR 0.580 0.187 0.610 0.920

Table 7.6: Table of models’ R2 score for response time prediction
across datasets

to find short-term patterns in data, as opposed to attention which is better at modeling
long-term relations.

Furthermore, the AI-models are able to achieve a significant performance increase com-
pared to baseline for the EdNet and Akribian datasets. This means that the models are learn-
ing meaningful information from the data. While the other datasets have not outperformed
the baseline models to the same degree, the results show that there actually is meaningful
patterns in the data that can be used for response time predictions.

7.2.1 Feature study
We ran two separate features studies using di�erent datasets on the KEETAR model to in-
vestigate how di�erent features a�ect performance on di�erent datasets.

The e�ects of adding individual features to the KEETAR model when predicting the
Junyi Academy and ASSISTments datasets can be seen in Tables 7.7 and 7.8, respectively.
Since these feature studies were performed at di�erent times during the thesis, there are
di�erences in the premise of the studies. The baseline for Junyi Academy consists of ID
embeddings, exercise category embeddings and random positional embeddings. The baseline
for ASSISTments also includes past correctness embeddings.

Lending to the di�erences between the datasets, as well as the fact that the baselines are
di�erent, some features may improve performance in one of the datasets, but not the other.
For example, mean response time and mean correctness give a major performance increase
for the ASSISTments dataset, while actually decreasing performance for the Junyi Academy
dataset. This may be caused by the higher response variance of the Junyi Academy dataset.

A feature that has yielded a major performance increase for both datasets is z-scored
response time. Interestingly, it works better than response time itself.

Time-stamp di�erence, which is often used to model forgetfulness, also gives a minor
performance increase. It is however likely that the model is actually learning how to deduce
response time from it when used as as single feature. Its suitability as a feature should thus
be measured in its capacity to increase performance when added to a model already using
z-scored and normal response time.

Sine positional embeddings also give a minor performance increase since the embeddings
are designed to be preserve some notion of continuity between subsequent positions. This
makes it easier for the attention-based KEETAR model to understand the order of the input
data.

47

7. Results and discussion

Table 7.7: E�ect of features on performance of KEETAR response time prediction
model on the Junyi Academy dataset.

Baseline Baseline + C Baseline + R Baseline + Z
MAE (s) 14.27 14.18 13.27 13.26
MAE di�erence – -0.09 -1.00 -1.01

Baseline + T Baseline + S Baseline + MR Baseline + MC
MAE (s) 14.20 14.04 14.41 14.51
MAE di�erence -0.07 -0.23 +0.14 +0.24

Table 7.8: E�ect of features on performance of KEETAR response time prediction
model on the ASSISTments 2012 dataset.

Baseline Baseline + Q Baseline + R Baseline + Z
MAE (s) 13.92 14.24 14.64 12.47
MAE di�erence – +0.32 +0.72 -1.45

Baseline + T Baseline + S Baseline + MR Baseline + MC
MAE (s) 12.82 12.75 11.06 12.06
MAE di�erence -1.10 -1.17 -2.86 -1.86
C Past correctness embeddings.
Q Q-trick.
R Response time.
Z Z-scored response time.

T Timestamp di�erence.
MR Mean response time.
MC Mean correctness.
S Sine positional embeddings.

Table 7.8 shows the results of the feature study for response time prediction. Most features
have a positive impact on the results, apart from response time and Q-trick. We also tried
di�erent combinations of features, but no combination yielded better performance than the
best individual features.

Response time and z-scored response time
A noteworthy result of the feature study is that when predicting on the ASSISTments dataset,
including the response times of the previous exercises as a feature seems to have a negative
e�ect on response time prediction for the current exercise. However, including the z-scored
response times of the previous exercises seems to have a positive e�ect.

This can be explained by the fact that the z-scored response times of the previous question
can tell the model about the speed at which the user is solving exercises, since the information
it contains is relative to other responses to the same exercise. For example, a user who has
solved the past few exercises quickly is likely to solve the current question at a similarly fast
rate. The response time value in seconds, however, needs additional information such as the
mean response time of the question which was answered, which is contained in the previous
time step. As such, it is di�cult for the model to infer information about the user’s fluency
from this feature.

However, on the Junyi Academy dataset, both the response time and the z-scored re-
sponse time features seemed to have an equivalent positive e�ect on the performance of the
model.

48

7.2 Response time prediction

Mean response time and mean correctness
Another set of features that improved the performance of the response time prediction for
the ASSISTments dataset was the mean features – namely, mean response time and mean
correctness. These features are query features, which means that they describe the question
currently being answered. As such, mean response time provides the model with a hint about
what the magnitude of response time for the current question.

(a) Akribian (b) ASSISTments 2012

(c) Junyi Academy (d) EdNet

Figure 7.1: 2D histogram of mean response time per question and
correctness ratio. Mean response time values above the 90th per-
centile have been removed for clarity.

The performance gain from mean correctness however, is not as intuitive to explain for
the response time prediction model. We speculate that it might be related to the fact that
mean correctness and mean response time are not independent of each other. In other words,
we believe it is likely that easy questions would take less time to answer and more di�cult
questions would take longer to answer. Statistically, this would imply an inverse correlation
between response time and correctness. To confirm or deny this hypothesis, we conducted a
statistical analysis, the results of which are visible in Figure 7.1. It can be seen that exercises
in most datasets, especially Junyi Academy, have a slight negative correlation between mean
response time and mean correctness. The exception is Akribian, which instead has a very
slight positive correlation.

This di�erence could be thanks to the di�erence in the nature of the data in the Akrib-
ian dataset. The data in the Akribian dataset comes from an educational game for young
children, whereas the data for the other datasets comes from e-learning platforms for older
demographics.

On the Junyi Academy dataset, these features decreased model performance. This could
be because these features may not provide useful information, thanks to the high variance in

49

7. Results and discussion

the response times in the Junyi Academy dataset, as seen in Figure 4.3d. Contrast this with
the low response time variance found in the ASSISTments datasets, seen in Figure 4.2d.

7.3 Comparison between response time and
correctness prediction

When comparing Tables 7.1 and 7.5, it can be seen that di�erent models have varying perfor-
mance on di�erent dataset and there is no model that performs best on every dataset.

When predicting performance, KEETAR performs better on larger datasets while DKT
performs better on the smaller ones. However, when predicting response time, DKT – which
is an LSTM-based model – performs better on the large EdNet dataset, as well as the small
Akribian dataset. KEETAR performs better on the ASSISTments 2012 dataset, and SAINT
performs better on Junyi Academy dataset.

This disparity could be caused by the fact that the task of response time prediction is
more dependent on short-term connections than the task of correctness prediction. When
predicting correctness, it is after all important to know whether a student has answered
correctly on past questions with related concepts. On the other hand, response time may be
more closely tied to the current pace of the student than their knowledge of related concepts.

If this is the case, then the comparatively better performance of DKT is not surprising,
considering that the advantage of attention in comparison to LSTM is the ability to model
long-term relationships.

50

Chapter 8

Conclusion and future work

This thesis aimed to adapt existing models within the field of knowledge tracing to the task
of predicting the exercise response time of students using online learning platforms. By
benchmarking several models and datasets and comparing to simple statistical baselines, we
achieved promising initial results.

By studying the e�ect of di�erent features on the performance of the KEETAR model in
the task of knowledge tracing, we showed that certain features yielded a significant perfor-
mance increase. In particular, two features that we engineered, namely mean correctness and
z-scored response time, yielded a major performance increase when predicting correctness.

Furthermore, a comprehensive comparison of the largest datasets and most common
models yielded insights into why certain models may work better than others for a partic-
ular dataset. In particular, we found that the di�erences in performance were higher across
datasets than models. Bigger datasets that have a lot of answers for each unique exercise were
harder to predict than smaller datasets. The characteristics of the dataset, in particular the
variance in the predicted variables, must be taken into account. When dealing with datasets
with low response time variance in correctness and response times, for example, mean cor-
rectness and mean response time features provide large performance increases. Furthermore,
LSTM has performed better on datasets with low variance whereas KEETAR, an attention-
based model, performed better on the datasets with high variance.

Due to the decision making process of machine learning models being inherently di�cult
to interpret, we don’t actually know whether or not the model’s are learning meaningful
representations of student knowledge. Because of this, we believe that further research should
be conducted in order to interpret the decision making process of current algorithms.

In the end, knowledge tracing predictions will have to be integrated with educational
models in order to actually be applied in the real world. When doing so, we believe that
the addition of response time prediction will allow for more nuanced models, especially for
quantifying fluency which is highly correlated with speed. We hope that our models can find
applications in learning path recommendations in e-learning platforms.

51

8. Conclusion and future work

52

References

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning
to align and translate. In Proceedings of the 3rd International Conference on Learning Represen-
tations (ICLR 2015).

Choi, Y., Lee, Y., Cho, J., Baek, J., Kim, B., Cha, Y., Shin, D., Bae, C., and Heo, J. (2020a).
Towards an appropriate query, key, and value computation for knowledge tracing. In
Proceedings of the Seventh ACM Conference on Learning @ Scale, L@S ’20, page 341–344, New
York, NY, USA. Association for Computing Machinery.

Choi, Y., Lee, Y., Shin, D., Cho, J., Park, S., Lee, S., Baek, J., Bae, C., Kim, B., and Heo,
J. (2020b). Ednet: A large-scale hierarchical dataset in education. In Bittencourt, I. I.,
Cukurova, M., Muldner, K., Luckin, R., and Millán, E., editors, Artificial Intelligence in
Education, pages 69–73, Cham. Springer International Publishing.

Corbett, A. T. and Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of
procedural knowledge. User Modelling and User-Adapted Interaction, 4(4):253–278.

Feng, M., He�ernan, N., and Koedinger, K. (2009). Addressing the assessment challenge
with an online system that tutors as it assesses. User Modeling and User-Adapted Interaction,
19(3):243–266.

Gers, F., Schmidhuber, J., and Cummins, F. (2000). Learning to forget: Continual prediction
with LSTM. Neural computation, 12:2451–71.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9:1735–80.

Jeon, S. (2021). Last query transformer RNN for knowledge tracing. In Proceedings of the 35th
AAAI Conference on Artificial Intelligence (AAAI-21).

Khajah, M., Lindsey, R. V., and Mozer, M. C. (2016). How deep is knowledge trac-
ing? In Proceedings of the 9th International Conference on Educational Data Mining, volume
abs/1604.02416.

53

REFERENCES

Kolen, J. F. and Kremer, S. C. (2001). Gradient flow in recurrent nets: The di�culty of
learning long-term dependencies. In A Field Guide to Dynamical Recurrent Networks, pages
237–243.

Olah, C. (2015). Understanding LSTM Networks. Github. http://colah.github.io/
posts/2015-08-Understanding-LSTMs/.

Pandey, S. and Karypis, G. (2019). A self-attentive model for knowledge tracing. In Proceedings
of The 12th International Conference on Educational Data Mining (EDM 2019).

Pandey, S. and Srivastava, J. (2020). Rkt: Relation-aware self-attention for knowledge tracing.
In Proceedings of the 29th ACM International Conference on Information & Knowledge Manage-
ment. ACM.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.

Piech, C., Spencer, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L. J., and Sohl-Dickstein,
J. (2015). Deep knowledge tracing. CoRR, abs/1506.05908.

Rumelhart, D. E. and McClelland, J. L. (1987). Learning internal representations by error
propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition:
Foundations, pages 6–7. MIT Press, Cambridge, MA.

Shin, D., Shim, Y., Yu, H., Lee, S., Kim, B., and Choi, Y. (2021). Saint+: Integrating temporal
features for ednet correctness prediction. In Proceedings of the 11th International Learning An-
alytics and Knowledge Conference (LAK21), page 490–496, New York, NY, USA. Association
for Computing Machinery.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u.,
and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.

54

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Appendices

55

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2021-06-10

EXAMENSARBETE Applying Knowledge Tracing to Predict Exercise Response Time
STUDENTER Shamiran Jaf, Sepehr Noorzadeh
HANDLEDARE Pierre Nugues (LTH)
EXAMINATOR Jacek Malec (LTH)

Förutspå elevers svarstid med hjälp av
maskininlärning

POPULÄRVETENSKAPLIG SAMMANFATTNING Shamiran Jaf, Sepehr Noorzadeh

Att kunna förutspå elevers framtida prestation kan vara ett kraftfullt pedagogiskt verk-
tyg. Tidigare forskning har varit fokuserad på att förutspå korrektheten av framtida
svar, men pedagogikforskare tycker att tempo är lika viktigt när man bedömer kun-
skapsnivå. Vårt arbete visar att det går att använda maskininlärning för att förutspå
svarstid.

Att modellera elevers kunskap utifrån hur de in-
teragerar med ett kursmaterial är ett väldigt svårt
problem att lösa. Om det löstes skulle digitala
läroplattformar kunna anpassa sig till varje elev
och ge precis det stöd som eleven behöver. Man
har försökt lösa problemet med hjälp av träna
maskininlärningsmodeller till att lära sig mod-
ellera elevens kunskap, och använda denna interna
modell för att förutspå elevens framtida presta-
tion.

Hittills har man enbart tränat maskininlärn-
ingsmodeller för att förutspå korrekthet, det vill
säga om en elev kommer svara rätt eller fel på
en ännu obesvarad uppgift. Däremot vet man
inom pedagogiken att tempot hos en student är
en lika viktig faktor som korrekthet för att kunna
bedöma en elevs kunskapsnivå. I vårt exam-
ensarbete har vi därför applicerat maskininlärn-
ingsmodeller, som tidigare använts till att förutspå

korrekthet, till att förutspå svarstid.
De modeller som har använts till att förutspå

korrekthet har från börjat skapats för språkbe-
handling. Dessa modeller är bra på att modellera
samband mellan olika ord i meningar. De passar
bra till vår uppgift i och med att de kan också
modellera samband mellan uppgifter som följer
efter varandra.

Modellerna testades på data från flera olika dig-
itala inlärningsplattformar. Eftersom en mask-
ininlärningsmodell är ytterst beroende av vilken
information den tillhandahålls så studerade vi ef-
fekterna av att köra våra modeller på olika sorters
information. Bland annat märkte vi att prestan-
dan ökade avsevärt när vi gav modeller informa-
tion om korrekthetens och svarstidens genomsnitt
för den uppgift vars resultat ska förutspå.

Vårt resultat visar att det går att träna mod-
eller som relativt noggrant kan förutspå elevers
svarstid. De här modellerna kan kompletteras
med tidigare modeller som förutspår korrekthet
för att göra en mer helhetlig bedömning om elevers
kunskapsnivå och skräddarsy kursmaterialet för
varje elev.

	Introduction
	Task formulation

	Related works
	Bayesian knowledge tracing
	Deep Knowledge Tracing
	Self-Attentive Knowledge Tracing
	Relation-Aware Knowledge Tracing
	SAINT
	KEETAR

	Theory
	Feedforward networks
	Recurrent Neural Networks
	Challenges

	Long Short-Term Memory
	Challenges

	Attention
	Transformer

	Datasets
	Akribian dataset
	ASSISTments dataset
	Junyi Academy dataset
	EdNet dataset

	Approach
	Data processing
	Formatting the data
	Sorting the datasets
	Padding and windowing
	Feature engineering
	Types of features
	Feature embeddings

	Models
	DKT
	SAKT
	SAINT
	KEETAR
	Relation matrix

	Experimental settings
	Code and implementation
	Training
	Loss functions
	Dropout
	Evaluation
	Evaluation Criterion

	Results and discussion
	Correctness prediction
	Feature study
	Effect of relation matrix

	Response time prediction
	Feature study

	Comparison between response time and correctness prediction

	Conclusion and future work
	References

