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Abstract

As a part of its daily operations, the company Mashie receives datasheets on
food and food-related products from suppliers. These datasheets describe vari-
ous details about their products, such as product names, ID’s, packaging formats,
weight and more. This data is often semi-structured and the structure and termi-
nology used may vary between individual manufacturers. Additionally, impor-
tant details are sometimes embedded in other fields, such as a product’s weight
being described in its name. Mashie works to process this data, structuring and
storing it as annotated objects in a database.

While routine and well-mastered, this process is currently done by hand and
very labor-intensive. Mashie thus seeks to explore if parts of this process can be
automated. In this thesis, I explore if one of the tasks, product categorization,
can be viably performed using only product names, an easily extractible feature.

To build the categorizer, I used the BERT transformer models. The pre-
trained models mBERT (multilingual) and KB-BERT (Swedish), were fine-tuned
on this text classification task, obtaining macro-average F1-scores of 96.76% and
94.73%, respectively. KB-BERT mostly su�ers from systemic misclassification
among a few taxonomies. Overall the results indicate that modern pretrained
language models such as BERT are seemingly well suited to the task, and thus
shows promise for use on similarly unnatural text sources.

Keywords: MSc, BERT, Text classification, Food products, NLP, Machine learning, cat-
egorization
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Chapter 1

Introduction

1.1 Overview and Background
As a part of its daily operations, the Mashie company receives datasheets from manufacturers
containing details about food and food-related products that are typically sold in grocery
stores. Mashie works to categorize, annotate, and describe these products and their details,
storing the data in a structured format. Currently, this is done manually by industry experts.
These datasheets contain a mix of information understandable by laymen such as product
names or packaging formats, but also more complex tags, like abbreviations of production
details or certifications. These datasheets thus contain a lot of semi-structured information,
but the structuring of the data itself varies widely, even between individual datasheets from
the same manufacturer.

Figure 1.1: Excerpts from two product sheets from di�erent man-
ufacturers. They have di�erent structure and labeling, and some
important information is embedded in the product names in the
second picture.
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1. Introduction

Figure 1.2: The same products as shown in Figure 1.1 but with ex-
cerpts of the standardized structure used by Mashie’s databases,
viewed in an Excel file.

However, this is very labor-intensive work, and Mashie thus seeks to explore if parts of
this process can be automated, reducing the workload and improving throughput. Due to
the volatile structure of the data, it is di�cult to apply and maintain rule-based methods for
information extraction.

Parts of Mashies structurization is shown in Figure 1.2, including their product catego-
rization scheme with the fields varuområdesnamn, huvudgruppsnamn and varugruppsnamn. In
this thesis, I explore if one of the tasks, product categorization, can be viably performed with
the modern NLP model BERT (Devlin et al., 2019) using only product names, an easily ex-
tractible feature. This BERT has been proven to produce good results for text classification
on lengthier, natural and complete sentences and text, such as analyzing the sentiment of a
comment (Devlin et al., 2019), or classifying knowledge-dense texts in the BioMed domain
(Baker et al., 2015). It has not, however, been used for classification on highly structured and
short texts, such as product names.

Using a reduced set of 40 product categories, I fine-tuned two pretrained BERT models,
multilingual mBERT (Google, 2018) and Swedish KB-BERT (Malmsten et al., 2020) on the
dataset of over 23,000 products. The models achieve very good performance for the given
task, obtaining macro-average F1-scores of 96.76% and 94.73%, respectively. Both models
achieved F1-scores over 95% in a majority of the categories.

Contrary to expectations (de Vargas Feijo and Moreira, 2020), the multilingual mBERT
performed better overall and has less variance in F1-score across the various product cate-
gories. KB-BERT performed only slightly worse (∼1% unit lower F1-score) for most categories,
but particularly su�ered from systemic misclassification among select categories. This low-
ered the average performance of the the latter model substantially.

The required training support in order to achieve high classification performance was
found to vary enormously across categories; some required as little as 4 training examples
of a category in order for the model to achieve F1-scores above 90%, whilst others required
∼1000 training examples.

The results indicate that modern pretrained language models such as BERT are well suited
to categorizing food products solely based on their names. However, selection of which pre-
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1.2 Outline

trained models to use still has an impact as model behavior will vary. In general, this thesis
shows that BERT is suitable for use on more esoteric text data, rather than just complete
sentences and texts.

1.2 Outline
Chapter 1 provides an introduction to the thesis as well as motivation and a general overview
of it. This thesis involves terminology and techniques from natural language processing, a sub-
field of machine learning and utilizes a model called BERT (Devlin et al., 2019) that recently
revolutionized how many natural language processing tasks are performed. Required back-
ground knowledge on these topics are described in Chapter 2. Chapter 3 elaborates on the
thesis methodology; the structure of the data given by Mashie, how it was processed, how the
categories were selected, along with details on the how the two BERT models were trained
on this data. Chapter 4 discloses the results of the trained models and an investigation into
their behaviour and capabilities. These results and their details are then discussed in Chapter
5, along with suggestions for future experiments and improvements.

1.3 Related Work
While there are papers on food-related NLP tasks, such as FoodIE (Popovski et al., 2019) and
Kalra et al. (2020) which both perform named-entity recognition to extract food ingredients
and products from text, I found only one other paper that has performed a categorization of
foods.

Food Ingredient Classification
Wiegand et al. (2014) presented a method to automatically categorize food items such as
raspberry, bananas, almonds into a predefined ontology of 11 categories. Using a corpora of
recipes, they generated a weighted relational graph of food items by identifying relations
and similarity using semantic rules such as:

You may use food1 instead of food2,

from which the nodes food1 and food2 are extracted, connected and then inserted to the graph,
increasing the connection weight if the nodes and connection was already present in the
graph.

Using this graph as a measure of similarity between food items, they employed semi-
supervised clustering algorithms to classify products into the predefined categories. While
our goal is similar, the input data is very di�erent. Furthermore, their method does not apply
powerful modern feature transformations such as word embeddings. This would enable their
system to capture important semantic and relational information about the input ingredi-
ents, which in their paper is constructed in a restrictive rule-based manner.
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1. Introduction

Exam Questions Classification
Outside of the realm of food, Abduljabbar and Omar (2015) performed categorization of
short exam questions. The task is vaguely similar to this thesis, as the exam questions in their
dataset were short and doesn’t always "flow" naturally in contrast to normal language, like an
article. The questions relation to their categories is also somewhat elusive; deeper language
and word perception as well thinking is required for humans to categorize them, in contrast
to just flagging for specific words.

The dataset consisted of questions like Define Inheritance concept. and Write a JAVA pro-
gram to show the Overloading concept.. Such exam questions were then classified into a set of
categories: Knowledge, Comprehension, Application, Analysis, Synthesis and Evaluation.

The approach to transform their data into usable input for their classifiers was to ascribe
a set of keywords to each category; the question category Knowledge was allotted keywords
such as arrange, recognize, relate, label, list, memorize, recall, define and so forth. Exam questions
were transformed into input features based on their usage of these keywords and this input
data was further preprocessed using the methods Mutual Information, Chi-square statistic and
Odd Ratio to construct newer features to allow for better distinction between categories.

Classifiers based on SVM, Naive-Bayes and k-Nearest Neighbors were then fitted on their
data, achieving 78.19%, 74.95% and 80.82% macro-averaged F1-scores respectively. While their
task is indeed similar, such an approach is not feasible for our input data save for a few
categories and, similarly to Wiegand et al. (2014), does not use of modern Transformer models.

Text Classification with BioMed-trained Transformer models
Lewis et al. (2020) review several Transformers models pretrained on BioMed corpora by fine-
tuning them on several down-stream tasks. Among these tasks is the HOC task (Baker et al.,
2015), which involves detecting if BioMed abstracts contains text describing hallmark behav-
ior of cancer cells and classifying the abstract according to that specific cancer cell behavior.

Among several models, they found the BioMed-RoBERTa model (Gururangan et al., 2020)
to perform the best, achieving an 86.7% macro-averaged F1-score. This task is similar in the
sense that both the text and the categories belong to quite a narrow domain while utilizing
Transformer models. However the models in question were pretrained at least in part on
corpora specific to their BioMed domain, which di�ers from the models used in this thesis.

Comparison of Monolingual and Multingual BERT models
As this thesis evaluates the multilingual model mBERT and the monolingual model KB-BERT,
the work of de Vargas Feijo and Moreira (2020) is of relevance. They measured and compared
the performance of mBERT; the BERT model trained on a multilingual corpus (of which de-
tails are shown in Section 2.5.7), with two monolingual models introduced in their paper:
BertPT and AlbertPT (de Vargas Feijo and Moreira, 2020). Both models were pretrained on a
monolingual Portuguese corpus.

For clarification, AlbertPT stems from the ALBERT model (Lan et al., 2019) which is based
on BERT, contrary to BertPT which is based on regular BERT. These models were fine-tuned
on several NLP tasks.

Their paper indicates that all models perform quite well on many tasks, but which model
is best di�ers on a task-to-task basis. The text classification task most similar to this thesis,
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O�ensive Comment Identification (de Pelle and Moreira, 2017), was found to be handled best by
the monolingual BertPT, although not by a wide margin.

1.4 Contributions
All parts of the thesis were performed by Vilhelm Lundqvist.
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Chapter 2

Theoretical Background

Throughout this chapter, I will explain concepts and terminology required to understand
the contents and methodology employed in the thesis. The two models mBERT and KB-
BERT use the BERT architecture, but in order to understand how it works there are a couple
of underlying concepts that must be explained first. This chapter is structured to serially
introduce these topics in order of complexity and dependence, so the reader can be build a
stack of understanding that allows them to grasp why and how BERT works.

Starting out, I will explain the basics of what machine learning is, introduce how it is
applied to human language with natural language processing and explain how neural networks
conceptually uses stacks of machine learning to facilitate more powerful models. Following
that, I will describe the neural-network based constructions called embeddings and encoders
along with their purpose. Finally, I will explain the architecture and methodology of BERT.

A section on terminology is appended to the end of this chapter. There I explain certain
words that are used in this chapter but not defined. This is done to avoid cluttering and
maintain continuity. It also includes some concepts and words that are important for the
thesis, but do not require entire sections of their own.

2.1 Machine Learning
Machine learning can broadly be described as utilizing computers to solve certain tasks that
are not easily solved using explicit rules, algorithms or equations, by approximating solutions
in an automated, iterative fashion. One of the simplest examples of this is fitting a straight
line to a large number of data points. This problem can be solved without machine learn-
ing, but it provides quite a simple demonstration of the iterative methodology of machine
learning.

13



2. Theoretical Background

2.1.1 Linear Regression Example
A linear y = ax + b line is created with random parameters, which we can see in Figure 2.1
along with the data it is supposed to approximate. We can see it is not doing a very good job
and we can in fact measure how poorly it is doing, by calculating the sum of all errors. The
vertical distance from a data point to the line is calculated, which represents its "error from
the line". All these errors are then squared and summed together, giving us this sum of all
errors; this value is called the loss value in machine learning terminology.

This loss is thus a measure of how poorly the line approximates the data. If the line
describes the data perfectly by somehow passing through each data point, the loss will be 0.
The worse the line is at approximating the data, the higher the loss will be.

Figure 2.1: The initial state prior to linear regression, with a ran-
dom line making a poor attempt at approximating the data. The
parameters of the line ax = b are a = 1.37 and b = 2.87.

If we change the line by varying the line parameters a and b, the loss value (error sum)
changes. If we try to generalize the loss by calculating it with variables representing a and
b, instead of actual numbers, it instead becomes a function of a and b that we call the loss
function. The loss function can then be used to calculate what the loss will be for a particular
combination of a and b. In fact, we calculated what the loss will be for lots of these possible
pairs of a and b and displayed it as a 3D-graph in Figure 2.2.

In this plot of the loss function, the reader can see how the loss changes when the line’s
slope (a) or elevation (b) is changed.

Looking at Figure 2.1, we can see there is a minimum at a = 1 and b = 0. However,
finding the minimum this way by looking at a complete illustration of the loss function is
unfeasibly expensive for almost all real-life scenarios, and furthermore impossible to visualize
when you have more than two parameters (N parameters leads to an N + 1-dimensional
graph).

However, it is still cheap to get the loss and the slope of the loss function for a single point.
Using these two facts, we can slowly step down the steepest slope of the loss function, as if we
were on a mountainside in a blizzard, tapping around with our foot to find the downward
slope, taking a step in that direction and repeating the process over and over until we reach
the bottom.

14



2.1 Machine Learning

Figure 2.2: The loss function from the line and the data given in Figure
2.1, given in two angles. The line’s initial parameters a = 1.37 and
b = 2.87 are highlighted in red, along with its corresponding loss
value. Looking at this graph you can see that if you increased b, the
loss would increase. This stems from the fact that b corresponds to
raising the line vertically in Figure 2.1, which in turn worsens the
approximation by increasing the sum of all errors – the loss value. a
similarly a�ects the loss; by manipulating a you a�ect the slope of
the line, a�ecting its approximation of the data.

To check the slope, we di�erentiate this loss function based on the line parameters a and b
and input the lines’ current values a = 1.37 and b = 2.87 to get the slope of the loss function
at that point.

Finally, we take this slope, multiply it with a small number called the learning rate and use
the result to update a and b. In doing this, we’ve taken a small step towards the minimum of
this loss function; meaning we’re moving towards the specific combination of a and b that
gives the lowest possible loss value/error sum. By repeating this step, or iteration, we slowly
converge to the minimum. The minimum of this particular loss function is at a = 1, b = 0.

To recap, the minimum of loss function being at a = 1, b = 0 means that, of all the possible
combinations of a and b, the line that best describes the given data (by having the smallest
possible loss) is the line y = 1 · x + 0. This line is shown in Figure 2.3, which shows that it
indeed approximates the pattern of the data well.

2.1.2 Artificial Intelligence vs. Machine Learning
This process of moving towards the minimum of the loss function is known as gradient de-
scent and it is the foundational building block of many machine learning algorithms; almost
equivalent to being the definition of what makes an algorithm a machine-learning algorithm.

While the general field of artificial intelligence also involves computers making decisions
based on some numerical input, artificial intelligence algorithms are usually constructed using
predefined rules. Machine learning inherently di�ers from this in the sense that, while design-
ers of machine learning algorithms and models specify how the data is generally processed,
what type of operations are performed on it and in what order; the parameters of these op-
erations are left unspecified and are “learned” through iteratively updating them using a loss

15



2. Theoretical Background

Figure 2.3: An example of finished linear regression.

function, with the goal of finding the optimum set of parameters.

2.1.3 Further Capabilities of Machine Learning
This idea of fitting a model to data through iteration, often using a loss function, is generally
what defines the field of machine learning. There are many types of tasks and categories
of tasks in machine learning, both supervised (where the data has been annotated with an
answer) and unsupervised learning (where a model tries to perform a task on pure unlabeled
data).

An example of a supervised learning task is classification; e.g. a model trying to classify
if a patient has a tumor or not using X-Ray images as input data, where each image in the
training dataset has an associated correct answer. A typical task in unsupervised learning is
clustering, which could be trying to separate friend groups on Facebook, by trying to create
clusters of people that have all friended each other with minimal connections to other friend
groups.

2.1.4 Overfitting and Underfitting
Throughout the iterations of the training process, the machine algorithm is trying to select
model parameters that minimize the loss function as much as possible. Depending on the
model, data and other factors, this can cause unintended consequences – by optimizing on
the loss function too much, the model may end up fitting the training data too well and not
work generally for future examples. This phenomenon is called overfitting.

Conversely, the programmer may have set the learning rate too low, causing the train-
ing/gradient descent process to never actually reach the minimum of the loss function. This
phenomenon is analogously called underfitting. There are many techniques to combat these
problems, some of which utilize splitting the dataset into three parts:

Training set the data the model is actually trained on,

Evaluation set on which the model is tested against during training, to make sure the model
is actually moving in the right direction and not overfitting,

16



2.2 Natural Language Processing

Test set which is used to evaluate the final model after the training process.

As the evaluation and test sets contain data that is not present in the training set, they
provide sober indicators of how the model is performing. With these datasets, there are
many techniques to detect overfitting, for example by checking if the evaluation loss is steadily
increasing whilst training loss is decreasing.

It is also possible to do a hyperparameter grid search, where di�erent combinations of model
and training settings such as the learning rate (called hyperparameters in machine learning) are
used to train models. These parameters are subsequently tested against the evaluation dataset.
The model with the lowest evaluation loss is then selected and is finally measured against the
test set, avoiding any possible biases the evaluation set might have that would increase the score
of a particular setting of hyperparameters.

2.2 Natural Language Processing
Natural Language Processing, called NLP for short, is a branch of machine learning that uses
machine learning tools to perform tasks on human language such as text or other data sources
like speech or images of text.

Some widely known examples of NLP tasks include language translation of text, speech
recognition and optical character recognition – parsing an image of text into text strings
usable in a computer. While many techniques and methods from ordinary machine learning
can and are used for NLP on text directly, text almost always requires preprocessing to turn
it some form of numerical data, as machine learning algorithms can only run and be trained
on numbers.

There are many ways to process text into numerical data, including techniques like TF/IDF
vectors, word embeddings and bag-of-words vectors. To illustrate a simple example of how this
processing procedure relates to machine learning algorithms, I will present an example of the
machine learning task classification with the algorithm logistic regression, using the bag-of-words
processing technique.

2.2.1 Text Classification Example with Bag-of-Words
Dataset Description
In this example of the supervised learning task text classification, we are trying to classify movie
reviews as either positive or negative. We have a small dataset of six movie reviews shown in
Figure 2.1, where each data point is labeled, meaning it has an annotated answer. There are
three positive movie reviews which are labeled as having the sentiment 1. The other three
reviews are negative, represented with a sentiment of 0.

The Bag-of-Words Vector
We’re going to use logistic regression (explained later on) to classify these reviews, but as that
method requires numbers as input, we will need to convert the text into numbers. For this
example, we’re going to be representing the text as a numerical vector, using a bag-of-words
vector.

17



2. Theoretical Background

Comment Sentiment
Good movie. Didn’t suck. 1
Amazing movie, I thoroughly enjoyed it. 1
Really good. Very entertaining, enjoyed it alot. 1
Fell asleep halfway, boring movie. 0
This movie sucks, really boring. Don’t watch it. 0
Sucks. 0

Table 2.1: Some hypothetical reviews of a movie. Sentiment of 1
indicates a positive review, sentiment 0 indicates a negative review.

A bag-of-words (BOW) vector involves collecting all the N unique words used in the dataset,
assigning each word w its own index number iw. A sentence is then represented with a vector
of N bits, where the i:th bit is 1 if the word w is present in the sentence.

An example of this for the first review is shown in Table 2.2. An important process to
note is how these words were converted into numbers by giving each possible word a unique
index, which is called One-Hot-Encoding.

Word w Index i BOW vector
amazing 0 0
alot 1 0
asleep 2 0
boring 3 0
don’t 4 0
didn’t 5 1
enjoyed 6 0
entertaining 7 0
fell 8 0
good 9 1
halfway 10 0
i 11 0
it 12 0
movie 13 1
really 14 0
suck 15 1
thoroughly 16 0
this 17 0
very 18 0
watch 19 0

Table 2.2: A bag-of-words vector for the sentence Good Movie. didn’t
suck. Note the 1’s at indices 5, 9, 13 and 15.

18



2.2 Natural Language Processing

Using the BOW Vector for Logistic Regression
Using this representation, we now have a fully numerical representation of our text data,
shown in Table 2.3, which can be fed to a machine learning algorithm.

A suitable machine learning algorithm for this case is Logistic Regression, which involves
multiplying each of these bits in a BOW vector with a corresponding weight wi , calculating
the sum of these terms and finally feeding it into what is known as an activation function. For
logistic regression, this is the logistic function:

σ(x) =
1

1 + e−x ,

also known as the sigmoid function.
This function has the important properties that σ(0) = 0.5, σ(∞) = 1, σ(−∞) = 0,

along with being di�erentiable.
If we can make the weighted sum of the BOW-vector be larger than 0 for all positive reviews

and inversely have that weighted sum be less than 0 for all BOW-vectors corresponding to
negative reviews, we will have a model that can classify reviews.

BOW vectors Sentiment
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 1
0 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 1
0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Table 2.3: Each review in Table 2.1, converted to BOW vectors
using the same indexing as in Table 2.2.

Analogously to the linear regression example shown in Section 2.1.1, we can create a
loss function that compares the logistic function’s output with the sentiment that review was
associated with.

Since the logistic function is di�erentiable, the loss function in turn is di�erentiable. We
can thus di�erentiate the loss function relative to the weights wi and perform gradient descent.
For brevity, we will not describe the gradient descent process here, but instead show how such
a model could work with manually selected weights, presented in Table 2.4.

2.2.2 Multi-Class Classification
This thesis involves solving the task of multi-class classification which is very similar to the task
of classification shown above.

The di�erence is that instead of just having 2 classes, as in the above example with positive
or negative, there are several classes that a piece of data can belong to. Instead of representing
the assigned class as a single value sentiment as shown above, N bits representing the N possi-
ble classes are used and the bit corresponding to a data point’s class is set to 1 and all others
0.
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Weights
2 0 0 -3 0 0 2 2 0 4 0 0 0 0 0 -2 0 0 0 0

BOW vectors W.S σ(W.S) Sentim.
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 2 0.8808 1
1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 4 0.9820 1
0 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 8 0.9997 1
0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 -3 0.0474 0
0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 -5 0.0067 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -2 0.1192 0

Table 2.4: The BOW vectors of each review, along with a logistic re-
gression model that successfully classifies each comment. The model
is represented by the weights vector shown at the top. The weights
vector is multiplied element-wise with each BOW vector to pro-
duced the weighted sum shown in the column W.S. Each weighted
sum is sent as input to the activation function, which for logistic re-
gression is the logistic/sigmoid function. The output, known as the
activation, is shown in the column σ(W.S). By checking if this value
is larger than or less than 0.5, the comment is classified as being pos-
itive or negative. As shown in this figure, the activations are close to
the target values shown in Sentiment. Thus, the model is currently a
perfectly decent classifier of the data.

2.3 Neural Networks
Neural networks, also called artificial neural networks, are various types of networks that mostly
consist of layers and networks of perceptrons. A perceptron is the same thing as described
in Section 2.2.1, where a weighted sum of input numbers is sent through some activation
function (there are more activation functions than just the logistic/sigmoid function).

What makes Neural Networks di�erent is that, in contrast to the example in Section 2.2.1,
the inputs are sent to several perceptron nodes that each have di�erent settings, which in turn
similarly send their outputs to a second layer of perceptrons, repeating the process until the
final output layer is reached.

What makes neural networks so powerful is that conceptually, these in-between layers
(called hidden layers) are creating new, more advanced inputs than what was possible with just
the original inputs. This structure mimics the structure of networks of biological neurons,
hence the name artificial neural networks.

A visualization of an example artificial neural network with three layers is shown in Figure
2.4. All layers between the input and output layers are called hidden layers.

2.3.1 Training and Backpropagation
The process of training these neural networks, called backpropagation, is very similar to how the
desired parameter updates were found in Sections 2.1.1 and 2.2.1.

Starting from the output layer, the loss function is di�erentiated relative to the individual
output nodes, using their current values to get the slope (called the gradient) of the the loss
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Figure 2.4: A visualization of a neural network by Glosser.ca (2013).

function. This gradient thus describes how each output node should be altered to decrease the
loss value.

Similarly, the loss function is di�erentiated relative to that layer’s preceding layer nodes
and their weights, using their current values to get how they should be modified to achieve
the desired changes in the nodes of the output layer. This procedure is then repeated for all
layers, moving backwards throughout the network until the input layer is reached.

2.3.2 Architectures
Furthermore, there are several architectures of neural networks that have been shown to be
suited to di�erent tasks. The network described above, featuring input that is propagated
through layers of only perceptrons, is called a feed-forward network.

To handle sequential data such as language better, recurrent neural networks (RNNs) were
created, in which each node also has its previous value as input. To improve problems that
sometimes occur when training these RNNs (the most important one being the vanishing gra-
dient problem), the network architecture Long Short-Term Memory (LSTM) networks (Hochreiter
and Schmidhuber, 1997) was created, which could handle long sequences of data. The LSTM
network proved instrumental for several tasks including speech recognition.

However, due to the design of LSTMs (and RNNs as well), each piece in a sequence of data
needs to be processed sequentially. In order to parse a sequence of 4 items, an LSTM cannot
arbitrarily start processing item 3; it has to process item 1 first, then item 2 before finally pro-
cessing item 3. This inherent sequential dependency means parallelizing the training process
is di�cult, making these networks slow to train.

A new neural architecture called the Transformer (Vaswani et al., 2017), which parses se-
quences and their ordering utilizing an entirely di�erent mechanism, was able to produce
models that outperform previous architectures for many text-related tasks, whilst o�ering
parallelizable and thus faster training.
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2.4 Embeddings
Embeddings are a specific type of projection. A projection is basically a lossy compressed ver-
sion of any (usually binary) input data, where that compressed version was generated using
a neural network.

What makes embeddings di�erent from projections is that embeddings aim to somehow also
represent the meaning of the data and how they relate to each other, in some sense. Un-
derstanding what they are and how they are useful requires quite a bit of context, so I will
instead lead by discussing one type of embeddings called word embeddings, framing them as an
alternative to bag-of-words vectors.

2.4.1 Word Embeddings
While techniques like BOW vectors shown in Section 2.2.1 and TF-IDF vectors are concep-
tually simple and are e�ective for many tasks, they don’t encode any actual meaning of words
and sentences. They just restructure the data by labeling each possible word with a unique
index. Furthermore, these vectors are often very sparse, containing a lot of 0’s and just a few
1’s.

Word embeddings are instead pre-generated numerical vector representations of words,
with the property that words with a similar meaning are close to each other in vector space.
A famous example of the power of word embeddings from Mikolov et al. (2013) is to look up
the word embedding vector vking that representing the word king, subtract the vector vman that
represents man and add the vector vwoman for woman and search the list of embeddings for
the vector most similar to the result, which is queen.

vking − vman + vwoman ≈ vqueen (2.1)

Using these word embeddings in models for tasks like text classification, you can reduce the
complexity of the model and still achieve good, possibly even better results. With the example
shown in Table 2.1, a model that has word embeddings as input does not need a separate input
and weight for each possible positive or negative word to do it’s job; the word embedding
vectors corresponding to negative words like sucks and terrible will likely be very similar, and
positive words will analogously be similar to each other.

The model can be far simpler, and conceptually classify comments based on meaning
instead of checking if a word is “in the negative or positive word lists”, as was conceptually
done with the hand-picked weights in Table 2.4.

What’s been shown here specifically is static word embeddings, where each word has one sin-
gle vector representation. Some popular static word embeddings include word2vec by Mikolov
et al. (2013) or GloVe by Pennington et al. (2014). An innate disadvantage of using static word
embeddings is that words can mean di�erent things depending on context; the word bank
can refer to the financial institution or a region of land alongside a body of water. There are
dynamic or context-sensitive word embeddings that exist to solve this problem, which is one of
the outputs that BERT produces. This will be elaborated on in Section 2.5.4.
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2.4.2 Encoder-Decoder models
Words embeddings may seem a bit a bit magical, but they are normally created as a byproduct
of a neural network built with the Encoder-Decoder architecture. Encoder-Decoder models are
neural networks that are conceptually two separate neural networks blocks, called the encoder
and the decoder. They are connected to each other in a specific way and specifically trained
to perform slightly di�erent tasks – encoding and decoding.

The intention of the encoder sub-network is to compress large, high-dimensional input
vectors into a singular small vector that hopefully works as a useful, meaningful representa-
tion of the input. Hence the name: it encodes the input. This compact vector representation
is in turn sent to the decoder block, whose purpose is to then somehow decompress or create
new data from this compact vector, where the creation of this new data must be made with
a “deep understanding” of the input data; i.e. the decoder block decodes the data.

Autoencoder
The autoencoder, visualized in Figure 2.5, is a simple network that serves as a good depiction
of how these encoder and decoder blocks come to actually interact and work together.

The autoencoder is a neural network specifically designed and trained to work like a lossy
compression algorithm. It takes a vector of bits as inputs, feeds them to a layer of much
smaller dimension (less nodes) than the input, and sends the outputs of this small in-between
layer to the final output layer. During training, the targets of the output nodes are set as the
original input vector; the decoder is thus trying to recreate the original input from the smaller
hidden layer, the embedding.

Figure 2.5: Illustration of a well-trained autoencoder network.

In the example shown in Figure 2.5, the input vector of eight bits is passed through smaller
and smaller layers, to a layer that contains only three nodes. The outputs of these three nodes
are then sent to larger and larger layers until the output layer is reached, which is hopefully
recreating the input vector with its output nodes.
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If the network is trained successfully, the outputs of this smallest layer of the nodes is seen
as being the embedding, the encoded version of our input. Thus, through the training process,
the encoder block becomes trained to transform the input into a usable embedding that can be
fed as input to the decoder block, which is simultaneously trained to able to reconstruct the
input data.

Separating the Tasks of Encoders and Decoders
This technique of structuring a network into an encoder and a decoder block is very powerful.
While the autoencoder network is useful in itself for compressing data, tweaking what the
encoder and/or decoder is doing allows a network to perform much more advanced tasks.

I will revisit this concept of a decoder performing a slightly di�erent task in Section 2.4.3,
where the encoder and decoder blocks will still function similarly as in the autoencoder example.

While a full explanation will not be provided here, the word embeddings in word2vec
(Mikolov et al., 2013) were generated using such an encoder-decoder network. Compared to the
compression and decompression tasks for the encoder and decoder blocks of the autoencoder,
their goals are tweaked in word2vec. Instead, they were in tandem trained to guess a word
that was removed from a sentence and additionally doing the reverse; predict the surrounding
words of a given word. After training was completed, a word was input and the values smallest
layer in the network was then collected, representing that word’s word embedding.

2.4.3 Sentence Embeddings
While individual word embeddings are useful, it is hard to use them out-of-the-box for var-
ious NLP tasks. Relating to the example in Section 2.2.1, the comments di�er in length,
making it hard to format their word embeddings as input to a model. A good solution to this
is to somehow obtain a fixed-sized vector that can represent the sentence as a whole.

A simple method that achieves this is to take the average of the word embeddings corre-
sponding to the words in each comment/sentence. However, this approach does not work
well in practice (Conneau et al., 2017). Additionally, given the two sentences:

That’s not a bad idea, its a good one
That’s not a good idea, its a bad one

Table 2.5

We see that they contain the exact same words. However by switching good and bad, the
sentences mean di�erent things. Alas, since the sentences have the same words, the average
of their word embeddings would be the same.

Using a Encoder-Decoder Network for Translation
As shown in Section 2.4.2 for word2vec, encoders and decoders can be designed to perform
di�erent tasks through a powerful embedding vector. Expanding on this thought, we can
try to encode entire sentences into one vector. For example, we will imagine an encoder that
sequentially encodes word embeddings into a new output, a “hidden state” vector. If the encoder
is correctly trained, this “hidden state” will be increasingly embedded with information from
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the sentence. Upon processing the last word, the encoder will produce what can be considered
a sentence embedding. An example usage of this is a basic neural machine translation network,
shown in Figure 2.6, which was inspired by the model architecture used for an earlier version
of Google Translate. (Wu et al., 2016)

Figure 2.6: An encoder-decoder network that encodes words into a
sentence embedding (usually called context vectors in these networks),
which is used by a decoder that is trained to output the sentence in
a di�erent language; which in this example is Spanish.

The embedding of each word in the sentence Enjoy the show is retrieved and sent back
to the encoder one word at a time. After parsing the first word and producing an output,
that encoder output, called a hidden state, is sent back into the same encoder along with the
next word. With each new word, this hidden state from the encoder is hopefully continually
embedded with more and more “meaning” until the encoder has parsed all words, at which
point the hidden state output of the encoder can be perceived as the sentence embedding.

In this translation model, the sentence embedding is then sent to a decoder, which contin-
ually outputs words while piping the remains of the hidden state back into itself, until the
decoder declares the output sentence finished by outputting an “end token”.

Harkening back to the decoder in the autoencoder example (Section 2.4.2), the decoder is
in this case almost trying to “decompress” the sentence embedding back to its original words,
although this time in a di�erent language. This example is clearly similar to what the autoen-
coder network is doing, however it should now be apparent that we can train networks that
intelligently represent words, sentences and almost any other data as meaningful fixed-size
numerical vectors, as a byproduct of training on other tasks.

2.5 BERT
BERT (Devlin et al., 2019) is a Transformer-esque model that can be thought of as being an
excellent “model of language” that, while not useful in itself, performs extremely well when
altered to be used for other NLP tasks like text classification, question answering, entity-
recognition and more. As BERT is the underlying architecture of the models used in this
thesis, BERT will be explained in relatively deep detail. This description formally starts at
Section 2.5.3, but is prepended with clarifications on the terms Language Model and Trans-
former as they can help frame an understanding of the model.
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2.5.1 Language Model
Before I move on, we will take notice of the term language model, which has a very specific
definition in NLP that is quite abstract and doesn’t seem too useful at first glance. Given the
two tasks it solves, the name language model seems to be a bit of a misnomer and could instead
be described as a next-word and sentence-probability predictor.

The first task a language model performs is to, given a set of words, provide a probability
distribution of what the next word is. For example, language models are used when typing
something on a modern smartphone that gives a suggestion of the next word is. When typing
I’m going to the, the language model in a smartphone might suggest store.

The second task a language model performs is to, given a sentence, compute the probability
that it is actually a real, grammatically correct sentence. A good language model will give a
high score to the sentence I’m going to the store, and a low score to Store to going I’m the .

While direct usages of language models have useful applications as shown above, they can
also be perceived as having “learned how language works” in some sense.

By training a language model but then ignoring the outputs that actually make it a “next
word” or “actual sentence” predictor, it can be viewed as being an encoder of not just words
or sentences, but as an encoder of “language” in the broadest sense. The reason that a general
language encoder is considered useful is that a model that “understands language” well can
probably be a good interim step for later downstream NLP tasks. This is precisely what BERT
has been shown to be. A “language encoder” model is indeed a very vague and ambiguous
definition, but I will need to describe a few more things about BERT in order to understand
how it fulfills this purpose.

2.5.2 Transformer and Attention
As mentioned, BERT is a Transformer model, which is a neural network architecture created
by Vaswani et al. (2017). The Transformer is a rather complex architecture and a complete
explanation will not be provided here. Instead I will highlight two of it’s main contributions
that are particularly relevant to understanding how BERT is faster and learns language better.

The attention mechanism is a mathematical procedure that can be applied in NLP to encode
how relevant one word is to another. When the decoder in Figure 2.6 is producing the first
Spanish token, attention can be implemented, which would let the decoder look at each input
word embedding and weigh their relevance for the to-be-generated first Spanish token. The
computation of attention is a series of matrix multiplications, and the matrix parameters are
learned through training so that the resulting attention values work as intended. to act An
important property is that each attention calculation is independent from each other and thus
parallelizable.

The Transformer uses this attention mechanism when encoding the input sequence as well,
replacing the sequential dependence of encoders like in Figure 2.6, allowing for paralleliza-
tion during training.

Furthermore, encoders utilizing attention allows truly bidirectional nuances in encoding.
This is di�erent from earlier pseudo-bidirectional encoders, which usually employs one en-
coder that processes words left-to-right like in Figure 2.6, a second encoder that parses the
sentence in reverse (right-to-left) and then simply concatenates the two encoders’ embed-
dings for each word.
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2.5.3 BERT Architecture
In upcoming sections, I will describe how each of the parts work in detail, but as a starting
point I will show the general architecture of BERT to be used as reference for how the network
looks, is structured and how data flows through it.

Figure 2.7: An overview on the architecture of BERT.

BERT parses a sentence by splitting the sentence into individual words, also called tokens,
which are all sent in parallel into a linear stack of encoders. To be specific, words are repre-
sented using “interim” word embeddings called WordPiece embeddings, described in Section
2.5.4. Important to note is that BERT receives all the words as parallel individual inputs, in
contrast to the network shown in Figure 2.6.

Sentences are obviously variable in length, however BERT handles this by adding padding
to sentences shorter than 512 words, truncating sentences longer than that and applying an
attention mask that essentially zeroes out all padding tokens so they don’t a�ect the encoder
stack.

This input is sent to a stack of 12 serially connected encoders, where each encoder outputs
512 new word embeddings. Each encoder is thus receiving all word embeddings of a sentence
and generating a new embedding for each word. The final output of the model is thus 512
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word embeddings, where the first N output vectors of a sentence that is N words long are
the word embeddings for each word and the remaining vectors are to be ignored.

2.5.4 Word Embeddings from BERT
We will start o� by looking at the primary outputs of BERT that is seen in the model archi-
tecture. One of the primary purposes of BERT is to generate word embeddings: specifically,
context-aware word embeddings.

BERT takes a full sequence of words represented by “interim” static subword (explained
later) embeddings as input. It passes each of these “interim” word embeddings through layers
of encoders in parallel, subtly evolving these embeddings after each encoder until it finally
outputs enriched embeddings for each of these words.

The term “enriched” in “enriched word embedding” refers to the fact that word embed-
dings generated by BERT are not static, but are informed by the other words in the sentence.
As an example, the word bank in the sentences I went to the bank by the river. and What is the
balance of my bank account? will be represented with di�erent word embeddings when using
BERT, in contrast to those from word2vec (Mikolov et al., 2013) or GloVe (Pennington et al.,
2014).

When an encoder in BERT is generating a word embedding, it is not just looking at that
word itself, but is also simultaneously using all the other words as input to the encoder. How-
ever, it does not do this blindly; it assigns an attention value to each other word. This attention
value for a word can be thought of as describing how relevant is this other word to the word we’re
currently focusing on?. For example, in the sentence I saw a dog, it was happy., the word dog is
highly relevant to it, and dog while thus have a higher attention value when encoding the word
it.

Details on Subword Tokenization and Layered Embeddings
An interesting feature of BERT is how it represents words using the aforementioned “dumb”
static word embeddings.

BERT uses WordPiece tokenization (Wu et al., 2016), where an input sentence sentence
string is broken down (tokenized), not just into separate tokens (words), but sometimes into
subwords (parts of words). The word embedding may be broken into em and bedding, for exam-
ple. Additionally, a word that was broken into subwords is made distinct from real words by
using the prefix "##. embedding is thus actually broken into em and ##bedding, to preserve that
it is part of a larger word and to not mistake it with the other real word bedding.

Each possible word and subword is assigned its own unique static embedding, also stem-
ming from Wu et al. (2016). This subword dictionary is extremely expensive, to the point
where the out-of-vocabulary issue, which is when the embedding of a word is not present in
the embeddings list, does not occur.

Furthermore, the vectors passed as input to BERT’s stack of encoders are not solely the
WordPiece embeddings. Each word embedding is added with a vector called a position “em-
bedding”, which represents if the word is the 1st, 2nd, 3rd or i:th word in the sentence. This
allows the encoder to not only take surrounding other words into account when encoding a
word, but also its position. The cruciality of this information was shown in the examples of
Table 2.5.
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While adding this position embedding to the WordPiece embeddings may seem like it is dis-
rupting the relational nature of word embeddings, the math involved in computing the at-
tention αi, j that word wi pays to w j conceptually separates the position and word embedding,
allowing the encoder to treat the words and their relative positions separately during training.

2.5.5 Pretraining and Tasks
BERT is pretrained on two simultaneous tasks in order to develop a deep understanding of
language: masked language modelling and next-sentence prediction, both of which can be per-
formed without labeled data. The originally proposed and published models bert-base and
bert-large were thus trained on a very large corpus, a text dump of the entire English Wikipedia
(Devlin et al., 2019). We will follow up the above section on word embeddings by describing
its pretraining process for the first task.

Masked Language Modelling
BERT is trained to generate rich, context-sensitive word embeddings by training it on the
task masked language modelling. This task means that a certain percentage of words fed to
BERT during pretraining will be replaced with a special blank [MASK] token, and a decoder is
attached to the word embedding of that masked word. The ultimate goal of the task and the
decoder is then to predict what that missing word was.

As all encoders are connected to all of the input words simultaneously, the result of this of
this task is that the encoder stack becomes trained to use the surrounding words when infer-
ring the missing word, which in turn trains them to create context-aware word embeddings
as side e�ect.

Next-Sentence Prediction
However as mentioned earlier, BERT is not being trained on just one task. A training example
loaded from the corpus of BERT actually includes not just one, but two sentences A and B,
that are fed to the model simultaneously.

This second task of the model during pretraining is to predict if these sentences follow
each other, i.e. if sentence B follows sentence A. While this is indeed a supervised task, labeling
the training examples is easily automated; 50% of the time when a sentence A was selected
from the corpus, the actual succeeding sentence was selected as B, whereas the other 50% of
the time a completely random sentence from the corpus was selected.

Sentence pairs
Sentence A Sentence B IsNext

The man went to the store. He bought a gallon of milk. True
The man went to the store. Penguins are flightless birds. False

Table 2.6: Example of Next-Sentence prediction on two sentence
pairs from Devlin et al. (2019)

To give the model the ability to complete this task, it needs to be able to understand
that these are two separate sentences and obtain an overarching grasp of the two complete
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sentence to be able to compare them.
The first requirement is enabled via two features: a special token [SEP] that is placed

between sentences A and B, as well as a segment embedding, a predefined value that is added
to each word’s embedding, just like the position embedding described in Section 2.5.4. These
two features provide the ability for the model to understand that these are two di�erent
sentences.

The latter requirement, actually grasping the sentences and comparing them, is facilitated
by a single special token [CLS] that is prepended to the entire sequence of A and B. After
being fed through the encoder stack, the output embedding of this CLS token is fed to a
perceptron that represents the models prediction of IsNext. Thus the [CLS] token is trained
to be an embedding that represents an understanding of both sentences and if they follow
each other.

A detail that might further illuminate how BERT is trained to understand language is
that sentences A and B don’t have to be complete sentences. They can be arbitrary strings of
text picked from the corpus that either directly follow each other, wherein IsNext is True, or
are picked from two completely di�erent sources upon which IsNext is set to False.

Full Input and Pretraining
Now that both pretraining tasks have been shown, we can review how one training example
looks in its entirety, shown in Table 2.7.

The two sentences are tokenized using the WordPiece tokenizer with some words randomly
masked. They are then concatenated, separated with the insertion of the special token [SEP]
and finally the entire sequence is prepended by the special [CLS] token. Each token in the
sequence is processed in parallel by the encoder stack and a decoder is attached to the final
encoder output of masked tokens’ embedding, where the decoder is trained to predict the
missing word. The output embedding of the [CLS] token from the encoder stack is attached
to a perceptron that is trained to represent if sentence B follows A, training [CLS] to become
sort of an embedding of both sentences.

Sentence pairs IsNext
[CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP] True

[CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight ##less birds [SEP] False

Table 2.7: A typical training example supplied to BERT during pre-
training, from Devlin et al. (2019). Here we can see how the input
is prepared so the model can train on the two simultaneous tasks,
as well as how WordPiece subword tokenization is handled in how
"flightless" is split into "flight" and "##less".

2.5.6 Fine-Tuning for Text Classification
We should now be able to understand how BERT is trained to understand language on a
broader level: for individual words, sequences of words and a general grasp on textual and
language continuity.
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BERT’s power in this regard is mainly shown when it is used as an intermediate step when
training on other tasks. It can by trained to perform di�erent tasks by changing the structure
of the input and/or attaching an additional output layer on the embedding outputs of BERT.
The model weights can either be left as is while training only the added output layer or the
model can alternatively be fine-tuned, meaning the internal parameters of BERT are adjusted
slightly for the desired task. While fine-tuning is indeed more expensive, BERT’s pretraining
often produces an encoded understanding of language e�ective enough that internal weights
rarely need to be adjusted in any large capacity.

While many tasks can use the frozen weights of BERT and only train an output layer, text
classification usually requires some sort of fine-tuning, as nothing we’ve seen so far in the BERT
architecture can be directly viewed as an encoding of a full sentence. However, the special
token [CLS] has been pretrained to hold vaguely similar properties.

As directly proposed by the authors of BERT Devlin et al. (2019) in their paper, a class/label
decoder can be attached to the [CLS] output embedding and then be trained and fine-tuned
for the task, causing the [CLS] embedding to morph into a sentence embedding. As previously
mentioned, the similarity of properties between the [CLS] embedding and a sentence embedding
means the fine-tuning process should not require too many drastic changes to BERT’s internal
parameters.

This architecture is shown in Figure 2.8 and was used by Devlin et al. (2019) when bench-
marking BERT on the down-stream tasks SST-2 (Socher et al., 2013) and COLA (Warstadt
et al., 2018). It is also the task-specific architecture used on the two BERT models described
below in Sections 2.5.7 and 2.5.8.

Figure 2.8: A modification of the BERT model architecture designed
to perform sentence classification, from Devlin et al. (2019).
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2.5.7 mBERT: a Multilingual BERT Model
Using the BERT architecture, Google published a BERT-model called mBERT (Google, 2018),
trained on text data in over 104 languages. mBERT’s corpus was the text data from all Wikipedia
articles belonging to the top 104 languages on Wikipedia with the most textual data.

Flair
Flair (Akbik et al., 2019) is a software library that facilitates easy usage of NLP techniques to
solve some typical NLP tasks, such as text classification. It supports a number of techniques,
algorithms and models, including several pretrained models, one of which is mBERT. Flair
is used in this thesis to load mBERT and fine-tune it for classification on the corpus of this
thesis, the food product names and classes described in Section 3.1.

2.5.8 The Swedish KB-BERT Model from Kungliga
Biblioteket

Swedens national library Kungliga Biblioteket published a monolingual BERT model for the
Swedish language, called KB-BERT (Malmsten et al., 2020). It was trained on a vast Swedish
corpus procured by Kungliga Biblioteket, including text from digitized archives of newspapers,
government publications and reports, ebooks, social media, online forums and all Swedish
articles on Wikipedia.

HuggingFace Transformers
HuggingFace Transformers is a software library that hosts a multitude of modern Transformer
models such as BERT, as well as versions of these models pretrained on various corpora. It
also hosts community submissions of pretrained models such as KB-BERT. HuggingFace Trans-
formers also facilitates a range of pre-made extensions of models to accommodate popular
NLP tasks such as text classification.

2.6 Terminology
This section contains definitions of some additional important terms that either weren’t fully
elaborated on in earlier sections, or were not mentioned so far, that are used in this paper.

Training Example A training example is a data point used by a machine learning model during
training to improve or evaluate its performance on a given task. in Table 2.1, each of
the comments is a data point and each data point used to train the model is a training
example.

Corpus A corpus is a collection of data used for a machine learning task. In this thesis,
Mashies products document (described further in Section 3.1), containing a vast collec-
tion of product names and their associated product category, is the corpus used for this
thesis. A corpus may be annotated, meaning each individual data point has metadata
that may be used as the target values (answers) for the task at hand.
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Epoch An epoch is the same thing as the training iteration described in Section 2.1.1, a full
pass of model parameter updates from all data points in the training dataset.

Training Batch and Batch Size When training very large models on large datasets, it is
rarely possible to pass the entire dataset through the model in a single step due to
memory constraints, particularly on GPUs. To handle this, the training dataset can
be split up into smaller pieces known as batches that are passed through the model.
The model parameters are then usually updated to minimize the loss function after each
batch. Alternatively, parameter and weight updates can be accumulated and performed
after either all or a predefined number of batches have been passed through. The batch
size specified the number of training examples contained in a single batch.

Optimizer The optimizer is the scheme/method used to calculate how the parameters of
a model should be updated during training. In Section 2.1.1, I described the opti-
mizer called stochastic gradient descent (SGD), which updates parameters by subtract-
ing a fraction of the loss function’s gradient, where the gradient’s multiplier is a small
number called the learning rate. There are more optimizers such as adaptive optimizers,
that employ custom learning rates for each parameter that are adjusted individually
throughout the training process.

Learning Rate Scheduler Instead of just using the same learning rate throughout all iter-
ations, it is possible to use a learning rate scheduler that deterministically varies the
learning rate after each training iteration. There are many schedulers, such as the cy-
cle scheduler, sinoid scheduler, the step scheduler and more. In this thesis, the annealing
step scheduler was used, which reduces the learning rate with a multiplicative annealing
factor, after a specified amount of bad epochs, meaning epochs where no improvement
was observed.

Support In classification tasks, support refers to the number of training examples that belong
to a class. In the example shown in Table 2.1, there were 3 comments with positive
sentiment, thus the class positive sentiment had a support of 3.

Precision is a measure of how confident you can be that a prediction made by a model is true.
Using Table 2.1 as an example, if a classifier model had predicted the first 3 comments
as positive, incorrectly predicted the 4:th comment as positive and correctly classified
the rest as negative, the positive class would have a precision of 3/4, or 75%, as 3 out of
the 4 training examples were actually positive.

Recall is a measure of how many of the training examples were captured by the classifier
and put in the correct class. If only the first comment in Table 2.1 was predicted to
be positive, the precision of the positive class would be 100%, as it did not actually
incorrectly classify anything as positive when it was actually negative. However, the
recall of the positive class would only be 1/3 or 33.3...%, as it “missed” the other 2 positive
comments.

F1-score As both precision and recall are needed to properly describe the performance of a
model, the F1-score is often used to combine both metrics into a single number. The
F1-score, a value between 0 and 1 just like precision and recall, is the harmonic mean of
these two metrics, as shown in 2.2. For the model example shown in the definition of
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precision, the F1-score of the positive class is 85.7%. Analogously for the model in the
definition of recall, the F1-score of the positive class is 50%.

F1-score =
2 · Precision · Recall
Precision + Recall

(2.2)

Macro-average The macro-average of a metric is the direct mean of these metrics across all
classes, with no weighting given to any of them. Given a model that identifies the
presence of tumors in x-ray images, most datasets will probably have a very high ratio
of non-tumor images, we will use an example of 99 non-tumor images and 1 image with
a tumor. The model will likely be trained to solely predict does not contain tumor for
every image, giving the tumour and no tumour ∼100% and 0% F1-scores, respectively.
Although the model obtains low loss, this is probably not desired behavior and the
macro-average F1-score will indicate that, as it will be ∼100%+0%

2 ≈ 50%.

Confusion Matrix In the example presented in the definition of Precision, there were 3 pos-
itive comments which were all predicted as positive and 3 negative comments, 2 of
which were predicted as being negative. While the metrics precision, recall and F1-score
are good overall metrics to see how the model is behaving, a confusion matrix allows us
to see how the model is classifying these training examples in further detail. A confusion
matrix is a matrix of cells, where each cell described how many training examples with
a particular true class classtrue was predicted to belong to a class classpred . The cell’s
row describes which class it actually belongs to, classtrue, while its column describes
which class it was predicted to belong to, classpred . Table 2.8 show the confusion matrix
that represents this example. These confusion matrices are particularly useful when clas-
sifying among multiple classes in order to detect if there is any systemic misclassification,
e.g. when training examples are regularly being predicted as belonging to a particular
but incorrect class.

Actually Positive 3 0
Actually Negative 1 2

Predicted Predicted
Positive Negative

Table 2.8: Confusion matrix for the example where 3 positive com-
ments were correctly predicted as positive, 2 negative comments were
correctly predicted as negative and 1 negative comment was misclas-
sified as positive.
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Chapter 3

Methodology

The original task proposed by Mashie was to investigate how many details and properties
of a product could be accurately predicted, using unrefined product names and descriptions
recieved from manufacturers of food products and related goods. This task was reformulated
as an investigation into the e�cacy of predicting a products category with NLP models, using
only the product names as input data. This problem was thus interpreted as a multi-class text
classification task.

This chapter describes methodology of this investigation and evaluation, including the
data, data processing and model selection.

3.1 Input Data from Mashie
Mashie provided a large Excel document containing details of 114,158 food and food-related
products produced by various Swedish manufacturers, hereinafter denoted as the products
document. Each row in this document describes an individual product and its properties,
including the product’s name and category.

Originally, this data was sourced by Mashie from various manufacturers via product
datasheets. These manufacturer product sheets often use a wide variety of shorthands and
include irregular tokens and typographical errors. Part of Mashie’s operations involve clean-
ing, transcribing and structuring this data. In this thesis, only Mashie’s refined versions of
product names were used and thus the only preprocessing deemed necessary was transform-
ing it to lowercase and consolidating whitespace tokens. These product names are akin to
what you would find on an online grocery store.

Document and Product Details In the products document, the category of a
product is described in three levels:

1. The top level is a broad grouping of goods called varuområde. This entails groups such
as frozen goods, fresh produce, and non-foods.
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2. The next level, huvudgrupp, denominates a group of goods within the aforementioned
varuområde. Examples of a huvudgrupp under fresh produce are meat products, unprocessed
vegetables and berries.

3. The final level of categorization is a product-type level of categorization called varu-
grupp. This specifies quite narrow ranges of products, such as carbonated soda, mineral
water, cereal, cucumbers, pork and more.

Table 3.1 contains a few example products from the products document and their associated
varuområde, huvudgrupp and varugrupp.

Table 3.1: Examples of a product’s 3 levels of categorzation and the
product names.

Varuområde Huvudgrupp Varugrupp Product name
Färskvaror/Kylvaror Frukt/bär Bananer Bananer (5kg) (25-30st/krt)

Djupfryst Kött oberett Blandfärs Blandfärs 70/30 Lf
Kolonial/Speceri Baktillbehör Bakchoklad Mjölkchoklad pellets Lait Entier 37%

3.2 Data Processing
The three levels of categorization for a product were combined and interpreted as one unit,
hereinafter called the taxonomy. The taxonomy is thus a text string with the format <varuom-
råde><huvudgrupp><varugrupp>. This provided a clear set of classes which products belonged
to. With these definitions, the products document contains 114,158 products that belong to
2,808 unique taxonomies.

3.2.1 Procedure
Of these 2,808 taxonomies, a distribution count was made and the top 40 taxonomies asso-
ciated with the largest number of products were selected. This number of taxonomies was
selected as it was small enough to train relatively quickly and is deemed a large enough num-
ber to contain a diverse selection of taxonomies. This diversity thus provides an indication
how the model would work when classifying products among all taxonomies and categories.

Following this, the list of all products was split into training, validation and test sets,
using an 80%, 10% and 10% ratio. This was performed by picking a random product and
placing into the validation set until the validation set contained 11,415 products, e.g. 10% of
the total number of products. This process was repeated for the test set, and the remaining
products were used as the training set. To ensure comparable results across both models, the
random-number generator used for the set splitting process was initialized with a fixed seed,
seed 0.

The training set was then optionally reduced when studying the e�ectiveness of the model
on lower amounts of training data. It was reduced in a similar fashion, by deleting random
products until the desired amount of products was left, using a random number generator
that also used seed 0 to ensure comparable results between models. The validation and test
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sets were not reduced in this process, so the classification results for models trained on re-
duced datasets can be considered as valid as for the model trained on 100% of the data.

Finally, all products in the training, validation and test sets which did not belong to
the aforementioned top 40 selected taxonomies were removed. Initially these products were
included as an extra unknown taxonomy, but the resulting performance of the models was
very poor and this idea was quickly dismissed.

3.2.2 Resulting Datasets
The resulting datasets were quite imbalanced, with training support for a taxonomy ranging
from over 1600 training examples down to 300 training examples, as a direct result of the
distribution of products in Mashie’s products document. A table of each taxonomy and its
training and test support can be viewed in Table 3.2.

No action was taken to resolve this imbalance, as the training support of a taxonomy did
not seem to correlate with its classification performance when using 100% of the training data.
For example, the taxonomies hushållsglass and äpplen, with 411 and 1765 training examples
each, achieved the similar F1-scores, as shown in Table 4.1. This imbalance also o�ered an
opportunity to granularly inspect the impact of training support on F1-score when decreasing
the training dataset, further described in Sections 3.3 and 4.2.
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Table 3.2: Table of the 40 chosen taxonomies for evaluation in this
thesis. The right hand side shows the number of products/training
examples in each taxonomy for the test dataset and training dataset;
also known as test support and training support.

Dataset support
Taxonomy Test Training
<djupfryst><glass><glass stycksortiment> 47 398
<djupfryst><glass><hushållsglass> 31 411
<färskvaror/kylvaror><ägg><ägg färska> 34 329
<färskvaror/kylvaror><frukt/bär><apelsiner> 45 395
<färskvaror/kylvaror><frukt/bär><äpplen> 192 1765
<färskvaror/kylvaror><frukt/bär><melon> 68 542
<färskvaror/kylvaror><frukt/bär><päron> 95 833
<färskvaror/kylvaror><frukt/bär><småcitrus> 57 448
<färskvaror/kylvaror><frukt/bär><vindruvor> 42 415
<färskvaror/kylvaror><grönsaker obehandlade>
- <groddar/skott/småblad> 84 676

<färskvaror/kylvaror><grönsaker obehandlade>
- <grönsaker övriga> 31 305

<färskvaror/kylvaror><grönsaker obehandlade><gurka> 78 500
<färskvaror/kylvaror><grönsaker obehandlade><lök gul> 40 323
<färskvaror/kylvaror><grönsaker obehandlade><morötter> 83 637
<färskvaror/kylvaror><grönsaker obehandlade><paprika 66 664
<färskvaror/kylvaror><grönsaker obehandlade><sallad övrig> 154 1125
<färskvaror/kylvaror><grönsaker obehandlade><tomater> 148 1215
<färskvaror/kylvaror><ka�ebröd/konditori><bakelse> 49 469
<färskvaror/kylvaror><ka�ebröd/konditori><bullar> 49 321
<färskvaror/kylvaror><ka�ebröd/konditori><tårtor> 166 1073
<färskvaror/kylvaror><ka�ebröd/konditori><vetebröd> 44 323
<färskvaror/kylvaror><matbröd färdigt><bröd> 59 356
<färskvaror/kylvaror><matbröd färdigt><portionsbröd> 32 302
<färskvaror/kylvaror><mejerivaror><yoghurt smaksatt> 50 337
<färskvaror/kylvaror><potatis><potatis skalad> 33 364
<färskvaror/kylvaror><potatis><potatis> 131 1212
<kolonial/speceri><kolsyrade drycker><kolsyrad läsk övrig> 47 406
<kolonial/speceri><kolsyrade drycker><mineralvatten> 41 328
<kolonial/speceri><konfektyrer><choklad> 51 415
<kolonial/speceri><konfektyrer><konfektyrer> 176 1300
<kolonial/speceri><te/chokladdryck><tepåsar med kuvert> 46 363
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Taxonomy Test Training
<non food><bägare,grepp,koppar engångs>
- <bägare,grepp,koppar engångs> 30 346

<non food><formar,uppläggningsfat engångs><plastform/lock> 52 479
<non food><servetter,servettställ,dispenser><servetter> 63 545
<restaurangutrustning>
- <hushålls och storköksmaskiner>
- <hushålls och storköksmaskiner>

44 483

<restaurangutrustning><köksredskap><köksredskap> 90 787
<restaurangutrustning><köksutrustning><kantiner> 40 323
<restaurangutrustning><textil><textilier och kläder> 60 531
<vin/sprit/öl klass 3><vin><vin rött> 74 643
<vin/sprit/öl klass 3><vin><vin vitt> 76 496

3.3 Varying Training Data Amount
To further study the performance of the models, the option to reduce the training set was
utilized by training the models on 100%, 50%, 20%, 10%, 5% and 1% of the training set. The
resulting classification reports were then studied by generating the graphs shown in Section
4.2.

As mentioned in Section 3.2, the test set was unchanged for all models, to ensure valid
comparisons. In these graphs, the F1-score was selected as the main metric for evaluation, as
neither precision nor recall could be dismissed as an unimportant metric for the task.

3.4 Fine-Tuning the BERT Models
Initially, I chose the software library Flair to host the text classification model and pipeline,
as it was advertised to deliver near state-of-the-art levels of performance (Akbik et al., 2019)
whilst being relatively easy to use. Furthermore, Flair recommended using Transformer models
specifically for text classification. Thus I selected the multilingual model mBERT (Google,
2018), as it was the only model compatible with Flair that was trained on Swedish text. This
was important as most of the product names are in Swedish and are sourced from Swedish
manufacturers.

Comparison with a monolingual Swedish BERT model was desired to see if the expected
slightly higher performance of a monolingual model (de Vargas Feijo and Moreira, 2020) was
replicated here.

Therefor, I selected the BERT model KB-BERT from Kungliga Biblioteket (Malmsten et al.,
2020), as it is a recent BERT model trained on a very large Swedish corpus. KB-BERT is pro-
vided via the software library HuggingFace Transformers, which was thus used for fine-tuning.

Hyperparameters To ensure fair comparison of both models, I modified the trainer
utility and settings provided by HuggingFace to be as similar as possible to Flair’s default
training process and settings. Both training procedures used the following settings:
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• Fine-tuning (as described in Section 2.5.6)

• 100 maximum epochs

• 0.1 learning rate

• A batch size of 32

• An SGD optimizer

• An annealing learning rate scheduler with:

– A patience of 4

– 0.5 annealing factor

– Minimum learning rate of 10−4

The annealing learning rate scheduler was set to halve the learning rate (annealing factor
0.5) if the evaluation loss had not improved after 4 epochs. If the learning rate fell below the
minimum prior to reaching 100 epochs, training was terminated.

After training was completed, I loaded the model from the epoch with the lowest de-
tected evaluation loss. The learning rate and number of epochs were set at Flair’s default
values, which are rather high in comparison to the original suggestion made by Devlin et al.
(2019), but serves to avoid underfitting. The subsequent possibility of divergence was avoided
by using the annealing learning rate scheduler, which additionally counteracts overfitting by
design. Both models terminated training at around 60-70 epochs due to reaching the mini-
mum learning rate.
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Chapter 4

Results

This chapter describes the test results and other diagnostics of the models. In the tables and
diagrams, the multilingual model mBERT (Google, 2018) is denoted as BERT Multilingual or
Multilingual. The Swedish model KB-BERT from Kungbib (Malmsten et al., 2020) is denoted
as BERT Swedish or Swedish.

4.1 Overall Comparison

4.1.1 Classification Report
In Table 4.1, the results of the classification test on the test set is presented on a per-taxonomy
basis, along with a macro-average across all taxonomies.

The taxonomies were shortened to aid readability, only containing the last part of the
taxonomy, the varugrupp. They have been grouped and separated by lines according to their
varuområde, which are djupfryst, färskvaror/kylvaror, kolonial/speceri, non food, restaurangutrust-
ning, vin/sprit/öl, in the same order as presented in the table. Varuområde, varugrupp and the
structuring of the taxonomy is described in Sections 3.1 and 3.2.

F1-score is selected as the main metric to compare performance of taxonomy prediction
between the models, as both precision and recall are important to the task. Macro-average
F1-score is selected as the metric to compare the overall performance of the models, as F1-
score is important for the reasons mentioned above and the imbalance of the dataset should
not be accounted for as all classes are of equal importance.

Table 4.1 shows that both models perform very well in general. Of the 40 taxonomies,
38 and 33 taxonomies have an F1-score over 90% and 25 and 26 taxonomies exceed an F1
score of 95% for the multilingual and Swedish models, respectively. The multilingual model
outperforms the Swedish model with a 2.03% higher macro-average F1-score, and individually
outperforms the Swedish model on a clear majority of the taxonomy predictions.
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Both models achieve high macro F1-scores, with the multilingual model
slightly exceeding the Swedish one.

Specific Results to Note
Both models share a relatively low F1-score for the taxonomies choklad and hushålls och storköks-
maskiner. For the multilingual model, they are 8.04 and 9.17 percentage points below the
macro-average F1-score, respectively. For the Swedish model, they are analogously 9.26 and
12.04 percentage points lower than the average.

Additionally, the Swedish model has a certain set of taxonomies that perform particularly
poorly, both relative to their respective performance in the multilingual model as well as the
macro-average of the Swedish model.

The taxonomies vin rött, kolsyrad läsk, vin vitt, bullar and portionsbröd are 5.32%, 5.67%,
9.55%, 10.12% and 25.09% points lower than their respective F1-scores in the multilingual
model. In comparison to the Swedish model’s macro-average F1-Score, these taxonomies are
respectively 5.56, 5.06, 10.42, 12.53, 26.06 percentage points below the average.

Both models underperform in taxonomies choklad and hushålls och
storköksmaskiner. The Swedish model particularly su�ers from a spe-
cific set of taxonomies underperform, both in comparison to the macro-
average and to their respective performances in the Multilingual model.
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Table 4.1: Classification Report. Best result marked in bold.

BERT Multilingual (Google) BERT Swedish (Kungbib)
Taxonomy (varugrupp) Precision Recall F1 Precision Recall F1
glass stycksortiment 0.9643 0.9474 0.9558 0.9483 0.9649 0.9565
hushållsglass 0.9811 1.0 0.9905 0.963 1.0 0.9811
ägg färska 0.9783 1.0 0.989 0.9783 1.0 0.989
apelsiner 1.0 1.0 1.0 1.0 1.0 1.0
äpplen 0.9947 1.0 0.9973 0.9947 1.0 0.9973
melon 0.988 1.0 0.9939 1.0 1.0 1.0
päron 0.9921 1.0 0.996 1.0 0.9921 0.996
småcitrus 1.0 0.975 0.9873 1.0 1.0 1.0
vindruvor 0.9818 1.0 0.9908 1.0 1.0 1.0
groddar/skott/småblad 0.989 1.0 0.9945 0.9888 0.9778 0.9832
grönsaker övriga 0.9111 0.9535 0.9318 0.9737 0.8605 0.9136
gurka 1.0 1.0 1.0 1.0 1.0 1.0
lök gul 1.0 1.0 1.0 1.0 1.0 1.0
morötter 1.0 1.0 1.0 1.0 1.0 1.0
paprika 1.0 1.0 1.0 1.0 1.0 1.0
sallad övrig 1.0 0.9774 0.9886 1.0 0.9398 0.969
tomater 1.0 0.9933 0.9966 1.0 0.9933 0.9966
bakelse 1.0 0.9636 0.9815 1.0 0.9455 0.972
bullar 0.8824 0.9677 0.9231 0.7143 0.9677 0.8219
tårtor 1.0 0.9851 0.9925 0.9925 0.9851 0.9888
vetebröd 0.925 0.9487 0.9367 0.9024 0.9487 0.925
bröd 0.9592 0.9038 0.9307 0.92 0.8846 0.902
portionsbröd 1.0 0.8824 0.9375 0.697 0.6765 0.6866
yoghurt smaksatt 1.0 1.0 1.0 1.0 1.0 1.0
potatis skalad 1.0 1.0 1.0 0.9375 1.0 0.9677
potatis 1.0 0.9932 0.9966 1.0 0.9658 0.9826
kolsyrad läsk övrig 0.9444 0.9623 0.9533 0.8254 0.9811 0.8966
mineralvatten 0.9697 0.9143 0.9412 1.0 0.9143 0.9552
choklad 0.873 0.9016 0.8871 0.8929 0.8197 0.8547
konfektyrer 0.8947 0.9379 0.9158 0.8537 0.9655 0.9061
tepåsar med kuvert 1.0 1.0 1.0 1.0 1.0 1.0
bägare, grepp, koppar engångs 0.9565 0.9362 0.9462 0.8519 0.9787 0.9109
plastform/lock 0.95 0.95 0.95 0.9811 0.8667 0.9204
servetter 0.9872 1.0 0.9935 0.9872 1.0 0.9935
hushålls och storköksmaskiner 0.8689 0.8833 0.876 0.9773 0.7167 0.8269
köksredskap 0.9551 0.914 0.9341 0.9271 0.957 0.9418
kantiner 0.9744 0.9744 0.9744 0.95 0.9744 0.962
textilier och kläder 0.9437 0.9306 0.9371 0.9459 0.9722 0.9589
vin rött 0.9167 0.9747 0.9448 0.8506 0.9367 0.8916
vin vitt 0.9683 0.9104 0.9385 0.9444 0.7612 0.843
macro avg 0.9687 0.967 0.9676 0.9499 0.9487 0.9473
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4.1.2 Evaluation of Confusion Matrices
To further understand the performance of various taxonomies in the classification report,
I generated normalized confusion matrices shown in Figures 4.1 and 4.2. For readability,
decimal percentages are only shown for values below 10% and taxonomies are shortened,
similarly to Table 4.1.

These confusion matrices will make possible patterns of systemic misclassification clearly
visible. The raw confusion matrices showing the actual number of products placed in the
various taxonomies are not as easily digestible due to data imbalances. However, they are
included in the Appendix as Figures A.1 and A.2 as they are only used later for minor com-
ments on precision. In the confusion matrix for the Swedish model, Figure 4.2, a number of
anomalies can be observed.

• 20% of portionsbröd products are mislabeled as bullar.

• 19% of vin vitt products are mislabelled as vin rött, but there is little confusion vice-
versa.

• 13% of products belonging to the choklad taxonomy are mislabeled as belonging to the
konfektyrer.

• 12% of products in grönsaker övriga were mislabelled as bröd and konfektyrer in even
distribution.

• 11% of plastform/lock products are mislabelled under the taxonomy bägare, grepp, koppar
engångs.

• 8.6% of mineralvatten products are mislabelled as kolsyrad läsk.

• hushålls och storköksmaskiner is an oddity, where 29% of products were mislabelled as a
variety of taxonomies; the most common of them being köksredskap, konfektyrer, kantiner
and textiler och kläder in descending order. All of these except konfektyrer are in the same
varuområde called restaurangutrustning.

For the multilingual model displayed in Figure 4.1, there aren’t as many pronounced mis-
classification anomalies of note. The few of note are:

• vin vitt, of which 9.0% are misclassified as vin rött,

• choklad, of which 6.6% are misclassified as konfektyrer,

• portionsbröd, of which 5.9% were misclassified as konfektyrer,

• mineralvatten, of which 5.7% are misclassified as kolsyrad läsk övrig,

• hushålls och storköksmaskiner, of which 5.0% are misclassified as konfektyrer and 6.7% are
misclassified as taxonomies belonging to the varuområde named restaurangutrustning.
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Comparing these results with Table 4.1, it is clear that these systemic misclassifications
are largely responsible for underperforming taxonomies. Due to how the normalization was
performed (row-wise), each cell where i = j is equal to the taxonomies recall. Many of the
aforementioned taxonomies with systemic misclassifications in the Swedish model have low
recall scores which deteriorate the F1-score. Furthermore, there are also taxonomies that have
lowered precision scores from products in other taxonomies being systemically misclassified.
This is best illustrated in the raw confusion matrices, which is shown for the Swedish model
in the appendix as Figure A.2. Some prominent examples are:

• bullar, where a large number of portionsbröd products were misclassified as bullar.

• vin rött, where a substantial portion of vin vitt products were misclassified into vin rött.

The most significant outlier from this pattern is portionsbröd. As visible in the raw confu-
sion matrix in Figure A.2 , the low precision of this taxonomy stems from products in a large
variety of taxonomies being predicted to belong to this taxonomy.

The poor performance of the aforementioned taxonomies in the Swedish
model largely stems from systemic misclassification. While the feature
selection of product names in combination with taxonomy similarity may
seem to be the intuitive explanation of the phenomenon, the substantially
better results of the multilingual shows that is not the full explanation.
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4. Results

Figure 4.1: Confusion Matrix for the Multilingual Model, normal-
ized on the number of total products actually within each taxonomy
(normalized row-wise). Each cell shows the percentage of products
that belonged to taxonomy i (row i), that were predicted to belong
to taxonomy j (column j).
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4.1 Overall Comparison

Figure 4.2: Normalized Confusion Matrix for the Swedish Model,
normalized on the number of total products actually within each
taxonomy (normalized row-wise). Each cell shows the percentage of
products that belonged to taxonomy i (row i), that were predicted
to belong to taxonomy j (column j).
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4.2 Effects of Reduced Training Data
I made an investigation into how well the models performed when training on di�erent
amounts of training data. After training on di�erent percentages of training data as ex-
plained in Section 3.3, I analyzed the data using three plots. Firstly I will discuss the scatter
plots, where the F1-score of each taxonomy was plotted against its training support. These
metrics were obtained from the two models being trained on 1%, 5%, 10%, 20%, 50% and 100%
of the training data. The metrics were grouped together according to these training data
proportions and displayed on a figure for each model (mBERT and KB-BERT).

The scatter plots for the multilingual and the Swedish model are shown in Figures 4.3
and 4.4, respectively. As expected, F1-score generally increases as training support increases.
However, there is vast variation: some taxonomies still achieve F1-scores above 0.9, even with
as little as 3-5 training examples.

Figure 4.3: Training data support impact for the Multilingual
model, trained with 100%, 50%, 20%, 10%, 5% and 1% of the training
data. Each point represents the F1-score and training data support
(amount of products belonging to a taxonomy in the training data)
of a single taxonomy. Horizontal axis is scaled logarithmically for
readability.
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4.2 Effects of Reduced Training Data

Figure 4.4: Analogous graph to Figure 4.3, for the Swedish Model.

To further illustrate this disparity, I plotted a line graph for each taxonomy across the 6
levels of training support. These graphs, shown in Figure 4.5 and 4.6 respectively, are near
illegible on a taxonomy-by-taxonomy basis, but it is clearly visible that the amount of training
support impacts the F1-score very di�erently for di�erent taxonomies.

4.2.1 Impact of Training Support for each Taxonomy
To clearly visualize the e�ects of reduced training support for each taxononomy’s perfor-
mance in the model, I generated a final pair of graphs that plot the di�erence in F1-score for
each taxonomy when using 100% versus 1% of the training data, which are shown in Figure
4.7 for the Multilingual model and Figure 4.8 for the Swedish model.

These graphs thus give a sense of how much training support a�ects the F1-score of a
particular taxonomy, which will be denoted as sensitivity or sensitivity to training support. In
these graphs, taxonomies were colored in groups of their varuområde to aid visual detection
of any patterns across taxonomies. An exception to this was made for the taxonomies in
färskvaror/kylvaror, which was thus further split and coloured according to the huvudgrupp of
each taxonomy, as färskvaror/kylvaror contained a very large majority of taxonomies.

Looking at these graphs, we can see there is not necessarily a hard split between the
taxonomies in regards to their training support sensitivity. Sorted by increasing F1-di�, there
is a near-linear increase in sensitivity across the various taxonomies in both models. However,
there are a few observable phenomenon. The following taxonomies and varuområde are on
the lower side of sensitivity to training support in both models, gaining little improvement
when increasing training support. They also achieve high F1-scores.

• yoghurt smaksatt
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4. Results

Figure 4.5: Taxonomy F1-support graph for the Multilingual model,
where each line is a taxonomies F1-score plotted over its training
support from 1% to 100% of the training data.

• The majority of taxonomies in färskvaror/kylvaror that represent a singular type of veg-
etable/fruit, such as paprika, päron, potatis, etc; distinct from taxonomies that are group-
ings of product categories such as grönsaker övriga and sallad övrig,

• The varuområde djupfryst,

• The taxonomy servetter, in contrast to the other taxonomies in the varuområde non food
that are more sensitive training support.

The multilingual and Swedish models both share a few taxonomies and varuområden that
require a lot of training data to perform well, such as:

• The taxonomy kolsyrad läsk övrig,

• The taxonomy hushålls och storköksmaskiner,

• The varuområde vin/sprit/öl,

• Most taxonomies in the huvudgrupp ka�ebröd/konditori, under the varugrupp färskvaror/kylvaror,

• Most taxonomies in kolonial/speceri.

However, there are a few taxonomies, varuområden and huvudgrupper that behave very
di�erently in the two models. The most pronounced di�erences are:
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4.2 Effects of Reduced Training Data

Figure 4.6: Taxonomy F1-support graph for the Swedish model,
where each line is a taxonomies F1-score plotted over its training
support from 1% to 100% of the training data.

• melon, which has an F1-di� of ∼0.8 in the Swedish model but is under ∼0.3 in the
multilingual model;

• The varuområde of restaurangutrustning, which overall is less sensitive to training sup-
port in the Swedish model for all taxonomies;

• The taxonomy tepåser med kuvert has a low F1-di� of ∼0.1 in the multilingual model,
whereas it is almost 0.45 in the Swedish model.

While more training data overall improves the F1-score across all tax-
onomies of the model, there is immense variation between taxonomies
in much improvement is made, and how much training data is required
to achieve high F1-scores. Some taxonomies require over 1000 training
examples to achieve an F1-score over 0.9, while some require just 3-5.
Overall, requirements of training support seem mostly inherent to the
taxonomies themselves and are mostly not a�ected by model selection.
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4. Results

Figure 4.7: Di�erence in F1-score between models trained on 100%
and 1% of training data, for the Multilingual model. Thick bars
show the absolute di�erence in F1-score. Thinner bars are the actual
F1-score ranges from 100% to 1% of training data. Taxonomies are
grouped in color according to their varuområde. Taxonomies in the
varuområde färskvaror/kylvaror are split into subcategories accord-
ing to their huvudgrupp, as the majority of taxonomies were under
färskvaror/kylvaror.
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4.2 Effects of Reduced Training Data

Figure 4.8: Analogous graph to Figure 4.7, for the Swedish model.
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Chapter 5

Discussion

5.1 Reflections on Results

5.1.1 Overall Model Performance
Overall, both models produced very good results. A majority of taxonomies achieved F1-
scores over 95% in both models. However, contrary to other experiments reported by de Var-
gas Feijo and Moreira (2020), the multilingual model outperformed the Swedish one slightly
overall, as measured by the macro-average F1-score. While there are specific cases where the
di�erence in performance appears counterintuitive, which are discussed below, a possible
explanation for the slight advantages the multilingual model holds in a majority of the tax-
onomies could be that names of food products occasionally contains words and abbreviations
from di�erent languages, such as English or French.

The performance of the Swedish model was mostly deteriorated by systemic misclassifica-
tion of products belonging to a select group of taxonomies, as seen in Section 4.1.2. Similarity
in product names and taxonomies among these seems to be a reasonable explanation for this
phenomenon; it is easy to imagine that it is hard for the models to separate certain types of
products when solely using the product name, as in the case of:

• Wine (vin rött - vin vitt)

• Some chocolates (choklad) and other generic sweets (konfektyrer) that may be chocolate
flavoured,

• Di�erentiating kitchen equipment products (the taxonomies in the varuområde restau-
rangutrustning).

However, this reasoning clashes with the fact that the Multilingual model did not su�er
from systemic misclassification in the same capacity among these taxonomies. It is possible
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5. Discussion

that the source material of the multilingual model is more comprehensive in areas closely
related to these taxonomies. For example, it is likely that there are a lot of Wikipedia articles
on wine and wine-related products in non-Swedish languages, as many are internationally
produced and usually only parts of their product names are translated, if at all. The multilin-
gual model, which uses Wikipedia of several languages as its corpus, would then be better at
understanding and producing embeddings for these products. Furthermore, names of wine
products tend to also be in a variety of languages, which would explain why the vin rött and
vin vitt taxonomies perform better; the multilingual model can utilize its powerful embed-
dings in this area. In contrast to the international corpus of the multilingual model, a vast
majority of the Swedish model’s corpus is based on newspaper articles dating back to the
1940’s (Malmsten et al., 2020).

Simultaneously, this does not explain the multilingual model’s large performance advan-
tage for the taxonomy portionsbröd relative to the Swedish model, especially as a majority of
those products are either endemic to Sweden or are described with Swedish product names.
Given that the Swedish Model was trained on a large and varied Swedish corpus, mentions
of portionsbröd products such as fralla, rågkaka and brytbröd, as well as bullar products like
kanelbulle and gi�ar, should reasonably be present, for example in newspaper articles. Prod-
uct names among these taxonomies should not have been misclassified as often as they were,
following the line of reasoning for the Swedish model’s poor performance on vin rött and vin
vitt products.

The source code of the trainers facilitated by Flair and HuggingFace were read and sur-
gically modified where applicable to make the training settings and procedures as similar as
possible. However it is still possible that the training procedures still contain di�erences that
were missed, causing the two models to train di�erently.

In summary, for the majority of taxonomies where a substantial di�erence in performance
exists, the root cause of the di�erence is unclear and warrants further investigation.

5.1.2 Variability in Performance on Reduced Training
Data

As presented in Section 4.2, there is enormous variation in how much training data is re-
quired to achieve high F1-scores. A highly plausible explanation is that taxonomies with
little variability in their product names require much less training data.

For example, most food products that are vegetables or other raw food goods, such as
potatis, ägg, paprika, gul lök, are all probably named similarly, whereas a taxonomy like kol-
syrad läsk övrig (soft drinks) probably contains a large and diverse pool of product names.
Cartons of onions produced by di�erent manufacturers are probably are probably named
very similarly, whereas an orange-flavored soft drink can be named very di�erently, such as
Zingo, Fanta, Ja�a, Mirinda Orange, etc.

This would explain the training support sensitivity for a majority of taxonomies, but
there are cases where the issue seems to stem from other factors; the taxonomy melon im-
proved from an F1-score of ∼0.2 to 1.0 in the Swedish model when using 1% versus 100% of
the training data, whereas the multilingual the range of improvement was only from ∼0.7 to
0.9939 in F1-score. In this specific case, it is possible that the multilingual model is equipped
with a more nuanced understanding of melons and varieties of them, as it was trained on a
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large corpus of Wikipedia articles.

5.2 Future Improvements

5.2.1 Different Definition of Taxonomy
In this thesis, the construction and definition of the selected taxonomies led to very fine-grain
classes. Some taxonomies were extremely specific, as in the case of most taxonomies in the
huvudgrupp grönsaker obehandlade and frukt/bär, in contrast to more general taxonomies such
as kolsyrad läsk övrig. It would be interesting to see how the performance of these models
would be a�ected if trained on a lower granularity of taxonomy definition, utilizing only
varuområde and huvudgrupp, for example. Alternatively, only taxonomies that share cases of
systemic misclassification could be merged into a broader taxonomy, retaining fine-grained
taxonomies with good performance where possible. My hypothesis is that it would perform
better, as most cases of systemic misclassification were within the same huvudgrupp.

5.2.2 Hyperparameters
For this thesis, hyperparameters were not tuned or experimented with. Some proposed
changes would be to modify the learning rate scheduler to reload the best previous model
when annealing the learning rate, as there was a couple of cases where the the learning rate
was continually annealed with no improvements, possibly having “jumped over” the local
minimum of the loss function. This may however just be a limit of the model’s generaliz-
able performance and would instead lead to overfitting on the evaluation dataset. Another
suggestion is to use more recent optimizers such as AdamW (Loshchilov and Hutter, 2019)
or AdaBound (Luo et al., 2019) in place of the SGD optimizer, which supposedly converge
faster and might provide better results than the current setup.

5.2.3 Model Selection
In this thesis, only BERT-Base models were used. More models could be added to see if better
performance is possible, for example with BERT-Large models or MT5 (Xue et al., 2021), which
used a vastly larger corpus during pretraining. Furthermore, comparison with a baseline text
classifier should be included. A suitable candidate for such a baseline would be a pipeline
with TF-IDF vectorization of product names sent to a logistic regression classifier.

5.2.4 Inspection of Differences in Support Sensitivity
Some sort of measure of product name variability should be calculated and compared with
the F1-sensitivities shown in Figures 4.7 and 4.8, perhaps using some sort of edit-distance
algorithm. A good suggestion would be the Jaro-Winkler distance (Winkler, 1990), since it
weights string similarity with an emphasis towards the start of strings which applies well to
how product names are often formulated, both specifically in Mashie products document and
generally for product names.
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5.2.5 Minor Improvements and Modifications
As described in Section 3.2.1, all products were split into training, evaluation and test datasets
before unrelated products (which did not belong to the top 40 selected taxonomies) were
removed. These steps should have been reversed to ensure a proper 80%/10%/10% split, but
given the large number of products, along with the fact that products were separated into
these datasets fully randomly, the impact on the results in this thesis should be insignificant.

Similarly, training set reduction was not explicitly done proportionally on a taxonomy-
by-taxonomy basis, but instead by removing a random product until the training set in its
whole was of the desired size. This may result in certain taxonomies not containing strictly
x% of the number of products that existed for the taxonomy in the full training dataset.
However, given the large number of products in the training set, any e�ect of this should
also be insignificant.
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A. Figures

Figure A.1: Raw Confusion Matrix for the Multilingual Model, with
the same color map as in Figure 4.1.
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Figure A.2: Raw Confusion Matrix for the Swedish Model, with the
same color map as in Figure 4.2.

67



INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2021-06-09

EXAMENSARBETE Automatic Categorization of Food Products
STUDENT Vilhelm Lundqvist
HANDLEDARE Pierre Nugues (LTH), Johnny Zackrisson (Mashie)
EXAMINATOR Jacek Malec (LTH)
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POPULÄRVETENSKAPLIG SAMMANFATTNING Vilhelm Lundqvist

Företaget Mashie arbeterar med livsmedelsprodukter samt lägger stora resurser på
att hantera och dokumentera data från dessa. Detta arbete undersöker om en vara
kan kategoriseras rätt enbart utifrån dess produktnamn med hjälp av språkmodellen
BERT.

Företaget Mashie arbetar med IT-infrastruktur
till måltidsbranschen som exempelvis restau-
ranger. Detta kräver en aktuell och strukturerad
databas av livsmedelsartiklar. I nuläget uppdat-
eras databasen manuellt av experter.

I mitt examensarbete undersöks möjligheten
till automatisk kategorisering av livsmedel genom
en specialtränad BERT-modell. BERT är en
avancerad språkmodell som förhandstränas på
enorma mängder obehandlad text. Med sin inbyg-
gda språkförståelse fungerar den väldigt väl som
ett mellansteg i textanalys då den anpassas till
uppgiften genom specialiserad träning.

På materialet tillämpades två varianter av
BERT; en förhandstränad på alla Wikipedia-
artiklar skrivna på de 104 största språken
(mBERT) och en tränad på svenska texter
från Kungliga Bibliotekets arkiv (KB-BERT).
Modellerna specialtränades att läsa namnen på
livsmedelsprodukter och placera dem i fördefinier-

ade kategorier, såsom "Kolonial/speceri - Kol-
syrade drycker - Läsk". På grund av hård-
varubegränsingar utvärderades modellerna på de
40 största kategorierna. Deras beteende under-
söktes ytterligare genom att tränas på reducerade
mängder data.
F1-score är ett mått som mäter modellens prick-

säkerhet och "gissningsvilja". Genom F1-score
uppmättes prestandan av mBERT och KB-BERT
till 96.76% respektive 94.73%. Majoriteten av kat-
egorierna uppnår höga resultat. Ett fåtal kat-
egorier har sämre prestanda där produkter ten-
derade att placeras i varandras kategorier. Ex-
empelvis tror modellen ibland att produkter är
röda viner när de egentligen är vita viner. Främst
KB-BERT drabbas av detta vilket är den särskilt
bidragande faktorn till modellens lägre prestanda.
Kategorierna visade sig dessutom kräva en my-

cket varierande mängd data för att ge bra resul-
tat. Båda modellerna behövde tränas på 3 pro-
duktnamn av typen vindruvor för att ge >90%
F1-score samtidigt som nästan 1000 konfektyrpro-
dukter krävdes för att uppnå samma resultat inom
sina respektive kategorier.
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