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Abstract

The fifth generation of mobile communications will undoubtedly change the
way society uses and interacts with technology, o�ering increased speed, relia-
bility and e�ciency. However, several important capabilities of the next gener-
ation of mobile connectivity must be developed before this is achievable. One
of these capabilities is e�cient network resource utilization. If telecommuni-
cation companies could improve bandwidth utilization they could potentially
sell more connections, save energy or reduce the needed infrastructure. In this
thesis we have built a simulation environment to explore dynamic bandwidth al-
location in the 5G transport network. The goal of the exploration was to create
a more intelligent solution for allocating bandwidth, as compared to the over-
provisioning common in telecommunications today. The final simulation envi-
ronment combines existing cloud technologies such as Kubernetes, Docker and
Open vSwitch. In addition, it contains a software defined networking controller
with a proof-of-concept algorithm for optimizing bandwidth usage and priori-
tizing between tra�c classes. Our simulation results show potential for dynamic
bandwidth allocation, with bandwidth savings of up to 56%. Small and slow de-
mand changes could be handled by the software defined networking controller
without considerable packet loss, while larger accelerations resulted in increasing
packet loss. Most bandwidth could be saved when tra�c classes with di�erent
priority peaked at di�erent times. If future research could prove our solution
e�ective on real tra�c patterns and implement it at scale, the days of static al-
location might be over.

Keywords: 5G, Cloud RAN, transport network, software defined networking, dynamic
bandwidth control, Kubernetes
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Chapter 1

Introduction

The fifth generation of mobile communications will undoubtedly change the way we use and
interact with technology. As a result of substantial technological improvements since the
last generation of 4G networks, 5G will provide features such as ultra-high-speed connec-
tivity at ultra-low latency. This will make it possible to stream HD videos on a high-speed
train traveling at 500 km/h or reliably controlling a fleet of self-driving cars going down the
highway [2]. Before this is achievable, several important capabilities of the next generation of
mobile connectivity must be developed in order for the technology to deliver on its promises.
These capabilities include e�ciency, flexibility, reliability, scalability, and automation. Each
vendor’s ability to deliver on these features will a�ect their competitiveness in the new 5G
market.

For each capability, strategies have been proposed to implement it, largely building on
successful technological innovations from the software industry. In order to achieve high-
e�ciency cloud computing, hardware centralization has been envisioned. High flexibility
could be achieved through the use of Commercial-o�-the-shelf (COTS) servers, as opposed to
custom telecommunication hardware. This would allow for easier maintenance and remote-
upgrading of units. Furthermore, the same server hardware could be used regardless of 4G,
5G, or 6G functionality. Finally, reliability, scalability, and automation could be achieved via
microservice architectures, where larger applications are divided into small subcomponents
[16]. These subcomponents are made available through a virtualization technique called con-
tainerization, which will be a central theme throughout this thesis.

The concepts and technologies associated with cloud, COTS, and container orchestra-
tion have all matured since the last generation of mobile communication networks. For cloud
technologies, the growth and development have been largely fueled by the cloud computing
and data center boom, spearheaded by companies like Amazon, Google, and Microsoft [63].
The possibility to substitute custom specialized hardware with COTS has been made possi-
ble by large performance improvements for processors and other computational hardware.
Lastly, the increase in the use of containerization can be attributed to the larger adoption of
systems such as the container orchestration framework Kubernetes and the container run-
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1. Introduction

time Docker [13].
An important concept regarding the new 5G technologies is their increased reliance on

cloud technologies. As the telecommunication industry is taking a step into the world of
cloud computing, the industry has to decide which cloud features to implement, but also
how these should be adapted to the telecommunication context. The integration of tradi-
tional telecommunication radio access networks (RAN) with the above-mentioned cloud
technologies, has been coined Cloud RAN. Another concept that is growing in popularity is
software-defined networking (SDN). SDN is a network management approach where the net-
work infrastructure is dynamically and programmatically managed [45]. Using this approach
infrastructure management can be performed with more flexibility and automation.

In this thesis we will explore how software-defined networking and cloud technologies
can be deployed in a 5G context, concretely focusing on building a simulation environment
for evaluating network resource management through an SDN controller. Specifically this
thesis studies how network resource utilization can be improved compared to current solu-
tions. The goal is to build the environment with technologies and concepts that have shown
promise in research and telecommunication development. This includes selecting compo-
nents that are scalable, flexible, hardware-agnostic, and open-source in nature. The hope
is that such a simulation environment can help explore and find the incremental improve-
ments that will shape the next generation of telecommunications. Only by drawing on the
lessons learned from the success stories of cloud computing and software development can
the potential of the next generation be unlocked.

1.1 Structure of Thesis
Background In the background the foundational knowledge needed to understand this
thesis will be presented. This includes the basics of telecommunication and its evolution up to
this day. After the basics have been covered the focus will shift to 5G, including use cases and
associated technologies such as cloud computing and software defined networking. Lastly,
important tools used during this thesis will be detailed.

This thesis work has two distinct parts: developing the simulation environment, and test-
ing it. As these parts both have separate methodologies and results, they will be presented as
such. The two parts are called Creation of the Simulation environment and System Assess-
ment.

Creation of the Simulation environment This chapter starts o� by pre-
senting the methodology used to develop the simulation environment. Then three distinct
development phases are introduced to the reader, under which the design choices are detailed
and evaluated. Finally the resulting environment is presented and the overall functionality
explained.

System assessment In this chapter the methodology for testing the simulation en-
vironment will be detailed. This includes an explanation of the experiment process including
the scoping, planning, and operation. Thereafter, the experiment results will be presented.
This includes the resulting use cases and their corresponding tra�c scenarios, as well as the
system’s performance during these tra�c scenarios.

12



1.2 Thesis Motivation

Discussion In the discussion the results from both Creation of the Simulation environ-
ment and System Assessment are discussed in relation to their respective research questions.
This includes implementation and design choices, as well as implications of experiment re-
sults. Thereafter, threats to validity are discussed, covering both external and internal valid-
ity. Lastly, future work is outlined, including areas in need of exploration, as well as a few
interesting future directions.

Conclusion This chapter summarizes the main findings of the thesis and answers the
research questions in a clear and concise way. The chapter concludes with implications of the
results and reflects on the work of this thesis in the larger context of telecommunications.

1.2 Thesis Motivation
During the last decade of the cloud computing boom, a lot of e�ort has gone into making
data centers run more e�ciently, optimizing everything from resource utilization and data
security to energy e�ciency and cooling systems [68]. Some companies have even gone as far
as moving their entire data center closer to the arctic circle in order to cut cooling costs [28].
The operations in data centers are often computationally intensive, and therefore attractive
subjects of optimization. Approaches to improve operational performance have included
using virtual machines and locating these to utilize the available hardware resources to the
highest degree possible [75].

Common resource types in cloud computing are CPU, memory, disk, and network re-
sources. When it comes to resource utilization in a containerized environment, scheduling
decisions are natively done on the basis of CPU and memory. Constraints on other resource
types must be handled separately. Increasing a data center’s computational power by adding
new hardware is relatively cumbersome due to the manual installation required, and improv-
ing the utilization of existing hardware has thus been subject to a great amount of research.
Network resource utilization in data centers has also seen a lot of research during the last
decade. Concepts such as SDN and network function virtualization have been explored as
means to improve network performance. However, a lot of challenges remain and currently
dynamic behavior such as limitation of link rate during low tra�c load is not a native part
of the hardware [46].

One challenge in data centers is the cloud provider’s limited possibility to control the
network outside of the data center. While there are examples of companies, such as Amazon
[4], having their own global network infrastructure, most cloud provider’s have limited con-
trol over the core internet equipment. With this hardware being outside control, a lot of net-
working optimization is made impossible. In addition, the service level agreements (SLAs) of
public clouds today focus on computation and storage. Guaranteeing network performance
with SLAs which include factors such as bandwidth and latency is rare and rather upheld at
best e�ort [46].

When moving cloud technologies into the telecommunication space, both the conditions
for network control as well as the performance requirements are di�erent compared to or-
dinary data centers. While the telecommunications operators do not have access to core
internet infrastructure they do have the possibility to control a larger part of the network
infrastructure between the user and the server. Compared to data centers, telecommuni-
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1. Introduction

cation networks span much larger areas and contain a lot more network elements such as
switches and routers. This means that more optimization possibilities exist both in geo-
graphical terms, but also counted as network elements under control.

An important di�erence in quality-of-service requirements between cloud providers and
telecommunications operators is that telecommunications networks do have to uphold SLAs
with guarantees of a certain bandwidth, latency, or packet drops. The way this is usually
solved today is by overprovisioning network resources. Static bandwidth allocations are set
well beyond the expected max requirement [50]. With growing tra�c loads and more data
being sent over mobile communication, this wasting of bandwidth by overprovisioning might
soon become a cost e�ciency target.

Research has addressed the problem of dynamically allocating bandwidth, and software-
defined networking is one of the proposed solutions. However, combining dynamic network
resource allocation with the cloud technologies envisioned for the 5G networks is in need of
further exploration. One of the reasons that dynamic bandwidth control is not wide spread
today is that overprovisioning bandwidth to accommodate the data volumes associated with
previous generations has been relatively cheap. With 5G these data volumes are expected to
increase significantly and as such increase overall cost. Another reasons is that the increased
flexibility and control that cloud technologies o�er has not been present in previous genera-
tions. This increased control opens up to optimization that has historically not been possible.
However, the combination of telecommunication and cloud is new territory and in need of
research. This need of research motivates us to further investigate the possibilities of com-
bining a microservice architecture orchestrated by Kubernetes with an SDN controller. In
order to explore this, the thesis will focus on building a simulation environment. In such an
environment one could observe and control network tra�c through abstracted Cloud RAN
components. Furthermore, the simulation environment could make it possible to try di�er-
ent approaches to dynamic reallocation of bandwidth, as well as analyzing their potential
network resource savings.

1.3 Academic Contribution
This section will present previous work within this field of study through the Related Work
section and then detail the contribution of this thesis in the Contribution section. Lastly,
the distribution of work between the two thesis writers will be detailed.

1.3.1 Related Work
Several approaches to improve network resource utilization have been put forth in academia.
We have selected a subset of these that are most in line with our envisioned goal. These will
be presented in the section below.

Wang and Shi [71] proposed and implemented a static bandwidth allocation schema
through an Open vSwitch (OVS). They utilized an SDN controller to establish their band-
width strategy on the OVS. This strategy was based on allocating di�erent amounts of band-
width depending on the priority level of the host. Finally, they verified that the OVS enforced
their bandwidth strategy by measuring the throughput for each host.
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Raza et al. [62] investigated the benefits of a dynamic resource allocation strategy be-
tween network slices. They compared this to a static resource allocation where each slice
would be provided with enough resources to meet peak service requirements. To obtain new
dynamic configurations they formulated a mixed-integer linear programming (MILP) prob-
lem. When the resources were dynamically allocated the researchers showed that they could
decrease the rejection probability of incoming connections. This in extension means that
network providers could allow more services into the current infrastructure.

Shifting focus towards the cloud aspect of the problem, Kim et al. [53] investigated the
e�ects of network-intensive containers on the overall performance of the cluster when each
pod is given a specified bandwidth. They found that even when pods are scheduled that col-
lectively have lower bandwidth requests than the total available bandwidth performance is
degraded. This is due to a kernel process called Softirq that uses high levels of CPU com-
putations to handle the network workloads. Their conclusion was that CPU capacity must
be considered even beyond what the pods request when scheduling a network-intensive pod.
This is something that has to be kept in mind when evaluating the performance of the cluster
in a telecommunications context.

Furthermore, Zhang et al. [76] propose using constraint programming to dynamically
allocate virtual hardware resources to virtual machines operating under QoS requirements.
In addition to meeting QoS requirements, they also take the cost of virtual cloud resources
into account. Through simulations, they could show that their algorithm could both reduce
QoS violations and lower resource usage costs.

As is evidenced by the research mentioned above progress has been made both within allo-
cating resources in cloud environments and with regards to SDN controlled virtual switches.
In this thesis, we aim to build upon this and explore how real-time load data can be used
to dynamically allocate bandwidth to di�erent tra�c classes. In particular with respect to
three 5G use cases defined by the telecommunication standards organization 3rd Generation
Partnership Project (3GPP). These use cases will be further elaborated in Section 2.1.3.

1.3.2 Contribution
As one of the goals of a master thesis is to add to the current knowledge base within a certain
research topic, this section will detail how this thesis will accomplish this. Building upon
the research presented in the above section this thesis will contribute to the field within two
areas:

• Investigating how a simulation environment for a 5G Cloud RAN can be implemented
with the help of current cloud technologies.

• Analyze the possibility of dynamically prioritizing bandwidth access in a hierarchical
fashion and what resource savings could be made through this approach.

To refine the areas presented above to questions that can be answered through this thesis
we pose the following research questions.

Research Question 1.1 How can we develop a cloud-based simulation environ-
ment that represents the essential components of an SDN controlled 5G transport network?
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1. Introduction

Research Question 1.2 How can network tra�c with di�erent QoS levels be pri-
oritized in an SDN controlled cloud-based simulation environment?

Research Question 2.1 Under what conditions can a dynamic network resource
allocation improve the utilization of network resources in a 5G transport network, compared
to static resource allocation?

1.3.3 Distribution of Work
In a master thesis spanning over 20 weeks with two students working together, you will
inevitably find influences from both writers in all parts of the process. With this said, certain
aspects could be attributed to a higher degree to one of the writers.

Regarding the implementation process, August contributed the most to the scripting
and algorithmic parts of the environment. Daniel dedicated a larger e�ort to networking
elements such as the Open vSwitch and Linux networking. The majority of programming
done in Python was done through the pair programming technique, ensuring a high degree
of collaboration.

With respect to the writing of the report, Daniel put more time into the theoretical foun-
dations such as related work and methodology explanations. August worked to a larger extent
on sections with a broader scope such as the discussion and thesis motivation. However, the
majority of the report was written in collaboration and multiple iterations over all sections
of the report ensured that both authors influenced the resulting document.
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Chapter 2

Background

2.1 Telecommunications/Networking
To provide the reader with a clear context for this thesis, a high-level explanation of tra-
ditional telecommunication and the advances made through 5G will be put forth in this
chapter.

2.1.1 Telecom Architecture and Evolution
At a very high level, a telecommunication network can be divided into two parts, the access
network, and the core network. If a user wants to connect to the internet, their User Equip-
ment (UE), e.g. a mobile phone, must first connect to the access network. The access network
then provides connectivity between the UE and the core network. The core network’s main
function is to enable connectivity to a data network, oftentimes the internet [57]. The focus
of this thesis will be on the access network, also referenced as the RAN).

Radio Access Network

As mentioned previously the role of the RAN is to provide connectivity between a UE and
the core network. To do this a radio tower equipped with antennas is needed to connect the
UEs to the RAN. The tra�c moving both up and downstream in the network needs to be
processed and forwarded. This processing was previously done in hardware units at the base
of the radio tower but for the next generation networks, this architecture has evolved to a
more centralized structure [57].
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2. Background

Switching and Routing
To enable tra�c to flow through the network, forwarding packets to their intended destina-
tion is necessary. To achieve this, switches and routers are utilized. The purpose of a switch
is to enable connectivity between multiple devices on the same network. A switch has mul-
tiple ports, each port is a pathway to a certain device. It controls the flow of data between
the devices by forwarding packets between the ports on the switch. Configuration options
such as adjusting speed and available bandwidth per port is part of the tra�c management
capabilities of a switch [9]. For the purpose of this thesis a router can be viewed as having the
same function as a switch but connection networks instead of devices. An important aspect
of a switch is the behavior exhibited when a switch becomes overloaded with network traf-
fic, which is called congestion. Switches are configured to handle congestion through packet
dropping, which occurs when the ques in the switch are full. Packet dropping simply means
deleting the packages that cannot fit in the queue. How much tra�c can be passed through
each port before packet dropping occurs is determined by the quality of service (QoS) set for
di�erent tra�c flows. A better quality of service could mean higher queue capacity or more
available bandwidth [12].

2.1.2 5G Development and Capabilities
As mentioned above, parts of the envisioned 5G RAN architecture have been centralized
with the goal of achieving better resource utilization. This concept will be further detailed
at the beginning of the following section. This will be followed by a section explaining which
network functions are executed in the network, lastly, the stakeholders in the 5G develop-
ment will be detailed.

RAN Architecture
In previous RAN generations each Remote Radio Unit (RRU), where the radio waves are
received and transmitted, was coupled with a Baseband processing unit (BBU). All of the
BBUs processing functions were geographically co-located in the same physical unit. In 4G
architecture the BBU is located at the foot of the radio tower [72]. In the 5G architecture the
BBU is divided into two distinct parts, the Distributed Unit (DU), and the Centralized Unit
(CU). This division is identified as the Cloud RAN architecture since it enables centralized
cloud data centers where network functions can be deployed. When the functions running
inside the DU and CU are virtualized, they are commonly refered to as virtualized DU (vDU)
and virtualized CU (vCU) It should be noted that one CU is connected to one or more DU’s,
thereby enabling the benefits of centralized computing centers [57]. In Figure 2.1 the two
di�erent architectures are displayed.

Distributed Unit and Centralized Unit Depending on the vendor deploying
the Cloud RAN, functions can be divided between the CU and DU in di�erent ways. This
division of functions a�ects which type of processing is done in which unit. To facilitate col-
laboration between vendors, the standards organization 3GPP has proposed a standardized
division of functionality. This will give responsibility to the CU for functions such as QoS
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Figure 2.1: Architecture of 4G and 5G Cloud. Icons by [17].

Flow handling, connection establishment, and release. The DU assumes responsibility for
protocol error detection, noise reduction, and lower-level encapsulation of data [57].

Network Functions
For a network to function properly, there are many processes that need to be carried out
continuously. These are typically called Network Functions (NF), they are executed on dedi-
cated hardware resources in a traditional network. Examples of NFs are firewalls, deep packet
inspection, performance monitoring, and access routers [27]. In a Cloud RAN setting these
are virtualized on high volume servers, a concept which will be detailed later in section 2.4.2
Cloud RAN.

Stakeholders, Open RAN and Vendor diversification
The stakeholders in the 5G development are numerous and range from network operators
and telecommunications companies to policymakers and third-party businesses using the
new technology [41]. In an e�ort to facilitate collaboration, flexibility, and ecosystem in-
novation between stakeholders multiple standards have been developed. The extent of this
standardization e�ort marks a notable di�erence between the development of 5G and 4G
networks, where the new generation focuses a lot more on compatibility between di�erent
vendors. Telecommunication systems have traditionally been sold as packages with the same
vendor providing a full set of components, including software and hardware of the transport
network infrastructure.
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The standards organizations 3GPP and O-RAN Alliance seek to put an end to this vendor
lock-in by building a common 5G framework for interface connectivity, coined Open Radio
Access Networks (O-RAN). This framework would allow for new vendors to enter the mar-
ket while simultaneously increasing competition between the traditional telecommunication
vendors. In the face of this market democratization, the pressure to develop innovative and
high-performing solutions increase [30].

2.1.3 5G Use Cases
As the development of fifth generation networks progressed three di�erent service classes
emerged to satisfy the projected usage requirements. These are the Enhanced Mobile Broad-
band (eMBB), Ultra Reliable Low Latency Communications (URLLC) and Massive Machine
Type Communications (mMTC).[70]

eMBB (Enhanced Mobile Broadband)
The eMBB service could be characterized as an improved version of the 4G current broadband
deployment. This entails high peak data rates and moderate reliability defined as a relatively
low packet error rate [60] This will be the most commonly used service for regular cell phone
users and allow for streaming of movies or online gaming even if the user is travelling on a
high-speed train at 500 km/h [2].

URLLC (Ultra Reliable Low Latency Communications)
The URLLC service is the enabler of critical communications that need very high reliability
and low latency to function properly. The rate of transmission is much lower than eMBB but
calls for more scheduling to achieve the needed reliability. The packet drop rate is expected
to be at a very low rate as compared to eMBB.[60] Examples of applications include remote
surgery, drone control, and driverless cars [1].

mMTC (Massive Machine Type Communications)
mMTC di�ers from the above services mainly due to the number of devices envisioned for
this tra�c class. MMTC will allow for seamlessly connecting thousands of Internet of Things
(IoT) devices. Oftentimes these IoT devices try to transmit small payloads at irregular inter-
vals and to increase e�ciency the devices could be coordinated to maximize the throughput
per resource [60]. Concrete examples of applications are wearables, trackers and sensors [2].

2.2 Practices and technologies enabling 5G
In order to deliver the advanced functionalities promised by the 5th generation of mobile
communications, the telecommunications industry will need to leverage best practices and
technologies from the software industry. Since the launch of long-term evolution (LTE) 4G
network in 2009 [36], the software industry has experienced large growth combined with an
influx of new tools and ways of working.
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A practice that has become increasingly important in delivering large complex software
systems is the unification of development and operations activities, coined DevOps. As a part
of these activities, the deployment method of choice has become to deploy in the cloud. [42]
Both DevOps practices and cloud computing technology will be important components in
the development of 5G. To better understand these concepts and how they serve a purpose
in mobile communication, one needs to look at the core values of DevOps, as well as the
technological components of cloud computing. In the following section a number of di�erent
tools will be discussed. In an e�ort to summarize these tools, Table 2.1 is provided at the end
of the Background chapter.

2.2.1 Unification of Development and Operations
Previously separate, the unification of development and operations activities, has allowed
for a holistic view of the software life cycle. DevOps practices strive to make software devel-
opment and operations easier by building on core values such as automation, observability,
scalability, and availability.

Automation Software application deployment consists of several di�erent stages, such
as integration, testing, infrastructure provisioning, and the deployment itself. Executing
each stage manually repetitively during the development process is both time and resource-
consuming, and can thus benefit from an automated solution. Creating a pipeline for con-
tinuous integration and deployment that can perform the actions of each stage through the
push of a button is what is called automated deployment [66].

Observability Observability is a measure of how easy it is to understand what is hap-
pening inside of a system. This includes understanding why or why not your system is work-
ing, and where potential errors originate. To achieve high observability and gain insights into
the system a combination of techniques such as metrics collection, logging and tracing are
usually employed. By continuously collecting data the system operator can monitor metrics
such as CPU usage or packet drops and understand the underlying causes for fluctuations
or spikes. The data collection is vital to gain a deeper understanding of your system and its
potential areas of improvement. What constitutes important data is however unique to each
system and in the realm of observability there is, unfortunately, no one size fits all [42].

Scalability Scalability refers to the ease of increasing the capacity of a service to enable
more users to access it or more data to be processed. This can be done either through creating
another replica of the entire application or in the context of microservice architectures, one
can scale only the bottleneck microservice [66].

Availability The concept of availability could be described as the portion of time your
service is working as intended, available to the users. For example, your service might be
available 99.999% of the time if it has high availability. To achieve high availability, concepts
such as redundancy and distributed deployments are important [42].
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2.2.2 Cloud computing
Since the introduction of cloud computing around 2007, the technology has seen tremendous
growth. As of 2020, the market for public cloud computing was estimated at 236 billion U.S.
dollars, 27 times larger than in 2009 [40]. Companies like Amazon, Microsoft, and Google are
the largest cloud infrastructure service providers, together capturing 61% of the market [63].
Today cloud computing technology is used to run our favorite websites, store our personal
data and deliver the work tools we use daily.

In the paper "Cloud computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility" from 2008 Buyya et al. define Cloud Computing as:

"A Cloud is a type of parallel and distributed system consisting of a collection
of inter-connected and virtualized computers that are dynamically provisioned
and presented as one or more unified computing resource(s) based on service-
level agreements established through negotiation between the service provider
and consumers."[47]

From this definition, one can deduce three main characteristics of cloud computing.
These are sharing of infrastructure, dynamic provisioning, and network access.

Sharing of Infrastructure In a cloud setting each running application gets ac-
cess to hardware resources such as computational power, storage, and networking capabili-
ties. However, the resources allocated to each application only account for a portion of the
available underlying physical hardware. This partitioning of the hardware resources is done
through a concept called virtualization. From the perspective of the application, it is run-
ning on its own computer while in fact it is sharing the underlying resources with multiple
other virtualized applications [47]. The virtualization enables decoupling of the application
and the physical hardware, which makes it possible to move the application between di�er-
ent computers without disturbance to the application’s operations. Virtualization will be
described more in-depth in section 2.2.3

Dynamic Provisioning Dynamic provisioning is another important characteristic
of cloud computing. The portion of resources that each virtualized application is receiving is
not fixed and can easily be scaled up to meet an increase in demand. Likewise the resources
can be scaled down when the demand is low. This dynamic provisioning makes for more
e�cient use of hardware resources as the physical hardware can be adapted to the average
load of all running applications, instead of to the peak load of each application.[47]

Network Access The last key characteristic in cloud computing is the network access
to the infrastructure. This is what makes the resource infrastructure available over the inter-
net and to other parts of the network. Without the network making cloud services available
from any device anywhere the appeal of cloud computing would quickly diminish.[47]

Deployment Models While there are many di�erent components built into cloud
computing solutions their importance di�ers depending on the deployment model. It is
therefore important to define the scope of cloud computing in relation to telecommunica-
tions. There are several di�erent deployment models discussed in cloud computing, but the
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two most common are public and private clouds. Public clouds refers to cloud computing
being o�ered to the public, individuals or companies, on a pay-per-use basis. The public
cloud includes the o�ering of companies like Amazon Web Services or Google Cloud [47].
The private cloud is a cloud that is deployed and managed by a company for its internal use.
This is the type of cloud that is the most common in the telecommunications industry today,
where only the telecommunications company deploying the cloud would have direct access
to it [49]. While the end users connecting to the radio access network will have their data
and network tra�c processed in the cloud, they will never directly interact with it. This
is an important distinction to make as this means that only the technological components,
and not the business model, is similar to the public cloud solution. While running a private
cloud requires a lot more e�ort as opposed to buying cloud services, it lets the company re-
tain control over the infrastructure and its optimization. This while still benefiting from the
technological advantages of the cloud computing architecture.

2.2.3 Virtualization
To further understand the technology behind cloud computing one must understand the role
of virtualization in the cloud. Virtualization has become an important technology in modern
data centers and is being used extensively to increase operational e�ciency, scalability, relia-
bility, and flexibility. Through the adoption of these concepts, operational expenses (OPEX)
generated inside a data center could be decreased. The two main types of virtualization are
hardware-level virtualization and Operating System (OS) level virtualization. Virtualized
hardware is commonly referred to as a virtual machine (VM), while virtualized applications
on the OS level are commonly referred to as containers.

Hardware Virtualization – Virtual Machines In hardware-level virtualiza-
tion physical hardware resources such as CPU, memory or networking interfaces are virtually
partitioned and allocated to a VM. The VM runs a separate OS from the host and is unaware
that it is part of a physical computer [67]. The combination of hardware and software com-
ponents needed to run a VM is referred to as a virtual stack. The virtual stack in hardware
virtualization can be seen in the left part of Figure ??. In data centers hardware virtualization
allows for multi-tenancy, meaning multiple VMs can share resources of a single underlying
server. This means di�erent processes and applications can run on the same physical hard-
ware with minimal interference. The virtual machines can also be moved dynamically be-
tween di�erent servers in the data center allowing for optimization of the hardware resource
utilization. If two di�erent servers are running workloads with low resource utilization the
VMs used to run the workloads could easily be relocated to a single server, thus minimizing
the overall number of servers needed [65].

OS Level Virtualization - Containers In OS-level virtualization each virtu-
alized partition, called a container, is given a separate user space with access to a portion of
the host operating system resources. While hardware virtualization has long been the pre-
dominately used virtualization paradigm, containers have seen massive growth in popularity
in recent years. Containers are run on top of a host OS or directly in a virtual machine and
contain all the dependencies and libraries needed to run its application. The virtual stack
needed to run containers directly on a host OS is shown in the middle of Figure 2.2. To

23



2. Background

run containers in a VM, a slightly di�erent stack is needed, displayed on the right in the
same figure. The advantage of containers over virtual machines is that containers are ex-
tremely lightweight. This is largely due to the fact containers only need to store the exact
dependencies used for the containerized application. Di�erent containers are also able to
share common packages and dependencies, making them even smaller in size [64]. Contain-
ers are suitable for modularized applications, where small subcomponents of an application
can exist in separate containers. If a certain subcomponent of the application is receiving a
heavy workload this specific subcomponent can be replicated to increase the computational
capacity, as opposed to having to replicate the entire application [38].

Figure 2.2: Virtualization stacks for virtual machines, containers and
containers in virtual machines

Container Orchestration
When increasing the number of application components running in separate containers, the
task of managing them quickly grows di�cult. A running container can be fragile and it is
not uncommon for containers to crash and die. If containers are run without an orchestration
tool a system operator must, for example, respond to the death of a container by restarting it.
This can get cumbersome with a large amount of containers, especially as container errors can
propagate if the containers are dependent on each other’s functionality. Sometimes the death
of one container can cause others to crash. As a remedy against painful manual orchestration,
container orchestration tools have been introduced. A container orchestration tool allows
for the automation of tasks such as deployment, scaling, management, and networking of
containers. The system operator can set a preferred state of the system, which will then be
automatically maintained. If a container dies a new one will be automatically scheduled and
deployed. While there are several di�erent tools for container orchestration the most popular
by far is the Google initialized open-source tool Kubernetes [69].

2.2.4 Software Defined Networking
As the worldwide network infrastructure has grown, network complexity has increased sig-
nificantly. Not only have networks become a lot larger, but also more heterogeneous in terms
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of equipment, applications, and services. Now the traditional networking architectures that
were good for increasing performance in the early days of the internet, are making the net-
works inflexible and increasingly complex to manage. To fulfill the requirements of future
networks, such as ubiquitous accessibility, high bandwidth, and dynamic management, new
approaches are needed [74].

Software-Defined Networking (SDN) is a concept that has received a lot of attention in
the ICT community in recent years. SDN is defined by the Open Networking Foundation
as an emerging network architecture with two main characteristics. The first being a decou-
pling of control and data planes, the second being the programmability of the control plane
[74]. In earlier architectural designs the control plane, associated with tasks like managing
routing tables and storing network topology, and the data plane, where the user data is sent,
were bundled together [54]. With the SDN design, more e�cient configuration, better per-
formance, and higher flexibility can be achieved [74]. By enabling programmability of the
control plane, configuring network elements like routers and switches, can be simplified and
done with increased dynamicity and automation. The control process in the control plane is
achieved through the use of an SDN controller.

SDN Controller The SDN controller is the most important component of the SDN
architecture. It centralizes the logic for controlling the network and uses a global network
view as the basis for its decisions. The SDN controller will often deal with two types of tasks,
network monitoring and network controlling. During network monitoring metrics about
the network status are collected. These metrics are then used for network decision-making,
where network controlling actions are decided with logical rules stored in the SDN controller.
The SDN controller then updates the network by modifying the underlying infrastructure
of the data plane. This infrastructure is made up of network elements such as switches and
routers and can be modified by updating policing or routing rules in these elements [74]. If the
network elements are virtualized, the infrastructure is referred to as a Virtualized Network
Infrastructure.

Virtualized Network Infrastructure As mentioned previously in section 2.1.1,
switching is an essential part of a network’s functionality. To adapt to new virtualized envi-
ronments, as described above, switches have also become virtualized. A commonly used vir-
tual switch in production environments is the Open vSwitch (OVS). The OVS is supported
by the Linux Foundation and is available freely to the public. It enables network providers to
automate the behavior of their networks and each OVS is dynamically configurable through
an SDN controller [31]. The OVS relies on Linux Tra�c Control (tc) to provide QoS levels
to di�erent tra�c flows. This means that tra�c control features that are not available in
tc, cannot be achieved through the OVS [34]. tc is a tool used to control network tra�c on
any operating system running a Linux kernel. For example, increase or decrease the available
bandwidth on a network interface or simulate packet drops [24].

2.2.5 Control Engineering
Control engineering aims to enhance the performance of a system by adding control pro-
cesses, sensors, and actuators. The control process captures signals from the sensors, analyzes
these, and outputs instructions to the actuators, which in turn a�ects the behavior of the
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system. An overview of a generic control system is shown in Figure 2.3 below. Due to the fact
that the behavior that the controller process exhibits is tied to the sensed signals, this kind
of system is called a closed-loop control system [56].

Figure 2.3: A generic closed-loop control system, adapted from [56].

2.3 Kubernetes
2.3.1 Kubernetes Introduction
The rise of containerization in the software industry brought with it an increasing need for
container management. While running applications in containers solved many previous is-
sues there was still a need for a system administrator to handle tasks such as automation,
failover, monitoring. The more services a system contained, the more cumbersome it was to
handle the overall operation and health of the containers [42].

As an answer to this problem, Google released the open-source container orchestration
project Kubernetes in 2014. The open-source nature of Kubernetes proved to be a great ad-
vantage over other commercial orchestration solutions at the time. This made container
orchestration highly available to all kinds of developers and the adoption rate of both con-
tainers and Kubernetes spiked. Not long after its release, the success of Kubernetes was a
fact, the platform completely dominating the market [42]. Today cloud-service providers
such as Amazon Web Services [3], Microsoft Azure[5] and Google Cloud Platform[18] o�er
Kubernetes orchestration natively.

In a 2020 software developer survey, by the popular question and answer site Stack Over-
flow, Kubernetes was ranked as the third most appreciated software technology outranked
only by the containerization platform Docker and the operating system Linux [35].

2.3.2 The value of Kubernetes
Kubernetes is valuable both to developers and operations sta�, providing solutions to many
previously time-consuming and complex tasks. For developers, Kubernetes makes deploy-
ment easy by facilitating gradual rollouts of new applications. With the platform new func-
tionality can be deployed to only one or a few containers in order to test new functionality on
a few users before expanding to the entire user base. Other helpful features include autoscal-
ing of applications to keep up with user demand. If Kubernetes discovers that the CPU usage
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for a certain application is spiking it can automatically scale up the capacity by deploying
more replicas of the application in question. Similarly, application instances not being used
can be scaled down automatically in order to reduce the need for computational resources. If
an application crashes the instance can be automatically restarted in order to maintain a pre-
defined service level. This makes for a system with high availability only using the resources
needed. In turn, this lowers the infrastructure costs through better resource utilization [42].

2.3.3 Kubernetes Architecture
A Kubernetes cluster is made up of several components, a schematic overview is provided
in Figure 2.4. Observe that this is a highly simplified picture but it covers the parts that are
important for a basic understanding of a Kubernetes cluster.

Figure 2.4: Kubernetes Architecture Overview with master and
worker nodes, adapted from [21].

Nodes
A node in Kubernetes is a physical or virtual machine, a cluster usually has several nodes.
There are two types of nodes, Master nodes, and Worker nodes. The key di�erence is that
the Master node is part of the control plane of the cluster, meaning that it controls the worker
nodes. The Worker nodes on the other hand runs the actual workload. To be clear, there is no
inherent di�erence between a Master and Worker node, each of them is a physical or virtual
machine, they just run di�erent kinds of software on them [29].

Master Node The Master node is responsible for scheduling workloads through the
Pod scheduler, serving application programming interface (API requests through the API
Server, storing information about the cluster in the Cluster Data Storage, and running core
control loops on the controller manager. Basically, it is the cluster brain making sure that
everything works as intended and that the cluster can be accessed from the outside [22].
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Worker Node Worker nodes on the other hand run the workloads that the Master
assigns to them. It does this mainly through two processes, the kubelet and the kube-proxy.
The kubelet makes sure that the intended containers are running and are healthy on the node.
The kube-proxy upholds the network configuration on the node enabling communication
with the pods [42].

Pods
A pod in Kubernetes is an object that contains one or more containers. These co-located
containers share storage and network resources. The most common situation is for a single
container to run in a single pod though. Why then bother with a pod at all one could ask?
The answer is that in some situations a set of containers needs to run together to be e�ective.
For them to be able to, for example, share storage, they can run on the same pod and still be
abstracted as a single unit when controlling the cluster [42].

Container Networking To allow for more advanced networking inside a Kuber-
netes cluster, network plugins can be used. Flannel is a plugin that creates an overlay net-
work on top of the standard Kubernetes network. This enables direct IPv4 communication
between all pods in the cluster [14]. Furthermore Multus is a network plugin that lets the user
create multiple network interfaces at each pod, which in turn enables segregation of tra�c in
and out of a pod [26]. This is an important capability to set up if one is to adjust the quality
of service based on tra�c class inside a cluster.

Jobs
To run and manage pods in Kubernetes you can use what is called a pod controller. A pod
controller does things like making sure the container inside a pod is in good health, restarts
the pod if the container would unexpectedly die, or load balances requests between di�erent
pods under the same controller. One common type of pod controller is a Job. A job is ideal
to use for pods that have a specific task to complete and thereafter should exit. In the job
specification, the number of times a pod should complete a task before exiting can be spec-
ified. If a pod would die before the tasks are completed the job will restart new pods until
the job is finished.

2.3.4 Observability in Kubernetes
One of the requirements for observability is the availability of metrics on the observed sys-
tem. To collect and compile system metrics in Kubernetes, Prometheus is a highly adopted
solution.

Prometheus
Prometheus is a project by the Cloud Native Computing Foundation (CNCF) which is used
for monitoring and alerting on its configured targets. The Prometheus program scrapes met-
rics at given intervals to evaluate the health and performance of these targets [32]. For con-
tainer metrics, a common open-source metrics agent is the container advisor (cAdvisor).
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cAdvisor exposes resource usage data about the running containers in the cluster, these can
then be scraped by Prometheus [6]. The metrics can be accessed through the Prometheus
database, either in table or graph format. In addition to this, alerts can be configured to
warn the system administrator if certain system behaviors are observed [32]. Prometheus
is so frequently used in combination with Kubernetes that Kubernetes components expose
their metrics in Prometheus native format [25].

2.4 Cloudification and containerization of 5G
2.4.1 Cloud Native
An important concept in cloud computing is cloud-native. Cloud-native refers to the de-
sign and operating patterns that ensure that the developed software product takes full ad-
vantage of the cloud deployment model. More concretely this means employing practices
such as continuous deployment, containerization, and division of monolithic products into
microservices. These cloud-native practices allow for a product that has a high degree of
automation, receives new functionality faster, and can scale elastically with demand [44].

The best practices associated with cloud-native stem from large tech companies like Net-
flix, Alibaba, and Facebook. Because of the large successes of cloud-native practices in the
tech industry, cloud-native is now envisioned to become an important part of cloud develop-
ment in telecommunications. It should be noted though that certain performance require-
ments specific to the telecommunications industry might not be supported by traditional
cloud solutions. This means that telecommunications companies must develop new products
and solutions to incorporate cloud technologies into their products. At Ericsson cloud-native
practices are envisioned to help improve granularity and speed of software updates, automate
virtual network function configuration, and adapt software architectures to make better use
of cloud data center resources [48].

2.4.2 Cloud RAN
Cloud Radio Access Network (Cloud RAN) is the notion of 5G network compute func-
tionality running in a cloud setting. Instead of network functions running on purpose-built
hardware, they instead run on virtual machines or in containers on generic hardware. Such
network functions, with examples in 2.1.2, are referred to as cloud-native network functions
(CNFs). In this type of setup, the hardware functionality of traditional radio systems is emu-
lated in software. The advantage of this is that the generic hardware, commonly referred to as
COTS hardware, can be provided by a di�erent vendor than the one providing the software.
The Cloud RAN software being vendor agnostic gives increased flexibility in the network
architecture. A carrier can even choose to combine CNF software from di�erent software
vendors [49].

Another advantage of the Cloud RAN setup is great scalability as the capacity of a CNF
can be easily increased by deploying a new virtual machine. With virtualization, network
functions can be dynamically scaled across all available hardware resources to adapt to the
current network load. Previously, purpose-built hardware could only be used by compatible
network functions. This type of setup can lead to poor resource utilization when unused
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Tool Description
Kubernetes Container orchestration platform
Docker Container runtime software
Open vSwitch Virtualized production grade switch
Flannel Plugin for the creation of an overlay network in Kubernetes
Multus Enabling the creation of multiple network interfaces at each Kubernetes Pod.
Prometheus Observation tool for Kubernetes cluster

Table 2.1: Summary of tools enabling 5G Transport Network Cloud
functionality

Tool Description
iPerf A networking tool that generates tra�c between two points on an IP network [20].
Flask A lightweight web application framework used for Python web development [15].
Postman A platform for API development, letting you requests to test your API [39]
Grafana An open-source project for querying and visualizing time series data [19].
CBC Coin-or Branch and Cut is an open-source mixed integer programming solver [7]

Table 2.2: Summary of tools supporting tools used in the thesis

hardware resources of one network function cannot be used by another network function.
To avoid running out of hardware resources the solution would be to keep an overcapacity
for each network function. In the future 5G network, Cloud RAN will complement purpose-
built solutions increasing interoperability between vendors, improving resource pooling, and
allow for cross-domain innovation [49].

2.5 Supporting Tools and Softwares
In addition to the tools that have been detailed in the previous sections and in Table 2.2, the
simulation environment developed in this thesis uses a number of supporting tools. These
are used both to run the simulation and facilitate development. They will be briefly covered
below.
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Chapter 3

Creation of the Simulation Environment

This chapter will detail the methodology and the resulting environment associated with RQ
1.1 and 1.2. It will start o� with a brief description of the literature review process and then
move on to the utilized methodology. After that, the design process itself will be detailed
and finally, the resulting environment is presented.

3.1 Literature Review
After the establishment of RQs 1.1 and 1.2, the first step was an extensive exploration of rele-
vant learning resources connected to 5G, networking, containerization, container orchestra-
tion, tra�c control mechanisms, and optimization algorithms. Our main tools for gathering
these resources were Google, LUBsearch, Google Scholar, ConnectedPapers, and educational
material from Mprical. Oftentimes one resource led to another through investigating ref-
erences to the current resource or using ConnectedPapers to find similar research. A small
number of these were detailed in the Previous Work section. These were selected on the basis
of similarity to the intended output of the thesis. It should be noted though that a lot of the
learning material was also utilized to enable us to understand the tools and components used
to build the simulation environment. The thorough review of documentation and tutorials
made it possible to set up the simulation environment described below.

3.2 Design Science Methodology
To create a simulation environment representing RQ 1 in an accurate way, a workflow in-
spired by the Design Science methodology was adopted. In Design Science, design is viewed
as both a process and a product. The process is divided into two iterative phases, develop-
ing and evaluating. This iteration is referred to as the Design Cycle. The product could be
a model, method, software implementation, or a new problem formulation. The intended
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output of this thesis was a software implementation of the simulation environment. Further-
more, two evaluating cycles are present in this methodology to ensure both Rigor and Rele-
vance of the product. Rigor means applying existing theories and frameworks from the scien-
tific community to the design process. This could be using a high-level theoretical framework
to decide upon the software architecture of your solution. As an example, Control Theory
was used as inspiration for the design of the control part of the simulation environment in
this thesis. Relevance means making design choices that are implementable and applicable
in the intended environment [52]. A schematic overview of the workflow inspired by this
methodology is provided in Figure 3.1 below.

Figure 3.1: An overview of the Design Science process, adapted from
[52].

The implementation process will be presented as three distinct phases in the chapter
below. This is partly a simplification to make it easier to follow the design process and the
choices made. Some overlap between the phases existed and sometimes we had to go back
to a previous phase to alter the design due to newly acquired knowledge. The phases were
named vDU and vCU, SDN Controller, and Network Tra�c Generation, each one will be
detailed in the following sections.

3.3 Envisioned System
To improve readability, a high-level concept of the intended simulation environment is pre-
sented in Figure 3.2. As was detailed in section 2.1.2 RAN Architecture, a Cloud RAN archi-
tecture envisions several vDUs being connected to a single vCU. The same concept will be
mimicked in our simulation environment. Network tra�c will be flowing from left to right
in Figure 3.2, all of it passing through the virtual switch placed in the vCU. It is at this virtual
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switch the SDN Controller is envisioned to allocate bandwidth dynamically to the di�erent
tra�c classes. Observe that this is a highly simplified view of the system, more exhaustive
figures will follow as each development phase is presented below. An overview of the three
phases is shown in Figure 3.3

Figure 3.2: An overview of the envisioned system.

Figure 3.3: An overview of the implementation phases.

3.4 Phase 1: vDU and vCU
In this phase the goal was to build an abstraction of the network connecting the vDUs and
the vCU in the 5G transport network. The environment should contain the essential infras-
tructure needed to enable simulation and observation of network tra�c on this network. As
the focus was put on the utilization of network resources, the network functions that are
carried out in the vDU and vCU in a real RAN were intentionally left out.

3.4.1 Design
To be able to simulate servers on the vDUs communicating with a vCU, a virtual machine
setup was deemed suitable. The virtual machines were instantiated on a single PC in the
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Figure 3.4: The system in phase 1, with VM:s, Kubernetes and virtual
switch added.

virtualization environment VirtualBox. In a real world scenario each virtual machine would
likely be placed on a blade server. For our setup we chose four virtual machines, two modeling
two separate vDUs, and two modelling a single vCU, with a network switch placed in one.
The four VMs in the simulation environment can be seen in Figure 3.4, with the label A. The
virtualization stack with the specific components used can be seen in Figure 3.5.

The Networks Between the three virtual machines, virtual local area networks (vLANs)
were established. These networks are an abstraction of the network infrastructure, such as ca-
bles and switches, that would connect an interface on a vDU with interfaces on a vCU. With
the help of these vLANs, tra�c flows could be separated into QoS levels. In our case, these
were named “gold”, “silver” and “bronze”, where tra�c sent over the gold network would re-
ceive the highest priority, while tra�c sent over the bronze would receive the lowest priority.
The networks are illustrated as the blue lines at the top of Figure 3.4, labeled B.

The Container Environment To create a container environment, Docker and
Kubernetes were installed as container runtime and container orchestrator respectively. As
Kubernetes runs on top of Docker, most interactions with the cluster were done through
Kubernetes. In a real scenario each vCU and vDU would likely have both a Kubernetes Master
Node and several Worker Nodes, but for the sake of our simulation vDU 1 was instantiated
as a master node and vDU 2 was instantiated as a worker node. The vCU was instantiated as
a worker node as well.

VM 1, VM 2 and VM 3 together made up our Kubernetes cluster, Kubernetes was not
installed on VM 4 as this VM was intended for the OVS. In order to give certain pods priv-
ileges to control the cluster, Role-Based Access Control (RBAC) was set up. With RBAC,
increased privileges such as starting pods or accessing cluster metrics can be given to a pod.
This was essential during early development to enable observation and control of the cluster.
Eventually, this component was no longer needed when the virtual switch that is described
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Figure 3.5: The virtualization stack used in the simulation environ-
ment.

below was implemented.

To connect pods to di�erent vLANs, according to their tra�c priority, custom Linux
bridges were created. In essence, these bridges create a connection between a pod and a
network interface on the VM that the pod is located on. To enable several Linux bridges to
connect to each pod, one for each tra�c class, the Multus network plugin was used. Through
Multus three new network interfaces were created on each pod, the gold, silver, and bronze
interfaces.

The Kubernetes master orchestrator functions and the other container environment func-
tions can be seen in Figure 3.4 labeled C. Multus is not shown in the figure to avoid being
overly detailed, but was part of the creation process of each pod.

Switch Setup An important component of a vCU would be a network switch for-
warding data from the vDUs to the Core Network, and vice versa. While such a switch could
be physical, a virtual version would allow for increased flexibility and reconfigurability. In
order to create this virtual switch in our environment, the open-source switch OVS was cho-
sen. The OVS was installed on VM4 and configured to connect to the vLAN networks that
had previously been established. With this configuration, a vDU-pod connected to the gold
network could send tra�c to the virtual switch, where the tra�c would be handled and pri-
oritized according to the network it was sent on. The three interfaces of the OVS together
share a bandwidth of 110 Mbit/s. When configuring the OVS, a certain amount of bandwidth
is allocated to each interface. For example, the switch could be configured to give gold 50
Mbit/s, silver 30 Mbit/s, and bronze 30 Mbit/s. The switch can be seen in Figure 3.4, labeled
D.

35



3. Creation of the Simulation Environment

The Design Process
During the phase, a lot of configuration was required to make the di�erent components work
together. The virtual machines that were used had been pre-configured by Ericsson, speci-
fying settings such as how much memory or CPU each VM was entitled to. Docker and
Kubernetes were also pre-installed. This meant that the set up of these components went
quicker and less manual configuration was needed. Throughout the entire phase, dummy
pods were used, from which tra�c was manually generated to evaluate and test the setup.
While the process as a whole was incremental, each component that was added required a lot
of iterative work in itself. These iterations consisted of activities such as making sure pods
could connect to the right networks, giving pods the right privileges, and configuring the
network to connect to Kubernetes pods and the switch.

3.4.2 Relevance
The choices made in this phase were mainly guided by Ericsson’s explicit intentions of de-
veloping a Virtualized 5G RAN. They see significant benefits in virtualization, for example,
the possibility of using the same type of server hardware throughout all parts of the network.
Their emphasis on virtualization made using a virtual switch a natural choice. OVS was se-
lected due to its widespread adoption and it being an open-source project, which is in line
with Ericsson’s goal of supporting open source [8]. Containers and container orchestration
are relevant as tools since Ericsson also explicitly aims to increase the flexibility with which
they can scale up and down resources in a Virtualized RAN [37]. For these tools the open-
source projects Docker and Kubernetes were chosen due to their high adoption rate, detailed
documentation, and large supporting communities.

3.4.3 Rigor
To complement the input from Ericsson with additional scientific research, research papers
with similar objectives to our own were explored. The choice of Kubernetes was motivated by
researchers in [61] investigating Kubernetes network plugin performance; they referenced the
platform as the leading container orchestration tool among cloud service providers. They also
emphasize the importance of container networking solutions to achieve a well-functioning
cluster. Kubernetes was also corroborated by Kim et al. [53] who named it as the most utilized
container orchestration platform. A paper where researchers were investigating bandwidth
control through an OVS was found as well [71]. The researchers proposed a setup where three
client VMs were connected to a server VM through two OVS instances. As our scope only
demanded three client VMs connected to a single OVS VM, we modified their setup to look
like Figure 3.4.

3.5 Phase 2: SDN Controller
In phase 2 the goal was to build an SDN controller which could modify the network in-
frastructure built in phase 1. In order to do this, the SDN controller would have to both
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observe and control the infrastructure. The network element subject to control was the vir-
tual switch, described above. In our simulation environment, the SDN controller will control
a single switch and observe tra�c from the vDU 1 and vDU 2. In reality, an SDN controller
would likely be connected to a lot more switches and other network elements, as well as
observing larger clusters. However, our abstraction was similar in principle while the com-
plexity was significantly lower. To allow for flexible placement and increased scalability, the
SDN controller was built to run in a Kubernetes pod.

Figure 3.6: The system in phase 2, with the SDN controller (in green)
integrated.

3.5.1 Design
SDN Controller To allow for easy interaction with the SDN controller it was built
around a micro web framework called Flask. Based on the micro web framework, the con-
troller continuously listens for incoming connections, allowing us to manually connect to
the controller for configuration or data extraction. Both manual control and the SDN con-
troller’s interaction with other system components are done through an application program-
ming interface (API) based on the style representational state transfer (REST). REST API is
a very common style of machine-to-machine communication where each interaction can be
expressed through simple operations such as GET, POST, PUT, DELETE.

The control loop of the SDN controller consists of observation, calculation, and configu-
ration. In the observation step, the controller collects metrics from the virtual switch which
returns data on sent and received bytes and packets. Using this data the metrics bandwidth,
packets dropped and packet drop rate is calculated.

After the calculation of the above-mentioned metrics, the current bandwidth configu-
ration settings for the OVS are compared to the current demanded bandwidth from each
tra�c class. Thereafter a new configuration is calculated using a linear programming algo-
rithm, this algorithm is described in more detail in the following section. In the Figure 3.6
the SDN controller is labeled D, while the algorithm inside is labeled E.
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To make the SDN controller run in a pod, it was compiled into a Docker image based
on Ubuntu 18.04. In addition, packages for running Python and the Kubernetes Python API
were installed.

Network Optimization Algorithm The solver used is called Coin-or Branch
and Cut (CBC) which is an open-source mixed integer programming solver. Specifically, the
implementation called PuLP [33]. The problem is constructed as is shown in Equation 3.1
below. This problem only has two relatively simple constraints due to the fact that we only
consider bandwidth resources for a single switch in this thesis. In an extended scenario other
factors and constraints, such as more virtual switches or other resource constraints, could be
taken into account and could have easily been added to the problem construct.

maximizez z = 3x1 + 2x2 + x3

subject to x1 + x2 + x3 <= 100,
0 <= x1 <= Requested bandwidth Gold,
0 <= x2 <= Requested bandwidth Silver,
0 <= x3 <= Requested bandwidth Bronze

(3.1)

The input to the solver is the estimated demand for the next iteration, shown as x1 , x2
and x3 in Equation 3.1. The estimated demand is calculated as the current demand added
with the current derivative of the demand curve. Given these values, the solver determines
the prioritization between the tra�c classes under the constraints given in Equation 3.1, and
allocates a certain bandwidth to each class. However, it was deemed unrealistic to cut o� a
tra�c class entirely and therefore the output from the solver was checked after each control
loop. If the allocated bandwidth was lower than 5 Mbit/s for bronze or silver, they were given
5 Mbit/s connections anyway to uphold a small stream of tra�c. This resulted in a maximum
allocation of bandwidth of 110 Mbit/s if gold requested 100 Mbit/s, thereby ensuring a bu�er
of 10 Mbit/s if gold requests spiked. After the algorithm has calculated a new configuration,
it is then sent to the virtual switch through the SDN controller agent (SDNc agent), of which
an explanation follows below.

SDNc Agent In order for the SDN controller to be able to observe and then configure
the virtual switch, an SDNc agent was developed. This SDNc agent was placed on the same
VM as the OVS and acts as an intermediary between the SDN controller and the switch.
During the observation step, the SDNc agent receives a metrics request from the controller
and then parses the data that is extracted from the switch. This data is converted to JavaScript
Object Notation (JSON) format before being returned to the SDN controller. During the
configuration step, the SDNc agent receives a POST request with the new configuration to
be applied and then converts this to commands which are executed in the OVS. The SDNc
agent did not run in the Kubernetes environment through a pod, it was executed directly on
the OS of VM4. In the environment depicted in Figure 3.6, the SDNc agent is labeled F.

Establishing Observability To observe the behaviour and resource utilization of
the cluster the open-source instrumentation framework Prometheus was installed. Prometheus
enables observability of a Kubernetes cluster on metrics such as the CPU, memory and net-
work usage for each pod and node in the cluster. This provides a great overview of the system
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and could be used by a system administrator to monitor the network load in a real world sce-
nario. In our case Promtheus was initially envisioned as the metrics extractor for the data on
which the SDN controller would base its control decision. However, upon closer inspection
of the tool it was discovered that the precision was too low for the control loop. Mainly this
issue revolved around discrepancies between the sent data measured at the pod level and the
received data measured at the virtual switch. These discrepancies seemed to originate from
Prometheus being a bit slow to update its metrics as compared to the OVS. As we needed a
system where packet drop rates in the range of 1‰ would be important, the precision from
Prometheus was deemed unsatisfactory.

In addition to Prometheus the open source analytics and visualization tool Grafana was
installed. Grafana is mainly used to better visualize the Prometheus data and to make nice
dashboards. While these tools are not used by the control system itself, they remain impor-
tant to a system administrator as well as the development process. Furthermore they would
provide the ability to monitor the SDN Controller and its performance in a real access net-
work. However, as the two tools are not part of the control loop, they are not shown in the
figure for phase three.

To simulate network tra�c, the tool iPerf was utilized. iPerf is a networking tool that
lets you generate tra�c between two points on an IP network with configuration options
such as protocols and tra�c levels.

The Design Process

The second phase was the longest as the SDN controller involved several di�erent interact-
ing components. The developed API proved to be very useful in debugging and testing the
functionality of the controller. This was used in tandem with a REST API testing program
called Postman. With this we could observe the metrics that were returned by the SDNc
agent at the virtual switch. In addition to enabling the collection of metrics it was quite time
consuming to make sure these were stored correctly in the SDN controller’s memory. Fur-
thermore the algorithm development demanded a lot of iterations as its behaviour needed
to be both observed, evaluated and tuned. To test the SDN controller tra�c was manually
generated and sent between the pods and the virtual switch.

3.5.2 Relevance
As in the previous phase, many of our design choices were influenced by Ericssons business
context. Deploying our SDN Controller through the use of Docker and Kubernetes was a
decision made together with engineers at Ericsson. In large part due to Ericsson already
having adopted Kubernetes in their current products [10]. Regarding the other components,
such as iPerf, Prometheus, Grafana and Flask, they were also validated through meetings with
Ericsson to make sure they fit the intended scope. Some were tools that Ericsson already used
internally and some were open-source software tools with high adoption rates.

The choice of the PuLP linear programming solver was found suitable based on both it
being distributed by the open-source organisation Coin-or and it being maintained by an
active community providing well explained examples [33].
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3.5.3 Rigor
The high level behaviour exhibited by the SDN Controller is inspired by Control Engineering
as presented in Section 2.2.5. The foundation of control engineering is utilizing sensors to ob-
serve the system, calculating adjustments and then applying those adjustments to the system.
This corresponds closely to our control loop of observation, calculation and configuration.

Regarding the use of the Flask Micro Web Framework, researchers are citing it as simple,
light and not dependent on many external libraries [58]. This was deemed a good fit to our
relatively basic needs.

In [55] researchers argue that SDN Controllers do not scale well when the network infras-
tructure being controlled gets too large. To solve this they suggest building SDN Controllers
with a micro-service architecture coupled with a container orchestration tool such as Ku-
bernetes. Given that our network infrastructure is very small, we decided to not adopt the
whole micro-service architecture but to still deploy our SDN Controller through Docker and
Kubernetes to enable future development.

Researchers in [76] propose a virtual resource allocation model based on constraint pro-
gramming. This approach enables the model to make trade-o�s between performance goals
and the cost of the required resources. This approach was considered a promising venue
for our thesis on the basis of similar problem structure. However, as we sought to find an
optimal solution rather than a feasible one, linear programming was deemed more suitable.
Linear programming has a very similar problem structure to constraint programming, but
puts more emphasis on optimization of the objective function. It should be noted that our
own linear programming solution is more of a proof of concept model rather than an attempt
at replicating the complexity of the model in [76].

3.6 Phase 3: Network Traffic Generation
In phase 3 the goal was to build a simulation script with which simulation of tra�c scenarios
according to our use cases could be automated. Thereby testing both our network infras-
tructure built during phase 1 and our SDN controller built during phase 2. Each simulated
connection can be thought of as an abstraction of a user equipment (e.g. a mobile phone)
connecting to the network. Then having its tra�c forwarded throughout the network. A
simulation run would entail many di�erent user connections with di�erent tra�c classes
connecting and disconnecting.

3.6.1 Design
Traffic Generating Pods To simulate tra�c throughout the project a tool called
iPerf has been used. iPerf is a tool for network performance measurement and tuning, written
in C. With the tool installed, a server and client can be started from the command line.
Upon starting a server, the iPerf instance will listen for incoming connections on a specified
port. When starting the client a host address and port, connection duration, bandwidth and
transport protocol type (UDP/TCP) has to be defined. Thereafter the client will send IP
tra�c to the specified host for the specified duration. With this tool we could manually start
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connections between pods in phase 1 and 2, but during this phase the goal was to automate
the setup and initialization of connections.

To automate the start up of an iPerf client connection from inside a pod, a python-script
was developed. Upon starting the script inside a pod, it reads its local environment variables
in which each iPerf argument has been specified. Thereafter the connection is started. This
script was packaged in a Docker image, thus enabling it to run in a pod. The iPerf client pods
are shown in Figure 3.7, labeled G.

The Simulation Script The purpose of the simulation script is that it shall start
pods containing the iPerf python-script detailed above. The basic functionality of the sim-
ulation script can be broken down into configuration loading and Kubernetes job creation.
When the simulation script is run from the command line on one of the vDUs a configuration
filename is passed as an argument. From this configuration file the script will receive a num-
ber of pods to be started on each of the two VMs representing vDUs. Apart from the number
of pods the configuration file also specifies bandwidth of the iPerf connection starting in the
pod, the network (“gold”, “silver”, “bronze”) to connect to and lastly the host IP of the iPerf
server. This server is listening for connections on the other side of the virtual switch.

The script parses over the configuration file and starts jobs in Kubernetes with the Ku-
bernetes Python API. The jobs in turn start pods running the iPerf script described in section
3.6.1. Once the iPerf script in a pod is finished, the job is done and the pod will be removed.
In this way the behaviour is similar to that of a connecting user equipment. The simulation
script is run from VM 1 and is shown in Figure 3.7, labeled H.

The Server Side Script Before the client pods can begin sending data a corre-
sponding server instance must be started. A limitation of iPerf is that a server instance can
only maintain a connection with one client at a time. For this reason a server instance for
each client pod must be started. This is done with a Python script that runs on the same VM
as the virtual switch, see Figure 3.7, label I. At startup the simulation configuration file is read
and a server instance is started for each pod that will send data during the simulation run. In
the script the IP address and port on which to listen for incoming connections is specified.

3.6.2 Relevance
Creating an aggregated network tra�c stream through multiple small tra�c streams was
agreed together with Ericsson to be the most realistic way to portray the tra�c in our net-
work. Ericsson recommended the use of iPerf for this purpose. To create a multitude of
di�erent iPerf clients providing a specified amount of network load, Kubernetes Jobs was a
natural choice due to our already available Kubernetes environment. A Kubernetes job cre-
ates a pod and keeps it alive until the task specified for that job is completed [23]. In our case
a completed task was a particular network load applied for a certain duration of time.

3.6.3 Rigor
iPerf was used as the network performance tool partly due to Ericsson recommending it but
also since it is frequently used in research investigating network performance, e.g. [51] [59]
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[43]. Furthermore it is primarily developed by ESNet and the Lawrence Berkeley National
Laboratory which lends it stable and continuous support.

Figure 3.7: The system in phase 3, the iPerf-servers on the virtual
switch VM and the iPerf pods on VM2 are added.

3.7 Design Evaluation
The design science process involves continuous evaluation of the design artifact. Inherent in
this process is to ensure utility and e�ectiveness. Four di�erent evaluation strategies are pro-
posed in [52], these are Observational strategies, Analytical strategies, Experimental strate-
gies and Testing strategies. For the evaluation of our simulation environment the Experimen-
tal strategy was adopted, specifically the subcategory Simulation. This strategy depends on
the execution of the artifact with artificial data to judge its performance. Due to our iterative
process of development, these simulations were carried out almost daily to assess the func-
tionality of the system. If a newly added artifact did not meet requirements it was discarded
in favor of another implementation. These requirements could be, for example, in the form
of reliability or speed constraints.

3.8 Resulting Environment
After completing the three phases of development, the resulting simulation environment is
shown in Figure 3.8. In the spirit of open source our implementation is available under an
Apache License at Github through [11]. As have been mentioned earlier, the finished environ-
ment should be capable of simulating network tra�c, observing the bandwidth requested per
tra�c class and then configuring the settings of the OVS to fit the specific tra�c scenario.
The steps of the simulation run are shown in both Figure 3.8 and Figure 3.9, with correspond-
ing numbering in blue. Figure 3.8 shows the entire simulation environment, while Figure 3.9
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shows the SDN controller in relation to the flow of tra�c through the virtual switch. Before
the control loop starts, the simulation script (1a) and the server side script (1b) are started.
Thereafter the simulation script creates Kubernetes jobs and subsequently starts the tra�c
generating pods (2) in vDU 1 and 2.

The observation and configuration are part of the SDN controller’s control loop, which
can be divided into three steps: collect network metrics (3), calculate bandwidth configura-
tion (4) and apply new configuration (5).

Collect Network Metrics The SDN Controller starts the control loop every three
seconds, an interval chosen due to it being the lowest with which consistent system metrics
could be obtained. The first step of the control loop is to find out the current network load.
To do this an API call is sent to the SDNc agent (3a). The data is fetched from the OVS
through a shell script, requesting the number of bytes and packets received per tra�c class.
When the SDNc agent has retrieved the data from the OVS, it sends it back to the SDN
Controller (3b). In the example in Figure 3.9 one can see that the SDN controller observes
(3) an increased demand in gold tra�c, with a total demand surpassing the total available
bandwidth.

Calculate Bandwidth Configuration When the SDN Controller receives the
current bandwidth utilization from the SDNc agent it utilizes these metrics to start the allo-
cation algorithm. The algorithm then provides each tra�c class with bandwidth in a priori-
tized manner (4). The prioritization only comes into play if the aggregated request is larger
than the total available bandwidth resources. Otherwise each tra�c class is allocated what
its current request is, plus the derivative over the last time step. This addition results in the
predicted bandwidth demand for the next time step. In the example in Figure 3.9 the SDN
controller calculates a new allocation from the observed increase in gold tra�c.

Apply New Configuration When the configuration has been calculated it is sent
back to the SDNc agent via an API call (5a). The SDNc agent receives a new OVS configura-
tion from the SDN Controller. The configuration specifies exactly how much bandwidth each
interface, belonging to a certain tra�c class, shall be assigned. This assignment is done via
yet another shell script modifying the OVS configuration database (5b). When this is done
the SDN Controller and Agent have finished their task and will wait for the next control-
loop iteration. In the example in Figure 3.9 one can see that the applied configuration (5)
lets the gold tra�c flow freely, while slightly limiting the throughput of silver and maximally
limiting the throughput of bronze.

This concludes the creation of the environment and the description of its functions.
However, evaluating its performance on challenging tra�c scenarios will be detailed in the
next chapter, System Assessment.
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Figure 3.8: An illustration of the final simulation environment, with
the steps of the simulation run labeled in blue.

Figure 3.9: An illustration of the SDN controller’s response to adapt
to an increase in gold bandwidth demand, resulting in lowering of
the cap for silver and bronze tra�c while increasing the cap for
bronze.
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Chapter 4

System Assessment

To assess the SDN controller’s performance and potential for network resource savings, a set
of experiments were carried out. In order to do this a number of use cases were developed
together with engineers at Ericsson. A use case is more concretely a specific tra�c scenario.
To construct experiments from these use cases we took inspiration from the experiment pro-
cess described in Wohlin 2012 [73]. In the following sections the experiment methodology
and process will be elaborated on.

4.1 Experimental Methodology
To assess the performance and function of our simulation environment an experimental
methodology was adopted. Experiments can be conducted when it is possible to control
the environment in which the experiment is to be performed. Thereby having the ability to
manipulate certain variables to observe the changes in others. Extending this concept, there
are some prerequisites that limit the choice of research methodology. These are Execution
control, Measurement control, Investigation cost and Ease of replication. Execution control
was in the hands of the writers and the supervisor at Ericsson. Since the simulation environ-
ment was created during this thesis, it was ensured that measurement control was satisfied.
Investigation cost was mainly an investment of time where the timeframe was estimated to
be su�cient for this project. Furthermore, given that the environment would be available
to someone trying to replicate these experiments, the ease of replication would also be high.
Through the assessment of these four factors the experimental research strategy was solid-
ified. In addition to this, it was determined that the experiments would be best suited to
quantitative research. This is due to the intention of analyzing the e�ect of the manipulation
of an independent variable.

The experiment process can be illustrated as is shown in Figure 4.1 below. The main steps
are Scoping, Planning, Operation, and then Analysis Discussion. These steps were adopted
from the experiment process of Wohlin et al. [73]. The final step of Analysis Discussion
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will be detailed in chapters 4.1.4 System Assessment Results and in the Discussion chapter.
These remainder of the steps will be further detailed in the following sections explaining our
choices and processes in depth.

Figure 4.1: The steps of the experiment process.

4.1.1 Experiment Scoping
The purpose of the scoping phase was to define the goal and purpose of the experiments. The
phase also included defining the limitations of the experiments in order to utilize time and
resources as well as possible. The goal of the experiments was to find the scenarios in which
our dynamic SDN controller shows the greatest potential. This was done for the purpose of
assessing the simulation environment’s usability in di�erent scenarios and identifying com-
ponents of our system in need of further research. The context of the study was the prepared
simulation environment, while the object of study was the SDN controller. The focus of the
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Operating system: Ubuntu 18.04 (64-bit)
Processor cores: 2
Memory (RAM): 2048 MB
Storage: 50 GB

Table 4.1: Configuration for each of the virtual machines

Operating system: Microsoft Windows 10 Enterprise
Make: HP EliteBook 840 G5
Processor: Intel Core i7-8650U CPU 1.90GHz
Memory (RAM): 32 GB
Storage: 1 TB
VirtualBox: Version 6.1.22

Table 4.2: Laptop configuration

experiment was to observe how tra�c variations and combinations of demand from di�erent
tra�c classes a�ect the SDN controller’s performance. This performance was measured in
packet loss and saved bandwidth, with lower numbers being better for packet loss and higher
numbers being better for saved bandwidth.

4.1.2 Experiment Planning
In the planning phase it was defined how the experiments would be conducted. This in-
cluded specifically defining context, variables and subjects. Selection of subjects included
defining our use cases together with the engineers at Ericsson. The experiments were de-
signed to quantitatively evaluate the SDN controllers performance in our specific simulation
environment.

Firstly the context was defined. The constructed simulation environment needs four
di�erent VMs to operate: one for the vCU, two for the vDUs and one for the virtual switch.
Each VM was configured according to table 4.1. The VMs in turn ran in VirtualBox on a high
performance laptop provided by Ericsson. The basic hardware and software specification for
the laptop can be seen in table 4.2.

The SDN controller in the simulation environment was set to collect metrics and re-
configure the system once every third second, as this was the lowest control interval that
the hardware could handle while still providing consistent results. The simulations were all
conducted in real-time, as such, simulating 60 seconds of user connections takes 60 seconds.

Next the relevant experimental variables were defined. The independent input variable is
the tra�c patterns representing the use cases. The dependent output variables are the Packet
Loss Rate, Average Allocated Bandwidth, and Average Required Static Bandwidth.

Packet Loss Rate is the share of packets lost as compared to the number of packets sent. It
can therefore assume values between zero and 100%. Packet loss is presumed to occur only as
an e�ect of control system delay causing congestion, i.e. when a tra�c class demand rapidly
changes and the amount of allocated bandwidth is trailing behind. In a real system, packet
loss can also depend on error in data transmission. In our virtual simulation environment
packet loss due to transmission error was assumed to be zero.
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Use case 1: The silver tra�c class peaks and then decreases again
Use case 2: The silver tra�c class peaks slowly and then decreases again
Use case 3: All tra�c classes spike at di�erent times
Use case 4: Gold increases which throttles bronze and then silver

Table 4.3: The use cases

The Average Allocated Bandwidth metric is the amount of total bandwidth resources
assigned by the SDN controller to handle tra�c requests from each tra�c class. So if the
SDN controller allocated 10 Mbit/s to the gold tra�c class for 10 seconds and then 5 Mbit/s
for 10 seconds after that, the Average Allocated Bandwidth for the gold class would be 7,5
Mbit/s.

Finally the Average Required Static Bandwidth shows how much bandwidth the system
would need to handle the peak load for each tra�c class, with a static bandwidth allocation
strategy. The peak load static bandwidth allocations were rounded up to the nearest multiple
of five to ensure that the peak load could have been handled. As an example, if the peak load
for gold, silver, and bronze was 29 Mbit/s each, they would all be rounded to 30 Mbit/s and
then summed up to 90 Mbit/s.

Defining Use Cases As information about real 5G transport network loads was
unavailable, relevant and interesting use cases were crafted with the supervisor at Ericsson.
Real world tra�c patterns could likely depend on factors such as radio tower placement or
time of day. For example the bandwidth demand for di�erent tra�c classes would probably
di�er a lot between urban and rural areas, or between residential or business areas. Such
variance was not captured in the use cases.

The scenarios were instead selected for their qualitative characteristics where emphasis
was laid on capturing isolated dynamic behaviours that could occur in a real system. Certain
scenarios focused on bandwidth demand that shifted between di�erent tra�c classes over
time. Others were focused on scenarios where the total demanded bandwidth surpasses the
capacity of the network infrastructure. The discussions resulted in the use cases specified in
4.3. A detailed explanation of each use cases can be found in Appendix A

The number of use cases was decided through discussion with our supervisor at Ericsson.
It was concluded that these four scenarios captured the key dynamic behaviours we wanted
to investigate, e.g. fast and slow tra�c acceleration, multiple tra�c classes accelerating after
one another and exceeding the available network infrastructure. Each use case was defined
with a starting bandwidth demand for each tra�c class. Thereafter it was specified how the
bandwidth demand should vary over time, including an expected system response. The max
bandwidth demand was limited well below the capacity of our hardware resources, in order
to avoid the interference problems discovered by Kim et al. in [53], as described in Section
1.3.1.

4.1.3 Experiment Operation
The operational phase of an experiment starts with the preparation of the experiment, this
is based on the above detailed experiment design. It then proceeds to the execution of the
experiments and ends with validation of the obtained data.
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The largest part of the preparation stage consists of setting up the configuration of the
simulation environment. This entails starting the VMs, configuring the ports of the OVS to
enable tra�c separation and starting the SDNc agent. Furthermore a server side iPerf-script
is started on the VM that contains the OVS and SDNc agent, this script is use case specific
to account for all of the intended tra�c streams.

The execution stage is divided into three parts. The first step is that the SDN controller
is deployed in a pod and connectivity with the SDNc agent is established. The second step
consists of starting the client side iPerf-script, which is also use case specific. This script
dictates what tra�c streams are generated and for how long. The third and final step is to
extract the experiment data from the SDN Controller after the experiment is finished. To
do this the csv file which contains the simulation data is copied from the SDN Controller
pod’s file system to the VM file system. Then this file is finally transferred to the host system
computer file system.

Data validation must then be performed on the data. This was done through importing
it to an Excel workbook and reviewing the raw data for possible defects. Via this procedure
faults such as incorrect tra�c scenarios or inaccurate OVS settings could be detected.

All the scripts described in this section are available at Github through [11].

4.1.4 System Assessment Results
To analyze and draw conclusions from the data obtained through the execution of the exper-
iments, the data was visualized in time series graphs. This enabled interpretation of the SDN
controller’s behaviour in relation to the di�erent use cases. The time series variables included
in the output data were requested bandwidth per tra�c class, throughput per tra�c class,
bandwidth allocated per tra�c class and packet drops per tra�c class.

Experiment Results
Use Case 1: The silver traffic class peaks rapidly and then de-
crease again As have been mentioned above, the detailed specification of the use case
can be found in Appendix A. The essence of this use case is that each tra�c class has a stable
tra�c flow to begin the test and then silver-class tra�c starts to increase rapidly. This is to
purposefully test how the SDN controller performs when tra�c demand increases sharply.
The throughput, meaning the amount of bandwidth transmitted through the system, is vi-
sualized in Figure 4.2. There is a clear spike of silver-class tra�c in the middle of the test.

To complement this view another plot is provided, Figure 4.3 shows the SDNC Allocated
Bandwidth Resources assigned to the silver tra�c class during the test. This is shown as the
green area in the plot. It also shows the requested bandwidth by the “users” as the blue line
and the throughput that actually passed through the system as the orange line. It is apparent
in the plot that the bandwidth cap assigned by the SDN Controller cannot keep up when
tra�c demand increases suddenly. This results in packet loss, which is illustrated by the
vertical distance between the blue and orange line in the plot. As both the gold and bronze
tra�c demand was stable during the use case no SDN controller intervention was needed
regarding them. Therefore these are not shown as figures in the same way as the silver tra�c
class.

The key metrics described above are presented in Table 4.4.
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Figure 4.2: Throughput per tra�c class for use case 1.

Figure 4.3: The exhibited behaviour SDN controller concerning the
silver tra�c class in use case 1.
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Total amount of data sent 5980 Mbit
Average Required Static Bandwidth 95 Mbit/s
Average Allocated Bandwidth 67 Mbit/s
Average Saved Bandwidth 28 Mbit/s
Percentage of saved bandwidth 29%
Packet Loss Rate Gold 0%
Packet Loss Rate Silver 2.3%
Packet Loss Rate Bronze 0%

Table 4.4: Use case 1 metrics

Use case 2: The silver traffic class peaks slowly and then decreases
again This use case has a very similar structure to the one above, the silver tra�c class
increases while the gold and bronze tra�c is stable. The di�erence between this use case and
the previous one is that the acceleration of the increase has been halved. The point of this
is to investigate the e�ect of tra�c acceleration on the performance of the SDN Controller.
The throughput for each tra�c class over time is shown in Figure 4.4 below.

Figure 4.4: Throughput per tra�c class for use case 2.

As in the previous use case, Figure 4.5 shows the SDNc Allocated Bandwidth Resources
assigned to the silver tra�c class during the test, the requested bandwidth and the through-
put.

The vertical distance between the requested bandwidth and the throughput is smaller in
this use case. This also results in a lower Packet Loss Rate for the silver tra�c class, as can be
seen in Table 4.5 below.
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Figure 4.5: The exhibited behaviour SDN controller concerning the
silver tra�c class in use case 2.

Total amount of data sent 5950 Mbit
Average Required Static Bandwidth 80 Mbit/s
Average Allocated Bandwidth 61 Mbit/s
Average Saved Bandwidth 19 Mbit/s
Percentage of saved bandwidth 24%
Packet Loss Rate Gold 0%
Packet Loss Rate Silver 0.4%
Packet Loss Rate Bronze 0%

Table 4.5: Use case 2 metrics
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Use case 3: Traffic classes spike at different times Use Case 3 exhibits
a di�erent tra�c pattern than the two previous use cases. The fundamental behaviour of this
tra�c scenario is that each tra�c class peaks after the other. Starting with the gold tra�c
class, then silver, then bronze. This scenario was created to see how the SDN controller could
re-allocate bandwidth when demand shifted. The tra�c pattern is visualized in Figure 4.6.

Figure 4.6: Throughput per tra�c class for use case 3.

To show the behaviour of the SDN Controller in this scenario Figure 4.7 is provided. It
displays clearly the tendency of the SDN Controller to overshoot the requested bandwidth
when there is a sudden tra�c surge. This is apparent through the sharp peak of the assigned
bandwidth cap at around 19 seconds in the plot. There is also a noticeable vertical distance
between the requested bandwidth and the throughput at around 16 seconds, which indicates
packet loss. Only the gold tra�c class is displayed in this figure, this is due to both the other
tra�c classes exhibiting almost exactly the same behaviour.

As in the previous use cases, the key metrics for Use Case 3 are presented in Table 4.6.

Total amount of data sent 6070 Mbit
Average Required Static Bandwidth 135 Mbit/s
Average Allocated Bandwidth 59 Mbit/s
Average Saved Bandwidth 76 Mbit/s
Percentage of saved bandwidth 56%
Packet Loss Rate Gold 3.0%
Packet Loss Rate Silver 3.2%
Packet Loss Rate Bronze 3.7%

Table 4.6: Use case 3 metrics
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Figure 4.7: The exhibited behaviour SDN controller concerning the
gold tra�c class in use case 3.

Use case 4: Gold increases which throttles bronze and then silver
In this use case the gold, silver and bronze tra�c classes all request a bandwidth well within
the infrastructure capacity to begin with. Then the gold tra�c increases to the point where
first bronze is throttled down, meaning that it receives less bandwidth than it has requested,
and then silver tra�c is also throttled down. This is due to the fact that total bandwidth
demand from the three tra�c classes exceeds the available network infrastructure.

Both the silver and bronze tra�c class requests around 20 Mbit/s for the duration of the
simulation. As can be seen in Figure 4.9 the SDN Controller down throttles the allowed
bronze throughput at around 40 s. This can be seen as the purple line in Figure 4.9 declines
to around 5 Mbit/s when the gold tra�c request increases.

In the results for this use case, bandwidth metrics were intentionally excluded. This
is due to the fact that the use case was constructed to test the SDN controller behaviour
when bandwidth resources were depleted. In such a scenario presenting the saved or used
bandwidth would be misleading, as choking a tra�c class is not synonymous with saving
that bandwidth. Therefore the results presented in Table 4.7 only include Packet Loss Rate
to show the e�ect of tra�c class prioritization.

Packet Loss Rate Gold 1.6%
Packet Loss Rate Silver 30%
Packet Loss Rate Bronze 93%

Table 4.7: Use case 4 metrics
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Figure 4.8: Throughput per tra�c class for use case 4.

Figure 4.9: The exhibited behaviour SDN controller concerning the
gold and bronze tra�c classes in use case 4.
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4.1.5 Summary of Results
Comparing the results from the di�erent use cases, a couple of important trends can be
summarized as follows. Use case 1 and 2 have a very similar structure, the main di�erence
being that the silver tra�c demand increases more quickly in Use case 1. This results in a
higher packet loss rate for Use case 1 of 2,6% versus 0,8% for Use case 2. This indicates that a
rapid tra�c demand increase results in more dropped packets.

Furthermore Use case 3 exhibits the largest bandwidth savings by far. This is due to
the fact that the demand of all three tra�c classes peak over the duration of the simula-
tion. If the system would statically allocate bandwidth for the interfaces “gold”, “silver” and
“bronze”, each interface would need to accommodate the peak bandwidth demanded by their
respective tra�c class. This would result in a large amount of overprovisioning, compared
to dynamically allocating bandwidth to each tra�c class from a common resource pool.

Use case 4 exhibits a down throttling of the lower priority tra�c classes, which is in-
dicated by the large percentages of packet loss for the silver and bronze class. This was the
intended behaviour of the system as bandwidth resources were exhausted. If such a scenario
occurs in a real system, the infrastructure capacity has probably been underestimated.
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Chapter 5

Discussion

In this master thesis we set out to explore how cloud technologies and software defined net-
working could be combined to improve the 5G transport network. To approach this complex
topic within the given timeframe the research e�ort was limited to dynamic network band-
width allocation. This focus was selected based on the fact that today’s telecommunication
networks mostly rely on static overprovisioning of bandwidth. While this strategy is good
for providing high quality of service, it also leads to underutilization of network resources
such as routers and switches. Looking into the future, intelligent utilization of the available
network resources might become increasingly important as both the number of users and
average used bandwidth per user increases.

As has been evidenced by the structure of this thesis, two distinct areas of investigation
have been put forth. The first part focused on building a cloud based simulation environment,
the second part focused on testing such an environment. The discussion will be partitioned
in the same way, discussing our results in relation to RQ 1.1 and 1.2 first, then RQ 2.1.

5.1 Creation of the Simulation Environment

5.1.1 RQ 1.1 Building the Simulation Environment
The first research question, RQ 1.1, focused on how we could develop a cloud based simula-
tion environment representing the essential components of a SDN controlled vDU to vCU
transport network. While some technologies, such as the container orchestrator Kubernetes
and virtual machines, were already determined to be important components, little had been
decided on how these would interconnect. Deciding the rest of the components and ensuring
their functional interaction was our main focus for this research question. The implemen-
tation process has been detailed in Chapter 3 and the resulting environment presented in
3.8.
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The following discussion will center around the strengths and possible improvements of
the resulting environment and its design process.

Implementation
The use of open-source components in this thesis is considered as a strength as it enables
anyone to build upon our work and pursue further research. Furthermore it is in line with
Ericsson’s wish to contribute to the open-source community. Another strength that the re-
sulting simulation environment exhibits is the ease of which new algorithms and use cases
could be introduced.

The SDN controller algorithm is modularly separated from the rest of the code base and
could be easily exchanged for another solution. The only requirement is that the algorithm
takes the current bandwidth load as its input parameter and outputs a new switch configu-
ration. Adding another parameter such as packet drops would not be very time consuming
since the metric is already stored in the SDN Controller. On the other hand integrating la-
tency as a parameter in the algorithm would take more e�ort due to it not being a part of
the observation process in the current environment.

The construction of new use cases only requires a new configuration file in JSON format,
where any type of tra�c flow could be specified. This enables quick adjustments and the
possibility of exploring new unseen tra�c scenarios with little additional e�ort. If one would
obtain real tra�c data the use cases could also be configured to mimic the tra�c patterns,
and as such test the SDN controller under more realistic conditions.

Furthermore the use of Kubernetes and Docker enables flexibility and scalability if a
larger simulation is desired. As both these softwares are part of many DevOps toolboxes,
their characteristics would be familiar and if desired they could be integrated into a contin-
uous integration/continuous deployment (CI/CD) pipeline for quicker development of the
simulation environment.

In addition to the specific implementation details mentioned above, an interesting as-
pect of the development process was the Design Science methodology. The structure and the
di�erent evaluation cycles the methodology provided were beneficial to our overall devel-
opment process. It prompted valuable rigor and relevance discussions regarding individual
components and overall design choices. The fact that iterations were an integral part of the
process also contributed to quick feedback loops and thereby enabling adjustments.

An aspect of the development process that could have been improved was an earlier in-
vestigation of comparable solutions. The reason this was di�cult to achieve was that our
knowledge of the solution space was limited to start with. This issue was alleviated partly by
our connection to Ericsson but it could still have been an improvement to put more e�ort
into it. Furthermore more emphasis could have been placed on the Rigor cycle incorporated
in the Design Science methodology. Due to our close connection to Ericsson a lot of focus
was put on the Relevance cycle. A more evenly distributed attention could have saved time
and e�ort in hindsight.

Comparison to Previous Work
Examining our resulting simulation environment a lot of influences can be seen from previous
work within the field. In line with researchers in [71] we pursued a SDN Controlled band-
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width allocation strategy through an OVS, though in contrast our allocation was dynamic
instead of static. This implementation was more aligned with [62] where dynamic allocation
was implemented through Mixed Integer Linear Programming. They did not however utilize
an OVS to carry out their calculated allocation. Furthermore inspiration was drawn from
[76] as they employed constraint programming to solve complex quality of service trade o�s.
In hindsight it would have been interesting to try to incorporate more quality of service as-
pects in our environment. Unfortunately time was limited so bandwidth and packet losses
were the ones included. Furthermore we had a larger focus on containerization and container
orchestration than closely related work in the field. This was partly due to Ericsson’s vision
of implementing these technologies in the Cloud RAN and partly due to researchers in [55]
advocating for a containerized SDN Controller. Our environment took this one step further
and used containerization techniques to generate the tra�c flows as well. Many parts of our
solution were inspired by previous research but the combination of components presented
in this thesis does not seem to exist in related literature at the moment.

5.1.2 RQ 1.2 Algorithm and QoS Traffic Class Prior-
itization

The second research question concerns how the network resources in the simulation envi-
ronment could be prioritized between di�erent QoS tra�c classes. To make the QoS prior-
itization possible three parts were needed: an easily reconfigurable network switch, reliable
metrics collection on current network demand, and an algorithm for calculating new config-
uration according to QoS priority.

Open vSwitch was singled out as one of the most capable open-source virtual switches.
The switch could be reconfigured with very short time intervals, which was a requirement for
the near real-time prioritization of QoS tra�c. It also provided reliable metrics on received
and transmitted bytes that could be used in the control loop. This metrics collection at
switch level was superior in precision as compared to the Kubernetes tool Prometheus that
was initially envisioned.

In a real world scenario multiple QoS requirements would have to be considered simulta-
neously when modifying a network element such as a switch. The configuration of the switch
would a�ect factors such as bandwidth, packet drop and latency. The allowed configuration
options would in turn be governed by constraints defined in the current service level agree-
ment between the teleoperator and the telecommunications company. If a “gold” service tier
guarantees 100Mbit/s connections with a maximum latency of 50 ms and a packet drop rate
of 1‰ the switch should not be modified in such a way that the service level is at risk of being
broken.

With QoS requirements that could be expressed as constraints, linear programming was
deemed a good fit for calculating the optimal switch configuration. However, the goal for
this part of the project was to develop a proof-of-concept algorithm rather than an opti-
mal solution. Algorithm development is a very complex topic, to the point that algorithm
development for this type of environment would be worthy of its own thesis. Thus the con-
straints in our algorithm were limited to bandwidth only. While the problem could be solved
without using linear programming, implementing the linear programming solution lay the
foundation for easier algorithm improvements in future research work. In a real scenario the
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number of di�erent QoS tra�c classes is also far greater than the three used in our simula-
tion, with 26 di�erent standardized by 3GPP [57]. In such a context the usefulness of linear
programming is also further increased.

5.2 System Assessment
5.2.1 RQ 2.1 Under what conditions can a dynamic

network resource allocation improve the utiliza-
tion of network resources in a data center com-
pared to static resource allocation?

For RQ 2.1 the conditions under which one could dynamically allocate bandwidth with an
SDN Controller, without breaking service level agreements, were examined. In the simu-
lation environment system performance would be a�ected by both the implementation of
the SDN Controller and the simulated tra�c patterns. Both these variables determine how
well the SDN Controller manages to allocate the demanded bandwidth to each tra�c class.
For the sake of the analysis the SDN controller implementation was therefore assumed to be
fixed. As such, the experiment more specifically examined under which conditions our SDN
controller managed to control bandwidth without generating packet loss.

Packet Loss
From the plots in 4.1.4 one can see how the SDN controller manages to follow demand
through reconfiguration of the interfaces of the virtual switch. Overall the SDN controller
follows the demand closely. Most challenging are the sudden accelerations when a new simu-
lated user connection is established. Upon the sudden increase in tra�c, packet loss occurs,
which can be seen as the di�erence between the requested bandwidth (blue line) and the
throughput bandwidth (red line). The reason for this packet loss is that the allowed through-
put is set too low until the SDN controller detects the change. When the tra�c volume
continues to increase the SDN controller picks up the slack with its derivative component.
This derivative component can be more clearly noticed when the increase in tra�c stops.
Here the allocated bandwidth continues to increase for one time step and thus creates a
small peak. This peak can be seen as wasted bandwidth, i.e. bandwidth that was allocated in
excess of what was needed.

By comparing use case 1 and use case 2, we can see that faster acceleration of silver’s
demand results in higher packet loss. From a control theory perspective this is natural, as
reacting to faster and larger changes is more challenging. If the real tra�c patterns would
contain a lot of fast and large changes it would thus be harder to avoid packet loss with
dynamic bandwidth allocation, as it would be challenging for the SDN controller to keep up.

Bandwidth Savings
The amount of bandwidth that can be saved with dynamic bandwidth control depends on
how the tra�c fluctuates. If the network tra�c on the “gold” net on average is around 20
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Mbit/s but then occasionally peaks to 100 Mbit/s, it would be wasteful to always statically
allocate 100 Mbit/s for “gold” tra�c. With dynamic bandwidth allocation a lot of bandwidth
could be saved in this type of scenario. However, if the average bandwidth on the “gold” net
is around 90 Mbit/s with occasional peaks of 100 Mbit/s the bandwidth that would be saved
with dynamic bandwidth allocation is significantly less.

Another factor important for determining if dynamic bandwidth allocation is sensible
is whether the tra�c peaks for di�erent tra�c classes occur at the same time or not. The
dynamic bandwidth allocation strategy would benefit most if the peaks are spread out in the
time domain. This can be seen in use case 3. In this use case “gold”, “silver” and “bronze”
peak one at a time and each tra�c class can achieve a bandwidth of 40 Mbit/s, while the
total used bandwidth never exceeds 65 Mbit/s. In this case less switch capacity would be
needed with the dynamic allocation strategy, as compared to statically allocating 40 Mbit/s
for each tra�c class which would require 120 Mbit/s. However, if the tra�c classes peak at
the same time, with max total peaks of 120 Mbit/s, the dynamic allocation strategy would
need as much switch capacity as the static allocation strategy. Concretely this means that the
number of switches and corresponding hardware could be reduced with dynamic allocation,
under the condition that the peaks of “gold”, “silver” and “bronze” don’t occur at the same
time.

Implications of Saving Bandwidth
The possibility to save bandwidth will depend a lot on the real tra�c patterns in the net-
work, but assuming these would be suitable for saving bandwidth with dynamic control, what
would the implications be? With less bandwidth needed for the same number of connections,
three di�erent scenarios could be envisioned. Telecommunications companies could 1. sell
more connections, 2. turn o� network devices to save energy, 3. reduce the amount of phys-
ical network hardware.

To sell more connections unused bandwidth could be sold cheaply at best-e�ort, mean-
ing no guarantees to bandwidth, packet loss or latency. A best-e�ort subscription could be
suitable for customers who are not depending on reliable connections and would rather save
money than pay for guarantees.

Turning o� network devices to save energy could have an impact on the carbon footprint
of mobile communications. As Buyya et al. discussed in [46] the general practice for data
centers is to leave all networking devices always on. The majority of network elements such
as switches, hubs and routers are not energy proportional to the tra�c flow and thus consume
energy even with no tra�c. At times throughout the day when network bandwidth demand
is low, dynamic bandwidth control could allow for turning o� network elements not in use.

Lastly, reducing the amount of physical network hardware would make it possible to pro-
vide the same service at a lower cost to the telecommunications operator. The more hardware
units that could share bandwidth the more optimization possibilities there would be to con-
solidate network connections to fewer switches.

Balancing Bandwidth Savings and Service Level Agreements
Determining whether to use dynamic bandwidth control or not will ultimately come down
to the trade o� between bandwidth savings and risk of breaking the service level agreement.
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To learn more about this trade o� the SDN controller’s performance on real tra�c data must
be examined. From this data one could estimate both the potential bandwidth savings and
the risk of packet loss under di�erent tra�c patterns.

Preferably the cost of both wasted bandwidth and packet loss would be quantified. Then
one could compare the cost of one wasted Mbit of bandwidth and the cost of one dropped
packet, and as such determine the strategy for di�erent tra�c patterns.

Trends in Mobile Communication

When deciding whether to move forward with dynamic bandwidth control or not, the future
growth of mobile communication also has to be considered. Examples of questions that need
answers are “How much will the bandwidth usage per user grow?”, “How much will the num-
ber of users grow?”, and “How much increase in bandwidth could the current infrastructure
handle with the current static allocation strategy?”. While some things will depend on usage
forecasts, a lot can also be learned by improving the current simulation environment. A few
potential improvements will be discussed in the Future Work.

5.3 Threats to Validity
As most research is, this thesis is also subject to threats to validity. These threats can be
divided into two types, external validity and internal validity.

External validity concerns the generalizability of the results to other situations. From the
experiment results the bandwidth savings and packet loss metrics are subject to this type of
validity threat. These metrics were obtained from simulation runs with tra�c based on our
use cases. As such, how well these results generalize to a real 5G network is uncertain. While
the results in the simulation environment were promising, further research on real tra�c
scenarios would be needed to draw definite conclusions on the potential of the system. Re-
garding the architecture of the simulation environment, abstractions were made to simulate
the essential parts of a Cloud RAN transport network. These abstractions were decided upon
together with engineers at Ericsson, but with this said, how similar the behaviours of the ab-
stracted components are to those of a real 5G transport network is hard to deduce. Further
research into the generalizability of these component behaviours should be conducted.

Internal validity concerns the validity of cause-and-e�ect relationships and the presence
of any confounding factors. In this thesis there were two main parts of the results, the sim-
ulation environment itself and the experiments conducted on certain tra�c scenarios. The
behaviour of the SDN Controller and its e�ectiveness may be closely tied to our particular
simulation environment. Are there unknown factors in our simulation environment that
a�ect the relationship between the use cases and the resulting metrics? Do the programs
running on the laptop, in or outside our simulation, cause interference? Here future work on
more complex simulation environments would provide a broader picture of the capabilities
of the SDN controller.
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5.4 Future Work
The developed environment successfully achieved the goal of simulating a 5G transport net-
work. The experiments conducted on the system enabled observation of the SDN controller
performance under di�erent tra�c patterns. Through this observation knowledge was ac-
quired on the SDN controller’s potential in di�erent tra�c scenarios. However, the work
on exploring dynamic bandwidth control has only just begun, and there are several improve-
ments that could be made with more time, resources and knowledge. A few of these improve-
ments will be discussed below.

5.4.1 Increase Network Complexity
In this thesis the focus was on the bandwidth allocation problem with a single OVS connected
to two vDUs. When solving complex problems, a common approach is to solve it for a single
entity, then for two entities and then for N entities. Therefore the natural next step would
be to add another OVS and try to balance the bandwidth allocation between these switches.
Further into the future the goal could be to be able to control all the switches in an access
network. This expansion could also include adding more vDUs to each vCU to simulate
a more realistic large-scale infrastructure. As the network grows one would also have to
consider how control shall be maintained with increased complexity. One could imagine
multiple SDN controllers where each is responsible for a smaller part of the network. This
setup naturally raises the question of how these SDN controllers would communicate and
collaborate across a large network.

5.4.2 Improve Algorithm
As has been mentioned earlier in the report, the implemented algorithm was intended as
a proof of concept and a groundwork for future development. Discussed below are a few
interesting ways that the base algorithm could potentially be improved in future work.

One area of improvement that was investigated during the thesis was to add a bandwidth
margin to each allocation. This means taking the requested bandwidth from users and adding
a certain percentage to this number. By doing this the algorithm is given extra time to react
to changes in the tra�c flow. During these investigations both dynamic and static margins
were examined. The preliminary results were promising in showing decreased packet loss
in some tra�c scenarios. However, this came at the price of wasted bandwidth resources as
the margin is equivalent to allocating more resources than needed. A thorough study of how
wasted bandwidth and packet loss can be balanced in economic terms would be an interesting
target for future work. Unfortunately time constraints hindered the intentions of including
these results in the thesis.

Another way the algorithm could be improved is by incorporating more ideas from con-
trol theory into the control loop. An integral term could for example be added, in addition
to the proportional and derivative term the control loop currently has. This could smoothen
out the acceleration and reduce the peaks when the acceleration stops. Another path that
could be explored is developing the objective function through the addition of new resource
constraints, such as latency or economic factors.
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Experimenting with di�erent control intervals would also be interesting. The current
control and observation interval is set to three seconds; an interval that could not be de-
creased further due to hardware limitations. A shorter interval could bring the system closer
to real-time adaption. However, a longer interval could also be a possible way forward, with
bandwidth limitations set through predictions. To make accurate predictions both time se-
ries analysis and machine learning could be envisioned.

Through exploring Control Theory, Linear Programming and Optimization, one could
surely create a more reliable and accurate algorithm for bandwidth allocation. This would be
fascinating to delve into and improving the algorithm could be a suitable subject for future
thesis workers. By providing an open source environment, our work enables future work on
algorithm development significantly.

5.4.3 Economic Considerations
Another intriguing aspect that could be further looked into would be the economic impli-
cations of applying a dynamic bandwidth allocation schema on an entire access network.
When would it be prudent to overprovision network resources versus when it would make
economic sense to implement a dynamic allocation system? This would likely come down to
the marginal cost of production for a certain amount of bandwidth. It would be interesting
to understand at what price point the scale tips in favor of one strategy or the other.

5.4.4 OpenFlow Protocol
Another future enhancement that could be made is to adopt the OpenFlow communications
protocol. This is a protocol which enables an SDN Controller to implement changes on an
OVS via an API, meaning that the SDNc agent in our setup would be made redundant. The
reason that the OpenFlow protocol was not added to the current setup is that it would add
complexity and require good knowledge of the protocol, while barely altering the simulation
behaviour. However, it could serve a purpose in a more complex future version of the simu-
lation environment, as it could potentially free up both memory and CPU resources on the
VM hosting the OVS.
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Chapter 6

Conclusion

In this thesis we have explored dynamic bandwidth control in the 5G transport network by
developing a cloud-based simulation environment. The simulation environment combines
cloud technologies and software defined networking with the goal of improving bandwidth
resource utilization. This objective stems from an interest to explore alternatives to the band-
width overprovisioning common in telecommunication today. As a basis for this exploratory
research layed three research questions.

Through RQ 1.1 it was investigated how one could develop a cloud-based environment
which represents the essential component of the 5G transport network. Using design sci-
ence an envisioned environment was broken down into components, where each building
block could be motivated through a rigor and relevance analysis. This process resulted in
an environment built on both insights from the scientific community and from the business
context of Ericsson. The final simulation environment models a small 5G transport network
containing two distributed units and one centralized unit. The centralized unit contains a
virtual switch that forwards tra�c from the distributed unit to the core network. To enable
dynamic bandwidth control a SDN controller monitors the network tra�c and continuously
reconfigures the switch to adapt to the current load.

A key characteristic of the environment is its emphasis on open-source components, such
as Kubernetes, Docker, and Open vSwitch. Not only are these components very capable and
well known, but they are also maintained by strong communities and under much scrutiny.
The use of open-source components also facilitates further research on the environment cre-
ated in this thesis. Other characteristics of high priority in the development work were scala-
bility and flexibility. As such the environment is built to be modular and easily reconfigurable
for further testing. This ensures that minimal code has to be written to simulate new traf-
fic scenarios. The simulation environment is available under an Apache License at Github
through [11].

In RQ 1.2 ways of prioritizing network tra�c with di�erent QoS levels in the simulation
environment were investigated. To achieve this goal, the tra�c had to be separated into
classes in order to enable resource allocation based on priority. The separation of the tra�c
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6. Conclusion

originating from the Kubernetes pods was achieved through a network plugin called Multus,
which allows for multiple network interfaces per pod. Each interface corresponds to a QoS
level. Separated tra�c enabled prioritized allocation of bandwidth in the virtual switch.
Then an algorithm for calculating the allocation of bandwidth was developed. This was done
through the implementation of a proof-of-concept linear programming algorithm. The SDN
controller containing the algorithm was built to be modular, where the proof-of-concept
algorithm could be easily swapped for another bandwidth allocation algorithm of choice.

In the third research question, RQ 2.1, the conditions under which the SDN controller
could improve the utilization of network resources were examined. This was done with the
help of use cases that had been developed together with engineers at Ericsson. Each use case
represents a dynamic network tra�c behaviour. In these experiments the focus was on eval-
uating the SDN controller’s ability to minimize bandwidth usage while avoiding packet loss.
Our simulation results show potential for dynamic bandwidth allocation, with bandwidth
savings of up to 56%. The highest savings were achieved when tra�c classes with di�erent
priorities peaked at di�erent times, as was shown in use case 3. Packet loss was heavily af-
fected by the speed of the demand increase. When tra�c acceleration was doubled between
use case 1 and 2, packet loss went from 0.4% to 2.3%. Use case 4 showed that the system could
prioritize the tra�c classes when demand exceeded the total available bandwidth. One of the
conclusions from these experiments was that large and fast demand changes led to the high-
est packet loss. However, these large increases in network tra�c also increased the potential
to save bandwidth with dynamic allocation as compared to static allocation. This means
that the choice on whether to implement dynamic bandwidth allocation or not, would have
to weigh the potential bandwidth saving against an increased risk of breaking service-level-
agreements. To learn more about this trade-o�, experiments on real tra�c data with larger
simulation networks are necessary.

The work in this master thesis has been fundamental research, with the overarching goal
of acquiring more knowledge about dynamic bandwidth control in the Cloud RAN. While a
lot more research is needed before an actual product prototype could be built, our initial re-
sults show promise. If telecommunication companies could make use of the overprovisioned
bandwidth of today’s network, it could potentially enable them to sell more connections,
save energy or reduce the needed infrastructure.

The fifth generation of mobile communication will bring entirely new possibilities and
potentially change the way we interact with technology. However, this next generation will
also entail more competition through open-sourced designs and vendor diversification. In
this new telecommunication landscape optimal bandwidth usage might be one of the many
components that will become important to stay competitive. If the potential of dynamic
bandwidth allocation can be proven on real tra�c patterns and implemented at scale, the
days of static allocation might be over. On the journey towards the communication networks
that will shape the societies of tomorrow, the search for novel solutions must be continued.
This could be but a small step towards the future of mobile communication, but an exciting
one nonetheless. What a time to be alive.
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Appendix A

Use Cases

The network tra�c will be achieved by several smaller tra�c streams that together aggregate
to the below specified values. These streams will be in the size range of 0-10 Mbit/s.

A.1 Use case 1: The silver traffic class peaks
and then decreases again

Prerequisites:
Available bandwidth is set to:
Gold: 20 Mbit/s
Silver: 15 Mbit/s
Bronze: 15 Mbit/s

Traffic flow:
At time zero seconds, network tra�c is set to:
Gold: 20 Mbit/s static
Silver: 15 Mbit/s static
Bronze: 15 Mbit/s static

Traffic increase:
Silver requests + 10 Mbit/s every 10s three times, then back down to 15 Mbit/s total.
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A. Use Cases

Expected bandwidth allocation:
Midpoint:
Gold: 20 Mbit/s
Silver: 55 Mbit/s
Bronze: 15 Mbit/s
End:
Gold: 20 Mbit/s
Silver: 15 Mbit/s
Bronze: 15 Mbit/s

A.2 Use case 2: The silver traffic class peaks
slowly and then decreases again

Prerequisites:
Available bandwidth is set to:
Gold: 20 Mbit/s
Silver: 15 Mbit/s
Bronze: 15 Mbit/s

Traffic flow:
At time zero seconds, network tra�c is set to:
Gold: 20 Mbit/s static
Silver: 15 Mbit/s static
Bronze: 15 Mbit/s static

Traffic increase:
Silver requests + 5 Mbit/s every 10s three times, then back down to 15 Mbit/s total

Expected bandwidth allocation:
Midpoint:
Gold: 20 Mbit/s
Silver: 30 Mbit/s
Bronze: 20 Mbit/s
End:
Gold: 20 Mbit/s
Silver: 15 Mbit/s
Bronze: 15 Mbit/s
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A.3 Use case 3: All traffic classes spike at different times

A.3 Use case 3: All traffic classes spike at
different times

Prerequisites:

Available bandwidth is set to:
Gold: 10 Mbit/s
Silver: 10 Mbit/s
Bronze: 10 Mbit/s

Traffic flow:

At time zero seconds, network tra�c is set to:
Gold: 10 Mbit/s static
Silver: 10 Mbit/s static
Bronze: 10 Mbit/s static

Traffic increase:

Gold requests + 40 Mbit/s after 30s, then down to 10 Mbit/s again.
Silver requests + 40 Mbit/s after 30s then down to 10 Mbit/s again.
Bronze requests + 40 Mbit/s after 30s then down to 10 Mbit/s again.

Expected bandwidth allocation:

At Gold spike:
Gold: 72 Mbit/s
Silver: 11 Mbit/s
Bronze: 10 Mbit/s
At Silver spike:
Gold: 12 Mbit/s
Silver: 66 Mbit/s
Bronze: 10 Mbit/s
At Bronze spike:
Gold: 12 Mbit/s
Silver: 11 Mbit/s
Bronze: 60 Mbit/s
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A. Use Cases

A.4 Use case 4: Gold increases which throt-
tles bronze and then silver

Prerequisites:
Available bandwidth is set to:
Gold: 5 Mbit/s
Silver: 5 Mbit/s
Bronze: 5 Mbit/s

Traffic flow:
At the beginning of the use case, network tra�c is set to:
Gold: 20 Mbit/s static
Silver: 10 Mbit/s static
Bronze: 10 Mbit/s static

Traffic increase:
Gold requests + 20 Mbit/s every 10s three times
Silver requests + 10 Mbit/s one time
Bronze requests + 10 Mbit/s one time

Expected bandwidth allocation:
Midpoint:
Gold: 80 Mbit/s
Silver: 20 Mbit/s
Bronze: 5 Mbit/s
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Nya sätt att förbättra 5G-nätverk med
teknik från molnet

POPULÄRVETENSKAPLIG SAMMANFATTNING August Lidfeldt och Daniel Isaksson

Medan de flesta är medvetna om att 5G är nära förestående är det förmodligen få som
vet vad som händer bakom kulisserna till nästa generationens mobilkommunikation.
I samband med att Ericsson förbättrar sina 5G-nätverk med molnteknologier uppstår
nya utmaningar och möjligheter.

En viktig skillnad mellan 4G och 5G är att den
nya generationen använder sig av molnteknologier.
Medan företag som Amazon, Google och Microsoft
under det senaste decenniet har bemästrat drift
och underhåll av storskaliga moln, är kombinatio-
nen av telekommunikation och molnet ny mark. I
detta examensarbete har vi utvecklat en simuler-
ingsmiljö baserad på molnteknologier för att un-
dersöka hur programvara kan användas för att
intelligent styrning av bandbredd i 5G-nätverk.
Med den utvecklade miljön har vi simulerat olika
typer av trafikflöden för att utforska de sce-
narier där dynamisk mjukvarustyrning av band-
bredd har störst potential. I mobilkommunika-
tion förbrukas bandbredd varje gång en använ-
dare skickar data genom nätverket. De till-
gängliga bandbreddsresurserna är ofta begrän-
sade av antalet nätverkskablar, routrar och an-
nan nätverksutrustning. För att undvika fördröjn-
ing och långsamma nätverkshastigheter har band-
breddsresurser historiskt sett tilldelats i överflöd.
Detta då utbyggnad av antalet nätverkskablar och
annan utrustning garanterade hög servicekvalitet
samtidigt som det var relativt billigt. I 5G-nätverk
förväntas dock datavolymerna som skickas öka av-
sevärt, en förändring som kommer kräva intelli-
gentare användning av bandbreddsresurser. Föru-

tom vanliga användare som streamar Ultra-HD-
filmer eller spel, kommer 5G också att koppla
upp självkörande bilar och massiva nätverk av
IoT-enheter. Dessa olika typer av nätverksanslut-
ningar måste ha olika prioritet i nätverket; en
IoT-termometer i en fabrik kan tolerera en för-
dröjning på någon sekund, en självkörande lastbil
kan endast tolerera en fördröjning på några mil-
lisekunder. Den simuleringsmiljö som utvecklats i
detta examensarbete adresserar både behovet av
dynamisk bandbreddsstyrning och trafikprioriter-
ing. Den slutliga simuleringsmiljön modellerar en
liten del av ett 5G-nätverk och möjliggör simuler-
ing av olika användare som ansluter till internet.
Användarna är indelade i tre klasser och får på
så sätt olika prioritet när deras trafik vidarebefor-
dras i nätverket. Simuleringen av trafikscenarier
visar att det finns potential för dynamisk band-
breddsstyrning då den nödvändiga bandbredden
skulle kunna minskas jämfört med det överskott
av bandbredd som tilldelas i traditionella telekom-
munikationsnät. Däremot krävs mer forskning på
verkliga trafikmönster för att ta reda på den fak-
tiska potentialen i lösningen. Om dynamisk band-
breddsstyrning skulle kunna bevisas effektiv på
verklig trafik och implementeras i stor skala kan
bandbreddsslösandets dagar vara räknade.
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