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Abstract

For many developers, the processor cache is perceived as a black box that in-
creases the speed at which programs can execute. There are tools for analyzing
the cache performance of programs. These are know as cache simulators. These
tools simulate the cache interactions of the running program and provides feed-
back to the user where to improve. However, these tools can be too resource
demanding to run on certain systems, such as on a bare-metal operating system.
To get around this problem, the simulation could be done after the programs
execution, using a trace/recording of the program.

This thesis develops a system which can do this, which we call Cacheray.
Cacheray provides a way of recording the cache a�ecting operations into a ’trace
file’. This trace can then be used by the Cacheray simulator to simulate cache in-
teractions. It can even be used to simulate changes to certain memory structures,
without recompiling and executing the program again.

After testing the simulator, we conclude that it shows some degree of cor-
rectness when compared to an established simulator, but does not reach the same
degree of correctness. It is possible to use the simulator to change the inner lay-
out of structs and have that change correctly shown in the simulation results.
The system is not without its faults. It is slow, produces massive traces, and does
not collect su�cient data to allow for more correct simulations.
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Chapter 1

Introduction

The Central Processing Unit (CPU) is the core of a computer. It is responsible for executing
instructions, handling memory and sending signals. Inside the modern CPU is a hardware
component called a CPU cache, often shortened to just cache. The cache is a temporary storage
for recently accessed data, designed to reduce the time needed to read and write data from
the computer’s main memory. It operates much faster than main memory, and is physically
closer to the CPU in hardware, minimizing the time needed to access data. The trade-o� is
that the cache is more expensive (in terms of physical size, energy consumption and price per
stored byte) and as a consequence has a relatively small amount of memory available.

Because of how data is generally stored, the performance boost provided by the cache is
substantial. Most modern computers have several layers of cache, using di�erent technologies
to allow each level to have greater capacity at the cost of some slowdown, while still being
faster than main memory.

Despite being a very powerful and important part of the CPU, the cache is often poorly
understood by programmers. This matters, as writing code and designing software that uses
the cache e�ciently can give great performance improvements. Thus, increased understand-
ing of the cache among developers and coders is highly desirable. One way of achieving this
is to help developers to actually see which parts of their programs are performing badly with
the cache. Cache performance analysis by way of simulation, using a cache simulator, can be
used to accomplish that.

It is worth noting here that a cache simulator can be quite processor heavy. The company
sponsoring this thesis, Sandvine, has a system with a very basic operating system, insofar
that an on-line cache simulator (i.e. a simulator that performs analysis in parallel with the
execution of the program being analyzed) has no way of executing, as the resource require-
ments become to large. A way around this limitation would be to instead produce a trace of
the program execution, containing the relevant memory events, and pass the trace to a more
powerful system which in turn can run the simulator.

Furthermore, it would be useful to be able to simulate structural changes of the program
in the simulator, without changing and recompiling the source code. Data used by the com-
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1. Introduction

puter is often organized in di�erent data structures. Though there are many types of data
structures, in this thesis, we will focus on a basic data type used by the C programming lan-
guage. This data structure is called a struct and is a composite data type. This means that
it can contain several di�erent segments of data of di�ering, or the same, type. These seg-
ments/variables will be referred to as members or struct members.

1.1 Research Questions
• What amount of resources are needed for the tested program to generate a trace file?

• What level of correctness can we achieve with a trace based simulator?

• Using the simulator, can a developer change the order of struct members and get cor-
rect results without needing to recompile the original program?

To clarify what this means, we need to investigate what resources are needed for trace file
generation; file sizes, memory usage, execution time and trace sizes. We also need to establish
that the simulator outputs correct data, i.e. the results of the simulator reflect how an actual
cache behaves. Finally, we want to see if it is possible to change struct layouts in the simulator
and still get correct data results, without needing to touch the original program again.

1.2 Goals
The main objective of this thesis is to construct a cache simulator, use it and see if it can
correctly simulate the cache hits and misses and how data will be moved in and out of cache.
This simulator should work based on two principles:

1. The simulator is trace based, thus not requiring the tested program to be executed
alongside it.

2. The simulator is able to simulate changes in the order of struct members in the tested
program, without needing the program to be recompiled or executed again.

1.3 Division of labor
The focus from Hannes has mainly been on the runtime and the handling of DWARF debug
data. While it has been a joint e�ort with a lot of discussion in the process, Hannes has taken
main lead as architect behind the layout of the system as a whole. Attributing code, Hannes
has written most of the runtime, the dwarf2json script, large parts of the simulator such as
the input parsing and its tests, as well as designing the input files for the simulator. Chapter
2, 5 and 6 were mainly written by Hannes, as well as sections 1.6, 4.4 and 4.5, and large parts
of chapter 7 and 8.

The focus from Wilhelm has mainly been on LLVM and the LLVM Intermediary Repre-
sentation (LLVM IR) and the core of the simulator. A lot of time was put on understanding
the inner workings of the LLVM system (specifically the IR and the passes) and the theory
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1.4 Sandvine

behind cache memory. Attributing code, Wilhelm has written the MallocTracker pass and
much of the core of the simulator code, such as the cache system logic and the simulator
backbone, as well as some of the testing. Chapter 1, 3 and 4 were mainly written by Wilhelm,
as well as sections 2.1, 2.4 and 5.1, and large parts of chapter 7 and 8.

1.4 Sandvine
Sandvine Incorporated is a company specializing in network solutions with a focus on net-
work policy and deep packet inspection. Sandvine provides network operators with products
that gives real time insight into network tra�c and use that to apply policies. This can im-
prove the end-users quality of experience and the operator’s expenses.

This thesis is a joint venture between the authors and Sandvine. Sandvine provided the
idea for the thesis and significant help with the technical side of the thesis.

1.5 Related Works
Analyzing the cache is not a new idea, and throughout the years several tools to do this have
been created. One of the most prominent among them is Cachegrind [5], a part of Valgrind.
In this thesis it will be used as a point of reference, comparing the results from Cachegrind
with the results from our simulator. It was selected among a number of other simulators
(which are further discussed in the following paragraphs). The reason for this choice being
that it is an already established and well documented tool, so if our results match those of
Cachegrind we have reason to believe that our results are correct.

Cachegrind is a so called on-line tool, meaning it is run in parallel with the program being
profiled. This has some advantages, but also means Cachegrind can not run in a bare metal
environment. This is of the advantages of a trace based cache simulator : as long as a trace
file can be generated, the simulation can be run o�-line on a separate machine capable of
running the simulator. As the simulation part is (typically) the most demanding, this allows
for analysis of programs that run on systems that are unable to run existing on-line tools.

There are several cache simulators currently available, with di�erent advantages and lim-
itations. "A Survey of Cache Simulators" [2] provides a good overview of the current options.
It also gives quick insight into which simulators are trace based, and which are not. As our
work is concerned with a trace based approach, we will be focusing on simulators that pro-
vide such an approach. Based on figure 1 in [2], this means that we want to look closer at the
simulators Moola, CASPER, vCSIMx86, SMPCache, pycachesim and DineroIV.

DineroIV [11] is a somewhat old simulator developed by Mark D. Hill and Jan Edler at the
University of Wisconsin in the late 90’s. It is trace based and capble of simulating single core
systems (no multicore support). It allows for simulation of several layers of cache. It can give
the user information about expected cache hit/miss rates of a program for a specified cache
configuration [16]. DineroIV provides some information regarding the format of the trace
files it uses, referred to as "din" files. They consist of a sequence of space separated operation
- address pairs (eg "0 f1ha27ed", where 0 corresponds to a read operation). It is up to the end
user to generate trace files of this format.

Moola [26] and CASPER [15] are both trace based multicore cache simulators. Casper
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1. Introduction

was developed in 2003, more than 10 years before Moola (2015). They are both capable of
simulating the behaviour of single CPU caches as well as shared caches on a multicore system.
Moola can provide estimates on the real execution time of the program being simulated.
Moola is highly configurable, and the code is open source, making it a solid option for cache
analysis. One shortcoming, however, is the lack of documentation, particularly regarding the
trace file format. In order to use Moola, the user would need to figure know the trace format,
and as far as we have been able to find the only way of doing this is either by investigating
the code or consulting the creators of the system. Conversely, the CASPER system can create
trace files, making it easier to get started with. CASPER can be used to obtain statistics
regarding hit/miss rates, cache eviction rates, sharing characteristics (for shared cache), back-
invalidations and snoop filter statistics. It is powerful and has a lot to o�er, but is is closed
source, and is not readily available for use.

Pycachesim is somewhat di�erent to the previous simulators in that both the configura-
tion and the trace (meaning the sequence of operations found in a trace file) are specified in
a Python script. In other words, pycachesim does not read a trace of operations from a file.
As such it is di�cult to use pycachesim for more than educational purposes, where smaller
examples can be coded by hand to illustrate the e�ects of the cache.

vCSIMx86 [18] is a trace based cache simulation framework developed to address the
issue that most full system simultors at the time had issues dealing with a virtualized x86 host.
vCSIMx86 provides a way to generate trace files using a modified version of QEMU. It then
simulates the cache using a modified version of DineroIV that allows it to have multicore
support. The outputs give information regarding cache hit/miss rates, with special regard
taken to the e�ects cause by the use of Virtual Machines.

Finally, SMPCache [30] is a trace based multiprocessor simulator. It was developed mainly
for educational purposes, featuring a full graphical interface for ease of use. It simulates cache
systems on symmetric multiprocessors (hence the SMP in SMPCache) that use bus-based
shared memory. It gives statistics about cache hit/miss rates as well as information regarding
bus tra�c, number of bus transactions, block transfers on the bus, and state transitions. The
simulator accepts multiple trace formats, such as the Dinero (din) format and PDATS [17].
SMPCache is closed source, and is also limited to running on Windows systems.

There are of course several more simulators out there, to many to cover in this paper. For
a more comprehensive overview we recommend starting with the aforementioned survey [2].

1.6 Contributions
This thesis contributes to the fields of computer architecture and software design in its creation
of the runtime and simulator.

For the field of computer architecture, we have constructed a system which has the ability
of measuring the cache performance on di�erent kinds of architectures, post-execution. At
the moment of writing, the system has the potential for use in research where other solutions
are inappropriate. It also has the potential for further development to collect more data.

The reorder feature of the simulator contributes to the field of software design by giving
developers a method of testing changes in struct orderings, without changing the source code
of the program and compiling it again.
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Chapter 2

Background

In this chapter, we present an overview of the di�erent concepts that are important to the
thesis and give detailed explanations of the parts that are needed to understand it. First, a
reminder of what a CPU cache is and how it works. Then, a brief overview of the C pro-
gramming language, with focus on its data structures. Finally, some details regarding the
pre-made applications and interfaces used in this thesis. These include DWARF, LLVM, and
ThreadSanitizer.

2.1 CPU cache
The cache is a part of the Central Processing Unit, CPU, which acts as an intermediate data
storage between the CPU and the main memory. The purpose of the cache is to decrease the
time needed to access data in memory, increasing the operating e�ciency of the CPU. It does
this by leveraging certain properties of the memory hierarchy.

2.1.1 Memory hierarchy
The optimal memory for general purpose computing is said to be fast, have a large storage
capacity, and be cheap [22]. Unfortunately, these traits often work against each other, which
results in memory having to make some sort of trade-o�. For example, a hard disk drive has
a large storage space and is relatively cheap, but accessing the data can take a lot of time,
relative to the speed of the CPU. On the other hand, the array of registers a CPU has can
operate incredibly fast, but with a very small capacity. In table 2.1, the di�erence between
speed and cost per byte in di�erent storage mediums can be seen to illustrate this.

This phenomenon gives rise to the concept of Memory hierarchy[10, p. 72]. The memory
hierarchy in a computer is comprised of several levels of memory where the storage capacity of
each level increases as we move further away from the processor. As the storage capacity goes
up, so does the latency for fetching data to the CPU. Therefore, the lower in this hierarchy the
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2. Background

CPU needs to look for data, the faster it will load. Since the cache is typically implemented
using SRAM technology [10] and main memory, RAM, is typically implemented using DRAM
technology [10], we can look at table 2.1 and compare them. There, we can see that the cache
will be many times faster than the main memory but it will cost a lot more per byte. It should
be noted that the data in the table is 8 years old and does not accurately reflect the exact cost
of these parts at present. However, the principle still stands.

These drastic di�erences in speed between the di�erent levels of the memory makes the
potential gain from e�cient use of cache quite large.

Table 2.1: Access Time vs. Cost for di�erent storage mediums

Type of Memory Access Time [22] Est. cost (2012, dollars/GiB) [22]
SRAM memory 0.5 - 2 ns $500 - $1000
DRAM memory 50 - 70 ns $10 - $20
Flash memory 5,000 - 50,000 ns $0.75 - $1.5
Magnetic disk 5,000,000 - 20,000,000 ns $0.05 - $0.10

2.1.2 What makes Cache useful
One of the main reasons why the cache is so useful and e�cient is because it takes advantage
of the principle of locality1[27]. This principle states that the processor tends to access the same
area of memory repeatedly in a small time frame. The principle can be divided into two main
parts : temporal locality and spatial locality.

Temporal locality means that the time between accesses to a piece of data is relatively
small. Temporal locality can then be taken advantage of by putting data that is accessed a lot
in a place that is fast to access, since data thats recently been accessed will likely be accessed
again shortly. As can be seen in table 2.1, accessing the cache is much faster than accessing
RAM or flash memory. Following the principle of locality, by placing data that has recently
been accessed in the cache, one can reduce the time taken for subsequent accesses.

Spatial locality means that as a piece of data is accessed, it is likely that adjacent data
will soon be accessed as well. The cache takes advantage of this as well. The cache is made
up of sets of sequential data chunks called cache lines. Each cache line has an address and
a block of data associated with it. When a CPU needs to load some arbitrary data from
memory, it will check the cache if there exists a block inside it with this data. If it finds the
data in cache a so called cache hit occurs, and the data can be fetched from cache in a speedy
fashion. Otherwise, if the data is not found in cache, a cache miss occurs. As a consequence
the data has to be fetched from lower in the memory hierarchy, taking more time to do so.
However, when fetching the requested data from RAM (or lower) the data is also put into
the cache. If the cache is already full this of course means that some of the old data in cache
is evicted to make room for the new. The amount of data fetched and put into cache is the
same as the size of a cache line, meaning that if a particular byte of data is needed by the
CPU, several surrounding bytes will be fetched as well. For a sense of how much extra data is
fetched, a common size for cache lines is 64 bytes. This is a very advantageous feature when,
for instance, iterating over an array (assuming it is an array of elements that are smaller than

1Also known as Locality of References
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2.1 CPU cache

Figure 2.1: Simplified view of a direct-mapped cache, with main
memory blocks to the left and cache lines of the cache to the right
along with their index.
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a cache line, such as char or int), as the data for later iteration loops will be put in cache in
an earlier iteration loop.

It is possible for a piece of data to straddle cachelines. That is, the first part can be at
the end of one cache block while the second part is at the beginning of the next block. This
means that for instance a long that straddles cache lines will take two cachelines to store in
cache, despite being much smaller than the block.

2.1.3 Placement policy
As mentioned earlier, the cache consists of sets of cache lines. How many cache lines can
be held in a set is determined by the associativity of the cache. If each set only holds one
cache line it is called a direct-mapped cache, an example of which can be seen in fig 2.1. If
a single set holds all the cache lines it is called a fully-associative cache, as can be seen in fig
2.3. If each set holds 2, 4, 8 ... N cache lines we have a set-associative cache, often referred
to as a N-way set-associative cache for clarity. A 2-way set-associative cache can be seen in
fig 2.2. In a way, direct-mapped cache and fully-associative cache are simply special cases of
a set-associative cache.

The figures for each type of cache show how blocks of data in memory can be mapped to
the cache, also indicating that multiple blocks of data can map to the same location in cache.

The way the placement of cache lines in the cache is determined depends on the associa-
tivity of the cache and the e�ective address of the cache line. When the CPU needs a piece
of data, it requests it from an address. On for instance a 64-bit system, this address consists
of 64 bits. The bits of this address are used to find and place cache lines in the cache, by
dividing the bits into a tag, index and o�set. The least significant bits of the address make
up the o�set, and will not matter for the placement within the cache (as these bits simply
become an o�set within a cache line). In other words, if a cache line consists of 64 bytes, the
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2. Background

lowest 6 bits (26 = 64) of the address are the o�set to access bytes within the same cache
line.

Figure 2.2: Simplified view of a 2-way set-associative cache, with
main memory blocks to the left and sets of cache lines to the right.
The number is the set index.

0

1

2

3

The index corresponds to the set within the cache that a cache line is placed into. This
means that each set has an unchanging index that can be determined using cache size, line
size and number of sets. For instance, in a 128KiB2 4-way set-associative cache with line size
of 64B, each set can hold 4 · 64 = 256 bytes. So we have 128KiB divided by 256 equalling 512
sets, each with its own index from 0 to 511. So out of the remaining 58 bits from the earlier
address, the 9 least significant bits (29 = 512) make up the index that identifies the set.
Regardless of the other bits of the address, the data at that address will be placed in a cache
line in a set with that particular index. Looking at the simplified cache illustrations of fig 2.1
and fig 2.2, the numbers on the left side of the cache correspond to an index, represented in
decimal form. The number on the fully associative cache is a pseudo index, as zero bits are
required to identify the one set that is present in a fully associative cache.

Continuing the example, the remaining 49 most significant bits of the address make up
the tag. As might have become obvious from the previous section, many more cache lines will
be mapped to the same set than can be held by that set. Each set might be able to hold 4 cache
lines, but clearly there are more than 4 cache lines that will have those 9 bits that identify
the index of that set. As such, the tag is what is checked against when looking for data in the
cache. The o�set does not change what cache line we search for, and the index determines
the set, so the tag becomes the identifier used to check whether the requested cache line is
in the cache. Figure 2.2 shows a simplified 2-way set-associative cache, where we can see that
the blocks of data in memory coded green go into the same set, and 2 blocks can be in that
set at once.

2KiB short for kibibyte, the binary counterpart to kB (kilobyte). One kibibyte is 1024 bytes, whereas one
kilobyte is 1000 bytes.
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2.1 CPU cache

Figure 2.3: Simplified view of a fully-associative cache, with main
memory blocks to the left and a set of cache lines to the right. The
number is a pseudo index.

To sum up, the data in cache is stored in a cache line that consists of the data, a tag, and
one or two flag bits (the tag and flag bits do not take up the same space in hardware the data
does, and are thus not counted towards the total size of the cache [23]). We will not go into
detail about the flag bits, but they are basically used to indicate the validity of the data in
cache, if it is outdated or not. When the CPU requests a piece of data e.g. an int, the address
of the data is split into tag, index and o�set, and the cache is checked using the tag to see if
the data is present there. This process is handled by the Memory Management Unit (MMU),
a piece of hardware that beyond handling the cache also takes care of bus arbitration, virtual
memory management and memory protection. The details of the MMU are not important
for the work done in this thesis, and we will therefore not cover the more details of how it
works.

2.1.4 Replacement policy
The advantage of a direct-mapped cache is that the lookup for data can be done very quickly,
as essentially only one cache line has to be checked. The trade-o� is that only one cache line
of a particular index can be in cache at any given time. So if a program happens to need data
from two places in memory that share index, only one can be in the cache. As soon as the
other is needed, it is fetched from lower in the memory hierarchy and also replaces the one
in cache.

In instances where the cache is not direct-mapped, more than one cache line can be in cache
at once, but the lookup now less straight forward, as multiple cache lines need to be checked.
Once a set is full we are also presented with a di�erent issue, what cache line should be evicted
when a new one is being added? The cache will need to make a choice on which cache line
to replace when a new block is fetched from memory. It does this by following a replacement
policy. The most commonly used scheme is called least recently used, or LRU [22]. With this
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policy, the block which has remained unused for the longest time gets replaced by the new
block. This policy seems very reasonable when considering how the cache utilizes temporal
locality; the data that has been in the cache the longest without being used is the least likely
to be used soon again. One can however imagine scenarios in which this is disadvantageous.
Say we have a 4-way set-associative cache and a program that so happens cycle between using
data from 5 cache lines that have the same index. With the LRU policy we will get a lot of
cache misses, as the cache line that is evicted will be the next one the program accesses while
in this cycle.

Another policy is the Most Recently Used (MRU) policy, in which the most recently ac-
cessed cache line is the first one evicted. This runs somewhat counter to temporal locality,
but in the example we just constructed it would result in cache hits for roughly 4 out of every
5 accesses. There are also less contrived instances where MRU performs better than LRU [12].

There are several more policies, such as First in First Out, Random Replacement, etc. We
will not go through the advantages or disadvantages of these policies here. This is just to
point out that there are multiple di�erent replacement policies, and they have an e�ect on
how well a program can utilize the cache.

2.1.5 Write Policy
When a a piece of data in memory gets written to, it is first written into the cache, so that
subsequent uses of that data utilize the cache. Write policy then determines whether the
changed cache line is also written back to main memory directly, or if we wait until the
cache line is about to be replaced and write to main memory then instead.

The first write policy is called write-through. With write-through, blocks changed in cache
immediately gets written back to main memory. This can be slow, and potentially wasteful
since the computer might not need the data yet.

The other policy is called write-back. With this policy, cache lines that are written to are
not updated in main memory instantly. Instead, they are only written back to memory once
the cache line is about to be replaced.

2.2 The C Programming Language
C is a general-purpose programming language developed around 1978 [19]. There is a lot
that can be said about C, it is a powerful language with decades of history. For this report,
however, we will focus on how C handles data structures and how it handles dynamic memory
and its allocation. More on the reasoning behind this in section 3.1.

2.2.1 Structs
A struct is a compound data type in the C programming language. In its most basic form, it
enables the programmer to define types with multiple values and/or types for each unit of
this struct[27, p. 340]. These values are called struct members. Struct members may be of
any type, including pointers, unions or other structs. A basic example of a struct and its use
can be seen in listings 2.1 and 2.2.
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Listing 2.1: Struct example
1 struct Position {
2 float longitude;
3 float latitude;
4 };

Listing 2.2: Using the position struct
1 int main()
2 {
3 struct Position pos; // declaring a struct variable
4

5 pos.longitude = 3.141f; // writing to a struct member
6 }

While the struct members are defined to follow each other in the order they are declared,
the actual position in memory of each struct member is not as well-defined by the ISO C
Standard [14]. This is because there may exist padding between the struct members. Padding
is basically empty bytes put in between struct members to achieve alignment, which increases
performance. According to the 2017 ISO C Standard, padding may be applied anywhere
within the struct except before the first member [14, p. 115]. This means that the compiler
decides where and how much padding should be applied. Often, natural alignment is used.
This means that members want to be placed on an address thats a multiple of its size [27,
p. 341]. In fig 2.4 we can see how padding is used to align struct members. Note that due to
padding the size of a struct is a�ected by its layout. This can also a�ect what cache line the
struct members are on, and whether or not they are on the same cache line or not.

2.2.2 Memory Allocation
The most common way of allocating memory outside of the stack is using the functions de-
fined in stdlib.h [27]. These functions are listed in listing 2.3.

Listing 2.3: Memory Allocation Functions
1 void ∗malloc(size_t size);
2 void ∗calloc(size_t nmemb, size_t size);
3 void ∗realloc(void ∗ptr, size_t size);
4 void free(void ∗ptr);

These functions, generally, take the desired number of bytes as an input argument and
return a pointer, an address, where memory of that size has been allocated. Using these func-
tions, larger arrays of data and/or structures can be allocated on-the-fly. Once the memory
is no longer in use, the memory can be deallocated (or freed) with a call to free().

These functions often deal with memory containing structures, and as such it will be
useful for the purposes of this thesis to track when these operations occur.
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2. Background

Figure 2.4: Example of how the two structs foo and bar would look
in memory. Padding is used to align struct members and does not
hold any data.

2.3 Linux Executables
A C program compiled under a Linux operating system will, in general, be compiled into an
ELF file. ELF, Executable and Linkable Format, is a file format composed of di�erent sections [1,
p. 824]. There is a section for the machine instructions, a section for static data, a section for
debug data, and many more. The most important section for this project is the debug data
section.

2.3.1 DWARF Debug Data
The DWARF Debugging format is a format which is used to add debugging information to
executable files [6]. Using the format, a debugger can see the names of variables, their sizes,
their o�sets and a lot more information to ease the debugging process. It needs this since
most of the types and their names are abstracted away during the compilation process.
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The DWARF data is very compact and compressed so as to not encumber the executable
as much. It is also structured in a tree-like data structure. This structure is based upon nodes,
called Debugging Information Entries or DIEs [6]. These entries have attributes which can help
the user, or an automated tool as in our case, determine certain information about the vari-
able, function, base type etc. that the DIE represent. In our case, we are interested in structs.
In the debug data, a struct type will be represented by the DIE called DW_TAG_structure_type.
This DIE will contain information about which line that declared it, which file that declared
it and it might even have a size, in bytes, declared. Since the DIEs are organized as a tree, it
makes perfect sense that the struct members are children to the structure type nodes. These
DIEs, called DIE_TAG_member, contain information like o�set, name and where its base type
is defined [3].

One shortcoming of the format, or perhaps the C language as a whole, is that some structs
attributes3 might not be present in the corresponding DIE. For example, a DW_TAG_structure_type
DIE might contain a DW_AT_byte_size attribute to indicate its size, but if the size is unknown,
or not constant, it might be omitted from the attribute list. Such a case is the use of the C99
construct flexible array members [27], in which an array might be placed as the last member of
a struct man may contain no set size [3].

In this project we will use this data to see the names and attributes of di�erent variables
and structures.

2.4 Code Instrumentation
With code instrumentation we are referring to the process of adding code into the program
that is not present in the source code, with the aim of extracting information about the
program during its execution. Code instrumentation is a common strategy to use for pro-
filing. It can be done at various levels, with some tools such as the code coverage analysis
tool Clover instrumenting the source code [28], while others such as Valgrind instrument the
binary at runtime [20]. ThreadSanitizer, a tool for identifying race conditions and which will
be important for this thesis, instruments the intermediary representation (IR) of the code at
compile time in LLVM.

There are of course di�erent advantages to instrumenting at di�erent levels. Tools that
instrument at the source level is generally easier to build, and (typically) retain the same level
of portability as the original program. On the other hand, tools that instrument at the binary
level can be reused for analysis of programs of multiple languages, as they can be instrumented
by the same tool given that they are compiled to a common machine representation [9].

3Attributes [14] are a part of the C language that can be thought of as instructions for the compiler on
how to deal with variables, functions, types, etc. For example, the struct attribute "packed" (specified as __at-
tribute__((packed)) ) makes it so no padding is added. Attributes can be compiler and/or target specific, making
them less portable.
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Chapter 3

Approach

A system designed to fulfill the goals presented in 1.2 will consist of at least two main com-
ponents (and likely more), a runtime to generate the trace and a simulator. This chapter will
give a brief explanation of the purpose for each part and the method used for testing them,
as well as include the scope for this thesis.

3.1 Tracing Execution
The first goal/requirement states the the simulator is to be trace based, i.e. we need to generate
a trace of the programs execution. To do this, one either needs to modify the program in such
a way that the program generates a trace while executing, or run the program in a virtual
environment so that system calls and memory accesses can be intercepted and logged (thus
the environment generates the trace file without needing to modify the inspected program).
The trace itself should contain all the reads and all the writes that the program makes during
its execution. Since the cache uses the address of the accessed memory to determine where in
the cache it gets stored, the trace must note which addresses the read/write was performed
on. Furthermore, it should record how many bytes were actually read/written, as if a chunk
of memory straddles (or overlaps) 2 cache lines, two accesses are made in order to retrieve all
the data.

The second goal states that the simulator should be able to change the order of struct
members and simulate them as if they were changed in the source code. To do this, we must
know 2 things : What structs are present in the code and where they are instantiated in
memory. To solve the first question, the information about all of the structs needs to be
extracted from the compiled program. This information can be extracted from the DWARF
debug data and be formatted into a useful format. To resolve where the structs are located
in memory during execution is more di�cult. One approach is to annotate all operations
regarding the struct, and record those in the trace files along with the memory access.

None of the pre-existing simulators discussed in the Related Works section provide a
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way of generating a trace file as outlined here. As such, our approach in this thesis work was
to write our own system for generating trace files. As the work involved in constructing a
virtual environment, writing a virtual machine, is massive, we decided to instead use a (by
us) modified version of LLVM to instrument the code along with a custom runtime environ-
ment to generate the trace files. The instrumentation occurs at the level of the intermediary
representation (LLVM IR). The type data for the structs is extracted from the DWARF data
in program executable using a custom python script. The implementation details of all this
are provided in the next chapter.

The scope for tracing execution includes sequentially tracing reads and writes that occur
in the program, including the memory addresses and size (in bytes) of those operations. How-
ever, we are not able to track indirect reads and writes that occur as a result of library calls, as
these go outside the code we have instrumented. We are also specifically tracking structs, but
due to time constraint we were only able to trace the memory address of structs allocated on
the heap, and not those on the stack. Regarding the type data extraction, we were focused on
information regarding the structs and their members. The reason why structs are prioritized
in this way is because it is something that Sandvine has shown interest for and it is the most
suitable for the reorder feature. We can not rearrange the layout of arrays, and unions are
less common than structs in most code bases. We want to add support for tracking of these
data types as well if time allows for it.

As a first step, the focus will be making the tracing work for the programs written in the
C language and making sure that achieves our goals before potentially expanding to include
C++ and other C-like languages. The decision to start with only C comes from both it being
a smaller language and it, in theory, allowing us to extend the system to support other C-like
languages more smoothly.

3.2 Simulator
The simulator should read the events in the trace and sequentially simulate how their exe-
cution a�ects the cache. These events can be reads, writes as well as struct allocation and
deallocation.

The simulator should be able to construct a cache model on which to simulate the read
and write operations. This cache model should behave as a theoretical cache. This means
that it should keep track of accessed addresses and update its state according to the incoming
events, but not actually track or store any data. For example, if it registers a read, it should
check if the accessed address is already in the cache. If it is, it should register a cache hit and
if it is not, it should register a cache miss. The cache model should be configurable so as to
be able to model di�erent cache configurations, meaning di�erent replacement and write
policies, cache sizes and cache line sizes, and even multiple levels of caches.

With the type data provided, the simulator should be able to use it to add further infor-
mation about the allocated structs in the program. This data should be able to determine
which struct members are accessed during the execution and other information about the
structs, such as their names, their members’ names and the size of their members. Further-
more, the simulator should be able to change the order of the struct members and correctly
simulate how this a�ects the hit/miss rate.

The initial scope for the simulator does not include simulation of multi-core systems,
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3.2 Simulator

focusing instead on programs executing on a single core. If there is time to allow for it,
simulating multi-core systems will be added to the scope. Also, the simulator will initially
not track or estimate clock cycles spent performing the cache operations. This may be added
if we have su�cient time, but our first priority is to as correctly as possible calculate the
number of hits and misses in the cache. The initial scope also excludes the split of the L1
cache into data- and instruction cache, modelling it instead only as a data cache.
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Chapter 4

Implementation : The Cacheray System

This chapter will cover all the parts that have been built and put together to use the simulator
system, which we have chosen to call Cacheray. It will give insight into how the Cacheray
works and how it can be used, as well as its limitations.

4.1 System Overview
For the purposes of instrumenting the code we decided to use LLVM as a base. LLVM is
an open source compiler for C and C-like languages, and it has extensive documentation.
Its modular design with passes that operate on the intermediary representation1 (LLVM IR)
make it relatively easy to add functionality such as instrumentation to the compilation pro-
cess.

Figure 4.1 shows how the Cacheray system works and all the parts that are included in it.
Beginning with the source program, we compile it using our modified version of Clang/L-
LVM, which includes the ThreadSanitizer (TSAN) pass and our custom LLVM pass, referred
to as MallocTracker. Including TSAN and MallocTracker in the compilation process allows
us to instrument the code. From this we obtain the instrumented executable of the program.
By executing the instrumented program with our custom runtime we can generate a trace
file. We also need to use the Dwarf2json script on the executable to extract the type data.
Supplying the trace file and type data file, along with the configuration file (which specifies
things such as cache size, line size, replacement policy, etc) to the simulator, a simulation
can be performed. There is an optional fourth file that can be included, referred to as the
Reorder Structs file, which allows for simulation of the same program but with struct members
reordered. This reordering feature allows users to investigate how struct layouts a�ect cache

1LLVM compiles the source code into intermediary representation, then performs various optimization and
analysis (based on what flags are specified with the compile command) before finally compiling the intermediary
representation down to the machine specific instructions. The analysis and optimizations are performed using
passes that run over the entire program or subsections of it.
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utilization without having to rewrite the source program and starting the process over. The
simulator finally outputs two files, one containing statistics on how many times the structs
in the program were accessed, and one which contains the events the simulator simulated in
a human readable format.

4.2 ThreadSanitizer
In 2.4 the ThreadSanitizer tool was briefly mentioned. In this section we will focus on what
it is and how it is utilized with regards to the goals of this thesis. ThreadSaniter (TSAN) is
a tool provided by Clang/LLVM, with the goal of identifying race conditions in C/C++ code.
Race conditions are not very interesting with regards to cache performance, but TSAN is still
interesting for the purposes of this work. TSAN basically consists of two parts : the TSAN
runtime (which does the analysis) and the TSAN LLVM pass, which instruments the code so
the runtime can do its analysis. The runtime we can do without, but the TSAN LLVM pass
is interesting with its instrumentation. The TSAN pass is transforming the code by adding
callbacks at points of interest. These callbacks are meant to be caught by the TSAN runtime
for analysis. However, the points of interest for TSAN greatly overlap with the points of
interest for this work, namely read and write operations.

To take advantage of the interesting parts of TSAN (i.e. the instrumentation done by the
TSAN LLVM pass) we can compile a program with the -fsanitize=thread flag set, making the
compiler include the pass in the compilation process. Then, instead of linking in the TSAN
runtime we link in our own custom runtime which handles all the function calls added by
the pass during compilation instead. The custom runtime is covered more thoroughly in 4.4.

It should be noted that this means the use of ThreadSanitizer in our thesis is not the
intended use. As stated, TSAN is intended to identify race conditions, not to correctly mark
all operations that interact with the cache. This is not necessarily a problem, but could po-
tentially bring with it some unforseen quirks. The reason TSAN is used is simply because of
the large overlap between the TSAN instrumentation and the instrumentation necessary for
this thesis, meaning we free up some time that would otherwise need to be spent to get code
instrumentation working.

4.3 MallocTracker
ThreadSanitizer does not collect all the events we are interested in. Some of the most impor-
tant ones for the purposes of this thesis are the memory allocations on the heap. Information
about the operations malloc, calloc, realloc and free is not collected by the TSAN pass. Since
these calls are commonly used to allocate space for structs and other data structures we need
to collect information about when and how these calls are made. It is for this reason that we
have created MallocTracker. MallocTracker is a custom LLVM pass that allows tracking of
the four aforementioned operations. If there is an instance of any of these operations (not just
malloc, as the name might imply) a callback is inserted. The newly inserted callback reports
what method was called, the relevant memory address, and (where relevant) the memory size.
Similarly to TSAN, the custom runtime handles the added function calls.

It is important to note that MallocTracker has some limitations. The way the methods
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are identified in the code is by identifying call instructions in the IR and then inspecting the
name, checking if it matches as "malloc", "calloc", "free", or "realloc". Therefore it will miss
any custom implementation of a method that manipulates memory on the heap. Solving this
problem in general would not be possible using a pass since there is no way to directly identify
memory manipulation on the heap in the LLVM IR. The core issue is that we are instrument-
ing the source program, not the library that implements the for instance the malloc method
call. To solve this more generally would involve intercepting the sbrk and brk system calls,
which would be doable with a virtual environment.

MallocTracker along with the TSAN pass make up what is referred to as the instrumen-
tation of the code, in fig 4.1 these are the "LLVM pass" part. They are relevant at compile
time in order to add in the function calls to the program that is being analyzed.

4.4 Cacheray Runtime
The custom runtime, referred to as the Cacheray Runtime (and sometimes as just the runtime),
is important during program execution. The runtime is designed to be linked into an existing
project that has been instrumented as described above. It is responsible for handling the
callbacks added by the instrumentation, capturing reads, writes and struct creation events.
These operations can then be written to a write bu�er associated with the runtime. The
size of the associated write bu�er is configurable and can be arbitrarily large (it is limited
by what the system the runtime is running on can handle rather than by the runtime itself).
If a tracefile is desired, the library cacheray-utils.h has functions that can create one or more
traces. The trace file is necessary in order to perform a simulation, so it is typically desired.

It is possible to pause and resume the recording at any point during the execution of the
program. The runtime only writes to the write bu�er while it is actively recording. While not
recording, the function calls added by the instrumentation are still handled by the Cacheray
runtime, which basically just receives and ignores them.

Everything the runtime records is regarded as an event in the trace file. The events have the
following properties. All the events record which processor that the operation was performed
on2 (i.e. the processor the event occurred on) as well as 2 flags; one which says if the operation
was an atomic operation or not and one that says if the read/write was unaligned or not. Each
event is also categorized as being one of two di�erent types.

The first type of event is the Memory Event. These are the simple events such as read and
write but are also used for the free event. The Memory events contain whether it was a read,
write, or free operation, the relevant address, and the size of the operation (in the free event,
this is not used).

The second type of event is the RTTA Event (Run-Time Type Annotation) or Struct Event.
Its purpose is to mark a certain part of memory which is deemed interesting. In this project,
it is used to mark structs and arrays of structs. It tracks the amount of structs in the arrays
and the variable name which represents the array in the code.

The reason events are separated into two types this way is to allow for the "Reorder
structs" feature. A RTTA Event needs to be treated specially in the case where a reorder

2Though the system as a whole does not support simulating multicore systems, it was relatively simple to
include this information in the trace format. It has therefore been included in case we add multicore support
in the future.
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file has been provided so that the new struct member layout can be accounted for in the
simulation. The events are added in the order that they are created during execution. This
means that they have no built in index and should be processed in the same order they are
saved.

4.5 Typedata collection
The simulator needs some information about the di�erent structs used by the program. The
MallocTracker program will give the addresses and names of the structs contained within
them, but no more. Some interesting information about structs that would be beneficial for
the program to know are:

• Struct size

• Struct member types

• Struct member sizes

All this information about the program is stored within the executable file, in the DWARF
format. It is therefore possible to extract this information from the executable, and use it to
amend the simulators knowledge of the trace. This extraction process is accomplished by the
script dwarf2json.py. It uses the library pyelftools [7] to read the DWARF data and translate
it into a file with the data formatted according to the JSON standard [13]. This file can be
referred to as a type-data file.

The type-data file contains 2 fields. The first field is a list of all the di�erent struct types
contained in the program. Each struct has a unique numeric id, a name, and a list of struct
members. Each struct member has a numeric id, a name, a type, an o�set (from the start of
the struct) and a size. The second field is a list of typedef mappings. Each mapping shows the
mapping from a typedef to a struct. This list exists to track the usage of the structs through
potential typedefs.

This data file is very important for the simulation because it gives the simulator the ability
to model the internal structure of the struct. This means that the simulator can see at what
o�set each struct member and what size they are.

4.6 Cacheray Simulator
The Cacheray Simulator is the core of this thesis. It is written in Java and is heavily object
oriented in nature.

When simulating, the simulator first reads from the configuration file and sets up the
cache accordingly. It then reads from the trace file generated by the cacheray runtime and
simulates the e�ects that the recorded events would have on the cache. In the end it produces
the Struct Statistics and the Trace even execution list.
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4.6.1 Inputs
To function, the Cacheray Simulator requires three files, and optionally can take a fourth.

The first file is the trace file. It consists of a series of events of the two types described
in section 4.4. The trace file does not need any specific header or anything identifying it as
a trace file. Instead, the simulator performs a validation and will halt if it thinks that the
trace file is malformed. There is support taking in multiple trace files, in which case they are
simulated in the sequence in which they are provided.

The second file needed is the type data information file, also known as the dwarf2json file.
This is the output from dwarf2json.py, described in section 4.5.

The third and final file that is required is the configuration file. It is written in a JSON
fromat for ease of use, where the developer can specify configurations such as many caches
to use, their sizes, their policies etc. An example 2-level cache configuration can been seen
in listing 4.1. The sizes are specified as powers of 2, so in this case the L1 cache has a size of
215 = 32768 bytes. The write policy is set with either a 0 or a 1, 0 being write-through and
1 being write-back. Set associativity is specified as the number of cache-lines per set, with
0 representing a fully-mapped cache. Replacement policy is specified with a number (0-4),
each number corresponding to a di�erent policy. These are, in numerical order from 0 to 4,
LRU (Least Recently Used), FIFO (Fisrt In First Out), LIFO (Last In First Out), FILO (First
In Last Out), and Random.

If the block size, cache size, and associativity are not compatible, eg if block size is greater
than the cache size or the number of cache lines per set is an uneven number (other than 1),
the simulator will not run the simulation and instead throw an error.

Listing 4.1: A Cacheray configuration file
1 {
2 "caches" : [
3 {
4 "name" : "L1",
5 "cache_size" : 15,
6 "block_size" : 6,
7 "write_policy" : 0,
8 "set_assoc" : 8,
9 "rep_policy" : 1

10 },
11 {
12 "name" : "L2",
13 "cache_size" : 18,
14 "block_size" : 6,
15 "write_policy" : 0,
16 "set_assoc" : 8,
17 "rep_policy" : 1
18 }
19 ]
20 }

There is also the possibility of adding a fourth member re-order file. This file changes the
member order of one or more structs defined in the type data information. This is used for
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the reorder feature. An example file can be seen in listing 4.2. In the reorder file, the user lists
the structs intended for reorder and give pairs of variable names and o�sets. The o�set tells
which new o�set the named variable should have. For example, in the file in listing 4.2, for
struct A, the struct member a will be placed at o�set 0 and struct member b will be placed
at o�set 4.

Listing 4.2: Remap file
1 struct A=a,0;b,4;pad,8;pad2,68

4.6.2 How it works
Once all files are correctly formatted and the program is started, the actual process of run-
ning the simulation can begin. First, the simulated cache is set up in accordance with the
configuration file. Then the events are played up in the order that they arrive, i.e. the order
that they were written to the trace file. They are decoded and are simulated in the cache sys-
tem, meaning that each read/write operation is passed to the simulated cache, and the e�ects
of that operation on the cache are calculated.

The simulation does not actually fetch and store any data that the original program would
have used. Instead it simulates this process by keeping track of which cache lines’ indices are
loaded into the simulated cache. A read then amounts to simply checking whether the desired
cache line(s) are in the simulated cache or not, and if not causes an update. Every cache hit
and miss is tracked by the simulator in order to produce useful output at the end.

The way the simulator counts hits is simply to check whether a desired cache line is in
cache. It does not count individual bytes of a read as individual hits. A request for 4 bytes of
data will result in one hit or miss. There is an argument to be made for counting individual
byte hits, but as one of the features is to give statistics on how struct members have interacted
with cache (giving hit/miss rates for individual struct members), we believe counting bytes
simply becomes more confusing than helpful.

4.6.3 The output
Once the simulator has finished processing the event, an output is created. The output has
two parts, constituting two separate output files.

The first part of the output is the struct statistics. In this output, the structs a�ected by the
execution are listed with individual access statistics for each struct type. This information
includes reads, writes, member reads/writes and hit/miss statistics. This part of the output
is the most pertinent to the programmer looking to improve a programs cache utilization.

The second part of the output is a trace event execution list. It lists the events carried out on
the simulator in chronological order, with all their information included. This can be used
to debug the simulator, as well as doing certain information look ups, post simulation.

4.6.4 Limitations
There are some limitations to the simulator that are worth reiterating. Firstly, the simulator
cannot simulate a multi-core setup. It assumes the program runs on a single core and bases the
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simulated cache interaction on this. The Cacheray runtime is basically capable of generating
a trace for a multi-core system, and a future improvement on the simulator would be to add
support for this. It would be time consuming to do this, however, and as it is not a core
feature that is necessary for this thesis it has not been included. It can be added here that a
shared cache is completely outside the scope of this project.

The simulator does not take into consideration any split in the L1 cache into instruction
cache and data cache. Instead the cache only handles data and results regard only hits and
misses on data in cache. Adding consideration to instruction cache would no doubt provide
interesting results regarding scheduling and such, however since this is not the focus or goal
of this project it has been excluded.
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Figure 4.1: Overview of the flow of using the cacheray system. The
red rounded boxes are files (also notes that the files on the left side of
the graphic are provided by the user, while the other files are gener-
ated in the process of using cacheray). Observe that the "« »" brackets
on the "Reorder structs file" indicate that this file is optional. The
cyan boxes are programs or scripts that are used in the process. The
black rhomboids are additions to LLVM.
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Chapter 5

Testing the System

This chapter presents the testing procedure that was used to obtain the results presented in
chapter 6. It will also explain why these procedures are a good way of testing the Cacheray
system and what types of metrics might be interesting to know about the simulator. Finally,
it will describe in detail what supporting programs were used and how they were used. They
are described so as to allow future researchers to reproduce these results.

5.1 Testing approach
The testing should be set up in such a way that the results allow us to answer our research
questions posed in section 1.1 properly. As such we are dividing our testing into three cate-
gories, related to the runtime and the simulator.

1. Resource requirements and usage (Cacheray runtime)

2. Simulator correctness (Simulator)

3. Struct reorder feature correctness (Simulator)

These three contain multiple tests and measurements, which will be further explained in
the following subsections.

5.1.1 Resource Requirements and Usage
To determine the resource requirements and resource usage for the system, there are a few
interesting measurements to make.

The first is storage overhead. This is the extra space the program compiled and linked
with the Cacheray runtime will take up. To measure this, the program is compiled with and
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without the instrumentation and linking. The sizes are then compared to see what overhead
the system requires.

The second interesting metric is memory usage, specifically peak memory usage during
the execution of the instrumented programs. This will be measured by running the program,
with and without instrumentation, under a memory-profiler and observing the peak memory
usage. The programs will run without saving and producing a trace in order to make the
results easier to analyze. The results can then be compared against each other to see the
memory usage requirement.

The size of the trace files that are generated is also interesting from a resource perspec-
tive. The sizes of these traces can be measured as soon as the instrumented program is done
executing and the trace has been created.

The execution time of the instrumented programs as compared to their non-instrumented
counterparts is also one of the more interesting metrics to collect. To measure this, both the
instrumented and the non-instrumented program should be executed, with the same inputs,
and the di�erence in execution time should be measured. The execution, of both the in-
strumented and non-instrumented programs, should be performed several times to yield the
best, worst, and average execution time, as well as the standard deviation of times. A special
program will be used to achieve this, which we will go over in section 5.2.3.

5.1.2 Simulator Correctness
Perhaps the most important feature of a simulator is that it is correct. This brings up an
interesting question, how would one measure how correct Cacheray is when determining
hits and misses?

We can not simply inspect the physical cache hardware during program execution and
compare the actual behavior to the behaviour reported by the simulator. Instead, to deter-
mine whether the simulator is correct or not, it will be compared against the results of an
established cache simulator. In doing this, we will assume that the chosen established cache
simulator is correct, or at least su�ciently correct for our purposes.

To this end we have chosen the simulator Cachegrind, which is a part of the performance
testing suite Valgrind [5]. Since Cachegrind is an on-line simulator, it will be used with the
non-instrumented test program and its results will be compared to the Cacheray Simulator
results from the instrumented program’s trace.

5.1.3 Reorder Correctness
Since one of the features of the simulator is to change the ordering of struct members, it is
pertinent to also test this.

To measure the correctness of the reorder operation, a test di�erent to the test for simu-
lator correctness is used. A program with a particular struct will be compiled and executed
twice. The second time around, the particular struct will have a di�erent layout of its mem-
bers. Everything else will be the same for the two executions. The layout change will be
made in a way that, in theory, gives di�erent cache performance for the same number and
order of read and write operations. The programs will be compiled into instrumented and a
non-instrumented versions.
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The instrumented versions of the programs will produce traces to be used by the Cacheray
simulator. The non-instrumented version of the programs will be measured by Cachegrind.
The results from the Cacheray and Cachegrind simulations will then be compared to ensure
that any performance di�erence noticed by Cacheray is also noticed by Cachegrind. We do
this to establish that the di�erence in struct layout has a noticeable e�ect on the perfor-
mance of the program, one struct layout being better and one being worse. If there is a clear
di�erence for both Cacheray and Cachegrind, this means that we can make valid conclu-
sions regarding the reorder feature independently of whether or not the Cacheray simulator
is simulating correctly.

Finally, the Cacheray simulator’s reorder feature will be used. It will change the layout of
the particular struct for the trace with worse cache performance into the layout of the struct
in the instance with better cache performance. The simulator will perform a simulation with
the trace with worse cache performance and the reorder file. Then, the Cacheray simulator
will simulate the trace from the other program, the program containing the struct that the
reorder feature is attempting to form. The results of both of these tests will be compared
to see if the reorder feature has achieved a cache performance similar to the program with
the better struct layout. If the reorder feature works as intended we should expect to see the
same output for both simulations.

5.2 Test Bench
This section describes which programs were used for the di�erent tests and all configuration
information needed to replicate these tests.

5.2.1 Test programs
There are 5 di�erent programs which will be used to test the Cacheray simulator and runtime.
3 of the programs will be existing application which will be instrumented with Cacheray, and
2 of them will be written by the authors. The 3 already existing programs are:

• gzip

• bzip2

• oggenc

These were chosen because of their ease of compilation and for their relatively small size.
The programs were downloaded from https://people.csail.mit.edu/smcc/projects/
single-file-programs/.

The 2 programs written by the authors are :

• colrow-copy

• struct-copy

These programs were written to test specific cache e�ects and performance changes. The
following sections contain a more detailed description of the programs and how they will be
used for testing.
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gzip
The program gzip is a compression utility program [8]. It takes an input file and attempts
compress it down to a smaller file size.

During the tests, the program will be run in test mode, which checks the file integrity
of gzip files. The file it will test is a small file filled with arbitrary (random) data, which has
already been compressed by gzip.

Listing 5.1 contains short snippet that shows the command used to perform the test :

Listing 5.1: gzip test
1 $ ./gzip −t bin.gz

bzip2
The program bzip2 is also a compression utility program [24]. The bzip2 tests will be per-
formed in the same way the gzip tests are performed. See the short snippet in listing 5.2.

Listing 5.2: bzip2 test
1 $ ./bzip2 −t bin.bz2

oggenc
The program oggenc is an audio encoding program that encodes di�erent audio formats into
the Ogg Vorbis audio format.

To test the program, it will be given a short audio file in the WAVE format. It will then
encode the audio into the Ogg Vorbis format and discard the output. See the short snippet
in listing 5.3.

Listing 5.3: oggenc test
1 $ ./oggenc −Q test.wav −o /dev/null

colrow-copy
The program colrow-copy is a special program, written specifically for this project. It is
intended to show the e�ects of program structure and how it a�ects cache performance.

There are 2 di�erent versions of colrow-copy. Both versions perform the same number
of reads and writes but do it in di�erent orders. The ordering should give rise to a di�erence
in cache performance between the versions.

struct-copy
Like colrow-copy, struct-copy is a special program, written specifically for this project. It is
intended to show a potential di�erence in cache performance where the only di�erence is
the ordering of certain struct members.

Also like colrow-copy, there are 2 di�erent versions of struct-copy. Both version perform
the same number of reads and writes. The di�erence between the program lies in the layout
of the structs used.
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5.2.2 Compilation and Configuration
The test-programs are compiled with clang version 10.0.1 with MallocTracker compiled in
and enabled.

There are a lot of flags during compilation. The base flags are -g -O0. These are all
the flags needed by the non-instrumented files. -g enables debug data, which is needed by
dwarf2json.py to extract the type data. -O0 sets the optimization level to minimum. This is
to prevent loop-optimizations and other optimizations which might make the result unpre-
dictable.

The instrumented files also used a few extra flags. These are -fsanitize=thread -Xclang
-load -Xclang LLVMMallocTracker.so. The -fsanitize=thread flag enables ThreadSanitizer
instrumentation which is needed to capture read and writes. -Xclang -load -Xclang LLVM-
MallocTracker.so loads and enables the MallocTracker LLVM pass which allows for recording
further information regarding allocations on the heap.

5.2.3 Resource Test Configuration
The first and easiest resource metric to test is the size di�erence. This is done using the linux
utility program ls. This method was also used to obtain the sizes of the traces. See listing 5.4.
This will display the sizes of the executables in bytes.

Listing 5.4: List file sizes
1 $ ls −l ∗.out # list executable sizes
2 $ ls −l ∗.trace # list trace sizes

The execution times are collected using the program hyperfine [25]. It is a benchmark-
ing program which runs a program several times and averages the execution time as well as
displaying the standard deviation of these results. The version of hyperfine used is 1.11.0.
Listing 5.5 shows the commands for running the program.

Listing 5.5: Execution time testing
1 $ hyperfine −−warmup 3 −−runs 100 −−style basic \
2 ’./gzip.norm −t test.gz’ # instrumented run
3 $ hyperfine −−warmup 3 −−runs 100 −−style basic \
4 ’./gzip.ins −t test.gz’ # non−instrumented run

The peak memory usage is tested by a tool called massif, which is a part of the valgrind
suite. This tool measure heap memory usage over the program life-time. The version used is
3.16.1. To extract the max memory usage, the commands in listing 5.6 were run. The first line
generates the memory usage over the programs life-time. The second line finds the largest
value, which should be equal to the largest amount of memory allocated.

Listing 5.6: Memory usage testing
1 $ valgrind −q −−tool=massif −−pages−as−heap=yes \
2 −−massif−out−file=m.out ./gzip.norm
3 $ grep mem_heap_B m.out | sed −e ’s/mem_heap_B=\(.∗\)/\1/’ | sort −g | tail −n 1
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5.2.4 Simulator Configurations
Several cache configurations will be used for both Cacheray and the reference simulator
(Cachegrind). Each run will vary the line size and the associativity of the cache.

The first configuration item is the line size. This is the size, in bytes, of each cache line.
The sizes are : 32, 64, 128 and 256 bytes.

The second configuration item is the cache associativity. This is the amount of lines each
associativity group has. The amount of lines tested are : 1, 2, 4 and 8.

For the Reorder Test, the type data from the struct_copy.out executable is extracted by
using the dwarf2json.py program, see listing 5.7. The resulting file, struct_copy.dwarf.json, is
then used as an input to the simulator.

Listing 5.7: Type data extraction
1 $ dwarf2json.py struct_copy.out

5.2.5 Cachegrind Configuration
The simulation and displaying of the result can be done with the commands shown in list-
ing 5.8. The program cg_annotate is part of the valgrind suite, and is used to display the
results from the run. The program is particularly useful since it enables line-by-line inspec-
tion of the tested program, with read, write and cache interaction information for each line
of the source code [4]. The version of valgrind and cg_annotate is 3.16.1. In the tests, the
total number of read (marked as Dr in cg_annotate) and total number of cache misses in
this first cache (marked as D1mr) will be used to compare the simulators. This feature needs
to be used to accurately compare Cachegrind and the Cacheray Simulator since Cachegrind
measure more of the program than Cacheray does.

Listing 5.8: Running Cachegrind
1 $ valgrind −−cachegrind−out−file=a.out.cg \
2 −−tool=cachegrind \
3 −−D1=<size>,<associativity>,<line size> \
4 ./a_n.out &> /dev/null
5 $ cg_annotate a.out.cg # displays cache information
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Chapter 6

Results

In this chapter, the results of the tests are presented. First the results relating to resource
usage are presented, then the comparative simulation results. These results are then to be
referenced in the discussion in chapter 7.

6.1 Resources Usage Results
Table 6.1 shows the file sizes of the instrumented and non-instrumented executables, ordered
by non-instrumented size ascending. It also shows the relative size di�erence of the files
(instrumented / non-instrumented) in both absolute and relative terms.

Table 6.1: Static File Size (in bytes)

File Non-Instrumented Size Instrumented Size Size di�erence
colrow-copy 17560 51744 34184 (2.95)
struct-copy 18104 57072 38968 (3.15)
gzip 154928 275208 120280 (1.78)
bzip2 191920 448272 256352 (2.34)
oggenc 2466744 2926336 459592 (1.19)

Table 6.2 shows the memory usage by the instrumented and the non-instrumented exe-
cutables, ordered by non-instrumented usage ascending. It also shows the di�erence between
them, as a percentage.

Table 6.3 shows the file sizes of the trace output by Cacheray, when run on di�erent
commands.

Table 6.5 and table 6.4 show the results of the execution time experiments. Table 6.5
shows the results for the non instrumented version of the programs, while table 6.4 shows
the results for the instrumented version. The results in all both tables have had their values
rounded to 4 significant digits.
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Table 6.2: Max Memory Usage (in bytes)

Command Non-Instrumented Instrumented Di�erence
colrow-copy 17560 51744 34184 (2.95)
struct-copy 18104 57072 38968 (3.15)
gzip 154928 275208 120280 (1.78)
bzip2 191920 448272 256352 (2.34)
oggenc 2466744 2926336 459592 (1.19)

Table 6.3: Traces Sizes (in bytes)

Command Size
colrow-copy (Good/Bad) 56567808
struct-copy (Good/Bad) 74907707
gzip 10047690
bzip2 229266270
oggenc 180543996

Table 6.4: Execution time (Instrumented) (in seconds)

Command Min Max Mean Std. Dev.
bzip2 1.564 1.600 1.579 0.007280
gzip 0.05847 0.09026 0.07619 0.003504
oggenc 1.219 1.444 1.238 0.02349
colrow-copy (Good) 0.3911 0.4083 0.3994 0.003420
colrow-copy (Bad) 0.3274 0.4058 0.3770 0.006465
struct-copy (Good) 0.4272 0.6776 0.4985 0.01205
struct-copy (Bad) 0.4289 0.6501 0.4989 0.01461

Table 6.5: Execution time (Not Instrumented) (in seconds)

Command Min Max Mean Std. Dev.
bzip2 0.006981 0.01324 0.01046 0.001996
gzip 0.001021 0.002787 0.001547 0.0003154
oggenc 0.01074 0.01844 0.01549 0.002107
colrow-copy (Good) 0.004783 0.01144 0.007726 0.001777
colrow-copy (Bad) 0.005091 0.01245 0.007896 0.001548
struct-copy (Good) 0.04849 0.07202 0.05238 0.001939
struct-copy (Bad) 0.04866 0.06117 0.05258 0.001885

6.2 Simulation Results
Table 6.6 shows the test programs, without instrumentation, run on the established simulator
Cachegrind. Table 6.7 shows the results of the Cacheray tests. The table shows the miss rates
of all the di�erent test programs, using di�erent cache setups. The miss rate output from
cachegrind is rounded to one decimal place, so we have decided to round the cachegrind
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results in the same way to make comparisons between the two easier.

Table 6.6: Missrate of various programs for di�erent cache layouts
according to Cachegrind

Cache size 16384
Associativity 1 2 4 8
Line size 32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256
bzip2 0.6 0.6 0.8 1.0 0.4 0.4 0.4 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
gzip 0.7 0.7 2.5 4.6 0.5 0.3 0.3 0.6 0.5 0.3 0.2 0.1 0.5 0.3 0.2 0.1
oggenc 2.5 2.3 7.6 7.9 0.4 0.4 0.4 0.5 0.5 0.4 0.3 0.3 0.2 0.1 0.1 0.0
colrow-copy (Good) 1.1 0.6 0.5 0.5 1.0 0.5 0.3 0.1 1.0 0.5 0.3 0.1 1.0 0.5 0.3 0.1
colrow-copy (Bad) 4.6 4.3 4.3 4.4 4.5 4.3 4.1 4.1 4.5 4.3 4.1 4.1 4.5 4.3 4.1 4.1
struct-copy (Good) 3.5 2.1 1.4 0.8 3.5 2.1 1.4 0.7 3.5 2.1 1.4 0.7 3.5 2.1 1.4 0.7
struct-copy (Bad) 4.1 2.8 1.4 0.8 4.1 2.8 1.4 0.7 4.1 2.8 1.4 0.7 4.1 2.8 1.4 0.7

Table 6.7: Missrate of various programs for di�erent cache layouts
according to Cacheray

Cache size 16384
Associativity 1 2 4 8
Line size 32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256
bzip2 0.7 0.8 0.9 1.2 0.9 0.9 0.9 1.1 0.7 0.7 0.6 0.8 0.2 0.1 0.0 0.0
gzip 1.1 0.9 5.6 10.7 0.9 0.4 0.2 0.1 0.9 0.4 0.2 0.1 0.6 0.3 0.1 0.0
oggenc 0.8 0.8 0.9 1.2 1.1 0.8 0.4 0.3 0.3 0.2 0.3 0.1 0.1 0.0 0.0 0.0
colrow-copy (Good) 6.2 3.1 1.5 0.7 12.5 6.2 3.1 1.5 6.2 3.1 3.1 0.7 6.2 3.1 1.5 0.7
colrow-copy (Bad) 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
struct-copy (Good) 0.3 0.3 0.3 0.1 0.3 0.3 0.3 0.1 0.3 0.3 0.3 0.1 3.8 3.8 3.8 1.9
struct-copy (Bad) 0.7 0.7 0.3 0.1 0.7 0.7 0.3 0.1 0.7 0.7 0.3 0.1 7.6 7.6 3.8 1.9

6.3 Reorder feature correctness
Table 6.8 shows the results of the Cacheray reorder tests. As a reminder, the Good and Bad
program types are ostensibly the same program but with a di�erent struct member order on
the structs which they manipulate.

Table 6.8: Reorder Correctness Table

Program (type) Accesses Hits Misses Miss Rate
struct-copy (Good) 2080768 2072576 8192 0.3937%
struct-copy (Bad) 2080768 2064384 16384 0.7874%
struct-copy (Bad) (into Good) 2080768 2072576 8192 0.3937%
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Chapter 7

Discussion

In this chapter we will discuss the results presented in chapter 6. The three core testing cat-
egories will be covered : resource usage, simulator results and struct reorder results. These re-
sults will be discussed and, for simulator results, comparisons between Cacheray and Cachegrind
will be made. Finally, there is a section on possible error sources which may have a�ected the
results of the tests.

7.1 Resource Usage
In our tests we have covered resource usage in terms of four main areas : file size, memory
usage, trace size, and execution time. The results are discussed and analyzed below.

7.1.1 File Size Difference
From the data in table 6.1, we can see that the size of the compiled executable increases
when instrumentation is added. This is to be expected, as the Cacheray runtime and the
extra function calls, that are compiled in for instrumentation, will take up additional space
in the executable. We should expect to see a consistent static addition to the executables
size from the inclusion of the runtime, as well as a dynamic size addition from the added
function calls. As described before, these function calls are put in wherever the program
makes calls that can a�ect the cache, meaning that this size addition scales as the number of
cache a�ecting, e.g. read and write, operations in the program increases. Figure 7.1 shows a
plot of the size of the non-instrumented executables against the instrumented executables,
based on the data in table 7.1. The relative size di�erences of the instrumented and non-
instrumented executables decreases as the size goes up. In other words, for small programs
the size di�erence is noticeable, but becomes less significant for larger programs.
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Table 7.1: File size di�erence (in bytes) and relative di�erence.
Relative di�erence is calculated as {instrumented file size}{non-
instrumented file size}

File Size di�erence Relative Di�erence (%)
colrow-copy 34184 2.95
struct-copy 38968 3.15
gzip 120280 1.78
bzip2 256352 2.34
oggenc 459592 1.19

Figure 7.1: File size comparison between instrumented and non-
instrumented versions of the programs

7.1.2 Memory Usage
Comparing table 6.2 and table 6.1, one can observe that the memory usage is the same as the
file size. This is because the entire file is loaded into memory, and no more. Since Cacheray,
in test mode, discards all generated data and does not store any trace data for later use,
the memory usage will be the same as the file size. However, this will of course change if
data is to be held before writing to disk. In that case, the memory usage will grow as the
trace gets temporarily saved to memory, pending writing to the trace file. Since Cacheray is
configurable to store an arbitrary amount of memory before writing to file, the amount of
memory usage itself will depend on the configuration (for example, if we set the write bu�er
to 1kB, the memory overhead will increase by 1kB).

What this test shows that there is no extra memory usage incurred by Cacheray, with the
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exception of the extra space taken by the instrumentation and the trace data temporarily held
in memory. The increased memory overhead can be contrasted with the increase expected
when running a program with ThreadSanitizer. The increase then is expected at around 5x-
10x. In our case, we stripped away the ThreadSanitizer back-end and substituted with the
Cacheray runtime.

7.1.3 Trace Sizes
The trace file that is generated by the Cacheray runtime is quite large. Looking at the results
in table 6.3, we see that for a program such as bzip2 the file size reaches a size of 229266270
bytes (almost 230MB). Despite the program not being all that big, the trace file is relatively
large. In certain cases this may be a limiting factor, as the trace simply becomes to large to
be practical when increasing program size and/or duration of analysis. This problem can to
an extent be mitigated by the fact that the tracing can be turned on and o� (see section 4.4).
This means that if there is a particular section of the program that is interesting, you can
setup Cacheray to only record to the trace when executing in that section. This will reduce
the size of the trace file, but the trade o� is then that the simulation becomes less correct.

The simulator has no way of knowing the state of the cache during unrecorded segments,
so the start of each recorded segment will have an inaccurate layout of the cache in the sim-
ulator. We can either ignore this fact, meaning that we basically assume that the state of
the cache at the end of one segment is the same as the state of the cache at the beginning of
the next segment, or we can insert a cache flush command, meaning we assume the cache is
empty at the start of each segment. Both of these are inaccurate with regards to the actual
state of the cache at the start of each segment. In our implementation we decided to go with
the former approach, since neither seems to provide an advantage over the other.

7.1.4 Execution Time
Finally, in table 6.4 and table 6.5, the di�erent execution times for instrumented and non-
instrumented versions of the programs can be seen. The interesting point here is the increase
in execution time from non-instrumented to instrumented versions. The relative increase,
calculated as execution time of the instrumented version over the non-instrumented, can be
sen in table 7.2.

The increase in execution time for the instrumented versions can be quite large, ranging
from 9.5 to 150 times their non-instrumented counterparts, which is quite noticeable. In the
tests for execution time we are not actually writing to a trace file, so the increase in time is
not due to added I/O operations. This also means that the execution time is further increased
when actually writing the trace file.

It is di�cult to pinpoint a definitive reason as to why the execution time increases so
drastically here, but we believe there are two main contributing factors. The first is simply
the increase in instructions to execute. The instrumentation adds in callbacks to the Cacheray
runtime at every read/write, causing several more instructions to be run any time a read/write
is executed. The second factor is that our system a�ects the cache performance of the program
we are investigating. Our runtime has several read/write operations that can cause cache
evictions, which of course a�ects how e�ciently the original program uses the cache. Note
that this doesn’t a�ect our results, as we are tracing the operations and then simulating the
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cache interactions, so the actual state of the cache during execution and trace generation is
not really relevant.

Some slowdown is to be expected when performing this kind of analysis, but reaching
execution times 150 times greater than the original may be going to far. For reference, one
source [31] suggests that Cachegrind slows down execution by about 50 times, but that also
includes analysis and generating the relevant results. ThreadSanitizers runtime can be ex-
pected to slow down program execution by 5-15 times [29]. This large decrease in execution
speed limits the possible use cases for Cacheray, since long-running programs might become
to slow to e�ciently analyze.

Table 7.2: Comparison of Mean Execution Times

Command Time Increase
bzip2 150.0
gzip 48.48
oggenc 79.92
colrow-copy (Good) 51.70
colrow-copy (Bad) 47.75
struct-copy (Good) 9.517
struct-copy (Bad) 9.488

7.2 Correctness of Simulation Results
To show the degree of correctness for Cacheray, two data sources will be used. Firstly, some
observations to see if the amount of read/write events captured by Cacheray is correct, with
regards to the input program. Secondly, a direct comparison between the calculated miss-rate
of the programs when run on both Cacheray and Cachegrind.

7.2.1 Captured events in Cacheray
Figure 7.2 contains the critical loop which is performed by colrow-good. This section of code
is what will be captured by Cacheray.

Figure 7.2: Critical loop of colrow-copy (Good)

1 int i, j;
2 // begin recording...
3 for (i = 1; i < rows; i++) {
4 for (j = 0; j < cols; j++) {
5 array[i ∗ cols + j] = array[i ∗ cols + j] + array[(i − 1) ∗ cols + j];
6 }
7 }
8 // end recording.
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Using this, we can calculate the hypothetical amounts of reads and writes. All of these
will come from the row iteration loop and the column iteration loop, both of which have the
same number of reads and writes. The amount of reads in the test program can therefore be
calculated with:

Nreads = 2Ncols(Nrows − 1) (7.1)

Conversely, the amount of writes can be estimated with a similar equation:

Nwrites = Ncols(Nrows − 1) ⇐⇒ Nwrites = 2Nreads (7.2)

With Ncols = 1024 and Nrows = 1024 we get Nreads = 2095104 and Nwrites = 1047552.
After running the Cacheray Simulator and looking at the output, there are 2095104 reads
and 1047552 writes. Since the theoretical number of reads and writes match the obtained
number of reads and writes, we can assume that the simulator is collecting the interactions
correctly.

To make it easier to see the di�erence between the read and write captures between
Cacheray and Cachegrind we can compare the outputs of the two tools for the code above.
Table 7.3 shows the amount of reads, writes and the miss rates obtained by both Cacheray
and Cachegrind. What is clear to see is that Cachegrind registers a lot more reads and writes
than Cacheray does.

Table 7.3: Captured Read and Writes from colrow-copy

System Reads Writes
Cacheray 2095104 1047552
Cachegrind 17861900 8398057

The di�erence is to be expected, as Cacheray depends on traces generated by code in-
strumentation, while Cachegrind performs live analysis at runtime using Dynamic Binary
Instrumentation [21]. Since Cacheray collects information based on instrumented source
code this in turn means that code outside the instrumented source code, such as code in im-
ported libraries, is not included in the simulation. Therefore, if a program imports functions
from an external library (that is not itself also instrumented), the cache e�ects of that func-
tion will not be recorded in the trace, and are consequently missed in the Cacheray simulator.
This limitation is not present in Cachegrind.

A perhaps even more succinct showing of the di�erence between Cacheray and Cachegrind
is the result of analyzing a virtually empty program : int main{ return 0; }. Here
Cacheray records 0 reads and writes, while Cachegrind records 23546 reads and 10,621 writes.
The source code doesn’t have any read or write operations, which is why Cacheray doesn’t
record any. However, when compiled, the program includes several commands in order to
become runnable that aren’t visible in the source code, which are captured by Cachegrind.

7.2.2 Cacheray and Cachegrind
Tables 6.6 and 6.7 show the miss rate of the test programs, using di�erent cache configu-
rations, according to Cachegrind and Cacheray respectively. To see if Cacheray has some
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level of correctness, a comparison needs to be made between the results from the two tools.
Looking at and comparing the tables, it is immediately clear that they don not have the same
results, which was discussed in section 7.2.1 above.

However, there are still some valuable observations we can make when comparing the
results of the two tables. There are certain trends which appear in both the Cachegrind
and the Cacheray results. For example, in both the Cachegrind and the Cacheray tests, the
performance degradation of colrow-copy when comparing the good and the bad version can
be observed. The same can be seen in the comparison with struct-copy-good and struct-
copy-bad. When increasing the line size, both Cachegrind and Cacheray observe the same
decreasing miss rate. Perhaps the strongest point of comparison is the results for gzip. Both
Cachegrind and Cacheray show significant increases to missrate as line size increase with a 1-
way associative cache. The trends also overlap for the other associativities, with one exception
being that Cachegrind has an increased missrate when increasing line size to 256 bytes for a
2-way associative cache, whereas Cacheray shows a decreased missrate.

The results for colrow-copy (Bad) in Cacheray does warrant a further comment. From the
results, it appears that it always produces a 50% miss-rate, regardless of cache configuration.
Although this might look quite strange, it is not a clear indication of error in the simulator,
since the program was deliberately constructed to perform poorly with the cache.

There are also some results that show dissimilarities between the systems. While some
numbers change in the same direction as the line size and/or associativity increases, the actual
miss rates are not near close.

7.3 Reorder Feature
Looking at table 6.6 and table 6.7, there is a clear di�erence in the miss-rate between the
optimized and non-optimized version of struct-copy, when run on the Cacheray simulator.
The non-optimized version of struct-copy (Bad) has a higher miss-rate than the optimized
version of struct-copy (Good).

When the reorder feature is used, to turn the bad struct into the good struct, the results
can be seen in table 6.8. It is clear the non-optimized program achieved the same number
of misses, and therefore the same miss-rate, as the optimized version. This shows that the
reorder feature works as intended. Futhermore, it achieves the original goal of being able to
change the underlying structs of a program without performing a change and recompilation
of that program.

7.4 Possible Error Sources
As mentioned in earlier sections, ThreadSanitizer is a tool intended to catch race conditions.
In this thesis it has been used to instead identify reads and writes that occur in a given pro-
gram. As this is not the original intent of the tool, it is not guaranteed to correctly do this.
In fact, at a very late stage in the project we came across an issue that was the result of TSAN
not instrumenting the code in the way we had expected. Using the += operator makes TSAN
miss a read that should be there. The following two operations are expected to be equivalent.

1 a = a + b
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2 a += b

We would expect these to be causing two reads (one to a and one to b) and a write (to a).
However, when inspecting the LLVM IR generated after the TSAN pass we found that one of
the reads was missing in code that was using the += operator. As such we only got one read and
one write recorded, giving some strange results when running the simulation. Currently the
only way around this is to avoid using the += operator. We have not found other limitations
of this kind yet, but that does not mean they do not exist.

As mentioned earlier, the method used for identifying writes on the heap (MallocTracker)
can miss custom implementations of heap writing methods. This is a less common problem,
but could still cause issue in some certain projects.

The fact that the instrumentation and runtime can not capture cache a�ecting opera-
tions that occur in external libraries is a source of errors. These external function calls can
a�ect the cache in the same way that operations within the source program do. This means
that Cacheray will statistically become less correct the more the analyzed program utilizes
libraries. Theoretically this issue can be resolved by adding the instrumentation to the li-
braries, but practically it would be a big barrier to entry to ask developers to recompile the
libraries they use in order to get correct data from Cacheray.

Also mentioned earlier is the fact that the simulator misses the e�ects of function calls to
external (non-instrumented) libraries. This along with above error sources can cause prob-
lems for the simulator. The trace based simulation relies on accurate playback of a sequence of
event, where each event depends on - and a�ects - the current state of the cache. Thus, miss-
ing events can give misleading conclusions about the programs interaction with the cache.

However, it should be noted that the aim is to provide a tool that is able to help developers
create programs that make better use of cache memory. To this end it is more important to
see the interaction with cache in aggregate, and missing a small percentage of the events will
often not have a significant e�ect, and the output can still be useful for the developer.
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Chapter 8

Conclusion

In this final chapter, a conclusion of the thesis, based upon the results and the discussion of
them is presented. Also, possible improvements to the simulator and the project as a whole
is discussed, along with some ideas on further work within this field.

8.1 Summary
In chapter 1, the following research questions were posed:

1. What amount of resources are needed for the program-under-test to generate a trace
file?

2. What level of correctness can we achieve with a trace based simulator?

3. Using the simulator, can a developer change the order of struct members and get cor-
rect results without needing to recompile the original program?

These questions will be answered below.

8.1.1 Research Question 1
Based on the discussion in section 7.1 we can draw our conclusions with regards to the four
areas we investigated. In terms of file size increase we deem Cacheray is within reasonable
bounds, especially looking at the trend visible in figure 7.1. We see that the increase in file size
appears significant for smaller files, but for bigger programs it can be seen that the increase
is very manageable.

The memory usage is, just like the increase in file size, very manageable. The fact that
the size of the write bu�er can be configured means that developers have some control of the
added overhead.
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The increase in execution time is significant, in the worst case increasing 150 fold. While
the issue can be mitigated by only recording segments of the program, it certainly limits the
usability of Cacheray. Still, the system is usable of analysis of smaller programs. While slower
than Cachegrind, it is not so slow as to be unusable.

The trace files produced by Cacheray is very large, even for simpler programs which short
execution duration. For one of the tests, over 200MB of data was produced. This was for a
program which, without instrumentation, ran for around 10 milliseconds. This is unneces-
sarily large, and may prevent certain use cases.

With all this in mind, we conclude that the use of Cacheray is not limited in terms of
increase to file size or memory usage, since these extra resource requirements are relatively
small. Cacherays usability may be limited by the increase in execution time in some cases.
Finally, the size of the trace files may be a limiting factor in some cases.

8.1.2 Research Question 2
As shown in chapter 7, specifically section 7.2, Cacheray appears to achieve some level of cor-
rectness when compared to the established simulator Cachegrind. However, as the amount
of data collected from the running of the program is only a subset of the total amount of
actual events occurring during the execution, the simulator is lacking the data for absolutely
correct simulation.

This level of correctness could possibly be enough for many use cases, but obviously lack-
ing in others. As it stands, the level of correctness is fine but we do not believe it is high
enough for accurate analysis.

8.1.3 Research Question 3
As shown in chapter 7, section 6.3, the simulator is able to successfully change the order of
struct members and have the simulation correctly simulate the change. Of course, the level
of correctness is limited to the assumed correctness of the simulator, which in it self is not
entirely correct (see 8.1.2).

Nevertheless, struct reordering is possible with the Cacheray system, and based on our
testing it works as intended.

8.2 Possible Improvements
Though it is true that code can virtually always be improved and further optimised, that is
not the focus of this section. Rather, we will present some shortcomings currently in the
cacheray system that could be improved upon given more time.

8.2.1 Efficiency
There are 2 major points of ine�ciency currently in the system : Execution time and the size
of the trace files.
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Because of the need to perform a number of extra calls and computation for each read and
write event in the instrumented file, the execution time becomes increased by a large amount.
One way to improve this would be to pay close attention to how e�cient the Cacheray code
is, since it will be executed so many times. There are many ways of improving the performance
of C code and if e�ort was made to make the system run more e�ciently, the execution time
could most likely be improved.

The size of the trace files can be reduced in a number of ways. One could use a com-
pression library to write compressed data to the trace file. Alternatively, one could modify
the event format to be more dynamic, making the average event smaller. However, these ap-
proaches run counter to the former ine�ciency : execution time. Adding on compression
or more complex encoding of events will further slow down the execution of the program.

8.2.2 Custom Instrumentation
As mentioned in section 4.2, the current instrumentation takes advantage of the pre-existing
tool ThreadSanitizer to track read and write operations. This presents the issue that we are
using part of ThreadSanitizer for something it was not meant to do, introducing potential
problems, such as the one discussed in section 7.4. It could cause us to miss operations that
a�ect the cache, and that we therefore want to record in our trace. We also do not control
the development of TSAN, and future updates to it could cause compatibility issues.

This problem could be resolved by writing our own instrumentation tool for tracking
reads and writes, possibly starting from a fork of TSAN. To an extent we already do custom
tracking with MallocTracker. However, we currently still rely heavily on the function calls
inserted by TSAN for our instrumentation.

8.2.3 Better Analysis of Heap Memory
Our current tool for analysing data stored on the heap has one major short coming. It can
not track if multiple data types are stored in the memory returned by for instance a malloc
operation. Say the developer requests 100 bytes of data on the heap using malloc, then uses
the first 20 bytes to store a struct of type A, and the remaining 80 bytes for a struct of type B.
In this case MallocTracker will detect that 100 bytes was requested and that a struct of type
A was stored there, but misses information about struct B. This would cause issues when
trying to use the reorder feature, as the simulator then has no way of discerning that struct
B is present for 80 bytes, and instead assumes that struct A is present for all 100 bytes.

To solve this issue in general would require extensive analysis of the code, tracking address
spaces and operations involving those addresses. If done correctly, this would provide more
complete information about the layout of data, in turn giving more information back to the
developer after running the simulation.

8.2.4 Default Configuration
Currently the simulator requires a configuration file in order to run. While it is not possible
to have defaults for the trace file or type data file, we could add support for default values for
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the configuration. This would make the simulator a little easier to use, reducing the number
of required files to two.

8.3 Final Remarks
The Cacheray system is a success in that is able to simulate the cache interactions of a program
with a decent level of correctness. It o�ers a re-order feature which can be useful in exploring
the e�ects of structural changes to a program without needing to recompile the code. Hannes
learned to type "quickly" too :)

We are however not entirely pleased with only reaching a decent level of correctness, and
aspired to do better. However, instrumenting the code at the source code level carries with
it some limitations we had not initially considered (such as the challenge of tracing function
calls in external libraries). As such, this trace based approach serves a very niche function,
mainly for analysing smaller programs that do not use a lot of external libraries. In this niche
we consider Cacheray to be useful, but outside it less so.
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POPULÄRVETENSKAPLIG SAMMANFATTNING Hannes Åström, Wilhelm Lundström

Simulering av cacheminnet kan vara en nödvändighet för att få ut maximal prestanda
och för att lösa svårhittade minnesineffektiviteter i program. Detta arbete tar fram
ett mjukvaruverktyg som gör det möjligt att simulera program som inte kan simuleras
direkt, samt simulera förändringar i deras struktur efter kompilering.

Processor cachen är en hårdvarukomponent som
finns i praktiskt taget alla moderna datorer. Den
agerar som ett mindre minne mellan processorn
och minnet, men som är betydligt snabbare att nå.
Dess nyttjande är dock ofta begränsat av hur svårt
det är att se kopplingen mellan kod och cache.
Man kan inte få direkt insyn i vilken information
som faktiskt ligger i cache under ett programs ex-
ekvering.
För att komma runt detta är det inte helt ovan-

ligt att använda sig av en så kallad cache simula-
tor. Genom att använda dessa kan man, som nam-
net antyder, simulera vad som finns i cache under
ett programs exekvering. Dock kan dessa simula-
torer vara för krävande för att köra på väldigt sim-
pla system. Detta går att lösa genom att avlasta
själva simulationen till ett annat, kraftfullare sys-
tem, och endast spela in programmets minnesop-
erationer.
I detta projekt har systemet Cacheray skap-

ats. Systemet består av ett verktyg för att spela
in läsningar och skrivningar från ett program till
en så kallad trace fil. Denna fil kan sedan an-
vändas i Cacheray simulatorn. Simulatorn spelar
upp dessa operationer och simulerar dem i en
modellerad cache. När simulationen är klar får
användaren en utskrift med information, såsom

hur många gånger data behövde hämtas utanför
cachen. Det finns också en möjlighet att ändra om
vissa datastrukturer i programmet, direkt i simu-
latorn, utan att användaren behöver kompilera om
och/eller exekvera programmet igen.
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När Cacheray testades mot en etablerad cache
simulator, Cachegrind, visade sig vissa likheter i
deras resultat. Dock så förlitar sig Cacheray på
en mindre mängd information än Cachegrind, som
simulerar program på ett mer direkt vis. Därför
är resultatet mellan dem, på många sätt olika.
Trots svagheter i datainsamlingsskedet så tror

vi att Cacheray har ett visst användnings område
vid tillfällen då en direkt simulation, en så kallad
on-line simulation, inte kan göras. Till exempel,
vid användning av system där mer än ett program
inte kan köras samtidigt.
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