The what, how and why of
Finite projective planes

Markus Hoglin

August 2021



Contents

1 Introduction 5
1.1 Euclidean geometry . . . . .. ... .. oL )
1.2 Projective geometry . . . . . . .. ... 6

2 Finite Projective Planes 9
2.1 Definition . . . . . . .. . ... 9
2.2 Constructing field planes . . . . . . ... . ... ... .. ..... 17
2.3 Isomorphic planes . . . . ... .. .. L oL 30

3 Existence of planes of order n 31
3.1 The finite projective plane of order 6 . . . . . . . . . . ... ... 32

3.1.1 Orthogonal latin squares . . . . . . .. ... ... ..... 32
3.1.2 Computer search for plane of order n=6 . ... ... .. 37
32 n=10. . . .. 38

4 Applications 39

Bibliography 41

A Appendix 42



Abstract

This thesis defines the finite projective plane and the affine projec-
tive plane. A method of construction is defined for the field planes by
extension of the affine plane constructed from the vector space over a fi-
nite field. The thesis explores for which orders planes can and cannot be
constructed, in particular, for the prime powers there exist planes. For
n=6 a computer search is conducted using a recursive algorithm, which
shows that n = 6 is not possible as an order for finite projective plane.
The thesis then illustrates an application for finite projective planes in
the form of a threshold scheme for secret sharing.
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1 Introduction

1.1 Euclidean geometry

Geometry has formed one of the most central fields of mathematics for millenia,
it has been explored across countless civilizations, whether it be for architecture,
art or physics. At heart of geometry lies one of the most important sets of
axioms, Euclid’s axioms of geometry:

e [;. For any two distinct points, there exists a unique line joining them.
e F5. A straight line can be prolonged indefinitely.

e FE3. A circle can be constructed when radius and center are given.

e FE4. All right angles are equal.

e F5. For any line [ and point p not on this line, there exists a unique
parallel line I’ through the p which does not intersect the .

The geometry defined by these axioms is known as “Euclidean” geometry and
is exactly what most people think of when they think of the word “geometry”:
circles, points with lines inbetween them, lines either intersect in one point
or are parallel and never intersect. This Euclidean geometry is ubiquitous to
our understanding of the world we inhabit, but is it enough? To answer this
question, we must turn to a type of geometry inherent to the way we perceive
the world: Projective geometry.



1.2 Projective geometry

We can imagine standing between train tracks which stretch to the horizon.
When looking straight down, we can recognize familiar shapes from euclidean
geometry, we have lines which are parallel that have a constant distance between
them, lines which are not parallel intersect and then diverge. We then look up
towards the horizon, and see a very different sight. Lines which were just parallel
now converge to a point on the horizon, and lines which are not parallel converge
to different points. No matter how far we walk along the tracks, the lines will
keep a constant distance and be parallel when looking straight down, but will
converge to the same point on the horizon.

Figure 1: Euclidean and projective train tracks



Figure 2: Image projected onto the retina

What has happened is that the image of the train tracks that we can see is
created by a projection and obeys projective geometry, rather than Euclidean
geometry. Projective geometry was first developed by artists who were searching
for techniques for depicting three dimensional objects on a flat plane. The artists
had run into the same issue, depicting lines which are parallel in the real world
as parallel on a flat surface looks nothing like something which would exist in
real world.

We must instead turn to projective geometry which disregards Euclid’s fifth
axiom, the parallel postulate. In projective geometry, lines cannot be parallel
and always intersect at exactly one point. Using this, the Euclidean plane can
then be extended to the projective plane by adding a line at infinity, a “horizon”
which contains points where parallel lines meet.

Going back to the train tracks, just as artists project three dimensional objects
onto surfaces when drawing in perspective, so also does the human eye. We can
imagine an idealised human eye as a plane 7, as the retina, and a point O as the
pupil. An image in the eye is then created when rays of photons are projected
through the pupil, onto the retina.



This thesis will present a specific type of projective geometry: the finite
projective plane. This type of plane obeys the axioms of projective geometry
and only has a finite number of points, unlike the usual idea of a plane. This
gives the finite projective plane some unique properties, it is ideal for study
using finite fields and algebraic geometry, the specific structure derived from
the axioms of projective geometry also yields distinctive combinatorial features.
The finite projective plane as a consequence, has applications in for example
cryptography and combinatorics.

Finite projective planes, despite following a rather short set of axioms do not
have much know about them and are very hard to find, unless specific circum-
stances are met. Not only are they hard to find, but we do not know even
whether they are possible or impossible to create outside these circumstances.
The main purpose of this thesis is exploring this question: for which cases is
it possible to construct planes and how, as well as proving a specific case as
impossible for a plane by a computer search. The thesis also seeks to culti-
vate a general understanding for these structures by using graphical tools in
order to support a visual intuition of these rather abstract objects, as well as
by showcasing a potential application in secret sharing.

The primary sources for the theory of finite projective plane in this thesis is
Hall, M. (1967). Combinatorial theory as well as Dembowski, P. (1968). Finite
Geometries, proofs of theorems were completed or extended from shorter proofs
in these books.



2 Finite Projective Planes

2.1 Definition

A finite projective plane is, as the name suggest a 2-dimensional projective ge-
ometry with a finite number of points and lines. Rather than being innately
tied to some graphical representation, these geometries are primarily defined
axiomatically, through the relation between two “primitive elements”. These
primitive elements can for example be points and lines but can also be some-
thing completely different, this makes the finite projective plane a very flexible
structure.

Definition 2.1[Hall, M. (1,p. 173)]: The axioms for projective geometry,
when applied to finite projective planes and with points and lines as primitive
elements are as follows:

e A;. There is one and only one line containing two distinct points.
e A,. There is one and only one point on two distinct lines.

e As. There exists a set of four points, such that no three are on a line.

One can observe that the first two axioms are identical statements with points
and lines interchanged, that is to say they are the “dual” of one another, with
respect to points and lines. The dual Aj, of the third axiom on the other hand,
can be shown as a consequence of the other ones. The axioms As, A5 serve
the purpose of disqualifying “degenerate” planes, which are too simple to be of
interest.

o Aj%. There exists a set of four lines, such that no three contain the same
point.

This duality gives a powerful symmetry between points and lines, which are
functionally identical.



Theorem 2.2[Hall, M. (1,p. 173)]: A geometry satisfying A;, Ao, As,
satisfies Aj.

Proof. As gives that there exist four points 1,2, 3,4 where no three have a line
in common. The axiom A; therefore gives that we can define lines containing
the six combinations of any two of these points:

(1,2, 110,38, .0 {14, 0, 12,3, .0, {24, .1, (3,4, ..}

As requires that each pair of lines have a unique point in common. Using this
we define «, 3,7 as the points of intersection, of the lines which do not have one
of the points 1,2, 3,4 in common:

{1,2,c,..},{1,3,8, ..}, {1, 4,7, ..},{2,3,7, ..}, {2,4, 8, ..}, {3,4, o, ..}

a ’Y
/_E>\

~
~

/7 \

Figure 3: Lines joining 1,2, 3 and 4, intersecting in «, 3, and v

We can also define three lines using A;, joining the points «a, 3, and . These
three lines are not necessarily distinct however, as «, 8, and v may all have a
single line in common.

{a, 8, ..}, {ay v, . 1, {8y, ...}
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We can now pick four lines such that no three have a point in common, we
begin by picking the lines which join three of the points 1,2,3 and 4. There
cannot be any more points in common between these lines, besides the ones
defined here, as all points share a line. This means that we can add to these
three lines, one of the lines joining «, 3, and -, this line cannot contain any of
the points 1,2,3 and 4.

No point lies on more than two of these lines, and so this is a set of four lines,
such that no three have a point in common, showing that A% holds. Creating
such a set of lines by picking the lines between 1,2 and 3 as well as the line
containing « and S yields the following:

{1,2,,..1,{1,3,8,..},{2,3,7, .. };, {a, B, ...}
O

We can observe that a plane with fewer than three points on it’s lines is
an example of a degenerate plane, which is too small to be of interest and is
disqualified by As and Aj. This is the case as some lines joining the points 1,2,3
and 4 could not possibly have any point in common, and so would not fulfill As,.

11



Given these axioms, there are some fundamental properties one can show
for finite projective planes. One important property is the number of points
on a line, lines containing a point, the total number of points in the plane and
the relation between these. To this end, these properties are shown for a finite
projective plane which is assumed to have a line with n + 1 points. Building on
this we then define “order”, a natural notion to classify finite projective planes.

Theorem 2.3[Hall, M. (1,p. 173)]: If a finite projective plane contains
a line with exactly n 4+ 1 points, then every line contains exactly n + 1 points,
every point is on exactly n+ 1 lines and in total there are n? +mn 4+ 1 points and
lines each in the plane. Conversely, if there are n? 4+ n + 1 points and lines in a
plane, then every point is on n + 1 lines and every line contains n + 1 points.

Proof. Let Ly be a line containing exactly n + 1 points, Az gives that there
exists a point p ¢ Lo. The point p is on the n + 1 lines pp; : p; € Ly. These
lines are all distinct, if there were some line containing two distinct points of Lg
then both points would be contained by two distinct lines, breaking Aj.

These lines are the only lines through p, if there existed another line L* : p € L*,
then in order to not break A, this line needs to contain one of the points of L.
L* containing one of the points of Lg, leads to this point being on two distinct
lines with p, breaking A;. It has been shown that any point not on Lg is on
exactly n -+ 1 lines.

Starting instead with a point py on n + 1 lines, by A% there exists some line
L :py ¢ L. There are n+1 points on the line L, determined by the intersections
of the lines [ : pg € [ with L, using the previous argument showing that any
point not on Ly is on exactly n+ 1 lines, we can show that any line not through
po contains exactly n + 1 points.

12



Now, to show that every line contains n 4+ 1 points we have to find three
points that do not lie on the same line which are all on n + 1 lines. Given such
a configuration, every line must not through one of these points, and would
therefore contain n + 1 point. To find such a set of lines we begin by observing
that A3 guarantees that there exists at least two points o and 3, not on Ly, we
then let ¢ and n be two points on L.

There are n + 1 lines through « and S, the only line which could possibly not
contain n+1 points is the line a3, which is through both points. We can observe
however, that the line a& is not through S and must contain n + 1 points, the
point n which is not on a& must then also have n+1 lines through it. The point
7 is not on af, so this line, and every line must contain n 4+ 1 points. The fact
that every point is on n + 1 points also follows from this argument, as we found
three lines with n + 1 points, not through a single point.

Since every two points in the plane are on one line and only one line, this gives
that every point is on one of the n + 1 lines pg is on. Knowing that every line
contains exactly n + 1 points, each line contains n points distinct from pg. As
a result, the plane has n(n + 1) + 1 = n? +n + 1 points in total, repeating this
argument for Lg in place of py yields that the plane also has n? +n -+ 1 lines in
total.

To show the converse we suppose that there is a plane with a line containing
k + 1 points and k%2 + k +1 = n? +n + 1, this only has solution & = n in the
positive integers and so a plane with n% +n 4+ 1 points and lines must have that
every line contains n + 1 points, every point is on n + 1 lines. O

13



Using these results we define a finite projective plane of order n as such a
plane that has a line that contains n + 1 points and so, every line contains n + 1
points, every point is contained by n + 1 lines, and so on.

Definition 2.4[Hall, M. (1,p. 175)]: Let n > 1 be an integer, a finite
projective plane is said to be of order n if a line contains exactly n + 1 points.

The finite projective plane has now been defined and some elementary prop-
erties have been shown, but this does not answer the question whether such a
plane even exists or how to construct it. In order to answer this, we will explore
how and when finite projective planes can be contructed.

Since the definition would lose any usefulness if it is not possible to construct
what it defines, we will attempt to see if there exists any finite projective plane.
We can note that a plane of order n = 1 would have 3 points, and would not
fulfill A3 and therefore n = 1 does not produce a plane. The plane of order
n = 2 does not immediately break any axioms and could be a valid order for a
plane. For plane of order 2 there are not many points, so it is not difficult to
check manually that there exists a plane P(2).

14



Recalling that in a plane of order n, every line contains exactly n + 1 points,
every point is exactly on n+1 lines and the plane has n? +n+1 lines and points
in total.

So, P(2) has 7 points and lines in total with 3 points contained by a line and a
point is on 3 lines. We can recall the geometry created for the proof of theorem
2.2, this geometry can be extended to define P(2).

This geometry contains 7 points and 6 lines, each of the points 1,2,3 and 4
have exactly one line in common with every other point, the lines between these
points also have exactly one point in common. This means that we can define
a line which contains each of the points «a, 5, and « to get 7 lines. Adding this
lines gives that each point has exactly one line in common, and since each other
line contains exactly one of «, 3, and -, each line also has exactly one point in
common.

Completing the geometry in this way yields the following:

2 Y 4

Figure 4: P(2)

This is the smallest possible finite projective plane, which is known as the
Fano plane. This also illustrates the fact that lines in a finite projective plane
do not need to be straight.

15



Since we have now found that there exists a plane P(2), we can now continue
exploring when there exists a plane by increasing the order to 3. While it is
possible to manually construct the planes for very small orders such as 3, it
quickly becomes unfeasible. Here one solution for P(3) is presented, while why
we can arrange points and lines in this particular way to create a finite projective
plane, will be shown later. The plane P(3) must have 13 points and lines, so we
define it by arranging the points p1, ..., p13 into lines in the following way:

{p1,p2,p3, P12}, {P4, 05, D6, P12}, {7, P8 P, P12}

{p1,p5,p9, P11}, {P3, Pa, P8, P11}, {P2; P6, P7, P11}

{p1, 6, P8, P13}, {P2, P4, P9, P13}, {P3, D5, P75 P13}

{p1, 1,07, P10}, {P2: P55 P8, P10} {03, D6, Pos P10}
{p10, P11, P12, P13}

So, the plane exists for both order 2 and 3, the plane that was created now,
P(3) can be graphed as follows:

Figure 5: P(3)

16



2.2 Constructing field planes

We have now shown that there exists a projective plane for both order 2 and 3,
so we know that there exists planes for some n at least, but does there exist some
plane for finitely many n, infinitely many n or perhaps for every n? Manually
creating the plane of order n by trying to combine the points into lines by
following the axioms also becomes increasingly unfeasible. To solve this, we will
define a general method of construction for a specific class of finite projective
planes.

To define this system we shall first define another concept, the affine plane
denoted as A(n). Just like the projective plane, the affine plane has an order
n and can be obtained from the projective plane of the same order. For a
projective plane of order n, if a line Lo, “at infinity” is removed along with
removing the points on this line from every other line the affine plane of the
same order is obtained.

This plane has n? + n lines and n? points, the removal of Lo, creates n + 1 sets
of n lines with no points in common, corresponding to the set of lines through
a given point on L.,. Using this structure inherited from the projective plane
we can define the affine plane.

Definition 2.5[Dembowski, P. (2,p. 115)]: The affine plane with points
and [lines as primitive elements is a geometry satisfying the following axioms:

e AG;. There is one and only one line containing two distinct points.

e AG5. For a line and a point not on it, there is one and only one line
with no point in common to the first that contains the point. Two such
lines are referred to as being “parallel”, this relation is transitive: if [; is
parallel to lo, and Iy to I3 then [y is parallel to I3.

e AG35. There exist three points which are not on a line.

17



Theorem 2.6[Dembowski, P. (2,p. 117)]: Any finite projective plane
can be restricted to an affine plane by removing a line and all points on it,
inversely any affine plane can be extended to a projective plane by adding a line
at infinity to it, and points at infinity to each family of parallel lines.

Proof. Let m, and m, be projective and affine planes. We let m; be m, with a
line Lo, along with it’s points removed. Each point in 7, is on n + 1 lines and
each pair of lines both contain one and only one point. When L, is removed
from 7, for each of the n+1 points in Lo, a family of n mutually parallel lines
is created from the lines that had that point in common.

Each family contains each point once and each pair of lines from different families
have one and only one point in common. Picking a line [ and a point p not on
that line, each line containing p from another family will have some point in
common with [, while the line of the same family containing p has no points in
common with [, AG is valid for 7.

For AG, we can observe that none of the points of m, were on L, so the line

connecting any pair of points in 7 is also in 77, AGy is valid for 7.

Finally, for AG3 we use the set of four points 1,2, 3,4, no three on a line given
by Az, as well as the points «, 3,7 connecting the lines defined by the pairs of
1,2, 3,4 with no point in common.

{1,2,a,...},{1,3,5,..},{1,4,~,...},{2,3,7,...},{2,4, 6, ..}, {3,4,c, ...}
From these lines, any can be removed along with it’s points and there still

exists three points where no three are on a line. So 7 is an affine plane by
these axioms.

18



We now let 7 be the affine plane with a line added to it, and each point of this
line added to every line in a parallel family of 7.

Now to show that any affine plane can be extended to a projective plane, we
observe that the line defined by a pair of points p;p; must be one of the lines,
or parallel to a unique line through a point py. If this pair of points p;p; does
not define a line through pg, then there must be a unique line pop* parallel to it
which contains pg. p;p; will then define the unique line parallel to pop*, through
any point of p;p;. We can now divide all lines of 7, into families of parallel lines,
for each line pop; we define the family F; by pop; and all lines parallel to this
line through all points not on it.

No pair of lines in a given family have any points in common, as pgp; would not
have a unique parallel through this point. Each point in the plane is contained
on a unique line of each family and each line in the plane is contained in a
unique family as the line defined by any two points which is parallel to a unique
line through pg. A pair of lines with a line parallel to both are also parallel as
this line would have multiple parallels through the point which the pair has in
common, this gives that every pair of lines from different families have a unique
point in common.

We now define a new line L, with one point for each family, and to each line in
a parallel family we add a point of L.,. By doing this, each pair of lines meet
in a unique point, and each pair of points are on a unique line. This means that
m fulfills A; and A, for A3 we add Lo, to the three points given by AGs:

{1,2,e,...}1,{1,3,8,..},{2,3,7, .. ;, {a, B, 7, ...}

From these points, one can pick four such that none are on the same line, 7}
fulfills A3 and so is a projective plane. O

It is quite easy to see this extension in figure 5, for P(3) where the square
of nine points is the affine plane A(3) and the line {p10, p11, p12, p13} is the line
added to create the projective plane.

19



Through extension of the affine plane, we can define a general method of con-
struction for a large set of projective planes: the field planes.

Theorem 2.7[Hall, M. (1,p. 177)]: There exists a finite projective plane
for every prime power order, n = p*.

To prove this, we define and prove the construction of the affine plane for n = p*:

This construction of the affine plane of order n = p* resembles the euclidean

plane in many ways. We begin by constructing a vector space V' over the finite

field of order n = p*:

The points and lines of the affine plane can now be defined inside this vector
space, just as in the euclidean plane:

a,bceFpe z,yeV

p = (z,y)
Il < ax+by=c

In this construction, a point is defined as a vector (z,y) of V and a line as a
particular linear equation in V defined by the scalars a,b, ¢, and the solution
set for (x,y) representing the point contained by this line. We should note
however, that two different sets of scalars a’, b, ¢’ can represent the same line if
ka=ad', kb =1V, and kc = ¢/, k # 0. To circumvent this, lines can instead be
defined as equivalence classes of equations:

I < [a,b,c] = {kax + kby = kc: Vk € Fx \ {0}}

At this point, we can also note that [0,0, | is an invalid line as this does not
have a solution set.

20



For the sake of intuition, we can use this to redefine [ in terms of the usual
equation for a line in the euclidean plane. Given that b # 0, we can always
multiply by £7*b71, as all non-zero elements have inverses in a field. We can
then set « = —b~'a, and S = b~ tc:

(z,y) €l < kazx + kby = kc
—blar+y=0b""'c
— —ax+y=p
—y=ax+0

In this view, we can see that a line can be defined by a slope « and a constant
term (. This holds under the assumption that b # 0, when b = 0 however, we
can multiply by £ 'a~! and set a~'c = 3. In this case the line is equal to some
constant § with respect to x:

l < kax + kby = kc
<~ kax = kc
<—z=p

Using this concept of slope, we can define the parallel families of lines in an
intuitive way as sets of lines with equal slope, just as in the euclidean plane.

(a',b) = (ka, kb) <= a'b'~' =ab™!

To conclude the construction of the affine plane, we can define the set of points
P and the set of lines £ and so, the plane ,:

P ={(z,y) eV}

'C:{[avbac]:avbvce]Fpk}\{[OvaC]}
e =PUL
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We can now move on to show that this construction defines an affine plane,
proving theorem 2.7:

Proof. To begin, we can simply show that this gives the correct number of
points and lines. We can see that for the set of points that there are n? vectors
(z,y) € F2, which is the number of points in A(n).

Computing the total number of equivalence classes gives that the number of
lines is:

n3—n

_ .2
S =n“4+n

n? possible permutations of [a, b, c], a,b,c € F,, n invalid permutations [0, 0, c|
and n — 1 lines in each equivalence class, the number of lines in A(n).

To show AG; we must show that there is exactly one line between a pair of
points. We begin by showing that there is some line between any two points:
we let (z1,y1) # (x2,y2) be two distinct points, the line connecting two points
(21,y1) and (z2,y2) is equal to the following system of equations.

l: Y1), (x2, €l <=
(@1,91): (w2, 12) kazxy + kbys = ke

{kaxl + kbyy = ke
= axy + by; = axs + bys
<~ a(xe —21) = =b(y2 — y1)
To—21 0 = a=—b(y2 —y1)(x2 — x)7!
= — kb(y2 — vy1)(z2 — xl)_lxl + kby, = ke
E=b"!' =1 = —(yo—y1)(xo —x1) o +y=—(y2 —y1)(w2 —x1) 1 + 111

= (y—y) =2 —y) @2 —z1) " (z —21)

To—21=0 =0=05b
= kaxr, =c¢
= | <= =12

We find that a line containing both (z1,y1) and (z2, y2) yields a unique solution
for [a,b,c] exactly when these two points are distinct, and so there is exactly
one line containing both points.

22



Now, to show AG5 we have to show that for any line [ and a point, there exists
a unique parallel line I’ which contains the point and does not intersect I. We
begin by letting I, I’ be two distinct lines and (x,y) the intersection between
the two lines. We then use systems of linear equations and the fact that these
have a unique solution exactly when it’s determinant is non-zero:

|l <= ax+by=c
' <= dz+by=<¢

z,y) €l <
(@9) adr+by=<

ad IHNH

a b
a v

{ax+byc

£0

ab —adb#0
< (d',b") # (ka, kb)

(x,y) : (z,y) €Ll

We find the intersection has a unique solution for (x,y) exactly when the de-
terminant is non-zero and so, the lines have a unique solution when they are
not parallel. When the determinant is zero however, we can see that the lines
have (z,y) in common only if I = I’. We can therefore use the fact that distinct
parallel lines have no intersection, and now need to show that for any line there
exists a unique parallel line which contain any point not on it.

23



To complete the proof of AGs, we must show that there exist, for every line [
and point (z,y) not in ! a unique parallel line I’ which contains the point:

|l <= ar+by=c
' <= ar+by="<c

() ¢ L(ey) el e {0 TWTITC
ar +by =

= ' < [a,,]

We can see here that there exists a unique parallel line I’, which contains the
point (z,y) and has no points in common with .

Finally, to prove AG3 we can pick the three points (0,0), (1,0), (0,1) these
points will always exist as 0 and 1 are included in all fields:

l <= ax+by=c

ad+b0=c
(0,0),(1,0),(0,1) €l <= <al+b0=c
ad+bl=c

0=c

= {a=c

b=c

= | < [0,0,0]

This is not a valid solution for a line, so these three points are not on a line. This
concludes the proof as all axioms of affine planes hold for this construction. [
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We have now defined a general method of construction of an affine plane
over a field, this affine plane can then be extended to a projective plane. We
have found as a result that there exist planes for all prime power orders, as there
exist finite fields for all prime power orders.

The affine plane is extended to a projective plane as defined in theorem 2.6: a
new line with n+1 points is added, each point is added to every line in one of the
parallel families. The way this can be done is quite arbitrary, one simple way is
to add a line containing the points (0), (1), ..., (n), (c0). The point (k) is added
to the parallel family with slope «, that is to say {az + by = ¢ : ab™! = a}.
The point (o0) is added to the family with “infinite” slope where x is constant,

{ax = c}.

We can also extend the affine plane in a way that connects to the projective
nature of the plane, we view the affine plane as a plane, 7 in F3 disjoint from
the origin. We view the points and lines as the projection of one- and two-
dimensional subspaces through the origin onto the m. To extend the affine
plane to the projective plane we add points and a line at infinity, these are the
one- and two-dimensional subspaces through the origin parallel to 7. Picking
m <= z = 1 we can see that the equation for a line and plane through the
origin in F? reduces to that of lines and points which we defined:

ax+by+cz=0 <Z—i1>ax+by+c:0

z=1

(z,y,2) &= (z,9,1)

The line at infinity is then defined as z = 0 and points at infinity as the unique
one-dimensional subspaces obtained from k(z,y,0).
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Using this extension in a vector space means that we can create a represen-
tation of the plane in F3. For the smaller planes, this can give a good visual
intuition of the relation between the affine, and projective plane and for finite
projective planes as a whole. To this end we create such a representation of
P(3) where each parallel family of lines in A(3) has been assigned a color to
make them distinguishable:

Figure 6: P(3) in F?

Here we can see the affine plane at z = 1 and the line at infinity at z = 0.
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While it can be difficult to connect the intuition of adding points at infinity
to families of parallel lines in the affine plane to the graphs, as the lines which
are parallel sometimes cross each other. This is due to the modular arithmetic
of fields, this means a line loops back to y = k when it reaches y = np+ k. Here
it is useful to instead imagine the affine plane as Fg tiled indefinitely, here we
let the line go to y = k of the next tile instead of looping back. When viewing
A(3) like this we can see that parallel lines all have the same slope, and never
Cross:
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We can now use this method of extending affine planes to create the finite
projective planes for the next two orders, n = 4,5 and for all prime power orders
n = p¥. Starting by picking the next prime, we will try to construct the plane
of order 5 over the vector space F2:

Figure 8: P(5)



We will now create the plane for the first prime power p* where k > 1, once
again we can obtain this plane by construction over the vector space F3. This
case however differs somewhat from the previous cases where the orders are p,
as these planes are the integers with multiplication and addition modulo p. For
the prime power fields, the elements are polynomials with multiplication and
addition modulo some irreducible polynomial of order %k over IF,. Picking the
polynomial X2 + X + 1 over Fy and defining “a” as a root of this polynomial
in Fy4 yields the following multiplication:

X 0 1 a a+1
0 0 0 0 0
1 0 1 a a+1
a 0 a a+1 1
a+1]|0 | a+l 1 a

We then use this operation in the vector space, with the scalar field Fy =
{0,1,a,a + 1} to create the projective plane of order 4. In the graph we let
a + 1 be denoted by b in order to save space, constructing the plane using this
we obtain:

Figure 9: P(4)
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2.3 Isomorphic planes

We have now constructed finite projective planes for a few orders and found an
infinite class of planes. So we now have a basis to explore the algebraic structures
of these planes. To begin studying these structures, we will define “incidence
preserving maps” of geometries. These serve as useful tools for generalising the
structures of planes.

We let a geometry of points and lines V' be defined by a triple V = (P, L, 7).
Here P is the set of points of V', £ the lines and we have that the (p,l) € Z,
for p € P, | € L if the point p lies on the line [ and. We call this relationship
(p,1) € T “incidence”, where 7 is the set of incidences of points and lines.

Welet V = (P,L,Z), and W = (P*, L*,T*) be two such sets of points and lines,
we are interested in finding mappings ¢ : V' — W which preserve the structure
of V.

Such a mapping ¢, which preserves structure can be defined as a mapping where
the following relation holds:

2,1) €T = (¢(p), o)) € ¢(T)

We can now define some properties which determine different types of such a
mapping ¢ defined by Dembowski, P.[2,p. 8].

¢:P =P L—LF (1)

p: X 5P Y 5 L = (X)) =P, oY) =L (2)
P 1) el = (o' (p"), ¢ (") € o~ 1(T) (3)
¢V oV (4)

For such a mapping ¢, we can classify it based on which of the relations
(1),(2),(3), (4) hold. A mapping ¢, fulfilling (1) is a “Homomorphism”, a map-
ping fulfilling (1), (3) is an “Epimorphism”, a homomorphism where the image of
P, L under ¢ is equal to P*, L* respectively. A one-to-one mapping ¢ fulfilling
(1),(2),(3) is an “Isomorphism”, a one-to-one epimorphism, which preserves
structure under inversion. An isomorphisms which fulfills (4), mapping V' to
itself, is an “Automorphism”.
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From these mappings we can find useful ways of classifying and relating dif-
ferent finite projective planes. We can say that two planes V, W are isomorphic
if there exists an isomorphism between them, this means that the incidences of
the primitive elements of the planes are structurally identical.

This a vital tool for answering several important questions regarding these
planes. Isomorphisms can be used to determine whether the field planes we’'ve
created uniquely determine the projective plane of their respective order. We
can see that a geometry failing to satisfy the axioms of a projective plane, means
also that any isomorphic geometries also fail. This can be used when searching
for finite projective planes as only structurally distinct geometries have to be
searched.

3 Existence of planes of order n

One of the most important questions regarding finite projective planes is that of
the existence of planes of order n. This question has been alluded to throughout
this thesis, and will be explored more thoroughly in this section. One of the
most important tasks of this thesis, was creating a program which can find
any plane of any order. The section will thus be concluded with a section
on a computer search undertaken in order to determine the uniqueness of the
solutions that we have already found using fields, and to determine the existence
and non-existence of a non-prime plane.

There is very little known about the existence of P(n) for an arbitrary order
n, so far we can only say with certainty that there exist planes for the orders
n = p*, k> 1 when p is a prime. This is due to the construction defined over
a field, since there exists a finite field for all prime power orders.
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3.1 The finite projective plane of order 6

The first order which is not included in the prime power planes is the plane of
order 6, P(6). This plane is therefore the first whose existence we are not able
to determine as of yet. This was an important open problem in finite geometry,
until it was showed by Raj Chandra Bose in 1938 that the existence of the
plane of order 6 implied the “thirty-six officers problem”. The thirty-six officers
problem is the combinatorial problem of arranging officers from six regiments
and six ranks, one officer of each rank from each regiment, in a 6 x 6-square
such that each column and each row contains exactly one officer of each rank,
and one from each regiment, this had been proven impossible and so P(6) must
not exist.

3.1.1 Orthogonal latin squares

This connection between the thirty-six officers problem and finite projective
planes is the equivalence of a P(n) to a set of n — 1 “orthogonal latin squares”.
These latin squares are n X n arrays of n symbols such that each row and each
column contains each symbol exactly once. Two latin squares are orthogonal if
each pair of symbols appear exactly once when superimposed, and a set of latin
squares is orthogonal if each square in the set is mutually orthogonal.

To illustrate, we’ll explore a solution to a hypothetical “nine officers problem”,
where one square is representing the red, green and blue regiments with the
colors {R,, B} and the other representing ranks with the numbers {1,2,3}.
This gives a solution to the problem, where the nine officers are represented
with a rank and a regiment in the third square created by superimposing the
first two.

1 2 3| |R B 1 3
2 3 1{|B R = |2 3
3 1 2 B R 1 2
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Having defined the latin square, we can move on to showing the connection
between the squares and the finite projective plane.

Theorem 3.1[Hall, M. (1,p. 177)]: Each projective plane is equivalent
to a set of n — 1 orthogonal latin squares.

Proof. To show the connection between the latin squares and the finite projec-
tive plane, it is useful to recall the affine form of a finite projective plane and
the extension of the n + 1 parallel families of an affine plane to the projective
one. Here we pick two families which are denoted as F., F,, the other families
are denoted as Fy, Fy, ..., F,,_1. The families F, and F,. will essentially serve as
indices for the latin squares while each family Fj serves as a latin square. This
is accomplished by letting the entry in the i-th column and j-th row of a latin
square associated with the family Fj be £ if the intersection of the i-th line of
F, and j-th line of F, is on the &-th line of Fj.

Using the properties of affine planes we can show that this construction is equiv-
alent to an n — 1 set of orthogonal latin squares. Each line in a parallel family
of lines in an affine plane intersects each line in every other family exactly once,
furthermore each pair of points is contained in exactly one line. We can see
from this that for any given family, we can create a latin square as two points
on the same line £ in Fj will not be on the same line in either F,. or F;. and
therefore £ will never appear twice in a given column or line.

Let (£,n) be a pair from the latin squares created from these two families, if (£, n)
is found in multiple indices, then this would imply that the points represented
by those indices are all contained by both the &-th line of the first family and
the 7-th line of the second, which breaks the axioms of an affine plane. So we
have that any pair of squares constructed in this manner will be orthogonal.
Finally, since there are n 4 1 parallel families in total and two of these fill the
role of F, and F;., this leaves a total of n — 1 orthogonal latin squares.
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To show the converse we must show that a set of n — 1 orthogonal latin squares
satisfies the axioms of an affine plane. We first define two indexing families of
parallel lines, F,. and F;., we let the index ¢j in the latin squares define the point
at the intersection of the i-th line of F,. and j-th line F;.. Each latin square then
represents a family of parallel lines, where an £ in the k-th latin square indicates
that the point at this index is on the &-th line of Fj.

To show AG;, we must then show that there is a line from the point at the
index ij to any other index ¢5*. We begin by denoting the entry at ¢j in each
family by &, the two points being on the same line would mean that the entry at
17* also is £&. We recall that each symbol must be in each row and each column
exactly once, and also that squares must not have duplicate pairs of symbols
when superimposed. This means that if the two indices lie on the same row or
column, then none of the squares can have &£ at both indices these two points
would then be on one of the lines of I, of F,.. If the indices are not on the same
row or column however, we see that there are n — 1 possible indices to enter ¢ in
the ¢*-th column. This means that exactly one square must have £ at the index
17" since there are n — 1 squares in total, and none of the squares can have £ at
the same index, this means that there is exactly one line between two points.

To show AGs2, we simply observe that each point is contained by exactly one
line in a parallel family, since each index in a square has exactly one entry. We
also have the for the squares to be orthogonal, a line must intersect each line in
every other parallel family exactly once. This means that for a line and a point
not on it, there exists exactly one parallel line which contains the point.

Finally, to show AG35 we can pick the points at the indices (1,1), (1,2) and (2,1),
these indices cannot all contain the same symbol, as each row and each column
must contain each symbol exactly once. O

This result is a powerful tool for determining the existence of finite pro-
jective planes. The equivalence of a projective plane to a set of mutually or-
thogonal latin squares enables the use of results on latin squares to be used
when constructing projective planes. While also providing a natural setting for
algorithmic construction of projective planes.
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We can use orthogonal latin squares together with isomorphisms to provide a
simple generalisation of the structure of a set of orthogonal latin squares and
s0, also the structure of finite projective planes. This general form of a set of
orthogonal latin squares is know as the “standard form” of such a set:

Theorem 3.2[Hall, M. (1,p. 178)]:

1. Applying a row or column permutation on each square in a set of orthog-
onal latin squares yields an isomorphic set of orthogonal latin squares.

2. Replacing the k symbols of any square in a set of orthogonal latin squares
with & new symbols yields an isomorphic set of orthogonal latin squares.

3. Any set of k orthogonal latin squares is isomorphic to a set of orthogo-
nal latin squares in standard form: where the first row of each square is
{1,2,...,k} and the first column of exactly one square is {1,2,...,k}.

Proof. We can begin by observing that the ordered pairs of of elements created
by the i-th and j-th column or row of each square in a set of orthogonal latin
squares remain unchanged. This gives that the mappings 7. and 7. defined by
wii— 4, j =i, k—k, k#1,j are isomorphisms, using composition this can
be extended to any permutation of rows or columns applied to each square in
the set.

Similarly, the pairs of any two latin squares A and B when superimposed can
be given by:
{(ai,bj) a; € Ck,bj c ﬂ}

This will be the cartesian product of the sets of symbols of the two squares, A
and B when the squares are orthogonal. Mapping the symbols

a; — al, a; € o, af € o gives the that the latin squares A* and B yield the pairs
{(af,b;) : af € o*,b; € 5} when superimposed, this set is the cartesian product
of a* and 8 exactly when A and B are orthogonal. So this mapping preserves
the orthogonality, and these two sets of latin squares are also isomorphic as the
mapping a; — a; is an isomorphism.

Finally, the third statement is simply a matter of combining the first two. Using
the fact that we can replace the symbols of any square in the set independently
of the other, we can pick a mapping of the symbols of each square such that the
first row is mapped to {1,2,...,k}. Then we pick one of the squares to which
we will apply a permutation to the 2, ..., k-th rows of this square such that the
row with 7 as it’s first symbol is permuted to the j-th row. This is only possible
to do for one square as any other square containing j as the entry in the first
column and the j-th row would mean that the set of squares would have the
pair (j,7) multiple times. O
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we can now illustrate the construction of an affine plane using latin squares.
For n = 3 construct a set of 2, 3 x 3 orthogonal latin squares, to construct a
plane from these we define the lines of F. and F.

We can for instance, define F;. and F,. as follows:
F. = {{p1,p2,p3},{pa,p5,p6}, {P7,ps, po}}

Fc = {{p17p47p7}5 {p2ap5ap8}7 {p37p67p9}}

The lines of Fy and F» are then defined by the two latin squares, where ;; is
the j-th line of the i-th family:

N W W N =
W = N[~ W N
N WD =W

Figure 10: P(3) from latin squares
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3.1.2 Computer search for plane of order n =6

We can now use these results to construct any plane without using a field. By
iterating through every possible configuration of n — 1 orthogonal latin squares,
we can determine the existence and uniqueness of any plane. This means that
constructing a set of 5 6 x 6 latin squares would mean proving the existence
of the plane of order 6, while showing the impossibility of this proves it’s non-
existence.

For small planes it is not very difficult, however as the order increases this
quickly becomes unfeasible as the number of possible configurations becomes
very large. To overcome this we must reduce the number of cases by excluding
configurations without loss of generality, this can be achieved by excluding only
configurations which are isomorphic to some configuration still included in the
search.

The first method of managing the number of cases is by putting the latin squares
in to standard form. The second method is by utilising a search algorithm which
extends the partially completed configuration in steps. The search extends the
partial solution either until completed or until it is conclusively impossible to
complete to a full set of orthogonal latin squares, at which point any configura-
tion which could be extended from this one can be disregarded.

The method used for the computer search for finite projective planes in this the-
ses is a recursive search algorithm, which ranges over all possible configurations.
The algorithm will be briefly outlined here:

The algorithm first checks whether an exit condition is true, whether the algo-
rithm has been able complete all squares. If this condition is true, the algorithm
appends this solution to a list of solutions. If the exit condition is not true, then
the solution is complete, the algorithm then checks and saves all the pairs that
were added by the previous step in the algorithm, then searches the possible
columns which can be added. The method used for determining which columns
can be used is only allowing columns which do not break latinity of the square
or orthogonality of the set of squares. The algorithm will then call itself recur-
sively for each possible column, and then removes the column and pairs added
by it’s children and finally ends the function call. The algorithm is written in
python using the numpy library, the code for the algorithm is included in the
appendix.
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Starting out with the smaller planes in order to determine the uniqueness of
the solutions for n = 2,3,4,5, we get that the solutions for n = 2,3 are unique
trivially as there exists only one set of orthogonal latin squares in standard form
for these orders. For n = 4,5 there exist multiple solutions, however using the
operations which leave the squares structurally identical: permuting rows and
columns of all squares, changing the symbols of any square we can determine
that all solutions are isomorphic.

Finding all solutions for the orders n = 2,3,4,5 was done in less than a second
each. Moving on to n = 6, however the computer search took roughly 1300
seconds, or roughly 21 minutes and 40 seconds. The search yielded no solutions,
which means that it is impossible to construct a set of 5 6 x 6 orthogonal latin
squares, and so also impossible to construct a finite projective plane of order
6, the algorithm was not able to create even a single pair of orthogonal latin
squares. This means also that the problem of arranging the 36 officers has no
solution.

3.2 n=10

While there is very little that can be said in general about the existence of
finite projective planes, however there exists one such theorem, the Bruck-Ryser
theorem:

Theorem 3.3[Hall, M. (1,p. 175)]: A necessary condition for the exis-
tence of a finite projective plane of order n is that for n = 1,2(mod 4), then n
is the sum of two squares.

This rules out an infinite set of orders, however also leaves an infinite set
undetermined. This result rules out the order n = 6, which was proven by
computer search in the preceding section. The next possible order for a plane
is then n = 10 = 12 + 92, this order was only shown to be impossible in 1989,
after an intensive computer search by C. W. H. Lam, L. Thiel and S. Swiercz.

The next order n = 12 = 0(mod 4) is, as of writing, still undetermined.
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4 Applications

While finite projective planes have been mostly theoretical objects so far, it has
applications in several fields. It primarily finds use due to its unique combina-
torial and geometric propeties, one such application of finite projective planes,
and finite projective spaces in general is in the field of secret sharing. Secret
sharing refers to schemes where a secret is split into “shares” and distributed in
such a way that the secret can be reconstructed with a certain combination of
shares.

The value of such a scheme is easy to see, one can imagine for example a bank
manager. The bank manager carries the key which accesses the bank’s impor-
tant documents and capital, which are necessary for daily operations. However,
the manager often needs to leave the bank and is then faced with a troublesome
decision. The manager either shuts down operation at the bank or entrust one
of their employees with the key, which could lead to the key falling into the
wrong hands.

This underlines two common use cases for secret sharing: need for access which
is controlled but independent of the scheme creator and the need for distributing
risk. The bank manager could either mitigate or avoid this dilemma altogether
by using a secret sharing scheme. One such type of secret sharing scheme is the
(k,n)-threshold scheme where the secret is split into n shares, any k out of the
n shares can be used to reconstruct the secret.

Projective planes are well suited for implementation in secret sharing schemes
in many cases, this due both to their combinatorial and geometric structure. In
the case of the bank manager we can construct a threshold scheme where any
two participants can gain access, rather than just one. This would allow access
when the manager is away while not giving any one person unrestricted access,
reducing risk of misuse considerably.
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To create this (2,n)-threshold scheme which is outlined by Beutelspacher,
A. and Rosenbaum, U. [3,p. 236], we create the finite projective plane P(n).
In this plane we pick a line I,,, the public line which is released publicly, on I,
we pick a point S € [, as the secret. We then pick a line [j, the hidden line,
which intersects I, in S: I, N1, = s, any of the n points oy, ...,0, on ) apart
from S can then be used as a share. The secret, S can then be reconstructed
by determining [, using any two shares and then finding the intersection of [y,
and [,.

In

O’H_g/,/

Oit+2
S v

Oi+1
g,

-
-
-
-

Figure 11: A (2,n)-Threshold scheme

This secret sharing scheme lets the bank manager generate shares equal to any
prime power and then give one share to each person in some group of trusted
senior employees. This scheme, like any other security system is not impossible
to break, but rather serves to mitigate risk and make attacks too costly to
be worthwhile. To know the strength of this scheme we can determine the
likelihood of an attacker being able to guess the solution without any keys.
Since I, was released to the public, the attacker’s best strategy is to guess one
of the n + 1 points on I, this gives a n%rl chance at guessing S without any
shares. A desirable property of this scheme is that possessing only one share
gives no additional information regarding S

We can construct planes for any prime power, and we can therefore make guess-
ing the secret arbitrarily difficult by picking a large power of some prime. We
can for example pick n = 2¢, to make a scheme where the shares are easily
represented in binary, and pick the largest possible ¢ without making the shares
use too many bits.
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A Appendix

import time as time
import numpy as np

import itertools as it

F = np.arange(1,n+1,1,dtype = ’uint8’)

Cols = np.array(list (it.permutations(F, n—1)))
idnt = np.identity (n—1)
ColDict = {}
for i in range(n):
for j in range(n—1):

ColDict [(i+1,j4+1)] = np.invert(np.any((i+1)*idnt[j] == Cols, axis=1))

I = np.stack ((np. tile (F,(n,1)).transpose (). flat ,np.tile (F,(n))))
MOLS = np.vstack ((I,np.zeros ((n—1,n*%2),dtype = ’uint8’)))
MOLS[2: ,:n] = np. tile(F,(n—1,1))

MOLS[2 ,:][MOLS[1 ,:] = 1] = F

MOLS = MOLS. transpose ()

F2 = np.arange (n+1,dtype="uint8’)+1

pairldx = np.array(list (it.combinations(F2,2)))

checkMatrix = np.zeros ((int ((n*x(n+1))/2),n,n),dtype="uint8 ")

PairDict = {tuple(pairldx[i]): checkMatrix[i] for i in range(int ((n*(n+1))/2))}
PairDict [(1,2)][:,:] =1

for key in pairldx [np.any(pairldx = 1,axis = 1)]:
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PairDict [tuple(key )][0,:] =1

for key in pairldx[np.all (pairldx != 1,axis = 1)]:

Soln
idx1
def

def

def

PairDict [tuple (key )] [F-1,F-1] = 1

=
= np.array (np.meshgrid(F,0)). transpose ().reshape (n,2)—1
PairCheck (A,i,]):
PrevCols = (A[F[: —1]*n+F.reshape(—1,1)[j]—1,:i+1]).transpose()
a = np.take(PrevCols, idx1[:i+41,:], 0).transpose(0,2,1)[:—1]—1
for k,v in enumerate(a):

PairDict [(k+1,i+1)][v[:,0],v[:,1]] =1

return a

ColumnSearch (A,i,]):
PrevCols = (A[(F[: —1])*nt+F.reshape(—1,1)[j]—1,:1]). transpose ()
Bool = []
for k,v in enumerate(PrevCols):
a = np.take(PairDict [(k+1,i+1)],v—1,0)
Bool=Bool+[ColDict [(I[1]+1,1[0]+1)]
for T in np.array(np.where(a)).transpose ()]

return Cols[np.logical_and.reduce(Bool)]

Recursion (A,I,k,N):

if kK >=N:
Soln .append (np.copy(A[:,2:]). transpose ().reshape(n—1,n,n))
return

else:
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a = PairCheck(A,I[k,0],I[k,1])

v = ColumnSearch (A, I[k+1,0],I[k+1,1])

for i in wv:
A[(F[: —1])*n+F.reshape(—1,1)[T[k+1,1]] -1,I[k+1,0]] = i.transpose()
Recursion (A, I, k+1, N)

A[(F[: —1])*n+F.reshape (—1,1)[I[k+1,1]]—-1,I[k+1,0]] = 0

for K,v in enumerate(a):
PairDict [(K+1,I[k,0]4+1)][v[:,0],v[:,1]] = O

pass

RecursionIndex = np. fliplr (np.array (
np. meshgrid (F—1,F[1:])).reshape(2,n*x(n—1)).transpose())

N = RecursionIndex.shape[0] —1

start = time.time ()
Recursion (MOLS, RecursionIndex ,0,N)
Soln = np.array (Soln)
for i in range(len(Soln)):
print (Soln[i],”\n\n”)

print ('Time elapsed:’,time.time()—start)
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