
Knot Optimization with Recursive Partitioning in
Functional Data Analysis

Master Thesis in Statistics, 15 ECTS
STAN40, Spring 2021

Mattias Jönsson
Marcus Kleverman

Supervisor
Prof. Krzysztof Podgorski

Abstract
Functional Data Analysis (FDA) is a field that has been growing rapidly over the last few decades, with
much ongoing research and many recent publications. The focus for Functional Data Analysis is the study
of so called functional data, that is data that is assumed to have been generated from a true, underlying
function, where we can only observe a sequence of measurements.

We propose a method that can identify a suitable placement of knots purely based on the data, without any
predefined basis functions.

For functional data specifically, some recent research has been published where the authors introduce tree
based methods for knot placement. In this thesis we continue that research and investigate the method
further by fully following the regression tree paradigm with evaluation of different methods to avoid over-
fitting. Throughout this thesis we will call this method Knot Optimization with Recursive Partitioning
(KORP).

We have evaluated our method on both simulated data sets and on the MNIST handwriting data set and
compared both with uniform placement of knots and a genetic algorithm for identifying optimal placement
of knots.

Our conclusion from the study of the proposed method, is that the method works very well, both for simple
data sets and for functional data. It generally performs better than both Uniform placement and Genetic
Algorithms.

Contents
1 Introduction 1

2 Preliminaries 2
2.1 Splines and Knots . 2
2.2 Tree Based Method . 6
2.3 Genetic Algorithms . 7

3 Knot Optimization with Recursive Partitioning 9
3.1 Performing Recursive Splits . 10
3.2 Avoiding Excessively Deep Branches . 11
3.3 Identifying Optimal Split . 11
3.4 Algorithm for Recursive Splits . 13
3.5 Pruning the Tree . 13
3.6 Identifying suitable number of splits and placement of knots 14

4 Evaluation of Proposed Method 15
4.1 Evaluation by Simulation . 15
4.2 Evaluation on MNIST Handwriting Data . 18

5 Results 21
5.1 Simulation . 21
5.2 MNIST Handwriting Data . 26

6 Conclusions 33

References 34

Appendices 35

A Complete Results from Evaluation 35
A.1 All Full Trees . 35
A.2 All MSE plots . 36
A.3 All Reduced Trees . 37
A.4 All B-Spline plots . 38

B Particle Swarm Optimization 39

1 Introduction
Functional Data Analysis (FDA) is a field that has been growing rapidly over the last few decades, with
much ongoing research and many recent publications. It is considered to have been solidified as a proper
branch of statistics in the late 1990’s, although some of the techniques have been around for much longer
(e.g. functional principal component analysis) (Kokoszka and Reimherr, 2017).

The focus for Functional Data Analysis is the study of so called functional data, that is data that is assumed to
have been generated from a true, underlying function, where we can only observe a sequence of measurements.
This can for example be (Kokoszka and Reimherr, 2017, p.1):

• Concentration of a certain protein in the blood of a patient at a particular time - where we can measure
the level only a few times per year

• Strength of magnetic field at a certain location at a particular time of day - measured at a very small
interval

• Price for a particular stock at a particular time of day, again measured at for example hourly or minute
level

Within the field of Functional Data Analysis, it is therefore relevant to analyse data in order to understand
the underlying continuous functions. This can for example be approached for example by smoothing of
the observed curves. Although this often is achieved by using for example fourier transformations, another
common method is using so called splines. However, splines are dependent on placing so called knots at
particular points in the range of the curves, and how to identify some ideal placement of these knots is still
an open question within research.

The objective of this thesis is therefore to bring another piece of this puzzle, by the introduction and
validation of a new method for identifying the optimal placement of knots. We aim to compare this method
to both the ”naive” placement, i.e. uniform, and a more sophisticated method.

Our main focus in this thesis will be only on the knot placement and their implications for a very simple
curve fit. There are of course many other topics with FDA that would be interesting to study, for example
the implications on functional principal component analysis and curve smoothing, but we will not cover these
in this thesis.

1

2 Preliminaries
In this section we will present some of the fundamental topics and techniques that are encountered and used
in this thesis. As has been outlined in the introduction to this thesis, we are mainly focused on the area of
Functional Data Analysis, which is a field of statistics where data and observations appear in the form of
sequences or curves.

The most fundamental set of observations in this field would according to Kokoszka and Reimherr (2017,
p.1) be

Yn(xj,i) ∈ R, xj,i ∈ [X1, X2], i = 1, 2, . . . , n, j = 1, . . . , Jn (1)

This means that a set of n curves that are observed on a common interval [X1, X2]. These are assumed to
come from some smooth curve

{Yi(x) : x ∈ [X1, X2], i = 1, 2, . . . , n} (2)

The values Yi(x) exist at any point x, but are only observed at selected points xj,i, and of particular interest
is the shape of the observed curves - in essence used to make inferences about the true, unknown function.
One can note that perhaps a more common notation in functional data analysis is to use X(t) or Y (t).
However, the evaluation in this thesis is performed on datasets that are not recorded as observations over
time (but rather over some area) we will stick with this slightly more generic notation.

There is naturally much to say about this topic, but in the preliminaries of this thesis we will limit the focus
to the early stages in a typical functional data analysis process.

2.1 Splines and Knots
The use of splines in mathematics is often said to have been introduced around mid 1900´s by Schoenberg
(1946), and the term comes from pieces of long, flexible strips of material that was fixed in position at a
number of points (”knots”) along the strip. These devices were called splines and often used by for example
ship builders to draw smooth curves, by using the strip’s tension that was generated by these knots.

This idea is replicated well in mathematics, and is used as an interpolation and/or smoothing method. In
this chapter we will highlight some of fundamental aspects of splines and their theoretical foundation.

2.1.1 Piecewise linear functions

To introduce the fundamentals of splines, we will initially outline general interpolation with polynomials of
varying degree. A piecewise constant function would in this context be the most basic representation, and we
will return to this briefly in section 2.1.4. Introducing additional degrees, we get a piecewise linear function.
To perform interpolation we have some general interpolating function

y = g(x). (3)

The interpolating function consists of piecewise linear functions

g(x) = gi(x), xi ≤ x ≤ xi+1 (4)

with a given arbitrary set of points on (x0, y0), (x1, y1), . . . , (xn, yn).

For a piecewise linear interpolation as seen in Figure 1, function 3 is continuous although the derivative of
the function is not. To determine these piecewise linear gi functions, let us look at a basic linear function 5.
Here ai is the slope and bi is a constant.

2

Figure 1: Example of piecewise linear functions

gi(x) = ai(x− xi) + bi (5)

We know the value of gi(xi). Since gi has to go through the points as shown in the example in Figure 1,
then gi(xi) = yi. By the same principle we get that gi(xi+1) = yi+1. This gives the two constraints

{
gi(xi) = yi

gi(xi+1) = yi+1.
(6)

To solve for bi in equation 5 we plug in xi which together with the constraints 6 gives

bi = yi (7)

and solving for ai which is just the slope gives

ai =
yi+1 − yi
xi+1 − xi

. (8)

2.1.2 Piecewise cubic functions

While X is one-dimensional, we can obtain a piecewise polynomial function f(X) by dividing the domain of
X into contiguous intervals and represent f by a separate polynomial in each interval.

3

Figure 2: Example of piecewise cubic functions

gi(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di (9)

With n + 1 points we get n of these piecewise cubic polynomials as demonstrated in Figure 2. With 4
coefficients for each piecewise cubic polynomial we get 4n coefficients for this problem. To determine these
4n unknown coefficients we need 4n constraints. We have

• gi = xi (n constraints),

• gi+1 = xi+1 (n constraints),

• g′i(xi+1) = g′xi+1
(xi+1) (n-1 constraints),

• g′′i (xi+1) = g′′xi+1
(xi+1) (n-1 constraints),

which leaves us with 4n − 2 constraints. The remaining 2 constraints can be solved with a system of
equations which we will not go into detail in this thesis. For more details regarding the specifics of this topic,
we recommend Boor (1978).

2.1.3 Basis expansions

A linear function is often a convenient approximation of the relationship of the data that one tries to model.
It is quite easy to model and interpret although it is rarely that the true function f(X) is linear. When
moving beyond the linearity of piecewise functions we make use of what is called basis expansions. The main
idea is to transform the original variables X into additional variables and then use linear models in these
new input features.

Denote by hm(X) : Rp −→ R the mth transformation of X, m = 1, . . . ,M . With this approach, once the
basis functions hm has been determined, the models are linear in these new variables and the relationship
between X and Y can be modeled with

f(X) =

M∑
m=1

βmhm(X). (10)

as a linear basis expansion in X.

4

A more in depth explanation of basis expansion can be found in Hastie, Tibshirani, and Friedman (2001).

2.1.4 B-splines

B-splines is short for basis splines. A spline function of order m is a piecewise polynomial of degree m− 1 in
a variable x. These piecewise polynomials meet at certain intervals known as knots. These knots are sections
of the range that x spans and can be uniformly (equidistant) placed or by some other function depending
on desired result or distribution of x. For a more in depth review of the theory described in this section, the
reader is referred to Hastie, Tibshirani, and Friedman (2001) and Boor (1978).

Assume we have a number of internal knots ξ1, . . . , ξK . Add two boundary knots, ξ0 and ξK+1 where ξ0 < ξ1
and ξK < ξK+1. These boundary knots defines the domain over which we wish to evaluate our spline.

For an order m spline, add m− 1 extra knots at each of the boundary knots. The values of these additional
knots can be arbitrary but common practice is to make them the same value as the boundary knots. This can
also be expressed as knot multiplicity, as described by Boor (1978), where the boundary knots are repeated
M times which gives a total of K + 2M knots. Denote this knot vector by τi, i = 1, . . . ,K + 2M which is a
non-decreasing sequence of real numbers. Denote by Bi,m(x) the ith B-spline basis function of order m for
the knot sequence τ with m ≤M where i = 1, . . . ,K + 2M −m.

If a knot in a sequence τ is duplicated and a B-spline sequence is generated as previously specified, the basis
spans the space of the piecewise polynomials with one less continuous derivative at the duplicated knot. This
is why the boundary knots are repeated M times which results in the splines becoming discontinuous and
undefined beyond these points.

As described in Hastie, Tibshirani, and Friedman (2001), these are defined recursively in terms of divided
differences as follows for a piecewise constant where m = 1, i.e, of degree 0. We have

Bi,1(x) =

{
1, if τi ≤ X < τi+1

0, otherwise
(11)

for i = 1, . . . ,K + 2M − 1 basis functions. These are also known as Haar basis functions, but we will not
cover these in further detail in this thesis.

With higher order of smoothness, we furthermore have

Bi,m(x) =
x− τi

τi+m−1 − τi
Bi,m−1(x) +

τi+m − x
τi+m − τi+1

Bi+1,m−1(x) (12)

for i = 1, . . . ,K + 2M −m basis functions.

For a cubic B-spline basis function we will have m = 4 which will result in Bi,4, i = 1, . . . ,K + 4 for the
specified knot sequence. The recursion specified in equation 12 will generate the B-spline basis for any order
spline.

From the definition in equation 11 and 12 we can deduce that the B-spline Bi,m(x) depends only on the
elements τi, . . . , τi+m in the knot vector τ . It is also positive within these elements and zero otherwise. This
is visualized in Figure 4 with B-splines of order m = 1, . . . , 4.

5

B0,m=4

B0,m=3 B1,m=3

B0,m=2 B1,m=2 B2,m=2

B0,m=1 B1,m=1 B2,m=1 B3,m=1

Figure 3: DeBoor Figure 4: B-spline Basis Functions of orders 1 to 4

Equation 11 acts as a base case or switch function and as noted can take the value 0 or 1. The basis
functions can be written as a triangular scheme which is visualized in Figure 3 where the top level B0,m=4 is
the product of all underlying levels. This is an important property of the recursion formula where division
and multiplication by 0 is avoided and thus improves the computational cost.

2.2 Tree Based Method
Several authors, for example Hastie, Tibshirani, and Friedman (2001) and James et al. (2013) presents
comprehensive introductions to tree based methods for statistical learning, which is summarised briefly here.

Tree based methods for regression and classification are based on the idea is to segment the predictor space
into smaller partitions which are more isolated and thus more simple. These methods are available in many
different variants and with many extensions and applications, like Random Forests, Boosted Tree Ensembles,
etc.

The idea is that the predictor space is partitioned intoM distinct and non-overlapping regionsR1, R2, . . . , RM .
In each of these regions a constant ŷ will be our prediction estimate, which basically means that the entire
set of regions can be seen as a piecewise constant function. That means that we want to find the regions
that minimise the total prediction error

M∑
m=1

∑
i∈Rm

(yi − ŷRm
)2. (13)

For growing regression trees we recursively identify the best cutpoint s such that the resulting regions
R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj ≥ s} lead to the greatest reduction in RSS after a split, i.e.

∑
i: xi∈R1(m,s)

(yi − ŷR1
)2 +

∑
i: xi∈R2(m,s)

(yi − ŷR2
)2. (14)

Recursively performing these splits until nothing remain to split, will however means overfitting to the data.
For this reason, one can use a pruning method to reduce a too large (and overfit) tree, but also an early
stopping criterion that stops further partitioning based on some criteria.

6

Pruning can often be performed by calculating cost complexity metrics for each subtree, and eliminate
subtrees with too high metric value. One common cost complexity metric is for example calculated as

|T |∑
m=1

∑
xi∈Rm

(yi − ŷRm
)2 + α|T | (15)

where α is a penalty parameter and |T | denotes the number of terminal nodes in the tree. A suitable
parameter α is then identified either through cross validation or using a test/holdout data set.

2.3 Genetic Algorithms
In this section below, we will briefly introduce genetic algorithms - an optimization method (or perhaps
rather a family of methods) that has been evaluated in this thesis, mainly to be used as a reference for the
evaluation of the tree based method. The focus in this section will be to convey the main concepts and give
the reader a general understanding of the reasoning behind the family of genetic algorithms.

Genetic algorithms is a family of optimization methods inspired by the evolution in nature. The methods
try to capture principles like child inheritance from parents, overall survival of the fittest and random
introduction of mutations. The method is stochastic and is not using gradients, and could therefore be
suitable in cases where the underlying problem is either not differentiable, or where the function to optimize
is not very well behaved (Goldberg, 1989, p.2).

Furthermore, Goldberg (1989) presents a thorough and comprehensive detailing of the concepts and this
entire section is almost exclusively based on it. The main exception is the part with varying dimension, that
we will get into shortly.

An overview of the method is as follows:

Algorithm 1: Genetic Algorithm
Result: A set of individuals/genomes
Let f(x) be a function to minimize;
Let pop be a population of n individuals with a random set of xi, representing the individual’s genome
in generation gt=1;

Function GeneticAlgorithm()
1 Evaluate f(x) for each individual genome
2 Breed() generates a new set of individuals/genomes to form generation gt by

• Randomly selecting individuals from gt where the probability of selecting the individual is
proportional to f(x)

• Let two individuals create a new individual with a genome built up from different parts of its parents
genome

• Randomly alter the newly created individual to introduce some mutations
3 Repeat step 2 until convergence

The Breed() function exists in two slightly different versions in this thesis. Alternative 1 is when we have
the function

f(x) : Rp −→ R (16)

which is used in this thesis in a way, where both parts of Rp are included in the optimization, i.e. we let p
vary, and call this varying dimension. This is something that several authors have introduced, for example
Brie and Morignot (2005) and Pawar and Bichkar (2015).

7

Alternative 2 is instead used when the dimension is fixed, and we have the discrete case of

f(x) : A ∈ {0, 1}d −→ R. (17)

To go through some of these points in a little more detail, we can start with explaining the breeding method:

Let X1 be the genome for the first parent and X2 for the second.

Let Xij be the value of chromosome j for individual i

Let Φ be a vector of length max(|X1|, |X2|) of Bernoulli random values with a given probability p

If Varying Dimension-variant:

Let Pdrop be the probability that a chromosome in a genome is dropped.

Let Padd be the probability that a random chromosome is added to the genome.

Let Pmutate be the probability that a chromosome is mutated and Φm be a vector of length of the genome
of the offspring containing Bernoulli random values with the probability Pmutate

Let Xmutation be a vector of length of the genome of the offspring of random N(0,
∑

i

∑
j V ar[Xij]) if Xij

is continuous and random Bernoulli variables if Xij is discrete.

An offspring from two parents can then be calculated as

X ′
offspring = ΦX1 + |Φ− 1|X2. (18)

After an offspring is bred, we may want to be able to vary the number of dimensions used. Therefore, in
this case a random number U(0, 1) is generated and if U(0, 1) < Pdrop one of the available chromosomes are
dropped. The same procedure is repeated for potentially adding a dimension.

The final offspring in the varying dimension configuration is then

Xoffspring = X ′
offspringΦmXmutation. (19)

8

3 Knot Optimization with Recursive Partitioning
Previous research on general knot placement in splines (not specifically for functional data) has proposed
methods for knot placement by for example using a Reversible-jump Markov Chain Monte Carlo algorithm
(see Green (1995) for RJMCMC in general and Dimatteo, Genovese, and Kass (2001) for an application
on fitting splines through knot placement). However, as far as we can tell, most research here has focused
on the case where the choice of basis functions is already defined up front and known for the optimization
algorithm. We want to instead propose a method that can identify a suitable placement of knots purely
based on the data, without any predefined basis functions.

For functional data specifically, some recent research has been published (for example Basna, Nassar, and
Podgorski (2021) and Nassar and Podgórski (2021)), where the authors introduce tree based methods for knot
placement. In this thesis we continue that research and investigate the method further by fully following
the regression tree paradigm, including for example evaluation of different methods to avoid overfitting.
Throughout the thesis we will call this method Knot Optimization with Recursive Partitioning (KORP).

One of the first things to mention regarding our proposed additions to the method, is that we make a clear
distinction between a split point in the tree based method, and the subsequent knot placement. This is
something that Basna, Nassar, and Podgorski (2021) and Nassar and Podgórski (2021) does not do, and
we assume that it is done at least partly due to properties of Splinets. However, in our work we utilize
B-splines which are not orthogonal, and therefore potentially have slightly different implications on spline
fit. However, we believe that knot placement with our proposed method enhancements could be beneficial
also for Splinets.

Figure 5: Difference in Knot Placement vs Tree Split Points

We also believe that the distinction between split point and knot placement is highly relevant, especially in
a function data analysis context. One can show the importance of this in a simple example: say we have a
simple sine curve without any randomness, and we try to fit a piecewise constant over a given range using
a tree based method. The split points from a very small tree with for example three split points, would be
placed approximately as the green points are in figure 5. The green line then represents a B-spline fit using
those three split points as knots, and as one can see, the fit is certainly not very good. Our goal is instead to
be closer to red knots in the same figure, where only two knots are needed to very accurately fit the curve.

9

Of course, in reality with more complex data sets, it is going to be more difficult to find some globally optimal
knot placement, and it may not even be necessary in functional data analysis, since there are usually many
other analysis techniques that follows the spline fits. However, we argue that fewer knots are generally better,
and that we at least want the most reasonable knot placement that can easily be identified. In the case of
knots being placed only at split points, to be able to achieve a decent fit in this toy example, it would require
more than twice as many knots. There is more to say on this topic, and we will have the opportunity to
return to this later in the thesis, for example in section 5.1.3.

Performing recursive splitting until each leaf contains a single data point, means a ”complete” tree that likely
to generalize very poorly to other samples (i.e. the full tree will have overfit to the data). On this topic,
we also introduce a novel method to allow seemingly low value splits early in the tree while still avoiding
unnecessarily complex branches in the tree. This we will go into more details in section 3.2.

Furthermore, we use only a training subset of the full dataset to fit the tree, and use another subset of data
for validation (a test set). Evaluation is done using Mean Squared Error, performed for both training and
test set, which can be used to choose a reasonable number of split points based on the MSE profile over the
number of splits. Given the number and individual splits, knots can be placed relative to these points.

Our proposed method can be outlined as follows on a set of observations with with two components, say x
and y, or in the case of functional data xi and yi (where i is the ith sequential measurement in an observation):

1. Perform recursive two-way splits, each one at the best location (details follows
below), until a node contains too few observations.

2. For all individual splits identified in step 1, evaluate the increase in total mean
squared error associated with the removal of the split and store the reduced
model.

3. Repeat 2 using the reduced model, until no splits remain (i.e. the model is a
constant)

4. For every model stored as part of step 2, calculate the overall total mean squared
error for y and plot.

5. Evaluate the plot and look for a significant ”elbow” in the curve, which can be
seen as a suitable number of split points.

6. Given the identified number and placement of split points, place knots based on
these. The knots are placed exactly at the midpoint between two splits.

3.1 Performing Recursive Splits
Recursive splits will be performed on a dataset with n functional observations to identify M distinct and
non-overlapping regions R1, R2, . . . , RM . As outlined in section 2.2, in each of these regions y is estimated
with a constant ŷ, that is

ŷ(x) =

M∑
m=1

cmI(x ∈ Rm). (20)

The piecewise constant can as Basna, Nassar, and Podgorski (2021) and Nassar and Podgórski (2021) points
out, also be seen as a spline of degree 0 (i.e. order 1). Here, the cm constant per region Rm is simply
calculated by the average across the region and across all observations. That is

cm =
1

n

n∑
i=1

1

nRm

RmU∑
j=RmL

(yi(xj)) (21)

10

where RmL
is the index of x that that is the lower bound of Rm, RmU

is the upper bound, and nRm is the
total number of the functional observations measurements in x that are in the region Rm, i.e. RmU

−RmL
.

Looking at other authors, for example Kokoszka and Reimherr (2017, p.49), it seems reasonable to here
replace equation 13 with total mean squared error, calculated as

MSETotal =
1

n

n∑
i=1

∫
(yi(x)− ŷ(x))2dx =

1

n

n∑
i=1

J∑
j=1

(yi(xj)− ŷ(xj))2. (22)

For growing the tree we recursively identify the best split point s such that the resulting regions lead to the
greatest reduction in total mean squared error (MSETotal). Expressed as a function we have

g({R1, . . . , RM}, s) =
1

n

n∑
i=1

J∑
j=1

(yi(xj)− ŷ(xj))2 −
1

n

n∑
i=1

J∑
j=1

(yi(xj)− ŷ∗(xj))2 (23)

where ŷ∗(x) is the piecewise constant prediction when including the new split point s, for a new set of regions
R1, R2, . . . , RM , RM+1.

3.2 Avoiding Excessively Deep Branches
Including an excessive number of splits in the tree means that the algorithm has overfit to the data. Therefore
we want to limit the complexity, i.e. number of splits in the tree. Two common ways to do this are early
stopping and pruning. Since we want to visually evaluate the MSETotal decrease and look for an ”elbow” in
the curve, we will in this work focus on early stopping.

A very common way to do this early stopping is to use a threshold value for minimum MSETotal improvement
to perform a split. This is for example something that Basna, Nassar, and Podgorski (2021) proposes to
use in the DDK method. However, it is known that this may result in valuable splits being missed (Hastie,
Tibshirani, and Friedman, 2001, p. 308). Other options for avoiding complex trees, is to limit the number of
levels (Boehmke and Greenwell, 2019). However, seeing that trees may be very skewed, especially so when
applied to functional data, a single fixed limit to the number of levels for all branches, may be too inflexible.

Based on these ideas, we propose using a method of an adaptive penalty α, that we can use in the following
way. Again using total mean squared error (MSETotal), we have a value for this prior to a certain split, and
the value this would take if the split was performed (call this MSE∗

Total. We can then have a condition to
only perform the split if

MSE∗
Total

MSETotal
≤ (1− α)level

. (24)

Since this means the condition will be more and more restrictive as more splits are performed we have an
adaptive threshold, that results in a better possibility to allow some splits early in the tree with a small
MSETotal reduction, whereas the further we get in building the tree, the less likely we are to accept these
small MSETotal reductions. We believe this is a novel idea, and has in our experimentation proven to be a
very good way to reduce the amount of (unnecessary) computations, while still ensuring that early splits are
performed.

3.3 Identifying Optimal Split
In the description above, the function g({R1, . . . , RM}, s) calculates the decrease in MSETotal at a certain
split point s, given an existing set of M split points. To go into more detail how this is applied in practice,
we have two different scenarios:

11

3.3.1 x is discrete or x is continuous with low cardinality

If x is discrete with values
x ∈ {x1, x2, . . . , xj} (25)

the possible split points are only

xsplit ∈ {
x1 + x2

2
,
x2 + x3

2
, . . . ,

xj−1 + xj
2

}. (26)

In this case g({R1, . . . , RM}, s) can be evaluated for each possible xsplit at each recursive split. Often,
functional data would likely fall in this category (Kokoszka and Reimherr, 2017, p.1)

3.3.2 x is continuous with high cardinality

If x ∈ {x1, x2, . . . , xj} is observed with large j, it may be computationally prohibitive to evaluate g(x) for
each possible xsplit at each recursive split. In that case, we could see minimizing g({R1, . . . , RM}, s) as an
optimization problem.

However, it is not a very straightforward optimization task. The function g({R1, . . . , RM}, s) is first of all
non-convex as is presented in Figure 6. As can also be noted in the same figure, the function is also not
smooth (seen most clearly around the lowest points in the troughs). That means that using the derivative
g′({R1, . . . , RM}, s) as in some quasi-Newton method, would most likely pose great challenges.

Figure 6: g(M, s) for the first split of a simulated dataset

Instead we have to look at other optimization methods, particularly ones that do not use gradients. In our
development of this method, we have evaluated several of these methods and have found most promising
results (computational efficiency and ability to find a global minimum) with an algorithm called Particle
Swarm Optimization (PSO), originally introduced by Kennedy and Eberhart (1995). Some amount of detail
about the PSO algorithm can be found in Appendix B, but we will not delve deeper into this subject, since
it is likely not a big issue with functional data.

12

3.4 Algorithm for Recursive Splits
Using the defintions of g({R1, . . . , RM}, s) and MSETotal from above, our proposed algorithm for performing
recursive splits of the data is presented in Algorithm 2:

Algorithm 2: Recursive Splits
Result: A recursive tree with split points in each node
Let α be a parameter that controls the penalty for stopping greedy search for split points.
Let nDataPts be a number of data points where splitting stops.
Level ←− 0
Function Split(x, y, level)

Let splitpt ←− argmaxs g(M, s)
Let lh.x ←− {x

∣∣ x < splitpt}
Let lh.y ←− {y(x)

∣∣ x < splitpt}
Let rh.x ←− {x

∣∣ x ≥ splitpt}
Let rh.y ←− {y(x)

∣∣ x ≥ splitpt}
if MSE∗

Total
MSETotal

≤ (1− α)level then
Let LH ←− null
Let RH ←− null
if nlh ≥ nDataPts then

Let LH ←− Split(lh.x, lh.y, level+1)
end
if nrh ≥ nDataPts then

Let RH ←− Split(rh.x, rh.y, level+1)
end
return {splitpt, LH, RH}

else
return null

end

3.5 Pruning the Tree
We are in this thesis mainly interested in the case of functional data (where we have a curve of measurements
over a range of x), with the purpose of knot placement. It is likely that the full tree identified in the previous
step, contains too many split points and would likely not generalise well to for example a test set. We
therefore propose that the full tree is pruned back to a smaller set of split points, by iteratively eliminating
the split point with the smallest impact of ŷ(x) until every split point has been excluded.

We can describe this as a function g∗(·), as

g∗({R1, . . . , RM}, s∗) =
1

n

n∑
i=1

J∑
j=1

(yi(xj)− ŷ(xj))2 −
1

n

n∑
i=1

J∑
j=1

(yi(xj)− ŷ†(xj))2 (27)

where ŷ†(xj) is the prediction constant of the tree, when the cut point s∗ has been removed. This function
is then iteratively used as

argmax
s∗

g∗({R1, . . . , RM}, s∗) (28)

in order to eliminate the least valuable split point s∗. To be very clear here, at this point any of the split
points used to build the tree can be removed, not only leaves.

13

3.6 Identifying suitable number of splits and placement of knots
Using the iteratively calculated values for g∗(·) from previous steps, we can plot the MSETotal over the
number of splits in the tree. In this we should find an ”elbow”, which gives a suitable number of splits. We
can however look at an example of how a B-spline fit improves as more knots are added. As can be seen in
Figure 7 (which is a variation on the plot presented later in Figure 19 in section 5.1.2), we get a good fit
of a B-spline already with reasonably few knots. This means one would probably want to opt for an early
”elbow”, rather than a later. However, this is in contrast with the context of functional data, where an
excessive number of knots is no a major issue, due to other methods following the spline fit.

Figure 7: MSE per number of splits, and MSE of B-spline fit with corresponding knots

Given the number of splits, we also need to decide where to place the knots in relation to the split points.
In this work, we evaluate both

• Knots at split points
i.e given a set S of M − 1 split points, we have knots at τi = Si.

• Knots centered between split points
i.e given a set S of M − 1 split points, we have knots at τi = Si−1+Si

2 .

14

4 Evaluation of Proposed Method
There is no obvious comparable benchmark to evaluate against. Instead we will evaluate our method with
two different approaches:

• Simulation
When evaluating against simulated data, we will use identified knot placements to fit splines to then
evaluate the goodness of fit. Evaluation will be done mainly with visual inspection of the spline
fit. Furthermore, although the goal is for this method to be applied in a functional data context,
the evaluation in this step will be of more fundamental nature. The generated datasets will be well
structured and simple to validate that the method works for the simple cases, before moving on to more
advanced situations. Therefore, the dataset generated can be seen as a single functional observation,
with a large number of measurements.

• MNIST Handwriting Data
To validate the method’s applicability in the main domain of interest, we will apply it to functional
data. We will use the method to represent a set of images of handwritten zeroes, using splines based
on the identified knots. We will also compare this fit with splines based on uniform knots.

In the development of the method and subsequent experimentation for evaluation, all code has been built in
R, using only basic, built-in functions.

4.1 Evaluation by Simulation
Evaluation on simulated data will be performed for a number of different datasets. Through this simulation,
we will generate a functional observation with 1000 measurements of y(x) to form a ”training” dataset, and
another observation with 100 measurements to act as a ”test” set. We will simulate the following:

4.1.1 Piecewise Constants

Our x will be random Unif(0, 1), and y will
be piecewise constant with the following
structure:

y = N (µ = 0.3, σ = 0.1) x ≤ 0.3

y = N (µ = 0.5, σ = 0.1) 0.3 < x ≤ 0.5

y = N (µ = 0.7, σ = 0.1) 0.5 < x ≤ 0.7

y = N (µ = 0.5, σ = 0.1) x > 0.7

(29)
The data is simulated, and one example is
seen in Figure 8.

Figure 8: Dataset - Piecewise Constant

15

4.1.2 Piecewise Linear

Our x will be random Unif(0, 1), and y will
be piecewise linear with the following struc-
ture:

y = 2x+ ϵ x ≤ 0.3

y = −0.5x+ 0.7 + ϵ 0.5 < x ≤ 0.7

y = 1.3x− 0.4 + ϵ x > 0.7

(30)
where ϵ ∼ N (µ = 0, σ = 0.1)

The data is simulated, and one example is
seen in Figure 9.

Figure 9: Dataset - Piecewise Linear

4.1.3 Piecewise Exponential

Our x will be random Unif(0, 1), and y will
be piecewise constant with the following
structure:{

y = e5x + ϵ x ≤ 0.5

y = e−5x+5 + ϵ x > 0.5
(31)

where ϵ ∼ N (µ = 0, σ = 1
2 + log y

2)

The data is simulated, and one example is
seen in Figure 10.

Figure 10: Dataset - Piecewise Exponential

16

4.1.4 Sine curve with constant frequency

Our x will be random Unif(0, 1), and y will
be sine wave with the following structure:

y = sin(20x) + ϵi (32)

where ϵi ∼ N (µ = 0, σ = 0.4)

The data is simulated, and one example is
seen in Figure 11.

Figure 11: Dataset - Sine wave

4.1.5 Two sequential sine curves with different frequencies

Our x will be random Unif(0, 1), and y will
be two combine sine waves with the follow-
ing structure:

{
y = sin(20x) + ϵi x ≤ 0.85

y = sin(50x) + ϵi x > 0.85
(33)

where ϵi ∼ N (µ = 0, σ = 0.4)

The data is simulated, and one example is
seen in Figure 12.

Figure 12: Dataset - 2 Sine Waves

4.1.6 Comparison with Uniform and Genetic Algorithms

We will also for one of these datasets, compare the tree method with Uniform knot placement, and knot
placement performed by a genetic algorithm.

In this part of the evaluation, the varying dimension variant will be used. This means that in the fitness
function (i.e. the function f(·) to optimize) has the following mapping

f : Rp −→ R (34)

and we let p represent the number of knots and the p dimensional real valued vector contains the knot
placements.

The specific f(·) used in this evaluation is almost equivalent to MSETotal presented earlier, but here, a
penalty term is included to avoid an excessive number of knots. The penalty term is simply based on the

17

number of knots. We have

f(·) =
1

n

n∑
i=1

J∑
j=1

(yi(xj)− ŷ(xj))2 + αk (35)

where n is the number of observations, k is the number of knots and α is a penalty factor. ŷ(x) is just
as before calculated as the total mean value for the region m, for all observation measurements and all
observations (see equations 20 and 21). Furthermore, in this thesis the penalty factor is manually chosen so
that the number of knots proposed by the genetic algorithm matches the number identified with the tree
based method, in order to evaluate only the actual placement.

4.2 Evaluation on MNIST Handwriting Data
To evaluate the method on functional data, we will apply it on the MNIST database (Modified National
Institute of Standards and Technology Database) of handwritten digits. This database contains 70.000
instances of handwritten digits, originally made available by LeCun et al. (1998). The images in the databases
are grayscale images, with a resolution of 28*28 pixels. Some examples of what these digits look like can be
seen in Figure 13. Furthermore, in this study we will only study the observations that represent zeroes in
the dataset.

Figure 13: MNIST Database Sample

Each observation consists of a 28 ∗ 28 matrix of pixel intensities in the range [0, 255]. However, in order to
make this feasible and suitable for our proposed method, we will transform the matrix from 28∗28 to 1∗784.
This will give us a one dimensional structure and an example of the curve representing an observation can
be seen in Figure 14.

Now, given the set of n observations (curves) y∗1(x), y∗2(x), ..., y∗n(x), where x denotes the pixel ordinal, we
will preprocess each 1 ∗ 784 observation by subtracting the mean.

18

Figure 14: MNIST - Three observations flattened and mean differenced

yi(x) = y∗i (x)− µ(x) (36)

Where the mean curve is

µ(x) =
1

n

n∑
i=1

y∗i (x) (37)

In essence, this gives us the result as is indicated in Figure 15. At the left, we have an example of a digit in
the dataset. In the middle, we have the average zero in the dataset overall, and to the right, one can see the
observation difference from the mean. Here, the positive differences are highlighted in green, and negative
differences are highlighted in red.

Figure 15: Mean ”Zero” and Difference between Observation 1

19

After the mean curve has been subtracted, we will fit the knot tree according to the proposed method, and
a reasonable number of knots will be selected. Finally, we will visualise the B-spline fits for a number of
observations, and also compare the difference in MSETotal between our method, a genetic algorithm and an
equal number of knots, placed uniformly over the range of [1, 784].

The genetic algorithm is here the discrete version and will be using a fitness function (i.e. the function f(·)
to optimize) with the following mapping

f : A ∈ {0, 1}784 −→ R (38)

where A ∈ {0, 1}784 contains a 1 if a knot is placed on this point in the range of x, and 0 if not. That means
we can use the same f(·) as in the continuous case, i.e. equation 35 since A ·

[
1 2 . . . 784

]
is going to

give us the set of split points needed to calculate cm according to equation 21. Again, the penalty term in
equation 35 is chosen to identify the same number of knots as is identified in the tree based method.

20

5 Results
5.1 Simulation
Going through every step in our proposed method of every simulated dataset will result in excessive detail
and much repetition. Instead, a complete listing of all plots for all simulated datasets are available in
Appendix A. In this section we will instead focus only on some of the most relevant findings. Relevant plots
will however still be included here, to make the reading of this section easier for the reader.

5.1.1 Building the Full Tree

When we first of all build the full trees, doing so without any penalty term for number of splits would
become very large with excessive splits. For this reason, each full tree has been fitted with suitably identified
penalties, that however still retain a reasonably large number of splits. The reason for the conservative
penalty, is to ensure that the rest of the method still is applicable.

We can now also visualise how the number of split points is affected by the value of the penalty, and we see
that even for low values of α we often get some reduction, see Figure 16

Figure 16: Number of Splits per Penalty value

As we can also see in Figure 16, the reduction in split points is relatively similar across the datasets. This
implies that it may be possible to have some suggested standard value of α that is suitable at least as a
starting point for the researcher. The penalty terms that have been used in fitting the full trees in this work
are presented in 1, and may give some hint towards a reasonable suggestion.

If we study some of the plots of the dataset with the predictions from each respective full tree, we can for
example in Figure 17, see that the full model tree produces many splits, but of course splits that follow the

21

Dataset Penalty
Piecewise Constant 0.001
Piecewise Linear 0.005
Double Exponential 0.001
Constant Sine 0.005
2 Sine Waves 0.005

Table 1: Penalties Applied in Full Tree

data very well. The many short red line segments in the plot indicate the piecewise constant function that
the full tree gives us.

Figure 17: Full Tree Predictions - 2 Sine Waves

In many areas of the plot, there are splits that are introduced that are overfitting to the data, but that is
what is expected in the full tree. This tendency to overfit, can be seen even more clearly in the full tree
predictions on the Piecewise Constant-dataset (see plot in Appendix A).

An interesting consequence of the structure of the dataset and how the tree is recursively split, is that when
the dataset is very symmetric or very sparse, the tree tends to become skewed. One can see that this is the
fact because a split in the middle of a symmetric dataset produces a ŷR1

≈ ŷR2
. The best split is more likely

to happen somewhere around either low or high values of x.

In Figure 18 we can see indications of this, where we in the piecewise linear tree, have a slightly more
symmetric tree with both Left Hand and Right Hand splits, whereas we in the sine wave tree more of a
tendency to place most of the remaining data in the Right Hand splits.

22

(a) Piecewise Linear Tree plot (b) Sine Tree Plot

Figure 18: Tree Plots

However, this result is not overly worrying. In our thesis, we are only really interested in the actual split
points themselves. The order in which they are looked at in the tree, actually does not matter much for the
current application.

5.1.2 Pruning the Tree

We continue by looking at the method for pruning the tree back to some smaller, less complex tree that is
likely to generalise better (and also generate better knot placements).

Using the procedure described in section 3.5, we can easily plot MSETotal over the number of split points. We
can also perform this same process for the test dataset, to include this in the same plot. Important to note
about the plot, is that the first point in the plot represents one constant value of ŷ, i.e. no split points. The
full set of plots, we see in Appendix A, but we can for example highlight the result in the piecewise/double
exponential (see Figure 19. Here we see somewhat of an elbow at around 10, but already at 4 we have a
decent change in reduction between k’s.

We also see in Figure 19 that the MSETotal for the test data is slightly increasing from its lowest value
somewhere just under 20. We are not very surprised about being increasing (after all, the model has overfit
to the training data) - we are however noting that the increase is only very minor. We assume that the
minor increase is based on the fact that the datasets are very simple with a clear structure.

It is also important to note that the actual predictions that the model makes, are of course based on the
available training data. However, these predictions are not necessarily entirely relevant or of interest to us,
since we are mainly interested in finding where to place knots. We are instead just interested in the fact
that the models makes a split at a certain point. However, also this can of course also overfit.

We can also briefly investigate the case of a constant sine wave, which can be seen in Figure 20. Here, we
have a smoother curve, and the ”elbow” is not as clear - or appears significantly later in the curve - in this
case, a reasonably clear elbow is seen at around k = 20. However, the magnitude of the decrease between

23

Figure 19: MSE Increase over k - Piecewise Exponential

k’s is significantly reduced at k = 7. Hence, a selection of either 6 or approximately 20 split points can seem
reasonable, but we recommend opting for the lower number in this case - particularly since we already know
that the dataset is quite ”well behaved”.

The selection of number of split points has been performed manually by visual inspection. A table of the
selected number of split points for each dataset follows in Table 2.

Number of Split Points
Piecewise Constant 3
Piecewise Linear 4
Piecewise/Double Exponential 4
Constant Sine 6
2 Sines with different frequencies 7

Table 2: Number of Knots in reduced model

5.1.3 Placing the Knots

Given that we have a suitable number of split points, we now move our attention to the placement of knots.
Here, one question could be if the knots should be placed precisely on the split points or exactly in the
middle. To visualise the impact of this choice, we can look at two different datasets (see Figure 21. Here we
have fitted a Knot Optimization with Recursive Partitioning model and reduced according to Section 5.1.2.
We then generate B-Splines on the data with the internal knots from the split points.

For both datasets, we see that when knots are placed at the split points (in plot (a) and (c)) we have a
poorer fit of the spline. In the sine wave dataset, this effect is considerably significant. Placing the knots in
the midpoints does mean we need to include an additional knot, but given the potential large difference in
fit, this is an acceptable tradeoff.

Another important finding relates to the optimality of the knot placement. We can visualise this by looking
at a B-Spline fit for the dataset with two sine waves (Figure 22). In this example, we have knot placements

24

Figure 20: MSE Decrease over k - Constant Sine Wave

identified at each minimum and maximum of y. Seeing that this was very suitable for a constant sine wave,
we would expect it would suit also the two sine waves dataset. However, although the knots are placed at
these points, we see that the fit towards the upper end of the function is not particularly good.

Instead, we need to increase the number of knots. However, since we through our proposed method can not
control which specific knots are added in first, we need to add enough knots to make sure additional ones
are included in the relevant range. In Figure 22b, we can for example see the fit with 13 knots instead of 8,
which looks considerably better.

This is however, not a significant problem for the method. Our purpose is to find knots for further Functional
Data Analysis, and as such we would actually want to be more generous with the number of knots anyway.

5.1.4 Comparing results with Genetic Algorithm

We have also run a genetic algorithm using the ”2 Sine Waves” dataset to understand the behavior of
this algorithm, in relation to the KORP method. The Genetic Algorithm variant run here, is the Varying
Dimension variant, since we are here trying to find both optimal knot placements and optimal number of
knots simultaneously.

As can be seen in Figure 23a, it is obvious that the methods give very similar results (with a Pearson
correlation of approximately 0.99 for the actual knot placements).

In Figure 23, we have regressed y on a B-spline fit for x, once per knot placement method. In the plot, we
look at the residuals from each observation, and we can immediately again note a very strong correlation
(R2 ≈ 0.92).

Given these results, and the fact that the Varying Dimension Genetic Algorithm takes considerable more
time to run, we see no clear benefits with using this instead of the KORP method. However, seeing that our
results are almost equal between the two methods, we can only conclude that it seems our proposed method
is actually providing reasonable results.

25

(a) Piecewise Constant - Knots at split points (b) Piecewise Constant - Knots between split points

(c) Sine Wave - Knots at split points (d) Sine Wave - Knots between split points

Figure 21: Different Knot Placements

5.2 MNIST Handwriting Data
As indicated in section 4.2, we will first of all perform mean curve subtraction, which is used for fitting the
Tree. However, we now need to visualise the tree slightly different to before, since we have many observations
that are entire curves. Plotting every curve in a single plot makes it very difficult to interpret the contents, so
in Figure 24 we have taken a random sample of 50 observations and plot these, and the predictions from the
full tree. As the reader can see, it is already with 50 observations quite hard to distinguish each curve from
the others. Also important to note is that we are of course only sampling 50 of the thousands of observations
available. Hence, we can probably not make too bold claims about the visual fit. One thing that can be
noted however, is that generally, the white ”bands” are usually not populated with any split points, which
at least gives some confidence that the method has produced relevant results. For the sections the range of
p where we do have lots of activity, we can note that it is quite hard to distinguish the splits. This is dues
to the fact that the full tree gives unique predictions for almost every p where something is happening in
the function.

26

(a) 8 Knots (b) 13 Knots

Figure 22: Excessive number of knots needed

(a) Correlation, Knots from Tree and Genetic Algorithm (b) Correlation, Residuals from BS Fits

Figure 23: Knots from GA and Tree methods

Figure 24: 50 observations, Difference from Mean Curve and Full Tree27

We can also have a brief look at the MSE plot in Figure 25. We see that it is tapering off significantly slower
than in the simulated datasets, probably because of the complexity of the data. Here, we may therefore
argue for a need to keep many split points in order to accurately represent the curves, perhaps as many as
200 or even more.

Figure 25: Reduction of MSE over number of knots

In order to get some insight into the appropriateness of the knot placements, we will visualise a series of
observations including B-spline fits for each. The B-spline fits will be using the knots identified through the
tree method in the previous step, but also a uniform placement of knots, where the number of uniform knots
is set to be equal to the number of tree knots.

28

Figure 26: 4 Observations with B-spline fits

In Figure 26, we see 4 observations with the corresponding Spline fits. Although not very clear from these
plots, partly because only 4 out of 5923 observations are plotted, and partly due to the very localized
variation in the data, we still consider the fit to visually be better for our knot placement method. We can
also see this far more clearly in Figure 27, where we present only a part of the range of p in order to more
clearly see the differences.

29

Figure 27: Part of Observations with B-spline fit

Finally, we will also have the opportunity to return to this question shortly, with a more quantitative method
to assess the performance.

5.2.1 Comparing with Genetic Algorithms

Using the binary genetic algorithm variant, we can generate a set of knot point proposals, and compare with
the knots proposed by the tree method. As can be seen in Figure 28, we have significant curvature. This
indicates that the genetic algorithm has placed the knots over a slightly larger area (i.e. more towards the
beginning and end of the range of x), whereas the Tree method focuses on placement in the center of the
range, where more things are happening.

30

Figure 28: Knots from Tree and GA

We can also also quantify the quality with MSE from B-Spline fit. We can for each observation calculate
MSEtree, MSEuniform and MSEGA and compare the differences, for example in a boxplot, as in Figure 29.

Figure 29: Boxplot of MSE of BSpline Fits

From the boxplot it looks like there is very little difference, but since we have quite large samples even a
small difference could be significant. A formal ANOVA test is formulated the following way. We test the
null hypothesis

H0 = µTree = µUnif = µGA (39)

31

versus the alternative hypothesis

H1 = Any of the means are not equal. (40)

Result of the test is presented in an ANOVA table as follows:

Df Sum Sq Mean Sq F value Pr(>F)
Method 2 1248830278.69 624415139.35 1696.69 0.0000
Residuals 17766 6538253309.84 368020.56

This shows that there is a significant difference (at well below p < 0.05) in means for at least one of the
methods, which means we can reject the null hypothesis. By also performing a Tukey HSD Post-Hoc test,
we can see that the Tree method seems to have the best performance overall, and significant results for each
comparison (all well below p < 0.05).

diff lwr upr p adj
Genetic Algorithm - Uniform -134.45 -160.58 -358.32 0.00

Tree method - Uniform -617.41 -643.54 -591.29 0.00
Tree method - Genetic Algorithm -482.97 -509.09 -456.84 0.00

Table 3: Tukey’s HSD Post-Hoc Test for residuals from three methods

32

6 Conclusions
In this thesis we have continued previous research on tree based methods for knot placement in functional
data, by fully following the regression tree paradigm. We have evaluated the method on both simulated
datasets and on the MNIST handwriting dataset and compared both with uniform placement of knots and
a genetic algorithm for identifying optimal placement of knots.

Our conclusion from the study of the proposed method, is that the method works very well, both for simple
datasets and for functional data. It generally performs better than both Uniform placement and Genetic
Algorithms. The former is along what one could reasonably expect, but the latter is at least a little more
surprising. The difference between the two is certainly not massive, but at this point large enough, at least for
functional data, to not motivate its usage directly. However, seeing that the research on Genetic Algorithms
is fairly extensive, there are likely many improvements that can be made to our simple approach in order to
achieve better results. It is most likely the case that with only some modifications, the Genetic Algorithms
can be on par with the proposed KORP method also for functional data.

However, the Genetic Algorithm has a big advantage. In this study we have had a principle of not introducing
any prior knowledge about the basis functions or splines in the knot proposal. If this principle is relaxed,
it is certainly something that could be easily incorporated into the Genetic Algorithm. That is, instead of
minimising some form of penalized MSE, we could minimise for example the sum of MSE of a B-Spline fit for
every functional observation. This could potentially be more accurate than our currently proposed method,
since recursively building the tree would not be able to do this, at least for B-Splines or other non-orthogonal
splines.

This is also similar to some previously identified methods on the knot placement subject, for example using
RJMCMC (Dimatteo, Genovese, and Kass, 2001). Therefore, a thorough evaluation and comparison between
using RJMCMC and the KORP method would certainly be relevant for further research.

33

References
[Sch46] I. J. Schoenberg. “CONTRIBUTIONS TO THE PROBLEMOF APPROXIMATIONOF EQUIDIS-

TANT DATA BY ANALYTIC FUNCTIONS: PART A.—ON THE PROBLEM OF SMOOTH-
ING OR GRADUATION. A FIRST CLASS OF ANALYTIC APPROXIMATION FORMU-
LAE”. In: Quarterly of Applied Mathematics 4.1 (1946), pp. 45–99. issn: 0033569X, 15524485.
url: http://www.jstor.org/stable/43633538.

[Boo78] Carl d. Boor. A Practical Guide to Splines. New York: Springer Verlag, 1978.
[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. New

York: Addison-Wesley, 1989.
[Gre95] Peter J. Green. “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model

Determination”. In: Biometrika 82.4 (1995), pp. 711–732. issn: 00063444. url: http://www.
jstor.org/stable/2337340.

[KE95] J. Kennedy and R. Eberhart. “Particle swarm optimization”. In: Proceedings of ICNN’95 - In-
ternational Conference on Neural Networks. Vol. 4. 1995, 1942–1948 vol.4. doi: 10.1109/ICNN.
1995.488968.

[LeC+98] Yann LeCun et al. “Gradient-based learning applied to document recognition”. English (US). In:
Proceedings of the Institute of Radio Engineers 86.11 (1998), pp. 2278–2323. issn: 0018-9219.
doi: 10.1109/5.726791.

[DGK01] Ilaria Dimatteo, Christopher Genovese, and Robert Kass. “Bayesian curve-fitting with free-knot
splines”. In: Biometrika 88 (Dec. 2001), pp. 1055–1071. doi: 10.1093/biomet/88.4.1055.

[HTF01] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. New York, NY, USA: Springer New York Inc., 2001.

[BM05] Alexandru Horia Brie and P. Morignot. “Genetic Planning Using Variable Length Chromosomes”.
In: ICAPS. 2005.

[Jam+13] Gareth James et al. An Introduction to Statistical Learning: with Applications in R. Springer,
2013. url: https://faculty.marshall.usc.edu/gareth-james/ISL/.

[PB15] Sunil Nilkanth Pawar and Rajankumar Sadashivrao Bichkar. “Genetic algorithm with variable
length chromosomes for network intrusion detection”. In: International Journal of Automation
and Computing 12.3 (2015), pp. 337–342. doi: 10.1007/s11633- 014- 0870- x. url: https:
//doi.org/10.1007/s11633-014-0870-x.

[KR17] P. Kokoszka and M. Reimherr. Introduction to Functional Data Analysis. Chapman & Hall /
CRC numerical analysis and scientific computing. CRC Press, 2017. isbn: 9781498746342. url:
https://books.google.se/books?id=HIxIvgAACAAJ.

[BG19] Brad Boehmke and Brandon Greenwell. Hands-On Machine Learning with R. Nov. 2019. isbn:
9780367816377. doi: 10.1201/9780367816377.

[BNP21] Rani Basna, Hiba Nassar, and Krzysztof Podgorski. “Machine Learning Assisted Orthonormal
Basis Selection for Functional Data Analysis”. In: (Mar. 2021).

[NP21] Hiba Nassar and Krzysztof Podgórski. “Empirically Driven Orthonormal Bases for Functional
Data Analysis”. In: Numerical Mathematics and Advanced Applications ENUMATH 2019. Ed. by
Fred J. Vermolen and Cornelis Vuik. Cham: Springer International Publishing, 2021, pp. 773–
783. isbn: 978-3-030-55874-1.

34

http://www.jstor.org/stable/43633538
http://www.jstor.org/stable/2337340
http://www.jstor.org/stable/2337340
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/5.726791
https://doi.org/10.1093/biomet/88.4.1055
https://faculty.marshall.usc.edu/gareth-james/ISL/
https://doi.org/10.1007/s11633-014-0870-x
https://doi.org/10.1007/s11633-014-0870-x
https://doi.org/10.1007/s11633-014-0870-x
https://books.google.se/books?id=HIxIvgAACAAJ
https://doi.org/10.1201/9780367816377

Appendices
A Complete Results from Evaluation
A.1 All Full Trees

(a) Piecewise Constant (b) Piecewise Linear

(c) Piecewise/Double Exponential (d) Constant Sine

(e) 2 Sines with different Frequencies

35

A.2 All MSE plots

(a) Piecewise Constant (b) Piecewise Linear

(c) Piecewise/Double Exponential (d) Constant Sine

(e) 2 Sines with different Frequencies

36

A.3 All Reduced Trees

(a) Piecewise Constant (b) Piecewise Linear

(c) Piecewise/Double Exponential (d) Constant Sine

(e) 2 Sines with different Frequencies

37

A.4 All B-Spline plots

(a) Piecewise Constant (b) Piecewise Linear

(c) Piecewise/Double Exponential (d) Constant Sine

(e) 2 Sines with different Frequencies

38

B Particle Swarm Optimization
Particle Swarm Optimization was originally a method developed to simulate social behaviour, but can also
be used for optimization purposes. Here, the process is outlines as follows:

Let f(x) be a function to minimize

• Initiate a swarm of n particles with a random set of xi, representing the particles’ position in the search
space.

• Initiate n random velocities for particles with a random set of vi, representing the particles’ velocity
in space.

• Evaluate f(x) for each individual genome

• Do until convergence:

– Update state of global best and each particle’s personal best

– Update the position and calculate new velocities

A first random initialization of particles and velocities could look as in Figure 34.

Figure 34: Particle Swarm Optimization - After Init

In the step above where positions and velocities are updated, the following calculations are performed:

39

Vit+1 = αVit + β(Xi −Xip.best) + γ(Xi −Xg.best)

where Xip.best and Xg.best represents the personal best for the particle itself, and the global best particle
respectively. When new velocities are calculated, new positions are calculated as

Xit+1
= ψVit+1

Xit

Taking a few snapshots from the running of an optimization, we see in Figure 35 the gradual convergence
of particles to the global minimum. Each particle (dot) will move according to its total trajectory, which is
a combination of global best (green arrow), personal best (blue arrow) and trajectory of last iteration (red
arrow).

As can be seen in Figure 35, the general direction of the best particle is identified early, and in the first
iteration, some of the initial velocity still remains. By iteration 2 the velocity has almost completely changed.
In Iteration 5 and 10, we see that the velocities of some particles still are impacted by a previous personal
best.

40

(a) Iteration 1 (b) Iteration 2

(c) Iteration 5 (d) Iteration 10

Figure 35: Particle Swarm Optimization Illustration

41

	Introduction
	Preliminaries
	Splines and Knots
	Tree Based Method
	Genetic Algorithms

	Knot Optimization with Recursive Partitioning
	Performing Recursive Splits
	Avoiding Excessively Deep Branches
	Identifying Optimal Split
	Algorithm for Recursive Splits
	Pruning the Tree
	Identifying suitable number of splits and placement of knots

	Evaluation of Proposed Method
	Evaluation by Simulation
	Evaluation on MNIST Handwriting Data

	Results
	Simulation
	MNIST Handwriting Data

	Conclusions
	References
	Appendices
	Complete Results from Evaluation
	All Full Trees
	All MSE plots
	All Reduced Trees
	All B-Spline plots

	Particle Swarm Optimization

