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Online ocular measurement of cognitive load 

Erica Jostrup 

 

Five different ocular measurements were investigated as a 

means of predicting cognitive load during a visuospatial 

memory game. Eye data was collected from the participants 

during a non-related n-back task, trained on both classifica-

tion and regression models and investigated in relation to 

their ability to make predictions regarding how the partici-

pants were performing on an n-back task. All the algorithms 

performed well in their ability to make predictions on the data 

and a second task was created to examine how stable the pre-

dictions were over different tasks. During the second task a 

number of participants from the first part completed a 

visuospatial memory game while information about their ocu-

lar reactions were collected. The information was continu-

ously sent to the learning algorithms previously investigated, 

making predictions about the participants’ performance 

online. Based on the predictions, changes were made in the 

level of difficulty of the game. The results of the study show 

that it is possible to use a combination of several different oc-

ular measures, collected from several participants during one 

task, to predict performance of individual agents during a sec-

ond task. The tasks in this study were not related and the data 

used for prediction were not individually adapted, in contrast 

to previous studies.  

Keywords: Cognitive/Mental workload, Fixations, Blinks, 

Pupillometry, N-back 

1 Introduction 

The pace at which new technology is introduced into our lives 

today does put a remarkable load on our human minds, in or-

der to keep up. Today, many technological applications are on 

the verge of being connected to the internet. Internet of Things 

(IoT) is estimated to include 50 billion items in 2020 (Evans, 

2011) and this new technology demands new ways of interact-

ing. An interaction where information about the state of mind 

of the user is gathered, and the feedback given to them is 

adapted accordingly, to lessen the cognitive demand of the 

user.  

There have been many approaches in trying to find a way 

to study and read the human mind. Methods such as EEG, CT 

and fMRI has been used as a tool to get new insight into the 

workings of the brain, but none of them are able to give us 

complete insight and many of them are both sensitive to their 

surroundings and/or space contingent. This brings forward the 

need for a new way of getting insight into the workings of our 

minds, in order to deal with the overwhelming amount of in-

formation that will be seeking our attention in the near future.  

To create systems that are able to predict cognitive load 

have been proven difficult so far, and “online” measurements 

are required to create truly adaptive systems (Van Orden, Lim-

bert, Makeig & Jung, 2001). Online measurements can be de-

scribed as the kind of situated systems able to adapt to both 

implicit and explicit information given from the user and its 

surroundings, in real time. In contrast, today’s offline systems 

are only able to interpret and create changes in their adaptation 

process after they have received and analyzed information ex-

plicitly given from the user, or someone else. The combination 

of information from both external and internal measurements 

can, in the future, serve as a complete ground for identifying, 

evaluating and regulating cognitive demand posed on the 

agent (Pederson, Janlert & Surie, 2011).  

Information regarding the environment can, in many cases, 

be measured by sensors and information about the agent ac-

tivity can be assessed through system interactions, while in-

formation about the agent state is harder to obtain. To assess 

an agents’ workload, online, there are many aspects to take 

under consideration. Initially, there are three distinct measures 

of workload; subjective, performance and physiological 

measures (O’Donnell & Eggemeier, 1986). Subjective meas-

urements reflect the individuals own assessment of the work-

load, while performance measurements reveal how well an in-

dividual is performing on the given task. Physiological re-

sponses may include changes in heart rate and skin resistance, 

amongst others (Kahneman, Tursky, Shapiro & Crider, 1969). 

Physiological responses are the most appealing way of meas-

uring workload online, since these measurements can be made 

without the need of any input from the agent or any assessment 

of performance. The drawback is that these kinds of measure-

ments often rely on electrodes placed on the body, connected 

to wires and other equipment that easily get in the way of the 

activity performed by the agent. Thus, a non-obtrusive and 

non-distracting technique for assessing workload through 

physiological measurements, in real-time, is needed in the fu-

ture (Marquart, Cabrall & de Winter, 2015). This to be able to 

meet the demands of the technological development.  

By using information from the eyes, as a means of input, 

showing our level of mental processing and fatigue as output, 

it is possible to collect the above mentioned online infor-

mation and create a situated and adaptive system without dis-

turbing the agent.  

Ocular measures provide information in a high temporal 

resolution, better than any response time and accuracy 

measures do, without being intrusive or technologically de-

manding such as previously mentioned equipment. This 

makes it possible to measure how people respond to changes 

in task demand in real time (Eckstein, Guerra-Carrillo, Singley 
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& Bunge, 2016). The information can be used as a tool to eval-

uate when a person is in a high cognitive load state and, by 

that, make the conclusion that adding more stimuli or infor-

mation will impair their performance at the given point in 

time. 

Previous studies have found several ocular measures that 

correlate with cognitive demand imposed by a task. These are; 

blink rate, duration of blinks, frequency and length of fixations 

and pupil size.  

Blinks have been studied, many times in combination with 

other physiological measurements such as heart rate and res-

piration, during tasks designed primarily in either air traffic 

control situations, car driving or flight simulations (Brook-

ings, Wilson & Swain, 1996; Marquart et al., 2015; Veltman 

& Gaillard, 1998). In one flight simulation experiment, 12 pi-

lots had to navigate through a tunnel while simultaneously 

conducting a memory task. The difficulty level of the tunnel 

was matched with the difficulty level of the memory task, cre-

ating continuously increasing demand on the pilot. As more 

visual information had to be processed by the pilot, a decrease 

in blink frequency were seen, along with decreased blink du-

ration. Although, in relation to the increasing difficulty in 

memory task, blink frequency increased (Veltman & Gaillard, 

1998). This indicates that there are several factors contributing 

in regulating blink frequency, but in relation to cognitive de-

mand it is generally seen to increase (Marquart et al., 2015). 

Fixations, including their frequency of and duration, have 

been found to increase with increasing demand created by a 

task. This have been found in experiments including both driv-

ing and completing mental tasks simultaneously (Recarte & 

Nunes, 2000), and during human computer interactions with 

varying degree of system autonomy levels (Evans & Fendley, 

2017).  

Pupil dilation is the most studied ocular measurement of 

the ones used in this study. Changes in dilation can be used as 

a measure of task engagement, physical arousal, attention, 

mental effort and allocation of cognitive control (Kahneman 

& Beatty, 1966; Johnson et al., 2014; Holmqvist et al., 2011; 

Naber, Alvarez & Nakayama, 2013). Studies investigating the 

relationship between short-term memory and pupil size, using 

a digit span task, have seen a steady increase in pupil size in 

relation to the number of items to be remembered. The dilation 

keeps on growing as long as the number of items to be remem-

bered increases, until the participant reaches its’ maximum 

load (Kahneman & Beatty, 1966; Johnson et al., 2014).  

Changes in pupil diameter up to one millimeter can be de-

tected due to mental workload (Beatty & Lucero-Wagoner, 

2000) and after reaching their maximum dilation, when the 

Working Memory (WM) load is at its highest, pupil dilation 

seizes. It then either continues in the dilated state, as long as 

the items to be remembered are still contained in memory, or 

start to shrink again, after the items to be remembered are re-

ported. As long as the agent is engaged in the task and contin-

ues to store information in WM, their pupil dilation remains in 

its dilated state (Granholm, Asarnow, Sarkin & Dykes, 1996; 

Johnson et al., 2014).  

Pupil dilation has been shown to reflect variations in pro-

cessing load between very different cognitive tasks. This 

means that the measurement is a basic physiological one, sta-

ble over different tasks, and the dilation values can be directly 

compared between different experiments in different labs, ac-

cording to Beatty (1982), which makes the measurement very 

useful in many applications. 

Although there has been many different definitions of 

which cognitive processes are measured during the tasks men-

tioned above, it is clear that all the ocular measurements do 

reflect changes in level of attention and intensity directed to-

wards the task. It thereby does reflect different aspects of cog-

nitive processing. Given the broad background in studying 

cognitive load, in this paper, cognitive load is more generally 

defined as the amount of mental effort used by an agent, im-

posed by a task. 

All of the above mentioned ocular measurements might be 

useful tools in our seeking of a way of measuring what is going 

on inside the human mind in real time. The combination of 

several eye-measurements does not only exclude some of the 

risks of only using a single, or a few, source(s) of input to an-

alyze. Marquart and colleagues (2015) also conclude that fo-

cus of future research should be in combining different eye-

measurements to create a robust and valid assessment method. 

Eckstein and colleagues (2016) state that using multiple 

eye-measures during the same task creates a great opportunity 

for studying their relation to each other and how they can be 

used to assess cognitive processes. The aim of this study is to 

investigate precisely that.  

The study examines whether the combination of above 

mentioned ocular measurements can be used as a method for 

measuring an individuals’ cognitive workload, in real-time. 

The goal of this study is to examine whether it is possible to 

create an online ocular information measurement that is able 

to make predictions regarding the level of demand posed on 

an agent.  

Differing from previous studies, data is collected from sev-

eral participants during one task and all the data is used for 

prediction in a second task. In relation to these predictions, 

changes in the demand-creating stimuli can be made depend-

ing, to keep the agent in a continuously challenging level of 

demand. The study thus addresses both the possibility of using 

more general data for prediction and the stability of this meas-

urement over different tasks.  

2 Experiment 1 

The experiment consisted of two parts. The first part, de-

scribed in this section, was used to collect information about 

the participants’ ocular behavior during a task created to max-

imize their WM load. The information collected was then used 

as basis for the second part of the experiment and to evaluate 
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the performance of different learning algorithms in trying to 

predict participant mental demand in relation to the stimuli.  

2.1 Method 

Participants 

23 participants (12 men and 11 women) having normal (color) 

or corrected to normal vision participated in the study. All par-

ticipants that had been informed of the study and undertaken 

a written consent. They were asked to use glasses in case they 

had to correct their vision, which was recommended by Eck-

stein and colleagues (2016) in relation to studying blinks. 

While reading, and signing the given consent before joining 

the study, the participants were asked not to participate if they 

were under the influence of any drugs. They were asked 

whether they had taken any caffeinated drinks or other types 

of caffeinated stimulants, in such case this was noted. One of 

the participants were excluded from the analysis, since the eye 

tracker did not record properly.  

Task description 

To assess the relationship between eye responses and cogni-

tive load, measured as the level of demand on WM capacity, 

an n-back task with visual stimuli was used. The stimuli con-

sisted of 3D block images with different shapes (Fig. 1). The 

3D block images in this experiment have been chosen because 

they are unrelated to any emotion eliciting or arousing stimuli, 

which could affect the eye responses and thereby the results of 

the study. A similar experimental stimulus has been used by 

Lamp and colleagues (2016) in comparing neural mechanisms 

during fMRI, when either maintaining or maintaining and ro-

tating 3D block images in a mental rotation n-back task. In the 

current experiment, no mental rotation was included in the 

task. 

Initially, all participants completed a test-round, getting 

acquainted with the task at hand, consisting of a 0-, 1-, 2- and 

3-back task. After completing the test-round, the participants 

were announced that the real experiment was to begin and the 

eye tracker to be calibrated before the data collection started.  

At the beginning of the experiment, a baseline measurement  

of the participants’ eye-responses was made. This was done in 

a similar way as by Léon-Domíngues and colleagues (2015), 

using a 0-back task which creates no memory load. The target 

stimuli, which was chosen as one, out of 20 stimuli images, 

was shown during the instructions of the 0-back task. The par-

ticipants were instructed to respond to the chosen image as 

matching, while all other stimulus pictures should be re-

sponded to as mismatching. This was done by pressing ‘left 

key’ for yes (matching) and ‘right key’ for no (mismatching).  

A sound was played immediately after each response, in-

dicating whether the participant’s answer was correct or incor-

rect. Since the experiment leader was present in the room dur-

ing the experiment, the sound was audible for both the partic-

ipant and the experiment leader. The sounds served as a mark-

ing of how well the participant was performing during the 

task, and since most people do not want to fail in front of 

someone else, the sound also served as a way of keeping the 

participants trying their best throughout the task.  

The participants completed a series of visual n-back tasks, 

consisting of the same 20 3D block images as in the 0-back 

task. Task workload was modified by the number of n-backs 

needed to be remembered in the n-back task. In the 1-back 

condition the participants had to respond whether the current 

stimulus was identical to the one previously shown, while in 

the 2-back task participants were required to respond whether 

the stimulus currently shown was identical to the one shown 

two trials earlier, and so on. In relation to the continuing in-

crease in the number of stimuli needed to be remembered by 

the participant, as the n-back increased, the workload of the 

task increased.  

The memory load produced by the n-back task can be com-

pared to the load created by, for example, the WISC forward 

digit span used by Johnson and colleagues (2014), when stud-

ying the relation between Task Evoked Pupillary Response 

(TEPR) and Short Term Memory (STM) capacity. In their 

task, as in this one, there is a continuing increase of items 

needed to be held in memory, which should produce similar 

effects on ocular measures between studies.  

The stimuli sequences were presented in blocks, one for 

each n-back. The level of the n-back series the participant per-

formed was announced at the beginning of each block. Each 

block consisted of 40 trials, where half of the targets were 

matching and half mismatching. The stimulus sequence was 

randomized for each block and each participant and the stimuli 

presented was randomly chosen in each trial, out of the 20 dif-

ferent images. The stimuli was shown for 750 ms each or until 

the participant identified it as either matching or mismatching 

with the image n-backs earlier. After the stimuli was pre-

sented, a scene, scrambled to create the same luminance as the 

stimulus picture, was shown for 500 ms before the next stim-

ulus picture was presented.  To create a maximal load on par-

ticipants WM, the value for n kept increasing until they com-

pleted the 5-back version. 

 

 
 

 

Figure 1. Example of 3D block stimulus. 20 different 

stimulus-pictures were used during the task. 
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Both the stimuli (3D-block images) and the scrambled 

slides shown between the stimulus pictures were comparable 

in brightness and contrast to avoid any changes in pupil size 

due to variations in light intensity (Holmqvist et al., 2011). It 

was also of great importance that the stimuli pictures were 

placed in the center of the screen, due to the sensitivity of pupil 

measurement when the gaze is directed to the edges of the 

screen (Brisson et al., 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The presentation of the n-back sequence. 40 3D 

block images were randomly chosen from a list of 20 differ-

ent pictures and shown for 750 ms, or until a key was pressed 

by the participant. Between every 3D image a scrambled 

stimuli-image was shown for 500ms. 

 

The entire session lasted about 20 minutes, including train-

ing, setup and calibration of the eye-tracking equipment. The 

participants were asked to do their best during the experiment, 

to ensure task engagement was as big as possible, and they 

were instructed to answer as quickly and accurately as possi-

ble.  

After the experiment was accomplished, the participants 

were asked whether they gave up during the task and if so, at 

what point. All participants were then debriefed, thanked for 

their participation and asked to return another day, to partici-

pate in the second experiment.  

Eye tracking 

Participants were placed in a head- and chinrest in a window-

less room approximately 80 cm in front of a computer screen. 

The usage of a chin- and headrest was of great importance, 

because of the sensitivity in pupil-measurements due to move-

ment. If the head is moved during tracking, either closer or 

further away from the eye tracker, the pupil measurement will 

be impaired. In the same way, if the gaze is directed to the 

edges of the screen, the pupil-measurement will differ from 

what is measured if the gaze is directed to the center of the 

screen. This underlines the importance of a centered stimuli 

during the task. 

The participants initially completed a trial consisting of a 

0, 1, 2 and 3-back task to make sure they understood the span 

of the task. After completion of the test-round, the participants 

were calibrated on the Eyelink 1000 Plus eye tracker (The 

Eyelink 1000 plus, 2017), mounted on the desktop. After the 

calibration, the 0-back task served as a way to measure the 

baseline eye-responses of the participants. This measurement 

was used to evaluate the size of the dilation, changes in fixa-

tion duration, fixation rate, blink rate and time, of every par-

ticipant during the experiment. Because of the sensitivity of 

the pupil size measurement it was of great importance that all 

experiments were done in a room with constant luminance, in-

cluding a similar luminance in stimuli throughout the trials. 

Eckstein and colleagues (2016) recommended performing the 

experiments in a moderately lit room, because if the room is 

too dark the cognitively-evoked pupil dilation is smaller than 

in moderate light. 

The task-evoked pupillary response (TEPR), blink rate, 

blink duration, fixation frequency and duration was recorded, 

sampled at 1000 Hz. To be able to get a reliable estimation of 

the participants’ workload, multiple TEPRs had to be recoded 

and averaged across participants, why the many trials and 

blocks were necessary. 

Data Examination, Reduction & Programming 

The n-back task was created in python, using PsychoPy2 

(http://www.psychopy.org) to present it. 

Blink duration, blink frequency, fixation duration, fixation 

frequency and average pupil size (area) was extracted from the 

data collected by the Eyelink 1000 eye tracker. The data was 

studied in relation to the level of the n-back task and segre-

gated according to trials and stimulus onset (Society for Psy-

chophysiological Research, 2011).  

The data was organized and presented in three different 

ways, to evaluate the best way of data presentation for the ma-

chine learning algorithms. A Z-score cutoff, including data-

points with scores within the span of plus/minus 3.5, was eval-

uated as one of the datasets. The complete raw data was used 

in another dataset and the percentage of change in the data 

from the 0-back in the third dataset. In the “percentage of 

change”-dataset the 0-back was set as the null-limit and the 1-

5-back task was calculated as change from the null-limit, pre-

sented in percentage. Blinks lasting longer than 1000ms was 

always counted as artifacts and thereby excluded from all the 

datasets.  

The mean blink and fixation duration was calculated for 

each level of the n-back task. Blink- and fixation frequency 

was calculated by dividing the number of instances, during 

each level of the n-back, with the time (in ms) spent on each 

level. This resulted in a unit per millisecond, as described by 

Holmqvist and colleagues (2011). Mean pupil size during each 

n-back was measured as the area of the pupil. For the dataset 

presenting percentages of change from the 0-back task, Task 

Evoked Pupillary Response (TEPR) was calculated in change 

from the baseline measure of pupil size, which represented 0.  
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The error percentage of each block was calculated, where 

40 out of the 40 blocks were the maximum number of correct 

responses that could be given.  

The blocks were also classified as either easy or hard for 

the participant, and were classified according to whether the 

participant had given up or not. The easy/hard classification 

was done evaluating the error percentage. Errors above or 

equal to 37,5% were classified as hard since this level of error 

was both found in n-backs of four and five (where most of the 

participants did report on given up on the task), but also in 

level three. For many of the participants the error score did not 

continue to increase in relation to the level of the n-back, but 

did instead show levels of errors between 37,5% and 45% in 

the last two n-back levels, which might equal to chance.  

The given up/not given up classification was done evalu-

ating the time spent on each block. If the time spent on a higher 

block was less than the previous one, it was defined as the par-

ticipant had given up on the task. This was combined with ver-

bal reports taken from the participants after their participation, 

which were very useful in cases where no changes in time on 

task could be found. 

The different datasets described were examined in an ex-

plorative way, with several different Machine-Learning (ML) 

algorithms collected from the scikit-learn (http://scikit-

learn.org) package for Python. Since all datapoints were la-

beled, all the algorithms evaluated are included in supervised 

learning (Mohammed, Khan & Bashier, 2016). Several differ-

ent algorithms, with different strengths and weaknesses, were 

chosen to get a variety in the different algorithms evaluated. 

The different algorithms might find different relations in the 

different datasets, and thereby be more or less fitting in mak-

ing predictions in this particular case. The algorithms chosen 

for exploration included both classification and regression 

models.  

The number of samples included in the dataset created the 

limits for which algorithms to explore and some of the most 

common algorithms for data with these limitations were cho-

sen.  The evaluated algorithms were: Logistic Regression 

(LogReg), k-Nearest Neighbors (k-NN), a Fisher Linear Dis-

criminant Analysis (LDA), Linear Regression (LinReg) and a 

Multi-Layered Perceptron (MLP) for both classification and 

regression.  

Both classification and regression models used the default 

parameters set by scikit-learn for the models (Scikit-learn Lin-

ear Regression Model, n.d.; Scikit-learn Multi-layer Percep-

tron Regressor, n.d.), except for the selection of the solver for 

the Multi-Layered Perceptron for regression. A stochastic gra-

dient descent was used for the MLP regressor in this case.  

Data from six, randomly chosen, participants was used to 

make predictions from while the rest of the data was used as 

training data for the algorithms. When evaluating the algo-

rithms in relation to the different datasets, a scaler was used to 

normalize the data, when presented either as raw data or when 

filtered with a Z-score cutoff.  

The classification algorithms predicted if the task was easy 

or hard, or whether the participant had given up on the task, 

while the regression algorithms predicted the percentage of er-

ror on each block for each participant.  

2.2 Result 

Ocular measurements 

When inspecting the behavior of the five ocular measurements 

that has been collected during the experiment, one by one, it 

can be seen that the measurements does differ quite a bit in 

their relation to the task (Fig 3A-F). Fixation duration, fixation 

frequency, blink frequency and average pupil size (APS) were 

all calculated as a mean value across each n-back, for each 

participant. For blink duration, both mean and median was cal-

culated (Fig. 3C-D), because there were a lot of variance in 

the max and min blink duration measurement (Aron, Coups & 

Aron, 2013), both within participants and between. The differ-

ent calculation methods (mean/median) thereby gave quite 

different results. 

The two ocular measurements that gave the most salient 

results was the decreasing fixation duration F(5, 126) = 11.7, 

p < 0.01 (M = 661.6, SD = 360.5), Fig. 3A, and the increasing 

fixation frequency F(5, 126) = 7.7, p < 0.01 (M = 0.0017, SD 

= 0.00071), Fig. 3B, in relation to the increasing n-back.  

No significance was found, either in blink duration mean 

(M = 122.1, SD = 38.6), blink duration median (M = 112.6, 

SD = 34.7), blink frequency (M = 0.0003, SD = 0.00019) or 

average pupil size (APS) (M = 904.6, SD = 247). 
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Figure 3. A-F. A. Fixation duration in relation to n-back. 

B. Fixation frequency in relation to n-back. C. Mean blink 

duration in relation to n-back. D. Median blink duration in 

relation to n-back. E. Blink frequency in relation to n-back. 

F. Pupil area in relation to n-back. Data from all participants 

has been used in all graphs. 

There were some tendencies for an increase in blink fre-

quency for the first three blocks (0, 1 and 2) in the n-back task 

(Fig. 3E), and if only observing the first three blocks there was 

a significant increase in blink frequency for all the participants 

F(2, 63) = 3.5, p = 0.035. The same tendencies for a decrease 

in blink duration could be seen in the first three blocks in me-

dian blink duration (Fig. 3C), but no significance was reached. 

Data examination 

The dataset containing raw data, including as unfiltered data 

as possible (extreme outliers lasting longer than 1000ms ex-

cluded), gave the best predictions from the algorithms in gen-

eral, with the highest correlations in classification (Table 1, 2). 

Figure 3 is presented using this dataset. 

 

Table 1. Mean correlation coefficients from the six randomly 

chosen participants, when predicting if the task was easy or 

hard for the different datasets. The rest of the dataset was 

used to train the classification models. 

 Raw data Z-cutoff % Change 

k-NN 0.78 0.72 0.67 

LDA 0.89 0.86 0.69 

LogReg 0.92 0.89 0.69 

MLP 0.78 0.72 0.64 

 

 Two exceptions were made from the best predictions seen 

in Table 1, where raw data created the highest correlations. In 

Table 2, the dataset presenting the data as percentage of 

change from the 0-back gave the best predictions for the k-NN 

and MLP models, in predicting whether the participant had 

given up or not.  

 

Table 2. Mean correlation coefficients from the six ran-

domly chosen participants, when predicting whether the par-

ticipant had given up or not, for the different datasets. The 

rest of the dataset was used to train the classification models. 

 Raw data Z-cutoff % Change 

k-NN 0.64 0.58 0.75 

LDA 0.78 0.78 0.58 

LogReg 0.81 0.78 0.67 

MLP 0.61 0.64 0.67 

 

For the regression-models there were no major differences 

between the raw dataset and the one using a Z-cutoff, while 

the percentage of change dataset did not produce predictions 
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that correlated with the actual performance of the participants 

in any high degree (Table 3). 

 

Table 3. Correlation coefficients from the six randomly cho-

sen participants used for prediction, as a relation between 

model type and dataset. The rest of the dataset was used to 

train the regression models. 

 

Raw data Z-cutoff % Change 

LinReg 0.47 0.45 0.21 

MLP 0.5 0.5 0.14 

Classification algorithms 

The classification algorithms predicting whether the partici-

pant found the task easy or hard gave the best predictions (Ta-

ble 1, Fig. 4A-D).  
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Figure 4. A-D. Percentage of participants (mean) that the 

classification algorithm has predicted the task to be hard for, 

in relation to the different blocks of the n-back task. Using 

raw data from six randomly chosen participants. A. K-Near-

est Neighbors. B. Linear Discriminant Analysis. C. Logistic 

Regression. D. Multi-Layered Perceptron. 

Regression algorithms 

There were no major differences between the two regression 

models, which both gave predictions that were correct about 

half of the time (Table 3). As can be seen from Fig. 5, the re-

gression algorithms error prediction increase in relation to the 

level of the n-back task, which clearly reflect the error produc-

tion from the participants during the n-back task.  

A.  

 

 

 

 

 

B.  
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Figure 5. A-B. A. Mean error prediction of the Multi-Lay-

ered Perceptron Regression model. B. Mean error prediction 

of the Linear Regression model. Predictions made from six 

randomly chosen participants, using raw data. 

 

The mean error prediction, and Standard Deviation (SD), 

of the regression models show that the models are very similar 

in their performance for the chosen dataset (Table 4). Alt-

hough, the Linear Regression model does produce a smaller 

SD in the higher blocks. 

 

Table 4. Mean (M) and Standard Deviation (SD) of the 

predicted errors of the Multi-Layered Perceptron (MLP) Re-

gression model and the Linear Regression (LR) model. 

Model Block (n) M SD 

MLP 0 9.7 4.0 

MLP 1 15.6 6.3 

MLP 2 24.3 3.4 

MLP 3 35.0 5.7 

MLP 4 29.2 5.6 

MLP 5 32.2 5.1 

LR 0 6.3 4.7 

LR 1 14.8 5.6 

LR 2 20.7 2.3 

LR 3 27.4 3.2 

LR 4 25.1 2.6 

LR 5 26.3 1.3 

 

Studying the contribution of each ocular measurement to 

the Linear Regression algorithm shows that the measurements 

with the highest contribution are fixation duration and fixation 

frequency (Table 5), independent of the usage of either mean 

blink duration or median blink duration in the model. In col-

umn 2 the mean blink duration was used for producing the co-

efficients and in column 3 the median blink duration was used 

in producing the coefficients. The two ocular measurements 

that contributed least to the algorithm was blink duration and 

blink frequency. The intercept was 20.05 for the model, inde-

pendent of which blink duration measurement used.  

 

Table 5. Coefficients contributing to the Linear Regression 

model, using either mean or median calculation of blink du-

ration.  

 Mean blink 

duration 

Median blink 

duration 

Blink duration  1.45  0.57 

Blink frequency -0.68 -0.85 

Fixation duration -3.68 -4.04 

Fixation frequency  3.72  3.27 

APS -1.90 -2.10 

 

As can be seen, the coefficients do change somewhat in 

their contribution to the algorithm given the way blink dura-

tion is presented. Although, no major difference in the error 

prediction given the way blink duration was calculated can be 

seen (Table 3).  

2.3 Discussion 

The goal of the task was to evaluate whether a combination of 

five different ocular measurements, collected from several 

participants during a task created to cover all levels of a par-

ticipants’ cognitive demand (from its lowest to its highest), 

can be used to predict the performance of another set of par-

ticipants on the same task. Given the high correlations be-

tween the predictions and the results reached by the partici-

pants during the task, it is possible to use the studied ocular 

measurements to create this kind of predictions. The different 

ocular measurements are discussed in detail below. 

There are significant changes in the fixation duration and 

fixation frequency in relation to the level of the n-back task. 

This shows that fixations can be used as a measure of cogni-

tive demand created by a task. The fact is further supported as 

the measurements are the biggest contributors to the algo-

rithms coefficients (Table 5). The steepness of the changes de-

creases as the demand of the task gets higher, which is coher-

ent with the reports from most of the participants giving up in 

the last two n-back tasks and the decrease in time spent on the 

last two n-backs. Even though there are no such changes to be 

found in the pupillary data in this experiment, Beatty (1982) 

found that the slope of the pupillary response will vary in re-

lation to both task difficulty and task length. It seems like the 

same variation can been seen in fixation data in this experi-

ment.  

As stated earlier, pupil changes have been shown to reflect 

changes in mental effort (Johnson et al., 2014) and processing 

load (Beatty, 1982), amongst others. The measurement has 

previously been shown to be a very stable one, over different 

tasks, which should make it comparable between experiments. 

The fact that there are no clear general findings in this case 

might be explained with another finding of Beatty (1982), that 

the slope of the pupil change may vary due to participant and 

stimuli. Changes in pupil diameter has been shown to be re-

lated to the level of intelligence of the participants. Smaller 

changes in pupil dilation during a number of cognitive tasks, 

such as digit span task and sentence comprehension, has been 

seen for individuals with higher scores on an intelligence test, 

than for participants with lower scores (Beatty, 1982). These 

findings reflect individual differences in the amount of cogni-

tive effort needed to complete demanding tasks, and since the 

participants in the current experiment consist of mainly uni-

versity students, this might have some effect on the results 

seen here. 

When looking at individual cases of pupillary data there 

are as many instances where the pupil is at its largest at the 

start of the experiment and then continues to decrease during 

the following n-back tasks, as the other way around. An ex-

planation could be that some of the participants may have been 

nervous, even though they had completed a test-round of the 

task. The nervousness might be due to the calibration and start 

of the eye-tracker, which were done just before the measure-

ments in the 0-back task were collected. The fact that there are 
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such individual differences in the changes of the average pupil 

size (APS) of the participants may result in the evening out of 

data that is presented in Fig. 3F.  

Even though there have not been many studies investigat-

ing blink duration, some very differing limitations of what to 

be counted as a blink has been made in those few cases. Van 

Orden and colleagues (2000) used a limit of 83.3ms, while 

Bonifacci and colleagues (2008) set their limit to 96ms and 

Geng and colleagues (2009) defined a blink to be at least 

50ms, in combination with eye movements (saccades) of a cer-

tain limit. Initially during the data investigation, the data was 

sorted with the same limitations as Van Orden and colleagues 

(2000), but this left very little data remaining. There was a big 

variance in the blink duration data and excluding data-points 

with a value less than 83.3ms excluded as much as 95% of the 

blink-data from one of the participants, which did not seem 

logical. The fact that the less limitations set on the data, the 

better prediction, therefore, is very positive, and in the end a 

similar definition of a blink as Brouwer and colleagues (2005) 

is used, including all instances where no pupil were detected. 

No clear continuity in the changes of the blink data 

throughout the task has been found. If concentrating on the 

changes in blink frequency during the first three blocks of the 

n-back task (0, 1 and 2) a significant change in blink frequency 

can be seen. This is in line with previous research (Marquart, 

Cabrall, & de Winter, 2015) stating that blink frequency has 

been seen to increase in relation to higher workload. The lim-

itation of significance to the first three rounds of the task might 

depend on blinks being a much more sensitive measurement 

in relation to the onset of a difficult task.  

Since the blink frequency measurement are not as stable as 

the fixation measurements, which kept on increasing/decreas-

ing throughout the whole trial, the assumption that the blink 

frequency measurement reflect changes in the level of effort 

directed towards solving the task can be made. The fact that 

there is a large leap in the level of difficulty from a 2-back, 

where the participant should identify if every other image is 

matching or mismatching, to a 3-back, where you should iden-

tify if every third image is matching or mismatching might be 

reflected in the blink frequency measurement. The 3-back task 

was in most cases the highest level of the n-back task that the 

participants reported to have, actually, been trying to solve. 

But if that was not the case, this might reflect that they gave 

up earlier than reported. Since links have been seen to corre-

late with goal directed behavior (Eckstein et al., 2016), the fact 

that there are changes in only the three first blocks might very 

well reflect this fact. The ocular changes will be a good reflec-

tion of how much cognitive load the task is creating, but only 

as long as the participants try to maintain good performance 

throughout the task (Van Orden et al., 2001).  

Even though no changes are seen in the blink duration 

measurements, the learning algorithms do not seem to differ 

much in their predictions due to the usage of either the mean 

blink duration or the median blink duration. A conclusion that 

blink duration does not affect the algorithm in that big extent 

can be made, which is further supported when studying the 

coefficients of the Linear Regression model (Table 5). 

The fact that the use of raw data gives the best predictions 

for the algorithms makes the usage of ocular input, in relation 

to evaluating cognitive load, even more appealing. Not need-

ing to make any big reductions, set limitations or any need of 

normalizing the data means that eye-data can be collected di-

rectly from the tracker, checked for extreme outliers, and then 

used by the regression algorithm to evaluate the state of the 

agent. The fewer steps needed between data collection and the 

regression analysis makes the process faster, with less compu-

tational power needed. This makes the possibility of using it 

in smaller devices, such as wearables and head-mounted dis-

plays (HMDs), easier. 

The results from the experiment shows that both the clas-

sification algorithms and the regression algorithms does per-

form well in their predictions regarding how the participant is 

performing in the given task. This creates a stable ground for 

evaluating the algorithms performance in an unrelated task, to 

find out how stable these predictions are over different tasks 

and agents.  

3 Experiment 2 

Given the result from the first experiment, the investigated oc-

ular measurements are a good source for gathering infor-

mation and making predictions about a participants’ perfor-

mance during an n-back task. All the investigated algorithms 

perform well in their task and can be used in further investiga-

tions regarding how applicable the data collected during the n-

back task is on predicting performance on an unrelated task.  

To investigate whether the ocular data collected from the 

first experiment reflects a general behavior in the participants 

when their WM is challenged, a game was created for the sec-

ond experiment. The goal was to investigate whether it was 

possible to predict a participants’ cognitive level of demand in 

a completely different task than was used when collecting the 

data. This was done using a memory based game. 

3.1 Method 

Participants 

The second experiment was performed by 5 of the participants 

included in the first experiment, approximately two and a half 

months after the first experiment. 

Task description 

The game consisted of a board with 25 tiles. At the start of 

every new round, a number of randomly chosen tiles changed 

color for 2 seconds and then back to the initial color again. 

The task was to remember which tiles that changed and select 

them, using the mouse.  
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Figure 6. The presentation of the game. Initially a blank 

board is shown, after 2 seconds a number of tiles changes 

color for another 2 seconds. The board then changes back to 

its initial state and awaits participant input. The participant 

should mark which tiles previously changed color, using the 

mouse. 

 

Initially the player had to remember 4 tiles. After the first 

three rounds had been played at that level, the game either 

changed level or continued at the same level as previously 

played. This means that the player either had to remember one 

tile more/less in the coming rounds, or continue to remember 

the same number of tiles. It was the information collected from 

the eye tracker, which has been sent to the algorithms for pre-

diction on how the participant is perceiving the task, that was 

the fundament for the evaluation on what should happen in the 

game.  

If the level of the game increased, the player had to play 

two rounds of the new level, before the ocular data from the 

three latest rounds were evaluated. If the level of the game de-

creased, the player only had to play one round on that level 

before their ocular data was re-analyzed. This to make sure the 

player never gave up, which might happen if they reach a level 

with too high demand, as seen on the n-back task.  

The game had a score counter, to help the player keep up 

with their progress and keep the player motivated throughout 

the game. The game also had a “bricks left”-counter, to help 

the player remember how many tiles to press the present 

round, since the game is contingent on the player pressing all 

the number of tiles presented in the sequence.  

When the participants had played the game for 10 minutes, 

which equals to approximately 25 rounds, it was terminated 

and they were asked to assess their experience through a 

NASA Task Load Index (TLX) assessment (NASA TLX: 

Task Load Index, 2017). 

After completing all parts of the experiment, participants 

received a gift, thanking them for participating.  

Eye tracking 

The participants were placed in the same room as during the 

first experiment, at the same distance from the screen, in a 

head- and chinrest. The design of the game did consider the 

same facts about eye tracking as was done during the design 

of the n-back task. In other words, the stimuli of the game, in 

this case the board of the game, was centered on the screen 

and it was presented with constant luminance throughout the 

game. After completing a brief training-trial, a calibration and 

validation of the participants’ eye-movements were done with 

the Eyelink 1000 eye tracker. During the game, the number of 

fixations, fixation duration, number of blinks, blink duration 

and APS of the participants were measured by the eye tracker. 

The measurements were collected for 8 seconds during the 

first round, when the task was to remember 4 tiles, and in-

creased by 1 second every other round. One round of level 4 

of the game took approximately 10 seconds to play, setting the 

limit for how long the data collection could continue. At the 

end of each round, the collected data was sent to the ensem-

bled learning algorithms and a prediction was made on the 

data. Since the data that the algorithm had trained on was ex-

pressed in error percentage, this was the value predicted by the 

algorithm. 

After the first three rounds of the game, where four bricks 

were to be remembered, all the predictions made from the al-

gorithms, given the collected ocular measurements, were col-

lected into a mean value. If the mean value of the three rounds 

was lower than 20 (error percentage) the level of the game in-

creased by one tile. If the mean value of the three predictions 

was higher than 30 (error percentage), the level of the game 

decreased by one tile. This continuous evaluation kept on 

throughout the game, with the player playing the easy levels 

two times and the hard levels only one time, as described ear-

lier. 

Data Examination, Reduction & Programming 

The game was created in python, using scikit-learn for the 

learning algorithms and PsychoPy2 to present it. The data col-

lection online from the eye tracker was also gathered through 

python code, continuously communicating with the tracker. 

During the time the participants played the game, there 

were several background activities going on. Even though the 

classification-models did perform very well in predicting 

whether the task was easy or hard for the participant, the usage 

of a regression model gives the smoothest way of evaluating 

the data in an online approach. A regression model can make 

finer distinctions and its limitations can be set as wished ac-

cording to the task at hand, which is why the regression mod-

els were chosen to make predictions during the game.  

Both of the evaluated regression algorithms were used to 

predict the percentage of error the participants would have cre-

ated if they were performing the n-back task. The usage of 

more than one model for evaluation has been shown beneficial 

in that they can support each other in their weaknesses. By 
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ensemble learning it is possible to work around their individ-

ual problematics and create good generalization abilities (Liu 

& Yao, 1999).  

The ensembled models went through a training phase, 

where they trained on all the data collected from the first part. 

During the time the participants played, there was continuous 

information collection from the eye tracker, as already de-

scribed. The data collected from the eye tracker was compiled 

in the same way as the training-data initially used by the learn-

ing algorithms, to make sure the algorithms were able to inter-

pret the new data. Before the collected data was sent to the 

algorithms for prediction, outliers lasting longer than 1000ms 

were removed, as was done with the data from the first exper-

iment.  

After every round of the game, the algorithms each made 

a prediction regarding how much error, in percentage, the 

player would have experienced if the task at hand was the n-

back task. The mean of the predictions was calculated and sent 

to the game which assessed it in relation to the defined re-

strictions. The restrictions set to 20 error percent, as the lower 

limit, and 30 error percent, as the upper limit, were thus set to 

make sure the player was maintained within a limit that kept 

them experiencing the game as challenging, but not too hard, 

and at the same time keep them motivated not to give up. The 

20% error prediction as the lower limit and 30% error predic-

tion as the upper limit equals to a 2-back task and 3-back task 

in the n-back task. The 4- and 5-back were for many people in 

the n-back task too hard and they gave up on the task at hand, 

why these levels of demand were sought to be avoided. 

3.2 Result 

The game predicting the error percentage of the participants, 

given their ocular input collected online by the eye tracker, did 

not produce any significant results in their change between 

game levels. Four out of five participants reached a level 

where 15 tiles should be remembered, while the last one 

reached a level of 14 tiles to be remembered. 

 

 
Figure 7. Error prediction in percentage for the five partici-

pants during the game. The error prediction is based on the 

percentage of error seen when showing similar ocular behav-

iors during the n-back task performed in experiment 1. 

 

From figure 7, it can be seen that the error prediction was 

at its largest at the beginning of the game, declining somewhat 

in the following rounds and then making a minimal climb at 

the end of the game. Although, this initial decline in error pre-

diction (between level 4 and 7) did not reach significance for 

more than two out of the five participants. As is also seen in 

figure 7, the error prediction did differ somewhat between par-

ticipants, but all kept within the limits of 10-15 error percent-

age (M = 11.96, SD = 1.58).  

The NASA TLX assessment did also indicate that the par-

ticipants did not perceive their mental load during the game as 

particularly high. The mean value of the participants perceived 

mental load during the task was 10.4 out of 20 (SD = 4.2), 

which means that they neither found it very demanding or ex-

tremely easy. Their mean rated effort was 15.2 (SD = 2.4), 

which means that they all worked quite hard to accomplish 

their level of performance, which they rated as a mean value 

of 5.4 (SD = 4.5), out of 20. The performance rating means 

that all the participants felt that they were successful in accom-

plishing the task. 

The general feedback given from the participants after ac-

complishing the task was that it was much more fun than the 

previous one (n-back) and was less demanding.  

3.3 Discussion 

The goal of the second experiment was to evaluate the ability 

to use the ocular data collected during the first experiment, to 

predict the level of cognitive load of the participants during a 

ten-minute game. The goal was reached in such as the algo-

rithm produced predictions that did not significantly differ be-

tween the participants, and thereby shows stability over differ-

ent agents performing the same task.  

The limits of the game were set in relation to the errors 

found in the n-back task and the game was programmed as to 

change its level of demand according to how the predictions 

fitted with the limits. Since the game never produced error pre-

dictions higher than 15%, the lowest limit of 20% made the 

game level keep increasing throughout the whole game. This 

indicates that the cognitive demand created by the game did 

not affect the participants in any palpable way. One reason for 

this may be the game design. Since all the bricks were shown 

simultaneously to the player, they could use the afterimage, 

produced by the recovering photoreceptors after seeing the 

pattern made by the colored bricks, to help them remember all 

the bricks. Another method reported used by a participant was 

to use chunking as a means of remembering the location of the 

bricks. 

As the NASA TLX assessment also concluded, the partic-

ipants did not perceive the task especially demanding and a 

game modification would be needed to produce a higher load 

on the participants. For example, instead of showing all the 
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bricks to be remembered at the same time and then only asking 

the participants to repeat which bricks that changed color, in 

any order, the bricks could have been presented one by one 

and the participants could have been asked to repeat the pat-

tern in the same order it was shown. This would avoid partic-

ipants from using different memory techniques, as mentioned 

above, to help them remember the placement of the bricks, and 

put a higher demand on their working memory. 

It should also be considered whether the limits were set too 

high. It might be that the participants did perceive a 3-back 

task as too demanding, as discussed previously in relation to 

blink frequency, and that the limits should have been set 

lower. 

Even though the participants did not reach either the 20 or 

30 error-percentage limits set of the game, this does not reflect 

any disabilities in the algorithm or the data collected from the 

first part of the experiment. Since the algorithm did produce 

continuous predictions during the game, and the level of the 

game kept increasing in relation to the predictions, it is only 

the game and not the predictions that lack in its design. Since 

the predictions all were in the same limits, with a mean of 12 

error-percentage and a low standard deviation, it rather puts 

validity to the algorithm’s ability to produce predictions that 

are stable between participants performing the same task. 

The fact that there is a certain slope in the beginning of the 

predictions (Fig. 7) for all the participants, although not sig-

nificant, gives further confirmation of the general behavior 

seen in ocular measures in different participants performing 

the same task. It also does add some leverage to the previously 

stated assumption that participants may perceive some nerv-

ousness right after the initiation of the eye tracking. The pre-

dictions did reach a more stable state after some time spent on 

the task, which indicates that the slope was not produced by 

any heightened cognitive demand at the beginning of the task 

and should be considered excluded completely from the pre-

dictions in upcoming studies. 

In general, the results of the second experiment does con-

firm the stability over participants when it comes to predicting 

the level of cognitive demand created by any task.  

4 General discussion 

The present study shows that combining several different oc-

ular measurements is a suitable way of measuring cognitive 

load online, independently of agent or task. The results are 

compelling for their applicability in several areas in the future, 

including HMDs and IoT.  

The investigated method reveals that the use of a regres-

sion model makes it is possible to find general behaviors be-

tween participants. At the same time, the method makes it pos-

sible to set individual levels of a comfortable mental workload 

and sync it with information gathered from the agents’ sur-

roundings. The general behavior found between task and par-

ticipants does broaden the area of applicability, since the algo-

rithms do not have to be individually trained and evaluated 

before an agent can start using the equipment. The data gath-

ering from the user can be made during the time the equipment 

is used, and optimize it as the agent uses it.  

If needed, the optimization and adaption to the agent can 

eventually be based on the individual completely, and the co-

efficients, and intercept, contributing to the algorithm would 

change in relation. Studies investigating predictions made on 

single individuals, collected from individualized sessions have 

been proven to look a bit different in their contributions to the 

predicting algorithms. Van Orden et al (2000; 2001) used per-

sonalized eye data from one or several sessions to train their 

learning algorithms, in their studies. They have investigated 

the usage of several different eye measurements to assess both 

fatigue during a visual compensatory tracking task, and task 

workload through a target identification memory task. They 

found that blink frequency, fixation frequency and pupil di-

ameter were the best predictors in relation to how well a par-

ticipant succeeded in the target identification memory task, 

while fixation duration and fixation frequency were the best 

predictors for tracking error in the visual compensatory track-

ing task.  

The fact that there were very few common findings be-

tween the studies done by Van Orden and colleagues (2000; 

2001) may be due to the fact that they were seeking to inves-

tigate different mental processes. Although, in relation to the 

present study this does pose some questions.  

Comparing the studies by Van Orden and colleagues 

(2000; 2001) with the present study does draw an eye to the 

similarities in their investigation in making predictions on a 

participant’s performance during a target identification 

memory task, which should induce more of the same processes 

as done in the n-back task, than the visual compensatory task. 

But, when studying the results of the three experiments, the 

current one is more similar to the visual compensatory task 

than the target identification memory task. The fact that the 

same findings as in the fatigue assessing task can be seen in 

this experiment, produces some questions of what kind of load 

the n-back task puts on the participant.  

The similarities between the results from the fatigue induc-

ing task by Van Orden et al (2000) and the n-back task in this 

study may be explained by the fact that a n-back task is ex-

tremely demanding and does put a lot of demand on the 

agent’s cognitive abilities. It may be that the fixation measure-

ments primarily do reflect the level of fatigue during a task, 

which also may explain why this is the only measurement that 

keeps increasing, even after the participant did report on giv-

ing up on the task at hand.  

In that case, it would also add more leverage to the as-

sumption that the reason to why there only were a significant 

finding in blink frequency in the first three rounds of the n-

back task is because of the sensitivity of the onset of an ex-

tremely challenging task or that the participants in fact gave 

up earlier during the task than stated.  
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The fact that no changes in pupil size could be found in the 

general dataset points towards the assumption that pupil dila-

tion in relation to task is a very individual measurement. Since 

others have stated the measure as stable over different tasks 

(Beatty, 1982), and the measure has been studied for a long 

time, it is not likely that the stated behavior is missing in this 

certain study, but more likely that it is a very individual meas-

urement. Pupil dilation might be such a measurement more 

applicable in evaluating individual changes in cognitive de-

mand, from data collected from the same individual. It thereby 

has a great ability in contributing in the more individualized 

prediction algorithms. The relation between an individual’s 

pupil dilation and their performance on the n-back task in this 

study is of great interest for future studies, giving better insight 

into its contribution to the predictions. Thus, there is no doubt 

that it does contribute, since the coefficient for pupil size in 

the learning algorithms does rank as the third highest, after 

fixation duration and fixation frequency.  

A conclusion that there are many factors contributing to 

how our ocular behavior relates to the task at hand can be 

made. Some depending on what mental processes the task de-

mands of the agent, but also a lot of individual behaviors. Alt-

hough, the results of this experiment show that even more gen-

eral data can be used to predict task performance, even in dif-

ferent tasks.  

Given the unclear distinction between how much the task 

and agent does affect the preciseness of the predictions of per-

formance, future studies may want to examine how much dif-

ference there is between predictions made from a training set 

consisting of several participants and a training set consisting 

of data from the same participant that predictions are to be 

made on. Intuitively the predictions may vary quite a bit, 

which make them applicable in different areas in the future. 

Future studies of interest would also include investigating 

whether data collected from a different set of participants can 

be used to make predictions on a new set, evaluating how gen-

eral the eye responses are across participants. A more thor-

ough investigation of the relation between the different levels 

of cognitive demand and their subjective evaluation of differ-

ent agents is of great interest. This to be able to evaluate dif-

ferent levels of cognitive load and their relation to ocular be-

havior. 

Ocular measurements do outperform many of the more in-

vasive or bulky online measuring systems in such that they do 

not obtrude with the agent, are easy to use and are able to eval-

uate data in real time, as has been shown in this study. The 

results show that a combination of several ocular measure-

ments do reflect changes in cognitive demand posed by task. 

Collecting data from the eyes is a useful way of getting online 

information about the agent’s cognitive state, and by the con-

tribution of regression algorithms the measurements creates a 

highly useful tool of evaluating the information collected. 

But, the ability to gather, analyze and make adaptions to 

the information given to the agent in real time does not only 

need ocular data as input, to be able to function. It also puts 

some demands on the upcoming technology collecting ocular 

data, in combination with tools able to gather online infor-

mation from the agent’s surroundings. For example, sensoring 

systems are needed to provide information about the environ-

ment, for measuring level of brightness and sound, which have 

been proven to effect, at least, pupil size (Holmqvist et al., 

2011). Fortunately, the separation of luminance from cogni-

tive induced changes in pupil size has been done successfully 

(Palinko &. Kun, 2011) and the coming years in technological 

development will have to reveal how to implement all these 

exciting results found.  

The findings in this study shed promising light on our abil-

ity to achieve the goal of creating truly adaptive systems in the 

future, where ocular measurements do have a great chance of 

contributing to the long sought for online cognitive measuring 

system.  
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