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Abstract

With the progress made within the field of computer vision the last few years,
it is starting to become possible to perform instance segmentation in real time
with relatively cheap hardware. This paper’s main purpose is to investigate
different methods of instance segmentation in the specific case of segmenting
construction waste with only a single class. The paper experiments with two
models, Mask RCNN and SOLOv2, using ResNet and DenseNet backbones of
different depths, and evaluates it according to average precision and prediction
time. The author recommends a ResNet50-FPN Mask RCNN model, due to
having a good precision-time tradeoff and being easy to implement in the current
system.
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Chapter 1

Introduction

The thesis was done in cooperation with OP Teknik and Innovation Sk̊ane. OP
Teknik provided the data and valuable input during the process. The company
currently produces and sells a robot model called SELMA, which is capable of
sorting construction waste on a conveyor belt into several classes. Sorted waste
can be sold for recycling, a necessity for a circular economy and sustainable
society, but the segmentation algorithms utilized in SELMA are lacking when
objects appear close to, or on top of, each other. Algorithms that could improve
the segmentation would mean increased throughput and efficiency.

1.1 Purpose

The purpose of this thesis is to investigate and evaluate methods of instance
segmentation, in the context of close and/or overlapping pieces of construction
waste on a conveyor belt. Evaluation of these methods will be based on both
quality of the segmentations and the time it takes to perform the segmenta-
tions. The results of OP Teknik’s current methods will be used as a baseline for
comparison.

1.2 Limitations

The goal of this thesis is to test how well the current algorithm compares to
other state-of-the-art methods. The goal of the thesis is not to produce a new
form of architecture for instance segmentation, nor is it to classify objects into
classes. Classification and implementation can be done if time allows, as it is
expected to produce better results.

7



Chapter 2

Background

In this chapter we discuss how SELMA operates and how it relates to the
problem at hand. The chapter then introduces the relevant areas of research
that can provide a solution to the problem. Finally, the chapter ends with a
discussion on how this can be implemented in the robot.

2.1 SELMA

SELMA is a robot consisting of a conveyor belt, 6 robot arms and 6 bins, each
for one type of recycled material. An image of SELMA operating can be seen
in Figure 2.1

Figure 2.1: An image of SELMA in action.
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CHAPTER 2. BACKGROUND 9

The current process utilized in SELMA can be divided as the flowchart in
Figure 2.2.

Figure 2.2: SELMA segmentation and sorting process.

The flowchart can also be visualized as in Figure 2.3

Figure 2.3: Graphic visualization of SELMA sorting process.

The current algorithms used by OP Teknik in step (3) consist of classical
morphological operations, meaning that they are quick but produce unsatisfac-
tory results. The company hopes to improve the results by introducing algo-
rithms that are better at separating objects that are close and/or overlapping.
The different computer vision tasks concerned with classification, separate ob-
ject from background, and localization, where is the object, will be introduced
in the following section.

2.2 Computer vision tasks

Image classification is a task, in which an image is classified with a label. The
possible labels vary depending on the problem. Image classification is insuffi-
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cient for this project, since it can only produce one label per image and gives
no information about where the objects responsible for that label are located,
but is the foundation on which more complex tasks are built.

Object detection is the task that, for an image, produces a bounding box and
label for each instance of the detected objects. An example of this task can be
seen in Figure 2.4.

(a) Input image (b) Output image

Figure 2.4: Example of object detection.

Semantic segmentation can be seen as an extension of object detection in
which, instead of finding the smallest box containing an object, the task is to
mark which class every individual pixel belongs to. An example can be seen in
Figure 2.5, note that both pens are marked with the same color.

(a) Input image (b) Output image

Figure 2.5: Example of semantic segmentation.

Instance segmentation extends semantic segmentation, in which every pixel
belonging to an instance of a class is marked. All resulting pixels belonging to
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an instance is called a mask. An example of instance segmentation can be seen
in Figure 2.6. Note that the pens have different colors, meaning they have been
assigned different masks.

(a) Input image (b) Output image

Figure 2.6: Example of instance segmentation.

In the case of Figure 2.6, the resulting output image could have easily been
produced by performing semantic segmentation, as in Figure 2.5, and then pro-
ducing a mask for each isolated component per class. However, this method
would not work well in cases when objects of the same class are occluding one
another. So it is clear why semantic segmentation and instance segmentation
are regarded as different tasks.

2.3 Neural networks

Over the past two decades, a model that has shown good performance on the
four tasks described above is the neural network, more specifically the convolu-
tional neural network. A short description of those models will now follow.

An artificial neural network (ANN) consists of layers which in turn consists
of nodes [1]. Each node has an associated activator function and weight. In
essence, given an input value, a node is activated if the input fulfills the condition
of the activator function. An example of an activator function is the Rectified
linear unit (ReLU), which can be written as

f(x) = max(0, x).

The node then outputs its weight times its function value, y = w · f(x), to a
set of nodes in the next layer. For a node in the next layer, its input value is
the sum of all outputs of the nodes in the previous layer that connect to it. In
other words, the input value xi,k to the i:th node in the k:th layer is calculated
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as
xi,k =

∑
j

wj,k−1yj,k−1,

where wj,k−1, yj,k−1 are the associated weights and outputs from the nodes in
the previous layer. The node then produces its output, yi,k, according to

yi,k = wi,kfk(xi,k),

for the layer function fk.

For a task as complex as instance segmentation, a neural network can have
millions of nodes in hundreds of layers. For such a network it is not feasible
to adjust the weights manually, instead the neural network is implemented as a
form of machine learning model. This means that the network will undergo a
training phase during which it processes a training set, where it tries to predict
each example and adjusts the weights by minimizing a loss function using back-
propagation and a numerical optimization method. A loss function should in
some way represent the task at hand, for instance by having a term for each
subtask. A suitable loss function for instance segmentation could include a term
for the number of wrongly classified masks and another term for the number of
pixels wrongly classified as background.

2.3.1 Convolutional neural networks

A convolutional neural network is an ANN containing one or several convolu-
tional layers, meaning that the output is calculated as convolution with the
input and a set filters. Convolution is a mathematical operation which can be
seen as equivalent to filtering. When an image is convoluted with a filter, the
filter will ”slide across” the image and output large values where the image
matches the filter, and small values where the image does not match the filter.
This is a form of feature extraction. One key difference between a convolutional
layer and a traditional layer is that a convolutional layer only needs one filter
in order to detect that feature everywhere in the input image, where as a tradi-
tional layer could need hundreds of thousands of parameters. So a convolutional
layer can extract more features equivariant to translation with far fewer param-
eters. The features extracted from one layer are quite simple, but by chaining
several convolutional layers together, the network is capable of extracting more
refined features in an efficient manner. When trained, a CNN will learn the
filter weights based on the data it is given, as opposed to being manually set
filters. This makes CNNs suitable for computer vision tasks.

2.4 Dataset

The images provided by OP Teknik are 1200 by 1200 pixels, depicting a black
conveyor belt with construction waste moving along it, an example can be seen in
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Figure 2.7. Briefly mentioned in the previous section, a standard procedure used
when developing approximate models for real-world applications is to create two
datasets, training and testing. Data is extracted from the training dataset and
used to construct the model. The model is then applied to the testing dataset,
which allows the model to be evaluated according to selected evaluation metrics.

Figure 2.7: An example of an image in the dataset, depicting 5 objects on a conveyor
belt.

Manual annotation is a tedious and time consuming process, which is why
there are many data sets of different classes and contexts available to the public.
There are those that are general [2] or specifically represent trash and waste [3].
Since the objects that are to be segmented in this thesis all are on a black
conveyor belt, the background class of contextual data sets are of little use.
These datasets could be used in order to generalize a model, making it less
prone to be overfit, either by including the datasets in training or starting with
a model already trained on such a dataset. While there are mentions of data sets
of waste objects on a conveyor belt, they are often kept as intellectual property
(IP). I could not find any data sets that are similar to the images SELMA could
face.

An object does not need to be of the same material. It could for instance be
two different material fused together, as can be seen in Figure 2.8
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Figure 2.8: An example from the training data, showing one object consisting of wood
and metal.

Since the materials of such an object as in Figure 2.8 cannot be separated
by SELMA, an useful model should treat this as one object. Otherwise, the
sorted wood container could be contaminated with metal which means that less
material is recycled and money is lost.

2.5 Overview of the system

The problem at hand is to determine which pixels do no belong to the conveyor
belt and then grouping the pixels into individual items. The first part of the
problem can be seen as a semantic segmentation problem with one class called
object, for pixels not belonging to the conveyor belt. In Figure 2.7, one can see
5 distinct items, each belonging to the class object, meaning that each item rep-
resents one instance of the object class. The rest of the report will use ”object”
and ”instance of the class object” interchangeably.

A model refers to a method or network aimed to solve an instance segmen-
tation problem, either a general form or the one treated in this thesis. The
difference should be clear from context. The masks produced by some models
might not be as accurate as in Figure 2.6, and in that case, post-processing can
be applied in order to refine the masks. Post-processing will be treated in chap-
ter 4.5. A visualization of the new process for SELMA can be seen in Figure
2.9.
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Figure 2.9: An overview of the SELMA work process.



Chapter 3

Related work

In this chapter I give an introduction to how different datasets are used in
research and for evaluation of instance segmentation models. I also discuss
which models of CNN that will be used in this thesis and their different parts.

3.1 Microsoft Common Objects in Context

Many of the articles cited in this thesis will mention the Microsoft Common
Objects in Context (COCO) dataset and related tasks. For ease of reading, a
short explanation of COCO will follow.

The COCO [2] dataset is a publicly available data set consisting of over
300.000 images of common objects, such as humans, oranges or zebras, in their
expected environments. The data set is publicly available so that anyone can
construct generalized models for different challenges, such as instance segmen-
tation. Models can be evaluated for its respective task on a secret validation set
according to several metrics. Although this thesis uses its own data set, eval-
uating according to the COCO challenges will make results more comparable
due to its frequent use in research.

3.2 Backbones

As mentioned in Section 2.2, the different problems can be seen as subsets of
one another. Since if one had a method to solve instance segmentation, the
method would also be able to solve semantic segmentation trivially. Object
detection and image classification would then also be solved trivially, simply
extract the smallest box containing a mask and recycle the label. Naturally,
instance segmentation is a very difficult problem and there is, at the moment,
no method that can solve it perfectly, not even humans. But if one is willing to
settle for less than perfect it is possible to reduce the complexity of the problem.
Instead of trying to predict masks by directly using the image as data, the image

16
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is instead sent through a backbone network, which extracts features that can be
used as data. Backbone networks are in this case CNN:s with the nomenclature
Network -Depth-Features, describing the network architecture, number of layers
and which features that are extracted. Another advantage of using backbones is
that they can be pretrained when used in models. Having a pretrained backbone
means that the weights have already been optimized, so training must only
optimize the final layers. Pretrained backbones are essential in research so
there is a large incentive to keep them available to the public. When it comes to
instance segmentation, most backbones have been pretrained on the ImageNet
dataset [4].

3.2.1 Network - ResNet

Major breakthroughs in computer vision related tasks over the past decade have
been due increasingly deeper neural networks, and one might think that better
results can be achieved simply by stacking more layers. But this has been shown
to not be the case, as there comes a point when adding more layers makes the
model worse. Given a network of N layers, He et al. [5] hypothesize that this
happens when the model has ”found” all useful features in the first M layers.
The remaining N − M layers must then represent an identity mapping but
since layers are often non-linear, this is especially hard to optimize, causing the
accuracy of the model to degrade. Let each remaining layer be represented as
a function fi, then the mapping of all remaining layers can be described as

F (x) = wM+1fM+1(x) ◦ wM+1fM+1(x) ◦ ... ◦ wNfN (x).

It is easy to realize that optimizing the weights wi so that F (x) = x is a
non-trivial problem, especially when the function are non-linear. However, op-
timizing the weights so that F (x) + x = x is trivially solved by setting all the
weights to zero. Even though the identity mapping is an extreme case, He et al.
show that this reformulation produces better neural networks. In practice, this
means that the input to a series of layers is added to the output of those layers.
It is not feasible to perform this addition for every layer, so the network is built
up by blocks, each consisting of several layers. The addition is performed for
every block.

Networks that operate under this principle are called ResNets. The article
shows that such a networks allows for deeper and better models.

3.2.2 Network - DenseNet

DenseNet is another neural network architecture, proposed by Huang et al. [6].
The main idea is to ”recycle” features from previous layers in order to increase
information flow in the network and avoid redundant layers. This is done by
constructing the network as a number of dense blocks. Each dense block consists
of l layers, where each layer performs a normalization, rectified linear unit and



CHAPTER 3. RELATED WORK 18

a 3x3 convolution. This composite operation is called Hl(·) for the l:th layer
and its output is denoted xl. In order to recycle previous features, the input
tensor consists of the concatenation of all previous layers, so the output of the
l:th layer is computed as

xl = H([x0, x1, ..., xl−1]).

A visualization of a dense block with 3 layers can be seen in Figure 3.1

Figure 3.1: An overview of the information flow in a dense block with 3 layers, depicted
as circles.

3.2.3 Depth

The depth is simply the amount of layers in the backbone. As all backbones
used in this thesis are invented/constructed by researchers, the layers that are
included in, say, ResNet50 is unambiguous and should be clear from context.

3.2.4 Features - FPN

Feature pyramid network [7] allows for features to be extracted across scales,
which is useful when the size of objects vary. It works by making a predic-
tion based on the features extracted from each block, and by including these
features in the prediction for the next block. This means that the lower-level,
detail, features is combined with the higher-level, contextual, features to make
predictions. Compare this to just letting the low-level features construct the
higher-level features, which in turn would make a final prediction, which would
put much emphasis on the contextual information and disregarding the finer
details.

As an example of the importance of both lower-level and higher-level fea-
tures, one could imagine wheels and legs as two lower-level features and the
number of appendages (wheels and legs) as a higher-level feature. Alone, the
lower-level features are enough to differentiate animals and vehicles while the
higher-level feature can make no such distinction. Combined, it is possible to
differentiate motorbikes, cars, horses and chickens.
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3.3 Mask R-CNN

One could imagine that quite good masks could be produced by first performing
object detection and then try to create a mask for each bounding box. After
all, object detection is a well researched task and would provide a solution
to the problem of occluding instances, as described in section 2.2. He et al.
states that this is the intuitive idea behind Mask R-CNN [8], a neural network
that, when published, out-performed all current state-of-the-art methods in the
COCO challenges. On top of this, it also made great improvements in inference
time under certain conditions, such as using a fast and good RPN.

Mask R-CNN is very flexible, meaning that is a extension/modification of a
two-stage object detection and classification model and not an architecture that
can not be altered. The first stage is called a Region Proposal Network (RPN),
which outputs Regions of Interest (RoI) which in turn are just bounding boxes
where the network believes an object could be. The second stage then per-
forms classification and ”improves” the bounding box for each RoI. The Mask
R-CNN extension is then a parallell branch in the second stage that computes
a binary mask for every class and RoI, with the final output being the classi-
fication, bounding box and the binary mask belonging to the predicted class.
Experiments showed [8] that predicting a mask for every class led to better
segmentations overall, at a small cost in computation time.

3.3.1 Loss function

As Mask R-CNN performs 3 predictions, classification, bounding box and seg-
mentation, its loss function is simply

L = Lclassification + Lboundingbox + Lmask.

Lclassification and Lboundingbox is defined the same as the chosen second stage
method. As mentioned, Mask R-CNN produces one mask for every class but
only the mask for the correct class contributes to Lmask, which is a pixelwise
average binary cross-entropy loss.

3.4 SOLO

While the most accurate models developed for instance segmentation in recent
years have been so called ”two-stage methods”, meaning that the model first
performs object detection on the image and then predicts a mask for each de-
tected object, Wang et al. claims SOLO [9] is the first ”one-stage method”
capable of producing results equal to those of the best two-stage method on the
COCO Detection challenge, at the time of writing. A one-stage method has the
potential to be much faster than a two-stage method, which will be explored in
the SOLOv2 subsection. A fast prediction is of course desirable for real-time
tasks, such as the task outlined in this thesis. SOLO is a neural network and,
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as is common praxis, also implements a backbone network for the first layers
and builds custom layers on top of it, called heads.

3.4.1 Backbone

In the article, SOLO was evaluated using ResNet-X-FPN backbones.

3.4.2 Heads

The central idea of SOLO is to divide the input image into grids of size SxS.
If the backbone detects the center of an object in a grid cell, that grid cell ”is
responsible” for predicting the class and generating the instance, the specific
objects, mask. This is done by constructing SOLO as a fully convolutional
network (FCN), meaning that the network only consists of convolutional, and
possibly some up- and down-sampling layers. Since convolutional operations are
spatially invariant and the position of an object is of importance, the network
must have some way to access the pixel coordinates. This is solved by simply
concatenating two images of equal size of the input image, one containing the
normalized x coordinate and the other containing the normalized y coordinate.

3.4.3 Loss function

The loss function for SOLO is defined as

L = Lcate + λLmask,

where Lcate is Focal Loss [10], a modifcation of Standard Cross Entropy that
allows for better training on adjacent objects. λ is set to 3 in the original paper
and

Lmask =
1

Npos

∑
k

1{p∗
k>0}dmask(mk,m

∗
k)

where Npos is the number of positive samples. A positive sample is every grid cell
that falls within the ”center region”, a box containing the center of mass with
axes scaled proportionally to height and width, of a ground-truth mask. Index
k represents a grid, starting left to right and top to bottom. A superscript
asterisk represents ground-truth/target, so mk is the mask produced by the
k:th grid and m∗k is the ground-truth mask for the k:th grid. If the labels
can be represented by positive integers and the background corresponds to 0,
then p∗k is the ground-truth label/class of the k:th grid. The indicator function
[11] 1 is equal to one for the elements in its subscript set, i.e. it is equal to
one when there is no background. dmask can be chosen as any function that
compares a predicted mask to the ground-truth, in the article it was chosen as
dmask(x, y) = 1−D(x, y), where D(·, ·) is the Sorensson-Dice coefficient [12]. A
visualization of the variables can be seen in Figure 3.2.
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Figure 3.2: Given an input image and labels 0 (background) and 1 (foreground), it is
divided into a 6-by-6 grid. The grids are then ordered according to the orange number
in each cell (some numbers are omitted to make the image clear, but one should be able
to interpolate all grid numbers). The white rectangle represents a ground-truth mask,
and the red box its center region. Only two grids fall within this center region, cells 21
and 22, marked in grey. This means that p∗

21 = p∗
22 = 1 and p∗

k = 0 for the other cells
and Npos = 2. Each of these two cells will produce a mask, m21 and m22 respectively.
Since the positive samples fall in the same center region, m∗

21 = m∗
22 which represents

the entire ground-truth mask.

3.5 SOLOv2

In its article, SOLO managed to produce equal results, in terms of precision and
inference speed, to that of Mask R-CNN with potential to be faster. Wang et
al. later published SOLOv2 [13], an article describing three major bottlenecks
for SOLOs performance and solving them with minimal precision loss. The
improved inference speed makes SOLOv2 a suitable model for the task at hand.



Chapter 4

Methods

In this chapter I present how a dataset was created, which parameters that the
Mask RCNN and SOLO models used during training, how these networks will
be evaluated and the underlying theory. I also discuss how the resulting output
image can be processed in order to improve the results.

4.1 Creating the dataset

4.1.1 Manual annotation

For this particular application there were no useful public datasets available.
Therefore one had to be built manually. With images of SELMA operating
at runtime, provided by OP Teknik, and personally crafted Python scripts, it
was possible to automatically filter away images containing no information, i.e.
images with no objects. The next step was to select images representative of
the task at hand, meaning images that contain several adjacent objects. The
selected images were then annotated using VGG Image Annotator [14], and the
annotations were formatted according to its own format. A total of 682 images
were included in the final dataset and split into training/validation according
to 0.8/0.2.

4.1.2 Image augmentation

With a dataset constructed, it is possible to expand it using relatively trivial
methods such as rotating, rescaling etc commonly called image augmentation.
Performing such augmentations is usually good as it leads to more training
data and better generalization. Image augmentation can either be performed
before model training and incorporated in the dataset or during. Performing
the augmentations beforehand allows for different models to be compared as
they have all used the same training data. This also allows for hand-tuning of
the hyperparameters, which could mean better results as well as overfit. This
can be prevented by augmenting at runtime at the cost of making comparisions

22
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more difficult. Augmenting at runtime also has the advantages of using less
memory and does not make the context of the dataset more specific. Which
method of augmentation to use depends on the situation and for this thesis it
was performed at runtime. This is to avoid overfitting and the consequences it
can cause if the company chooses to implement a model.

4.2 Mask RCNN

For Mask RCNN I constructed models using ResNet18/34/50/101-FPN and
DenseNet63/121-FPN backbones. For each model underwent training twice, one
with images rescaled to 448 by 448 pixels and the other with images rescaled to
600 by 600 pixels. That makes 12 the total number of Mask RCNN models. Each
model was trained for 20000 iterations with 2 images per batch with a learning
rate of 0.001 with a linear warmup schedule for the first 1000 iterations. The
momentum was set to 0.9. The DenseNet models had 64 initial features and the
drop rate was set to 0.2. DenseNet63 used a (3, 6, 12, 8) block configuration,
and DenseNet121 used a (6, 12, 24, 16) block configuration. The weights in the
backbone were unfrozen, as early experiments showed that a frozen backbone
produced worse models.

4.3 SOLOv2

I constructed 12 SOLOv2 models in the same manner as for Mask RCNN.
Hyperparameters that are shared with Mask RCNN were set to the same values.
The hyperparameters that are specific to SOLOv2 were set according to the
article [13].

4.4 Evaluation methods

Next we present a number of evaluation metrics that measure how well the
predicted masks compare to the ground-truth masks, like which pixels were
correctly separated from the background, and how many predicted masks cor-
respond to an object.

4.4.1 Intersection-over-Union

Intersection-over-Union, or Jaccard index, is a statistic for measuring the simi-
larity of two sets, defined [15] as

J(A,B) =
|A ∩B|
|A ∪B|

, (4.1)

for two sets A and B. Clearly 0 ≤ J(A,B) ≤ 1, and a larger value represents
a better result. With words, Equation (4.1) is the ratio of the size of the
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intersection of sets A and B and the size of the union of A and B. The Jaccard
index can be visualized as shown in Figure 4.1.

Figure 4.1: Visualization of Intersection-over-Union.

In this project, the set A is the binarized mask of the ground-truth segmen-
tation and the set B is the binarized mask of the predicted segmentation.

4.4.2 AP-metrics

Since the intended application of a segmentation is for a robot to pick out the
objects, the Jaccard index is not enough to evaluate the quality of a method.
After all, what might be a single object in the ground-truth segmentation could
be segmented as several objects in the prediction while still having a perfect
Jaccard index. Likewise, two adjacent objects in the ground-truth segmenta-
tion could be predicted to just be one object while still having a perfect Jaccard
index. It is then clear why a measurement of how many ”adequately” segmented
objects is needed, and why it is not as trivial as just counting the number of seg-
mented objects. A way of quantitatively measuring the number of adequately
segmented objects is by using average precision.

Since the models described in earlier sections have been evaluated on the
COCO-dataset, it is reasonable to utilize the same evaluation metrics [16] for
our problem. Although the metric is described for bounding boxes on the COCO
website, Arnab et al. propose an analogue metric for instance segmentation by
just using the predicted/GT masks in place of bounding boxes [17]. These met-
rics provide insight in how well the model handles objects of different sizes and
how well it works when we only consider results with a minimum IoU threshold.
In order to understand what this means we must first introduce the concept of
precision and recall.

Everingham et al. [18] uses the following definitions for true/false classifica-
tions in computer vision. Let t be a threshold, 0 ≤ t ≤ 1, and let a predicted
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mask be considered True Positive (TP) if it has a IoU-score greater or equal to t
with atleast one ground-truth mask and False Positive (FP) if it does not. True
Negative (TN ) and False Negative (FN ) are defined in the same way but with
predicted mask and ground-truth mask interchanged, e.g a ground-truth mask
is considered TN if it has a IoU-score ≥ t with atleast one predicted mask.. The
precision and recall is then defined as [19]

precision =
TP

TP + FP

recall =
TP

TP + FN

The average precision (AvgP[t]) is then calculated as the area under the precision-
recall curve for a given threshold t. Let r, p(r) represent recall and the corre-
sponding precision value and this can be formulated as

AvgP [t] =

∫ 1

0

p(r)dr.

The order in which the masks are evaluated can influence the precision-recall
curve, so we instead use the interpolated precision

pi(r) = maxR≥r p(R)

to reduce this variation. Following the naming and sampling convention of
COCO, the interpolated average precision (AP [t]) is calculated as the area under
the precision-recall curve at 100 equally spaced recall values for a given threshold
t. Finally, the COCO definition of AP is

AP =
1

10

9∑
i=0

AP [50 + 5i].

The AP can be further specified to only account for objects of certain area,
meaning the number of pixels in mask. This is useful since large objects have
the largest ”value”, which implies more recycled material/more money. The
default categories are

• AP small, for objects with area < 322.

• APmedium, for objects with 322 < area < 962.

• AP large, for objects with area > 962.

reflecting a 41/34/24 distribution of object sizes in the COCO dataset.

It is common to see mean average precision (mAP) mentioned in literature
and used interchangeably with AP. Mean average precision is calculated as the
AP averaged over all classes and the difference between mAP and AP is often
clear from context. Since our case has only one class, mAP = AP .
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4.4.3 Time required to segment

The previously discussed measurements only treat the quality of the segmenta-
tions produced by the models. It is important for the company to know whether
such a model could be implemented without changes in other places of the sort-
ing process. One important aspect, from the whole system perspective, is that
of inference time required for the segmentation. A reasonable measurement for
the time required to segment is to take the average time it takes to segment a
large set of images on a specific hardware setup. As SELMA takes a photograph
of the conveyor belt every 0.3 seconds, a good average time to segment should
be small enough so that SELMA can continue to operate at this speed. In other
words, no individual segmentation should take more than 0.3 seconds. One of
the main variables that influence this metric is the image size, instances are
inferenced more quickly on a smaller image than a larger one but resizing an
image also takes time. It is then plausible that an image could be scaled down,
predicted on, and scaled up at a faster rate with minimal accuracy loss than
performing the prediction without this pre/post-processing. Thus, the time re-
quired to segment is divided into two parts, the time required to predict directly
and the time required to rescale and predict.

4.5 Non-maximum suppression

One problem Wang et al. discuss [9][13] is duplicate predictions of the SOLO
architecture. Without any post-processing, SOLO produces far too many masks
which greatly overlap. An example can be seen in Figure 4.2, which contains
18 masks but it is only possible to distinguish 3.
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Figure 4.2: Results of a SOLOv2 model without using NMS, the prediction was the best
one with regards to IoU. IoU-score: 0.964, Nr instances: 18, GT objects: 3. Top left is
the input image. Top right is the ground-truth polygons in a binarized mask. Bottom
left is the predicted instance masks overlayed on the input image, each color represents
one mask. Bottom right is all masks binarized for easy comparison to ground-truth.

The consequences of having those redundant masks, besides a longer pro-
cessing time, is that SELMA will be unable to prioritize which objects to sort
first. The solution to this problem is called non-maximum suppression (NMS)
which is used in several computer vision tasks and even in Mask RCNN. NMS
works by choosing a threshold, usually 0.5, and sorting the masks by decreasing
confidence. The IoU between the mask with highest confidence and all other
masks is then computed and if this value is larger than the threshold, the two
masks are deemed to represent the same object and the lower confidence mask
is suppressed. This process is repeated for the remaining masks.

The NMS algorithm described above returns results with minimal accuracy
loss but is quite slow, since it is scales quadratically and is not possible to vec-
torize. The algorithm Fast NMS, proposed by Bolya et al. [20] relaxes the
conditions required to suppress a mask in such a way that it is possible to vec-
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torize. The effect is a faster algorithm that removes a few too many masks,
decreasing the accuracy. Early experiments showed that Fast NMS was neces-
sary in order for SOLOv2 to predict the right number of masks in reasonable
time.

While traditional NMS and Fast NMS are commonly used in computer vision
tasks, they pose a problem in this context and especially when using SOLOv2.
The problem is that the remaining non-suppressed masks can still share pixels,
which would make it harder for the classification algorithm. After all, if some
pixels are shared between two masks, at least one of those masks must contain
information about a second object, possibly of a different material. That is
why I developed modified algorithms of traditional NMS and Fast NMS, where
the Fast NMS version is only approximately 60ms slower than the original. I
call these algorithms Pixelwise NMS and Fast Pixelwise NMS. The difference
between traditional NMS and Pixelwise NMS is that when two masks have an
overlap but not enough to warrant a suppression, the pixels in the overlap are
reserved for the higher confidence mask. The difference is visualized in Figure
4.3.

(a) Possible segmentation
without NMS.

(b) Effects of traditional
NMS.

(c) Effects of Pixelwise
NMS.

Figure 4.3: Comparisons of different NMS-algorithms.

Theoretically, an NMS-algorithm can either increase or decrease AP-scores,
but due to the amount of suggested masks it is far more likely to decrease the
AP-scores.

Code for Pixelwise NMS and Fast Pixelwise NMS is provided in the ap-
pendix.
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Implementation details

In this chapter I present the specific way the models were implemented and
issues that occurred and were consequently fixed.

5.1 Implementation details

The selected language for programming in this thesis was Python 3, as the many
libraries related to machine learning and simple syntax was expected to reduce
the time spent programming. The Detectron2 [21] library with its extension
AdelaiDet [22] was utilized for its easy to use framework and well-documented
code meant that experiments could be performed quickly and new models could
be introduced with little effort if necessary. Additionally, having all models
constructed in the same framework makes inference times more comparable, as
different frameworks have different throughput1.

The annotation format produced by VGG Image Annotator is not the same
format that is used in Detectron2. A Python function to convert the VGG for-
mat accordingly is provided in the Detectron2 Beginner’s Tutorial [23].

Furthermore, Detectron2 provides commonly used evaluation metrics. An
int type conversion implemented on two lines in the library pycocotools was
necessary to solve some issues relating to a newer numpy version.
Detectron2 is not supported on Windows, so a workaround was used [24].

Pixelwise NMS was implemented by initializing a matrix of ones of equal
size of an image, and setting elements to zero when the corresponding pixel
is reserved. Then elementwise multiplication can be used to truncate masks,
which is quickly done on a GPU.

1https://detectron2.readthedocs.io/en/latest/notes/benchmarks.html

29
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Densenet was implemented by adapting the authors code, provided here2,
to the Detectron2 framework. Code is provided in the appendix.

2https://github.com/gpleiss/efficient densenet pytorch
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Results

In this chapter I present the results of different models according to the eval-
uation metrics described in Chapter 4, Intersection-over-Union, AP and time
required to segment.

All training and testing was performed on a GTX 980 TI. Since SELMA
operates using a similar graphics card, this makes the time to segment a good
measurement of whether implementation is possible. Experiments were per-
formed on images rescaled to 448x448 and 600x600 pixels. Attempts were made
on 1200x1200 pixels but the GPU memory was insufficient for images of this
size. Time measurements were all averaged over 5 runs, unless otherwise speci-
fied. The final training dataset consisted of 545 images and the final validation
dataset consisted of 137 images.

6.1 Baseline results

OP Tekniks current algorithm was evaluated on both the final training and
validation dataset, the results can be seen in Table 6.1.

Model Avg IoU AP AP50 AP75 APs APm APl
OP Teknik Algos 55.86 23.88 50.38 20.17 0 3.3 42.28

Table 6.1: Results from using OP Tekniks algorithms.

6.2 Mask RCNN results

All Mask RCNN models were trained on the final training dataset and evaluated
on the validation dataset. Models with a ResNet backbone was initialized with
pretrained weights on ImageNet, other backbones were initialized randomly.
The IoU and AP results can be seen in Table 6.2.

31
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Backbone
resize
(pixels)

Avg
IoU

AP AP50 AP75 APs APm APl

ResNet18-FPN 448 87.94 63.94 86.60 74.80 0 54.09 70.07
ResNet18-FPN 600 88.13 65.86 88.35 77.31 0 58.44 70.47
ResNet34-FPN 448 88.07 64.77 87.76 76.10 4.49 53.70 71.30
ResNet34-FPN 600 88.73 65.78 87.47 77.31 3.37 56.09 71.80
ResNet50-FPN 448 90.18 70.43 91.11 82.92 0 58.41 77.23
ResNet50-FPN 600 90.60 71.10 91.23 82.37 0 60.59 77.29
ResNet101-FPN 448 90.10 69.59 90.67 81.40 8.42 55.55 77.01
ResNet101-FPN 600 90.47 70.26 89.97 81.17 14.31 58.75 77.10
DenseNet63-FPN 448 50.27 33.22 51.28 39.30 0 27.56 36.77
DenseNet63-FPN 600 15.14 45.96 63.73 55.64 0 39.28 70.70
DenseNet121-FPN 448 39.67 52.98 73.39 63.01 0 45.03 58.20
DenseNet121-FPN 600 42.23 38.60 54.49 46.46 0 33.79 41.90
OP Teknik Algos - 55.86 23.88 50.38 20.17 0 3.3 42.28

Table 6.2: IoU and AP results of different Mask RCNN models. The best score in each
category is written in bold. The baseline results are written on the bottom row.

The average time to segment is divided in two parts, average inference time
and average prediction time. The average inference time is the average time
it takes for an image from the validation dataset to be processed through the
network. The average prediction time also includes the time it takes to rescale
an image. The results can be seen in Table 6.3.

Backbone
resize
(pixels)

Avg inference
time (ms)

Avg prediction
time (ms)

ResNet18-FPN 448 53 83
ResNet18-FPN 600 63 93
ResNet34-FPN 448 58 87
ResNet34-FPN 600 69 98
ResNet50-FPN 448 64 96
ResNet50-FPN 600 81 110
ResNet101-FPN 448 74 105
ResNet101-FPN 600 98 127
DenseNet63-FPN 448 68 87
DenseNet63-FPN 600 76 114
DenseNet121-FPN 448 85 118
DenseNet121-FPN 600 88 110

Table 6.3: Resulting average inference and prediction time, averaged over 5 runs, for
the different Mask RCNN models. The best score is written in bold.

A precision-recall curve of the ResNet50-FPN 600x600 pixels model with a
IoU-threshold can be seen in Figure 6.1.
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Figure 6.1: Precision recall curve for ResNet50-FPN Mask RCNN rescaled inferenced
on 600 by 600 pixels

An example of a training curve for a ResNet50 Mask RCNN network can be
seen in Figure 6.2.
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Figure 6.2: Training curve for ResNet50 Mask RCNN. The training loss was evaluated
for every iteration and the validation loss was evaluated every 200 iterations.

An example of a training curve for a DenseNet63 Mask RCNN network can
be seen in Figure 6.3.

Figure 6.3: Training curve for DenseNet. The training loss was evaluated for every
iteration and the validation loss was evaluated every 200 iterations.
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6.3 SOLOv2 results

All SOLOv2 models were trained on the final training dataset and evaluated
on the validation dataset. Models with a ResNet backbone was initialized with
pretrained weights on ImageNet, other backbones were initialized randomly.
The ResNet18 and ResNet34 models were trained several times and results were
averaged since the optimizer often converged on predicting the entire image as
one mask. The results in Table 6.4 are post-processed with traditional NMS
and should serve as a baseline when comparing the accuracy-time trade-off of
the other NMS methods.

Backbone
resize
(pixels)

Avg
IoU

AP AP50 AP75 APs APm APl

ResNet18-FPN
avg of 5

448 78.43 31.66 60.52 31.89 0 20.45 38.09

ResNet18-FPN
avg of 5

600 87.56 55.41 81.85 62.74 0 44.61 62.01

ResNet34-FPN
avg of 5

448 87.15 57.10 85.24 66.65 0 44.81 64.68

ResNet34-FPN
avg of 5

600 88.28 54.23 81.66 61.75 0 43.17 61.11

ResNet50-FPN 448 88.15 64.93 91.54 77.65 0 50.55 73.46
ResNet50-FPN 600 89.14 67.46 91.35 80.80 0 54.18 75.61
ResNet101-FPN 448 88.29 64.16 90.95 76.79 0 49.52 72.76
ResNet101-FPN 600 89.33 67.65 91.13 79.76 3.37 53.70 76.05
DenseNet63-FPN 448 59.10 15.97 34.34 13.38 0 5.18 23.01
DenseNet63-FPN 600 29.08 6.97 15.06 5.88 0 3.14 9.67
DenseNet121-FPN 448 38.29 13.63 27.64 12.08 0 2.53 20.59
DenseNet121-FPN 600 64.64 23.84 53.20 30.16 0 24.03 33.83
OP Teknik Algos - 55.86 23.88 50.38 20.17 0 3.3 42.28

Table 6.4: Results of SOLOv2 with traditional NMS. The baseline results are written
on the bottom row.

The average prediction and processing time and AP-scores for Pixelwise
NMS and Fast Pixelwise NMS can be seen in Tables 6.5 and 6.6 respectively.
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Backbone
resize
(pixels)

Time (ms)
Pixelwise

AP AP50 AP75 APs APm APl

ResNet18-FPN 448 219 30.30 56.96 31.51 0 18.80 36.86
ResNet18-FPN 600 192 54.35 78.68 61.99 0 44.51 60.52
ResNet34-FPN 448 191 43.14 70.36 47.24 0 29.97 50.37
ResNet34-FPN 600 184 53.31 77.90 62.51 0 41.55 60.20
ResNet50-FPN 448 160 63.82 88.81 76.87 0 49.28 72.44
ResNet50-FPN 600 182 66.65 89.46 80.02 0 53.59 74.89
ResNet101-FPN 448 176 63.48 89.21 76.03 0 48.85 71.82
ResNet101-FPN 600 206 66.67 89.25 78.94 1.12 52.34 75.39
DenseNet63-FPN 448 241 14.13 30.42 12.39 0 4.85 20.44
DenseNet63-FPN 600 254 6.22 13.19 5.36 0 3.01 8.56
DenseNet121-FPN 448 266 12.27 24.23 10.94 0 2.04 18.63
DenseNet121-FPN 600 266 26.00 45.51 26.33 0 20.36 30.23

Table 6.5: Results of SOLOv2 with Pixelwise NMS.

Backbone
resize
(pixels)

Time (ms)/
Fast Pixelwise

AP AP50 AP75 APs APm APl

ResNet18-FPN 448 89 30.47 56.95 31.66 0 18.98 36.86
ResNet18-FPN 600 99 54.51 79.59 62.08 0 44.60 60.55
ResNet34-FPN 448 94 43.15 69.64 47.44 0 30.19 50.49
ResNet34-FPN 600 101 53.35 77.97 62.54 0 41.85 60.19
ResNet50-FPN 448 95 63.81 88.81 76.87 0 49.41 72.62
ResNet50-FPN 600 110 66.84 89.49 80.03 0 53.67 74.99
ResNet101-FPN 448 106 63.48 89.20 76.03 0 48.93 71.88
ResNet101-FPN 600 128 66.73 89.28 79.72 1.12 52.26 75.48
DenseNet63-FPN 448 107 14.29 30.85 12.42 0 4.91 20.48
DenseNet63-FPN 600 126 6.29 13.24 5.37 0 3.02 8.59
DenseNet121-FPN 448 136 12.32 24.24 11.08 0 2.09 18.53
DenseNet121-FPN 600 136 26.07 45.38 27.05 0 20.43 30.04

Table 6.6: Results of SOLOv2 with Fast Pixelwise NMS.
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Discussion, conclusions and
future work

In this section I compare and discuss the results and which conclusions that can
be drawn from them. I also suggest different options to continue this work.

7.1 Baseline results

The results of OP Teknik’s current algorithms can be seen in Table 6.1. At first
glance, these results seem poor. But when the dataset was created, I mainly
selected images with adjacent or overlapping objects. It was common for the
corresponding masks to be of poor quality, which is the reason this thesis was
offered in the first place. The current algorithms work well in cases of large,
isolated components, so the results of the algorithms should not be seen as an
evaluation of its quality but rather a baseline to compare the other methods
with.

Although the company does not wish to reveal the speed of their algorithms,
it can be assumed to be faster than 50ms per frame for the sake of discussion.

7.2 Mask RCNN

It is easy to see from Table 6.2 that for every network with a ResNet backbone,
a larger input image size produces better results. This comes as no surprise,
since an image resized to 448x448 pixels has lost more information than one
resized to 600x600 pixels. It can also be seen that IoU- and AP-scores increase
with depth for the ResNet backbones, up to ResNet50. For the two networks
with a ResNet101 backbone, the results are slightly worse than the ones with
a ResNet50 backbone, implying that more than 50 layers has little effect on
the accuracy of the models. The most striking difference between 50 and 101

37



CHAPTER 7. DISCUSSION, CONCLUSIONS AND FUTURE WORK 38

layers is the APs-score. The increased depth seems to make the network better
at predicting masks across scales. But since APs is for objects smaller than
32x32 pixels, it is hard to justify the increased processing time in order to
recycle very little extra material. All ResNet models outperform the current al-
gorithms when it comes to IoU and AP but no model is faster than the baseline.

The DenseNet backbones produce varying results, with no clear trend to
distinguish. One explanation for this difference compared to the ResNet back-
bones is that the ResNet weights were pretrained. This is clear from the loss
curves in Figures 6.2 and 6.3. The ResNet50 model is quickly overfit after just
a few thousand iterations, while the validation loss for the DenseNet model fol-
lows the training loss quite well for all 20000 iterations. It is then possible for a
DenseNet network produce on-par or even better results if training is performed
under the same conditions of the ResNet network.

Due to time and resource restrictions, such a training has not been at-
tempted.

Overall, a ResNet50-FPN backbone and resizing images to 600x600 pixels
produces the best results in 5 out of 7 categories.

7.3 SOLOv2

The results in Table 6.4 show that the ResNet models gain significantly increased
AP-scores with increased depth, up to 50 layers. These AP-scores however, are
worse than the corresponding Mask RCNN models and are outclassed with the
ResNet18 and ResNet34 backbones. This suggests that SOLOv2 is an overengi-
neered model that is capable of outperforming Mask RCNN in specific cases
such as the COCO challenges. This is certainly a possible explanation, sup-
ported by the quote in the SOLO article:

”We start by rethinking a question: What are the fundamental differences
between object instances in an image? Take the challenging MS COCO dataset
[16] for example. There are in total 36,780 objects in the validation subset,
98.3% of object pairs have center distance greater than 30 pixels. As for the
rest 1.7% of object pairs, 40.5% of them have size ratio greater than 1.5×. To
conclude, in most cases two instances in an image either have different cen-
ter locations or have different object sizes. This observation makes one wonder
whether we could directly distinguish instances by the center locations and object
sizes?”

Nonetheless, there are still interesting observations to make, such that larger
input images provide greater AP-gains for SOLOv2 than their respective Mask
RCNN counterparts, except for ResNet34. As described in Chapter 4.3, there
were no hyperparameters altered with regards to this dataset so it is possible
that the object instances in a larger image better match the underlying idea of
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SOLO.

When it comes to different NMS methods, both Pixelwise and Fast Pixelwise
NMS produce worse results than traditional NMS, which was expected. What is
interesting is that Pixelwise NMS and Fast Pixelwise NMS produce very similar
results, and no method is superior in all categories when it comes to AP, which
can be seen in Tables 6.5 and 6.6. The methods do behave differently when it
comes to prediction time. Contrary to what is expected, the prediction time
is greater for smaller ResNet networks when Pixelwise NMS is used. This is
explained by noting that Pixelwise NMS has quadratic time complexity with
regards to the number of masks and that the poor performance of the shallow
networks is partly due to a large number of predicted masks, see Figure 4.2.
As the models improve with increased backbone depth, the inference speed is
slower and fewer masks are predicted, thus a faster post-processing time. Both
of these factors mean that the overall prediction time mainly depends on the
inference speed. The prediction time behaves similar to that of Mask RCNN
when Fast Pixelwise NMS is used. This is because Fast Pixelwise NMS consists
only of vectorized operations, meaning that the post processing time is insignif-
icant when compared to the inference speed.

The SOLOv2 models with DenseNet backbones give no new information
regarding the possible performance of using such a backbone. As such, the con-
clusions regarding DenseNet in the Mask RCNN discussion still stands. Instead
of repeating what was said, see Chapter 7.2.

The SOLOv2 models perform worse than the corresponding Mask RCNN
models. The results do hint that a SOLOv2 model could outperform Mask
RCNN with with hyperparameters adjusted to the given dataset.

7.4 Future work

The results show that a ResNet50 backbone produces the best Mask RCNN
and SOLOv2 model. It would be interesting to see just how good one could
make these models by adjusting the hyperparameters in accordance with the
underlying theory.

Although the DenseNet models were noticeably slower than the ResNet mod-
els, they should in theory be able to produce better results. One could attempt
this either by configuring a good training scheme or by finding a way to convert
pretrained DenseNet models to Detectron2.

As mentioned in the Introduction, SELMA performs classification on the
segmented masks. Although this thesis was focused on single class instance
segmentation, all models are able to support classification. Performing classi-
fication would most likely mean a slightly decrease in prediction speed for the



CHAPTER 7. DISCUSSION, CONCLUSIONS AND FUTURE WORK 40

model but overall time would be saved. Since this would replace the entire
sorting process, it could be possible to make time gains elsewhere, e.g smaller
camera resolutions to avoid re-scaling images.
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Chapter 9

Appendix

Code for Densenet, Pixelwise NMS and Fast Pixelwise NMS is provided here:
https://gist.github.com/em7650sa/a9f7f78de657a929f1edace8dcc91795
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