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Abstract
Simultaneous Bayesian parameter estimation and particle-tracking including

calculation of mis-linking probabilities

by Lennart GOLKS

Since 1994 super-resolution microscopes enable us to visualize processes in the nanome-
ter regime where bio-molecules work. Consequently, there is a great need for methods
analyzing the generated data to transfer the motion of molecules, seen as white dots,
into trajectories. Important steps in understanding bio-molecular behavior are first the
detection of those and then generating trajectories based on a physical model.

Many particle-tracking methods have been reviewed and it was concluded that it is
advisable when linking dots into trajectories to know the particle dynamics [Chenouard
et al., “Objective comparison of particle tracking methods” in Nature methods 16.5 2019,
pp. 387-395]. However, this leads to a so-called catch-22 dilemma as the physical model
describing the particles’ motion is parameter dependent and so is the physical model-
based linking process. To solve this dilemma we implement a Bayesian framework
providing the best-fitting parameters and proposing trajectories in one go. This method
does not require any prior information and is based on a parameter-dependent Brown-
ian motion model with drift. In addition, we are the first to give mis-linking probabilities
for each proposed step.

Our proposed method recovers trajectories well and estimates the diffusion constant
and drift velocity of simulated data successfully. The calculation of mis-linking proba-
bilities in unconstrained Brownian motion agrees with the ground truth recovery rate
of the molecules’ steps. We note that our methodology works especially well with low
particle densities. If the particle density is high we recover less of the ground truth tra-
jectories. In the case of constrained one-dimensional Brownian motion, where particles
are trapped in nano-channels, we estimate the designated parameters well but under-
estimate the mis-linking probability. Lastly, we successfully apply our methodology to
experimental data of that specific case.

When dealing with experimental data we do not cover particle disappearance or
’extra’ particles due to overlapping, moving out of the focal plane, or limited fluoresc-
ing abilities. This can lead to incomplete trajectories, worse parameter estimation, and
wrong calculations of mis-linking probabilities.

HTTPS://WWW.LUNDUNIVERSITY.LU.SE
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Simultaneous Bayesian parameter estimation and particle-tracking including

calculation of mis-linking probabilities

by Lennart GOLKS

Nowadays experimentalists can visualize objects smaller than the wavelength of light,
such as molecules and other nano-particles. Instead of receiving reflected light one uses
directly emitted light of fluorescing molecules and can shift resolution possibilities of
optical systems, which can monitor those molecules as shining dots. Working with flu-
orescent molecules a microscope combined with a camera can record stacks of images
that can be rendered to videos. Then we can see molecules working in their environ-
ment and fulfilling their purpose which allows us to live as we do.

Following a molecule’s path, we have to choose a parameter-depending model which
potentially describes the motion we see under the microscope in the best way possible.
Imagine being a shorter ’novisch’ student going to your first party with thousand of
people in a cramped room. You are being pushed and kicked by other bigger students
and can barely hold your position. Now it happens to be that you usually drink a lot
and you are chaotically dancing and jumping around. Next, your best friend wants
to discuss something very important and is pulling you, but you do not want to leave
and stop dancing, so you are drifting unsteadily and uncontrolled towards the exit. In
our case, we can characterize this motion through a so-called biased Brownian motion
model with two parameters: the diffusion constant and drift velocity, which are the two
motion properties we like to estimate when tracking the path a particle takes.

Videos of fluorescent labeled diffusive particles are simply a lot of images in a very
short time. In-between those images, the particle jumps and we only observe fluores-
cent dots where a particle is resting shortly. Therefore it is hard to assign consecutive
positions into whole trajectories from a certain particle especially when trying to follow
a lot of molecules. We have to test all possible paths we see in-between two images, as a
particle could potentially take all of these steps, which is not computationally feasible.
In this thesis, we tackle the problem of generating trajectories by running an assignment
algorithm and acquiring a global solution, evaluated through our chosen model. Simul-
taneously, we estimate the drift velocity and diffusion constant. In addition, we are the
first to estimate how well we can recover the particles’ most likely path.

Ideally, we hope that we can set the base to find a way to quantify particle-tracking
including parameter estimation. Potentially our thesis has to be extended towards more
complex models to be tested and various parameters to be estimated improving the
accuracy of the recovered trajectories.

HTTPS://WWW.LUNDUNIVERSITY.LU.SE
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Chapter 1

Introduction

Super-resolution and conventional fluorescence-based microscopes produce videos show-
ing molecules moving in their environment, experiencing certain forces, and fulfilling
different purposes. We can process those videos by generating trajectories and estimate
the motion parameters of the investigated particles. This process is usually divided
into three different steps [1]: detection of the fluorescent dots; linking observed dots
into trajectories and assigning each path to one particle; estimate the motion describing
parameters.

In earlier studies, multiple algorithms were utilized to tackle the aforementioned
problems in different ways. Sage et al. evaluated a wide variety of software, which
localizes single molecules as white dots in realistically simulated data sets [2]. Based
on this assessment the alternating descent conditional gradient (ADCG) algorithm [3] is
considered to be state-of-the-art and has already been used in the Ambjörnsson group’s
previous work [4]. Next, algorithms linking the detected fluorescent dots into trajecto-
ries to follow the particle’s path were compared by Chenouard et al [5]. They concluded
that to optimize the linking process we shall know the underlying dynamics of the bi-
ological system expressed by a sophisticated physical model. However, defining the
physical model
by its parameters, as well as generat-
ing trajectories, requires either the not
yet existing trajectories or the yet to be
found parameters. This leads to a catch-22
dilemma, namely that we need the phys-
ical model and trajectories at the same
time.

Challenging the mentioned catch-22 dilemma, we establish a Bayesian framework
aiming to generate trajectories and estimate the physical model parameters simultane-
ously. Implementing a Bayesian framework provides a very quick and easy-to-imple-
ment method to optimize the physical model parameters [6]. Choosing a Brownian
motion model with drift we target the best-fitting drift velocity and diffusion constant.
We assess each parameter set through our Bayesian framework given the trajectories,
generated by those model parameters, in one go. Here we decide to deal with the case
of abstaining missing or extra dots to not over-complicate the linking process. In doing



2 Chapter 1. Introduction

so, we consider a so-called linear assignment problem (LAP), which we solve utilizing
Munkres’ algorithm also known as the Hungarian algorithm [7, 8]. The algorithm links
according to the physical model and generates a solution optimizing this model glob-
ally for all obtained dots, which we detect with the ADCG algorithm. As the best-fitting
model parameters are yet unknown we improve our model using a sampling approach.
After sampling a new parameter set we immediately generated trajectories and assess
this set through our Bayesian framework.

Once the best-fitting parameters are provided we can extend the linking algorithm
with Murty’s approach to be the first giving an estimate of how accurate the linking
process is [9]. Murty’s approach delivers ranked sets of trajectories for the best-fitting
parameters. We evaluate each step in every solution with the just defined model and
compare it to the first and best set of trajectories in order to provide mis-linking proba-
bilities.

We first try our proposed procedure on simulated data and optimize the settings of
our Bayesian framework aiming to apply it to real data. To test our methodology we
simulate unconstrained two-dimensional diffusive motion of 25 particles for different
box sizes. For each tested particle density, we simultaneously estimate parameters and
recover trajectories. According to the most likely physical model we generate ranked
solutions of the particles’ paths and give mis-linking probabilities. If this works success-
fully, we simulate diffusive motion close to the experimental data we have available.
Based on the results of this simulation we fine-tune our Bayesian framework. Once
our proposed methodology satisfactory estimates designated parameters, recovers tra-
jectories, and provides mis-linking probabilities we apply it to the experimental data.
This real data contains around 240 particles trapped in nano-channels and is therefore
considered to display constrained one-dimensional Brownian motion with drift.
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Chapter 2

Methods

In this section, we go step by step through the methodology of this work and the phys-
ical models used in this thesis. Starting with Bayes’ Theorem which will act as a basis
of this work, we will guide the reader through the parameter estimation process. We
will explain how we obtain positions of fluorescent dots from experimental videos fol-
lowed by the linking process to recover full trajectories. Within this process, we will
cover the essentials of the used algorithms, especially the nested sampling algorithm,
which we will utilize to estimate designated motion parameters. Lastly, we will use
Murty’s approach of the assignment algorithm to estimate mis-linking probabilities of
our proposed trajectories.

2.1 Bayesian Statistics

A Bayesian framework first mentioned more than 250 years ago provides us with a
likelihood function that enables us to find the most likely parameters, given a suitable
model and corresponding data [6]. The conditional probability density p(~θ|data) is the
posterior probability for a set of G parameters ~θ ∈ [θ1, . . . , θg, . . . , θG]

T. Given some
observed data we construct p(~θ|data) via Bayes’ theorem:

p(~θ|data) =
p(data|~θ)P(~θ)

P(data)
, (2.1)

where each parameter is in a range of predefined values θg ∈ [θg,min , θg,max] with g =

1, . . . , G. In equation 2.1 the conditional probability density p(data|~θ) of observed data
is describing the physical model given a set of parameters ~θ and is multiplied with the
prior probability P(~θ) of the observed parameters~θ. We divide this with the probability
P(data) of observing the data, also known as the evidence [6]. Whenever we only seek
to estimate parameters~θ, we can omit the evidence.

p(~θ|data) ∝ p(data|~θ)P(~θ) (2.2)
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The so-called likelihood p(data|~θ) enables us to evaluate a data set given the para-
meters~θ with a defined prior probability P(~θ). The prior probability of parameters P(~θ)
is a uniform probability density as we herein assume not to have any pre-information
on how likely the parameters are within a given range. Evaluating all parameters com-
binations possible would be computationally too extensive, therefore we have to sample
parameters from the phase space [θ1,min , θ1,max]× · · · × [θG,min , θG,max]. For further de-
tails see section 2.6.

Choosing a physical model p(data|~θ) is crucial when evaluating a set of parameters
through this likelihood value of some observed data. In the thesis, we want to fol-
low diffusive particles experiencing drift. Therefore, we decide to choose a Brownian
motion model characterized by a diffusion constant D and drift velocity ~v =

(
vx, vy

)
.

The data, with which we will feed the model, are trajectories of investigated particles
that originate from a simulation first and once the proposed methodology is consid-
ered to be robust enough from an experiment. In the next section, we will introduce a
d-dimensional Brownian motion model, which relates the parameters with the data.

2.2 Brownian Motion Model

To describe the motion of a diffusing particle, we use a Brownian motion model includ-
ing drift velocity. We will introduce this model in d-dimensions to be able to adjust it
when dealing with certain kinds of data. Then the multidimensional diffusion equation
is:

∂ϕ

∂t
= D

( ∂2ϕ

∂X2
1
+ · · ·+ ∂2ϕ

∂X2
i
+ · · ·+ ∂2ϕ

∂X2
d

)
, (2.3)

which ϕ(∆X1, . . . , ∆Xd, ∆t) has to satisfy [10]. Here ∆t = tn+1 − tn refers to the time
a particle needs to cover when traveling the distance ∆Xi = X(n+1)

i − X(n)
i in each di-

mension i = 1, . . . , d. Assuming that one particle is starting at the origin and at the time
t0 = 0, the diffusion equation has the following solution:

ϕ(∆X1, . . . , ∆Xd, ∆t) =
1

(4πD∆t)d/2 exp

[
−

∆X2
1 + · · ·+ ∆X2

d
4D∆t

]
, (2.4)

which is a normal distribution with the mean µ = 0 and a variance σ2 = 2D∆t [11].
To include drift velocities ~v = (v1, . . . , vd) we shift the expected value of this distri-

bution so that our d-dimensional Brownian model with drift is:

ϕ(∆X1, . . . , ∆Xd, ∆t) =
1

(4πD∆t)d/2 exp

[
− (∆X1 − v1∆t)2 + · · ·+ (∆Xd − vd∆t)2

4D∆t

]
.

(2.5)
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Before being able to evaluate paths of diffusive particles we, first, have to detect those
as fluorescent dots from experimental videos, as described in section 2.4. As each of the
images in an experimental video is two-dimensional, the maximum dimension of the
Brownian motion d is equal to two.

2.3 Methodological Overview for Simultaneous Parame-
ter Estimation and Linking

In this section, we would like to prepare the reader for the upcoming sections and how
they interconnect with steps of the methodology.

Starting with a fluorescent video of a super-resolution microscope we extract the
dots’ positions out of each image in that video, see section 2.4.

Given these positions of the fluorescent dots, we generate trajectories as described in
section 2.5 by using the Munkres algorithm. To assign dots in-between two images we
maximize the probability of a particle taking a proposed step. The probability is defined
by the Brownian motion model introduced in section 2.2, which needs the diffusion
constant and drift velocity as input parameters.

Finding those input parameters we utilize the nested sampling algorithm as de-
scribed in section 2.6, where we sample a parameter set, generate trajectories, and im-
mediately evaluate those through our Bayesian framework. If the stopping criterion of
the nested sampling algorithm is met we are provided with the best-fitting parameters
and the most likely trajectories.

In the section 2.7 we use those best-fitting parameters and extend the Munkres al-
gorithm with Murty’s approach. This extension gives us the possibility to calculate K
ranked solutions, where the first solution is the most likely. Using these solutions we
can calculate the mis-linking probability of each step evaluated with our Brownian mo-
tion model given the best-fitting parameters.

In the last section 2.8 of this chapter, we modify our method slightly to apply it to real
data. Here we introduce nano-channels and explain how this is changing the particles’
motion, as well as how we adjust the Munkres algorithm.

2.4 The Alternating Descent Conditional Gradient Method
- Detection of the Dots

The output of a biophysical particle tracking experiment is a fluorescence movie, which
is a stack of fluorescent images. Those fluorescence images are converted into grayscale
images I1, . . . , In, . . . , IN, one of those images is seen in figure 2.1a. The time between
two consecutive images is ∆t. Each image is converted into a two dimensional matrix,
where one pixel-point is located at (x, y) with x ∈ {1, · · · , xmax} and y ∈ {1, · · · , ymax}.
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(A) (B)

FIGURE 2.1: Zoom-in of an experiment of particles in nano-channels &
their corresponding detection of the ADCG algorithm. In (A) we can
see an example zoom-in of one image from experimental data generated
by Sune Levin (Fredrik Westerlund’s group at the Chalmers University of
Technology in Gothenburg, Sweden). The white dots represent diffusive
particles in nano-channels and move with a constant drift velocity in the
negative x-direction. The crosses in (B) mark the observed positions gen-
erated by the alternating descent conditional gradient (ADCG) algorithm,

which is explained in more detail in section 2.4.

We work with square pictures xmax = ymax and the number of pixels is passed on to the
algorithm beforehand.

The first step in the process of particle-tracking is the detection of the particles in
each time frame. This is an inverse problem, which we solve with the alternating de-
scent conditional gradient method (ADCG) [3]. The ADCG algorithm has proven itself
to be considered state-of-the-art in solving such a problem and was used by the Amb-
jörnsson group in previous work [4, 2]. In our case, the inverse problem is the estimation
of the number of light sources, and their respective positions, present in a given image,
where one light source ideally represents one molecule. In practice, we use a modified
Julia code of Schiebinger et al., which implements all the steps described below to solve
this inverse problem of detecting the dots [3].

To detect all molecules captured in one image the ADCG algorithm follows a set
procedure. In the ADCG method, first, we assume that each illumination source emits
light like a Gaussian-shaped point spread function (PSF), and second, a combination of
such sources is creating the analyzed image. Depending on the emitted wavelength of
the fluorescent molecules and the numerical aperture of the used camera system, we
define the PSF accordingly. We divide the image into a grid such that the amount of
pixels is lower than the number of grid points, aiming to increase accuracy. Once we
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remove a set noise from the image, we let the algorithm run a predefined number of
iterations, where it creates or removes PSF on a constructed grid. The goal is to find
optimal positions and intensities of the PSFs in this artificial picture so that it matches
the original picture in the best way possible. Therefore a loss function evaluates the
difference between the image, which is generated by the algorithm, and the original
image. Based on the intensity difference of each pixel weighted with this loss function
and a chosen factor the images are compared and the algorithm stops once the images
are similar enough, for more details we refer to Dolev Illouz’s bachelor thesis [4]. Finally,
the algorithm provides the required positions and intensities of the light sources present
in the analyzed image, as seen in figure 2.1b [3].

We proceed through every given image In and observe positions {
(
x( f )

n , y( f )
n
)
} of the

dots f = 1, . . . , F present as light sources in the images. The next non-trivial step is to
link these observed dots in-between two consecutive images.

2.5 Assigning the Dots

Finding the best assignment of the observed dots according to the model is an opti-
mization problem that we solve using an algorithm based on the Hungarian algorithm
[8]. To link observed dots between two consecutive time frames we set up a cost ma-
trix C = (P× P), where we enumerate according to the number of dots 1, . . . , p, . . . , P
present in a picture. The goal is to find a linking of observed dots in-between time
frames n and n + 1 such that the posterior probability is maximized according to the
predefined Brownian motion model. We achieve this by minimizing the negative log-
arithm of the posterior probability of our model given by Eq. 2.5. The probability for
linking two dots does depend on the drift velocity and on the diffusion constant, which
we both consider being the same for all dots.

This leads to the entries of the cost matrix for a combination of two positions of the
dots p and p′ at step n and the following step n + 1, with preset values for the drift
velocities (v1, . . . , vd) in d dimensions and the diffusion constant D:

Cp,p′ =

(
x(p)
(1,n) − x(p′)

(1,n−1) − v1∆t
)2

+ · · ·+
(
x(p)
(d,n) − x(p′)

(d,n−1) − vd∆t
)2

4D∆t
+

d
2

ln [4πD∆t] .
(2.6)

The maximum number of dimension we have to consider in our case is two, but we
adjust our cost matrix entries depending on the data we are treating. For simplicity
reasons we will continue with one explicit case, which is a two-dimensional Brownian
motion model including drift velocities in the x- and y-direction. This leads to the cost
matrix entries:

Cp,p′ =

(
x(p)

n − x(p′)
n−1 − vx∆t

)2
+
(
y(p)

n − y(p′)
n−1 − vy∆t

)2

4D∆t
+ ln [4πD∆t] . (2.7)
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Here we can already point out that the additive factor ln [4πD∆t] and scaling factor
1/(4D∆t) does not influence the assignment. As a consequence, all values of D in com-
bination with one drift velocity will have the same best linking.

Solving this assignment problem we use Munkres’ algorithm, which is a variation
of the so-called Hungarian algorithm [7]. The algorithm provides us with the best as-
signment between two consecutive time frames. Doing this for every two consecutive
time frames we can link together whole trajectories of particles Sbest = {

(
X(p)

n , Y(p)
n
)
},

where p = 1, . . . , P and n = 1, . . . , N, which is the best assignment we can compute.
The maximum number of needed operations to solve this assignment problem is in the
order of O((N − 1)P3), and lies within the range of the most efficient algorithms [7].
The linking process with defined in- and outputs is summarized in algorithm 1.

In the following chapter, we evaluate the best set of trajectories Sbest with a likelihood
value based on our Brownian motion model to estimate the diffusion constant and drift
velocities.

Algorithm 1: Munkres’ Algorithm

1 Input: Dot positions {
(
x( f )

n , y( f )
n
)
}, where f = 1, . . . , F and n = 1, . . . , N, drift

velocity ~v = (vx, vy);
2 Setup: Cost matrix C = (P× P) according to Eq. 2.7;
3 Output: Best set of trajectories Sbest

2.6 Parameter Estimation

To find the best-fitting parameters θ∗1 , . . . , θ∗G we follow a set procedure and have to
sample a set of parameters in the phase space [θ1,min, θ1,max]× · · · × [θG,min, θG,max] as it
is computationally too expensive to calculate all possible combinations.

We evaluate a chosen set of parameters ~θ =
(
θ1, θ2, θ3

)
when calculating the pos-

terior probability value p(θ1, . . . , θG|Sbest) for a given set of trajectories Sbest as seen in
figure 2.2. First, we implement a model with parameters, which is in our case a Brow-
nian motion model with drift as described in section 2.2. Based on this model we are
assigning the fluorescent dots in-between two images, which are obtained in section 2.4
given a set of parameters. In a two-dimensional case the physical model parameters
are

(
θ1, θ2, θ3

)
=
(

D, vx, vy
)
, where D is the diffusion constant and (vx, vy) are the drift

velocities in x- and y-direction. According to a cost function defined by our model, we
maximize the probability of particles moving in-between two images and set up a cost
matrix, as seen in Eq. 2.7. Using Munkres’ algorithm as introduced in section 2.5 we get
a set of best trajectories Sbest, which is independent to D. To find the best-fitting diffu-
sion constant D, we calculate the posterior probability p(D, vx, vy|Sbest) for a diffusion
constant in the range of [Dmin, Dmax] and chosen drift velocities, as seen in the equation
below:
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FIGURE 2.2: Schematic illustration of parameter evaluation in a two-
dimensional case. Given two parameters (θ1, θ2) picked out of the param-
eter space [θ1,min, θ1,max] × [θ2,min, θ2,max] and observed data, which in our
case is the observed positions of the fluorescent dots, we can set up a cost
matrix as described in section 2.5. Using the assignment algorithm 1 we
can link the positions of the observed dots and generate a set of best tra-
jectories Sbest. Using a physical model, e.g. our Brownian motion model
with drift, we can calculate the posterior distribution p(θ1, θ2|Sbest) as seen
in Eq. 2.8. This is a simplified description of how we evaluate a set of pa-
rameters, in section 2.6 we explain the process of how we sample the most

likely parameters in the parameter space.

p
(

D,~v|
(
X(1)

1 , X(1)
1

)
, . . . ,

(
X(p)

n , Y(p)
n
)
, . . . ,

(
X(P)

N , Y(P)
N
))

∝

N

∏
n=2

P

∏
p=1

1
4Dπ∆t

exp

[
−
(
X(p)

n − X(p)
n−1 − vx∆t

)2
+
(
Y(p)

n −Y(p)
n−1 − vy∆t

)2

4D∆t

]
.

(2.8)

Equation 2.8 describes the posterior probability for P particles taking N− 1 steps within
a time (N − 1)∆t in a proposed linking Sbest = {

(
X(p)

n , Y(p)
n
)
} with p = 1, . . . , P and

n = 1, . . . , N for a specific set of parameters. The maximum posterior probability
maxD∈[Dmin,Dmax] p(D,~v|Sbest) of the best solution Sbest is our benchmark, which we com-
pare to other sets of parameters.

Dealing with the complexity of estimating the drift velocity and diffusion constant,
we use the nested sampling approach similar to Bayesian model selection with fractional
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Brownian motion by Krog et al. [12]. Usually the algorithm is used to calculate the ev-
idence P(data) (see Eq. 2.1) by randomly sampling over the parameter space. In our
case, we use an ’optional by-product’ of the nested sampling algorithm, which is finding
the best drift velocity ~v∗ = (v∗x, v∗y) and best diffusion constant D∗ for a given set of de-
tected dots [13]. The nested sampling algorithm is a Monte Carlo method and follows
a set procedure until a stopping criterion is reached. We start by randomly sampling
U drift velocities ~v1, . . . ,~vu, . . . ,~vU within the range [vx,min, vx,min]× [vy,min, vy,max]. For
each of those samples we assign (independently of D) the fluorescent dots, observed in
section 2.4, to a set of best trajectories Sbest,u. We then compute the corresponding pos-
terior probability p

(
D,~vu|Sbest,u

)
, which we maximize with respect to D in the preset

range of [Dmin, Dmax]. Within this process we find the optimal diffusion constant Du ex-
pressed through a maximal posterior value maxD∈[Dmin,Dmax] p

(
D,~vu|Sbest,u

)
, which we

assign to the sample
(

Du,~vu
)
.

To find the overall best-fitting parameters
(

D∗,~v∗
)
, we update our U parameter sam-

ples. In doing so we remove the least probable parameter combination
minDu∈[D1,...,DU ],~vu∈[~v1,...,~vU ] p

(
Du,~vu|Sbest,u

)
and replace it with a more likely sample(

D′,~v′
)
. After calculating the best linking S′best for the proposed~v′ and a posterior prob-

ability p
(

D,~v′|S′best

)
, we optimize this posterior value to find the best diffusion constant

D′ at maxD∈[Dmin,Dmax] p
(

D,~v′|S′best

)
. If a new proposed candidate (D′,~v′) is less likely

than the one we want to remove, we reject this try and sample again until we find a
more likely candidate or the number of rejected tries ntries is equal to a preset number
of allowed tries Nsweep. According to the fraction of rejected moves within the number
of tries R = ntries/Nsweep we reduce the parameter space equally for each parameter if
needed, aiming to sample from a region in which it is very likely to find the best drift
velocity. Else we add

(
D′,~v′

)
to our sampling space assigned with p

(
D′,~v′|S′best

)
. The

removed sample is added with a weight factor to the current estimate of the evidence
and the remaining evidence is calculated, as introduced by Skilling et al. and executed
by Krog et al. [13, 12]. While the fraction of the remaining evidence divided by the cur-
rent estimate of the evidence is greater than a threshold we repeat the procedure. Once
the stopping criterion is reached the algorithm will provide us with the overall best-
fitting parameter combination

(
D∗,~v∗

)
= maxDu∈[D1,...,DU ],~vu∈[~v1,...,~vU ] p

(
Du,~vu|Sbest,u

)
and the corresponding best solution Sbest.

We summarized our nested sampling approach in the algorithm 2 below, which will
enable us to continue with the calculation of the mis-linking probabilities for the inves-
tigated particles given the best-fitting parameters.

2.7 Mis-linking Probabilities

Given the results of the nested sampling algorithm in section 2.7 we can estimate mis-
linking probabilities by reusing Munkres’ algorithm. Murty’s variant of Munkres’ algo-
rithm from 1968 is assigning the in section 2.4 acquired fluorescent dots based on the
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Algorithm 2: Nested Sampling

1 Input: Sample size U, range of diffusion constants ~D = [Dmin, Dmax], range of
drift velocities ~vx = [~vx,min~vx,min] and ~vy = [~vy,min,~vy,max], dots position

{
(
x( f )

n , y( f )
n
)
} where f = 1, . . . , F and n = 1, . . . , N, and stopping criterion ε;

2 Sample: Sample ~v1, . . . ,~vu, . . . ,~vU from a uniform distribution within the range
[~vx,min~vx,min]× [~vy,min,~vy,max];

3 for u = 1 to U do
4 Calculate: Sbest,u use algorithm 1;
5 Compute: posterior probability distribution p

(
D,~vu|Sbest,u

)
;

6 Find:
(

Du,~vu
)

at maxD∈~D p
(

D,~vu|Sbest,u
)
;

7 end
8 Calculate: Remaining evidence and current estimate of evidence;
9 while remaining evidence

current estimate of evidence > ε do
10 Propose: ~v′ within parameter space;
11 Calculate: S′best and p

(
D,~v′|S′best

)
;

12 Find:
(

D′,~v′
)

at maxD∈~D p
(

D,~v′|S′best

)
;

13 Set: ntry = 0 ;
14 while ntry ≤ NSweep and

p
(

D′,~v′|S′best
)
< minDu∈[D1,...,DU ],~vu∈[~v1,...,~vU ] p

(
Du,~vu|Sbest,u

)
do

15 Set: ntry = ntry + 1;
16 Propose new: ~v′ within parameter space;
17 Calculate: S′best and p

(
D,~v′|S′best

)
;

18 Find:
(

D′,~v′
)

at maxD∈~D p
(

D,~v′|S′best

)
;

19 end
20 if p

(
D′,~v′|S′best

)
> minDu∈[D1,...,DU ],~vu∈[~v1,...,~vU ] p

(
Du,~vu|Sbest,u

)
then

21 Update: minDu∈[D1,...,DU ],~vu∈[~v1,...,~vU ] p
(

Du,~vu|Sbest,u
)
= p

(
D′,~v′|S′best

)
;

22 end
23 if ntry = NSweep then constrain: Parameter space P(~vx,~vy) , see Eq. 3.1;
24 Calculate: Remaining evidence and current estimate of evidence;
25 end
26 Output: most likely drift velocity ~v∗ = (v∗x, v∗y) and diffusion constant D∗ at

maxDu∈[D1,...,DU ],~vu∈[~v1,...,~vU ] p
(

Du,~vu|Sbest,u
)

with a best proposed solution Sbest
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cost introduced through Eq. 2.7. In addition, this approach provides us with K solutions
S1, . . . , SK ranked in ’increasing order of cost’, so that S1 = Sbest [9].

Next, we express the linking probability of a particle taking one step in-between
two images In and In+1 in the kth best solution given the set of best-fitting parameters(

D∗,~v∗
)
. Equation 2.9 gives us this probability for a two dimensional movement of a

particle p making a proposed move according to the Brownian motion model with drift
defined in section 2.2:

1
4D∗π∆t

exp

[
−
(
X(p,k)

n − X(p,k)
n−1 − v∗x∆t

)2
+
(
Y(p,k)

n −Y(p,k)
n−1 − v∗y∆t

)2

4D∗∆t

]
. (2.9)

To give an estimate of how well we recover trajectories we compare the best solution
Sbest to the other K solutions we acquired using Murty’s approach of the linking algo-
rithm. In-between two consecutive images In and In+1 we pick one step of a particle p
in the best solution S1 = Sbest given the parameters

(
D∗,~v∗

)
with the starting position(

X(p,1)
n , Y(p,1)

n
)

and ending position
(
X(p,1)

n+1 , Y(p,1)
n+1

)
. If a particle p′ in the kth solution is

starting and ending at the same positions as the particle p in the best solution, we add
the probability of taking that step expressed through Eq. 2.9, to the nominator of our
linking probability in Eq. 2.10. The denominator of Eq. 2.10 is the sum of all probabilities
calculated with Eq. 2.9, where a particle is taking a step starting at

(
X(p,1)

n , Y(p,1)
n

)
within

two consecutive images In and In+1 in every obtained solution for the most likely drift
velocity. The mis-linking probability is equal to 1−equation 2.10.

sum of Eq. 2.9 for all particles matching S1 within In and In+1 in all Sk
sum of Eq. 2.9 for all particles within In and In+1 in all Sk

(2.10)

To find a well-fitting K, which is the number of solutions that we calculate using
Murty’s approach, is crucial in order to estimate a realistic mis-linking probability. If
we calculate a mis-linking using too small a value of K we would obtain unrealistic
results by not considering other possible solutions. Therefore, we increase K and recover
one additional solution as long as the mis-linking probability is changing. After each
increment of K, we calculate the mis-linking probability with the best-fitting parameters(

D∗,~v∗
)

given by the nested sampling algorithm. Once we reach a stable average mis-
linking probability of overall steps in one data set we stop increasing K and obtain the
final mis-linking probabilities for each step a particle is taking.

Below you find an overview of the mis-linking calculations including the procedure
of finding an optimal number of calculated solutions.
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Algorithm 3: Calculation of Mis-linking Probabilities

1 Input: Best sampled parameters
(

D∗,~v∗
)

from algorithm 2, observed dots

{
(
x( f )

n , y( f )
n
)
}, where f = 1, . . . , F and n = 1, . . . , N ;

2 Set: K = 1;
3 Set: average mis-linking probability = 0;
4 while mis-linking probability is increasing do
5 Increase: K = K + 1;
6 Calculate: S1, · · · , SK given

(
D∗,~v∗

)
use algorithm 1;

7 Take: best trajectories S1;
8 for k = 1 to K and; p = 1 to P and; n = 1 to N do
9 if Step in S1 = Step in Sk then

10 Add: linking-probability (Eq. 2.9) to nominator of 2.10;
11 Add: linking-probability (Eq. 2.9) to denominator of;
12 else Add: linking-probability (Eq. 2.9) to denominator of Eq. 2.10;
13 end
14 end
15 Calculate: average mis-linking probability;
16 end
17 Output: mis-linking-probability = 1-linking-probability for particles taking steps

in the best solution S1 given the best-fitting parameters
(

D∗,~v∗
)

and number of
calculated solutions K
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2.8 Generate Trajectories and Estimate Parameters for Ex-
perimental Data

When dealing with experimental data we slightly adjust our approach. The experi-
mental data we have available shows particles in nano-channels as white dots. These
nano-channels do constrain the motion of the particles in the y-direction. Consequently,
the particles diffuse only with a drift velocity in the x-direction.

The reason for the adjustment of the linking algorithm is that dot positions may be
missing due to experimental noise and imperfections in the data. The limiting fluores-
cence abilities of a molecule lead to on and off switching of the fluorescent label attached
to it. In combination with a finite lifetime, we are likely to miss out on white dots within
a biological fluorescent-based experiment. Additionally, molecules can overlap or move
out of the focal plane. In all of these cases, the ADCG algorithm, which is detecting the
fluorescent dots, will most likely not recognize those molecules. This certainly leads
to "extra" dots but also missing dots in the images of the experimental data. Unlike in
simulations, where we assume no disappearing or additional particles, we have to filter
out those positions and leave them unassigned.

Murty’s algorithm as implemented in MATLAB gives us the opportunity to define a
threshold, which leaves positions unassigned. This is important because if we do assign
positions with a high cost, we obtain very unlikely and unrealistic jumps of particles
that are magnitudes higher compared to most other steps in the investigated data set.
This threshold is coupled to the costs of assignments and defines the maximum cost of
a proposed step within the linking process. Positions are unassigned if the cost of an
assignment is too ’expensive’ and over-exceeds the cost of non-assignment. Our choice
of cost is defined in Eq. 2.7 and dependent on the step size a particle takes including
the shift caused by the drift velocity. The diffusion constant acts as a scaling factor and
will not change the assignment. We reduce this cost of non-assignment and recursively
generate trajectories until the largest step a particle takes in one data set is not greater
than the median plus two times the interquartile range (IQR) of all the step sizes in one
data set.

Another fact we can make use of is that the particles are trapped in nano-channels.
By first identifying the nano-channels and only considering the particles inside each
nano-channel we can increase computational speed as the cost matrices are consider-
ably smaller and easier to solve for the assignment algorithm. Localizing and estimat-
ing the width of the nano-channels in the experimental data we use a function written
by Sune Levin (Fredrik Westerlund’s group at the Chalmers University of Technology
in Gothenburg, Sweden). In the case of simulations, we know where the nano-channels
are as well as their width and pass that on the Munkres algorithm. We do not per-
mit particles to jump in-between different nano-channels and therefore follow a one-
dimensional diffusive motion with drift. Consequently, we adjust our physical model
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to a one-dimensional Brownian motion model with drift:

ϕ(∆x, ∆t) =
1√

4πD∆t
exp

[
− (∆x− vx∆t)2

4D∆t

]
. (2.11)

Aiming to estimate the diffusion constant D and the drift velocity in the x-direction vx
we use our Bayesian framework to simultaneously generate trajectories of the molecules
appearing as white dots.

We give an overview of this refined linking process in the box below, where in ad-
dition to assigned fluorescent dots we obtain unassigned dots which partly leads to
incomplete trajectories. We use those trajectories to recursively estimate the designated
parameters using our Bayesian framework.

Algorithm 4: Munkres’ Algorithm for Experimental Data

1 Input: Positions
(
x(1)n , y(1)n

)
, . . . ,

(
x(F)

N , y(F)
N
)
, nano-channel locations,

nano-channel width, drift velocity ~v = (vx, vy);
2 while Median(step sizes) + 2 IQR(step sizes) < max(step sizes) do
3 Reduce: Cost of non-assignment;
4 for each nano-channel do
5 Find: all P particles inside that nano-channel;
6 Setup: Cost matrix C = (P× P) according to Eq. 2.7;
7 Calculate: Best set of trajectories Sbest;
8 end
9 Calculate: Step sizes for all particles and all steps;

10 end
11 Output: Best set of trajectories Sbest
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Chapter 3

Results

In this chapter, we present the simulation setup which we use to obtain the following
results of the methodology introduced in chapter 2. By guiding the reader towards the
experimental outcomes we will go through the most important results to understand the
process of calculating mis-linking probabilities and estimate parameters besides gener-
ating trajectories simultaneously.

3.1 Setup of the Simulation and Bayesian Framework

In this section, we go through the simulation setup and the setup of the Bayesian frame-
work we use to estimate the parameters of the physical model, which we summarize
in table 3.1. We simulate diffusive motion for different particle densities and do the
analysis in MATLAB.

Based on the Smoluchowski equation we generate diffusive motion and follow a
’basic stochastic simulation algorithm’ (SSA) introduced on pg. 17 in [11]. To include
a drift velocity we shift each simulated diffusive step with µ = ~v∆t. Within our sim-
ulations, we have no unassigned or overlapped positions of any particles. We sim-
ulated round particles with a radius of R = 45 − 50nm in water with a viscosity of
η ≈ 1mPa · s at room temperature T = 293K, which gives a diffusion constant of
D ≈ kBT/6πηR = 4µm2/s, where kB is the Boltzmann constant [10]. In doing so we
keep a constant number of diffusive particles in a quadratic box with periodic bound-
aries, which has a different length in each simulation scaled with the number of pixels.
After simulating the trajectories we randomize the positions in each time frame to make
sure that no pre-information is transmitted when linking the dots with Munkres’ algo-
rithm.

When constraining the diffusive motion to simulate data close to the real setup we
create nano-channels that are 300nm wide as it is the case in the experimental data.

To estimate the diffusion constant and drift velocity we utilize a Bayesian frame-
work and the nested sampling algorithm aiming to maximize the posterior probability
at p

(
D∗,~v∗|Sbest

)
. The posterior distribution p

(
D∗,~v∗|Sbest

)
in Eq. 2.8 is not normal-

ized, therefore, we deal with very small numbers when calculating probability values
for longer trajectories and many particles. To avoid this, we convert the maximization
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problem into a minimization problem and work with the negative logarithmic function
of the posterior probability − ln[p(D∗,~v∗|Sbest)].

To find the best-fitting drift velocity and diffusion constant we use the nested sam-
pling algorithm implemented as mentioned in section 2.7, where we take 100 samples
in total from 1000 possible parameter values in each dimension. The range in which we
start sampling drift velocities and diffusion constants is defined in table 3.1. Within
this algorithm, we set the number of allowed tries to find a more likely sample to
Nsweep = 30. We constrain the sampling space of drift velocities lu, centered on the
most likely drift velocity tuple, when the fraction of rejected moves R within Nsweep is
greater than 50%:

lu → min(lu exp(0.5− R), 1). (3.1)

The algorithm is terminated once the difference between the remaining and current
evidence is smaller than ε = 10−5.

Parameter Numerical Value Unit Description
Dsim 4 µm2/s Simulated diffusion constant

min ~D 0.05 µm2/s Lower boundary for diffusion constant
max ~D 500 µm2/s Upper boundary for diffusion constant
vx,sim −55 µm/s Simulated drift velocity in the x-direction
vy,sim 0 µm/s Simulated drift velocity in the y-direction

min~vx −0.1 mm/s Lower boundary for vx
max~vx 0 mm/s Upper boundary for vx
min~vy −0.05 mm/s Lower boundary for vy
max~vy 0.05 mm/s Upper boundary for vy

∆t 0.035 s Waiting time in-between steps
Pixel length 0.431 µm Length of a quadratic pixel

P 25 or 240 Number of particles
N-1 5 Number of steps
U 100 Sample size
ε 10−5 Nested sampling stopping criterion

TABLE 3.1: Fixed numerical values used in the simulation and evaluation
of this study.

We analytically estimate the error σθ∗ of the parameters by calculating the absolute
second derivative of the logarithmic posterior probability evaluated at most likely pa-
rameter θ∗:

σθ∗ =

(
−

d2 ln
[
p(θ|Sbest)

]
dθ2

∣∣∣∣∣
θ∗

)−1/2

[6]. (3.2)
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3.2 Unconstrained Diffusive Motion

Here we present the estimation of the diffusion constant and drift velocity optimizing
our physical model in Eq. 2.5, given the most likely recovered trajectories and its mis-
linking probabilities. In this section, we consider unconstrained Brownian motion with
drift of 25 particles in two dimensions, for further details we refer to section 3.1 and
table 3.1.

(A)

(B)

FIGURE 3.1: Finding the best-fitting parameters if the stopping condi-
tion of the nested sampling algorithm is met. In figure (A) we plot a
function proportional to the negative logarithm of the posterior probability
− ln[p

(
D,~v∗|S best

)
] for the most likely drift velocity ~v∗ obtained in figure

(B), given a set of best-fitting trajectories Sbest. The most likely diffusion
constant D∗ = 3.6± 0.7µm2/s lies at the minimum of that function. Each
of the data points in figure (B) represents a drift velocity sample ~vu and its
minimal posterior probability − ln[p(Du,~vu|Sbest)] at the most likely diffu-
sion constant Du, indicated by the color bar. If the stopping criterion of the
nested sampling approach is met we can specify the most likely drift veloc-
ity ~v∗ = (−53, 2) ± (2, 2)µm/s at the overall minimum, which is marked
in green. The nested sampling approach reduces the parameter space from
which we sample and shows that the samples lie within a region in which
we are likely to find a parameter combination close to the ground truth,
which is marked in red. The estimation fits well with the red marked sim-
ulation input of Dsim = 4µm2/s and ~vsim = (−55, 0)µm/s. The simulation
was setup according to section 3.1 in a quadratic box with a size of 200× 200

pixels and periodic boundaries.

In figure 3.1 (A) we can see a function proportional to the negative logarithmic pos-
terior probability of the best-fitting parameter set − ln[p(D,~v∗|Sbest)], given the corre-
sponding best set of trajectories Sbest. The posterior probability function seen in figure
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3.1 (A) for the best-fitting drift velocity ~v∗ has a minimum at the best-fitting diffusion
constant D∗ = 3.6µm2/s. This is a close estimate to the simulation input marked in red.

The most likely drift velocity of ~v∗ = (−53, 2)± (2, 2)µm/s lies at the minimum of
the sampled data points in figure 3.1 (B) and is marked in green. We marked the ground
truth parameters in red, as seen in figures 3.1 (A) and 3.1 (B). Figure 3.1 (B) shows the
stopping criterion of the nested sampling algorithm, where each data point represents
the minimum of the negative logarithmic posterior function of a specific drift velocity
and diffusion constant, given the best set of trajectories Sbest. These trajectories and
posterior probabilities are simultaneously generated for each sampled parameter set.
The estimation is close to the simulation input and shows that the Bayesian framework
based on our Brownian motion model with drift works for the tested simulations. The
specific simulation setup to obtain this graph is a box with the size of 200× 200 pixels.

FIGURE 3.2: Zoom-in of particles’ most likely trajectory with calculated
mis-linking probabilities. We link positions of dots according to Munkres’
algorithm based on the model in Eq. 2.5. Following the arrows, we dis-
play the particles’ most likely path, with a mis-linking probability indicated
by the numbers. Calculating the three best sets of trajectories using the
most likely parameter values, as described in figure 3.1, we can estimate
the mis-linking probability as introduced in section 2.7. The 25 particles dif-
fuse unconstrained in a box with a size of 200× 200 pixels. The simulation

input values are described in table 3.1.

Given the most likely parameters (D∗,~v∗), provided by the nested sampling algo-
rithm in figure 3.1, we can calculate the mis-linking probabilities for each step, as seen in
figure 3.2. This figure shows a zoom-in of two trajectories from the best set of trajecto-
ries. Here we can see two very close particles taking five steps and following the arrows
in-between the ’Start’ and the ’End’ sign. The calculated mis-linking probabilities are at-
tached to the arrows and are based on the three best sets of trajectories. If the mis-linking
probabilities are higher we are less likely to have recovered the ground truth.

After estimating the diffusion constant and drift velocity we can obtain the overall
mis-linking probability in one simulation when averaging overall calculated mis-linking
probabilities of every step. In doing so, we assess our methodology for different particle
densities with a changing box size and constant number of particles.

To test the behavior of our proposed methodology we simulated diffusive motion
for different particle densities. Low particle densities include trajectories, which are
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(A)

(B)

FIGURE 3.3: Mis-linking estimates compared to ground truth values & es-
timated model parameters. The results shown here were obtained by sim-
ulated data to confirm our methodology. We simulate 25 particles taking
five unconstrained steps in a quadratic box with periodic boundaries for
changing box sizes. We summarize all important parameters for the sim-
ulation and estimation process in table 3.1. Figure (A) shows the average
mis-linking probability in a data set, which is calculated as introduced in
chapter 2.1. The calculated mis-linking probability using the simulation in-
put parameters (Dsim,~vsim) in magenta has an offset of 0.1 as it is very sim-
ilar to the mis-linking probability calculated with the best estimate (D∗,~v∗),
marked in black with green squared markers. The calculated mis-linking
probabilities slightly overestimate the actual mis-linking probabilities (blue
graph with red squares), which we obtain by comparison of the best set of
recovered trajectories Sbest = S1 to the simulated trajectories for each box
size. The background color refers to the number of calculated solutions K
using Murty’s approach of the Munkres’ algorithm, which is indicated by
the color bar and lies within the range of three solutions for lower particle
densities and up to eleven calculated solutions for higher particle densities.
We can see that we need to calculate more solutions for higher mis-linking
probabilities and higher particle densities to obtain a stable average mis-
linking probability when choosing K. Figure (B) shows the estimates of the
drift velocity and diffusion constant including 3σ error bars as a result of

the nested sampling algorithm and our Bayesian framework.

’easier’ to recover compared to higher particle densities, where we can quickly mix up
particles. In figure 3.3 (B) we can see that the parameter estimation works in general.
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The estimated parameters including the error are mostly similar to the simulation in-
put. We can estimate the diffusion constant especially well but obtain some outliers
for very high particle densities. In figure 3.3 (A) we calculate the average mis-linking
probability of each simulation using the best-fitting parameters (black graph with green
squares). Comparing these results with the average mis-linking probability calculated
with the simulation input parameters (magenta graph) and the actual mis-linking (blue
graph with red squares) we see trends matching. We can obtain the actual mis-linking
probability by comparing the ground truth trajectories to the proposed best set of trajec-
tories. The average mis-linking probability using the simulation input (magenta graph)
is very similar to the average mis-linking probability calculated with (D∗,~v∗) and has
therefore an offset of 0.1. We can see that we need more solutions of the Murty algo-
rithm for higher particle densities to calculate a stable average mis-linking probability.
If the particle density is increasing all three mis-linking probabilities are increasing as
well.

3.3 Constrained Diffusive Motion in Nano-channels

In this section, we present results from one-dimensional Brownian motion, where the
particles’ motion is constrained by nano-channels. We simulate data close to the exper-
imental data we have at hand to optimize the settings of our algorithms according to
section 2.8, aiming to apply our methodology to the experimental data. A fairly ’easy’
case of diffusive motion is when particles are trapped in nano-channels. Here we can
lower the risk of particles interacting with each other and have the advantage of estimat-
ing the diffusion constant and the drift velocity in the x-direction only, as this diffusive
motion is constrained in the y-direction. We simulate 240 particles doing five steps in
different box sizes, for further simulation details we refer to section 3.1.

In figure 3.4 (B) we can see that the estimated diffusion constants D∗ and drift ve-
locities in the x-direction v∗x are similar to the simulation input. That shows that the
parameter estimation method works. Given those best estimates, we calculate the aver-
age mis-linking probabilities for each data set (black graph with green squares), as seen
in figure 3.4 (A). The average mis-linking probabilities calculated with the ground truth
parameters (magenta graph) are very similar to the mis-linking probabilities calculated
with the best parameter estimate (D∗, v∗x) and therefore has an offset of 0.1. We use
the three best sets of trajectories to estimate those mis-linking probabilities. The rate
of recovered trajectories (blue graph with red squares) does not match our mis-linking
calculation and is higher than we estimate. Given these results, we move on to real
experimental data.

We apply our methodology to a real experimental video with fluorescent molecules
visible as white dots diffusing in nano-channels, as seen in figure 2.1. After detecting
the dots in each image of this video with the ADCG algorithm we evaluate seven data
sets of six consecutive images each. Once the dots in each nano-channel are determined
we link those into trajectories and adjust the cost of non-assignment, which is set to
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(A) (B)

FIGURE 3.4: Mis-linking estimates compared to ground truth values &
estimated model parameters for simulations close to experimental data.
The results shown here were obtained by simulating data which is as close
as possible to the experimental data, which we like to analyze. We simulate
240 particles with a radius of 50nm taking five steps in 300nm wide nano-
channels, which are confining the particles’ motion in the y-direction. We
consider different box sizes in our simulations and use periodic boundary
conditions. We summarize all simulation parameters in table 3.1. Figure
(A) shows that the average mis-linking probability in a data set calculated
with the simulation input parameters (Dsim,~vsim) (magenta with an off-
set of 0.1) and the estimated parameters (D∗, v∗x) (black and green squares
markers) is stable at around 0.03 for the tested particle densities. However,
we underestimate the actual mis-linking probability (blue graph with red
squares). The background color refers to the number of calculated solu-
tions K, which is indicated by the color bar. We can see that we need to
calculate three solutions to obtain stable average mis-linking probabilities.
Figure (B) shows the estimation of the drift velocity in the x-direction and
the diffusion constant including 3σ error bars as a result of the nested sam-
pling algorithm and our Bayesian framework. The parameter estimation
compared to the ground truth is promising and shows that our dimensional
Brownian motion model with drift works. We note that the error of the dif-

fusion constant is very low compared to earlier simulations in figure 3.3.

approximately a fifth of the 512 pixel long quadratic box. That means that we do not
allow the Munkres algorithm to generate steps larger than that. In the data set we
evaluate we have around 242 particles diffusing, which gives a particle density of ≈
527 · 107particles/m2.

After generating trajectories of the experimental data sets we evaluate the best set
of recovered trajectories with the mean displacement (MD) and the mean squared dis-
placement (MSD), as seen in figure 3.5 (B) and (C) and in Appendix A. Here we present
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(A) (B) (C)

(D)

FIGURE 3.5: Recovered trajectories of the best-fitting experimental data
set, its mean displacement and mean squared displacement; including
mis-linking probabilities for proposed steps in a specific nano-channel.
In figure (A) we display the recovered trajectories of experimental data
as color traces, where fluorescent particles move constrained by nano-
channels. This data set consists of six time-frames with a time of 0.035s
in-between and approximately 242 particle. Based on the recovered steps
in figure (A) we calculate the mean displacement (MD) < x(t) >= vx,fitt
(black) and plot the estimated MD v∗xt (red) in figure (B). Figure (C) shows
the mean squared displacement (MSD) < [x(t)− < x(t) >]2 >= 2Dfitt
(black) and the expected values 2D∗t (red). Through the gradient of a lin-
ear fit in time we obtain a diffusion constant Dfit ≈ 4.5µm2/s and drift
velocity vx,fit ≈ −53.2µm/s. The red graphs are based on the best esti-
mates D∗ = 4.6± 0.8µm2/s and v∗x = −52.2± 0.8µm/s from the nested
sampling approach. By comparing our estimates and the fitted parameter
values we ’see’ that the recovered trajectories behave as expected. Next, we
calculate the four best solutions of Murty’s algorithm and the mis-linking
probabilities of the particles’ most likely paths. In doing so we project the
trajectories in the red nano-channel in figure (A) into a kymograph, as seen
in figure (D). For illustration purposes, we display only trajectories, where
we recover all five steps. We display the movement of the chosen particles
in the x-direction and attach the mis-linking probabilities onto the arrows.
The particles in the right part of figure (D) are physically close especially in
the first step, here we obtain a high chance that the particles do not take the

proposed step in reality.
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the results of the data set, which has a MD and MSD most similar compared to our es-
timation, as seen in figure 3.5 (B) and (C). Based on the recovered steps in figure 3.5 (A)
we calculate the MD = < x(t) >= vx,fitt and the MSD < [x(t)− < x(t) >]2 >= 2Dfitt
and plot it in figure 3.5 (B) and (C) in black [14]. The MSD refers to the squared
variance σ2 = 2D∗∆t and the MD to the mean µ = v∗x∆t of our most likely one-
dimensional Brownian motion model with drift. Both are linear in time and we can
extract a drift velocity vx,fit ≈ −53.2µm/s and diffusion constant Dfit ≈ 4.5µm2/s
through fitting a linear graph to the MD and MSD, which is very close to our best es-
timates D∗ = 4.6± 0.8µm2/s and v∗x = −52.2± 0.8µm/s. Then we can calculate the
mis-linking probabilities using the four best sets of trajectories of Murty’s approach of
the Munkres’ algorithm. The average mis-linking probability in the discussed data set
is approximately 0.04 and matches quite well with the calculated average mis-linking
probabilities for the simulation in figure 3.4 (A).

In figure 3.5 (D) we project the most likely trajectories of the particles in the red nano-
channel seen in figure 3.5 (A) into a kymograph. For illustration purposes, we consider
only trajectories, where we recover all five steps and display the motion of each particle
in time versus movement in the x-direction. The particles follow the arrows on which
we attach the mis-linking probabilities of each step. The first step of the particles on the
right in cyan and black has a higher mis-linking probability compared to the other steps.
Here the mis-linking probabilities express that the particles are very close and therefore
have a high uncertainty of taking the best-proposed step.
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Chapter 4

Discussion

In this chapter, we discuss the expectations and results of our proposed methodology in
the case of constrained and unconstrained motion. We go through the linking and pa-
rameter estimation process, which works simultaneously. Giving the mis-linking proba-
bilities is a separated process after our Brownian motion model with drift has been op-
timized and trajectories are generated. In general, we note that our methodology works
but estimates higher mis-linking probabilities for boxes more densely packed with par-
ticles in nano-channels.

4.1 Recovering of Trajectories and Parameter Estimation

The estimation of parameters works very well for almost all tested particle densities, see
figure 3.3 (B) and 3.5 (B). From this, we can conclude that our model is accurate enough
to estimate the designated parameters of our physical model. The stopping condition
of the nested sampling algorithm and also the sampling size is sufficient and provides
good estimates of the designated parameters.

In contrast, the recovery rate of ground truth trajectories of particles in nano-
channels in figure 3.4 (A) is not as good as we would expect from results of uncon-
strained diffusive motion in figure 3.3 (A).

This leads to the conclusion that our model is accurate enough to estimate the pa-
rameters but lacks in accuracy especially for higher particle density and constrained
motion.

Another important aspect to mention is that depending on the choice of the diffu-
sion constant D and the drift velocity ~v it is easier or harder to estimate the parameters
correctly. We find that the absolute value of the mean in a specific direction defined by
the drift velocity |µ| = |v ∗ ∆t| has to be bigger than the variance σ =

√
2D∆t. Other-

wise the drift velocity does not affect the diffusive motion and we are very unlikely to
get a good estimate of the drift velocity.



28 Chapter 4. Discussion

4.2 Calculating Mis-linking Probabilities

Here we compare the calculated average mis-linking probabilities of the data sets to the
ground truth recovery rate of the trajectories. In theory, these should be very similar
but show large discrepancies for the diffusive motion constrained with nano-channels.
However, the average mis-linking probabilities for the unconstrained diffusive motion
in figure 3.3 (A) have recovery rates and calculated mis-linking probabilities, which are
following the same trends and matching most of the time.

In figure 3.4 (A) we calculate an average mis-linking probability which is too low
compared to the actual recovery rate. One crucial step in this process is the setting of
the number of calculated sets of trajectories K. We increase K and calculate another
solution as long as the mis-linking probability is rising. However, it might be the case
that we target a local maximum of the mis-linking probability and do not find the global
maximum in dependency of K. Another fact is that if the particles are trapped in nano-
channels they have a limited amount of alternative steps available as they cannot link
to particles outside their nano-channel. This means if we only detect two particles in
one nano-channel we will have no more than two possible solutions available, which
can also decrease the calculated mis-linking probability in some steps.

In addition we calculated the mis-linking probability using the best estimate (black
graph with green squares) and the ground truth parameters (magenta graph with an
offset of 0.1) as seen in figure 3.3 (A) and 3.4 (A). These mis-linking probabilities are very
similar and confirm the good estimate of the designated parameters.
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Chapter 5

Summary

In this thesis, we presented a way to not only track and simultaneously estimate the
diffusion constant and drift velocity of the investigated particles but to estimate the
mis-linking probabilities of the best-proposed sets of trajectories.

We simulated the unconstrained and constrained diffusive motion of particles in a
box with periodic boundaries and analyzed the generated data within our Bayesian
Framework. Utilizing the Munkres’ algorithm with Murty’s approach we linked ob-
served dots by maximizing our Brownian motion model with drift. With the help of
the nested sampling algorithm we found the best sets of trajectory and the best-fitting
set of parameters. The best-fitting parameters mostly agreed with the simulation input
parameters in the case of the unconstrained and constrained diffusive motion. By com-
paring all of the obtained steps to the best-proposed solution and estimating the average
mis-linking probability in each data set, we could assess our linking depending on the
particle density. Knowing the ground truth trajectory recovery rate we slightly under-
estimated the mis-linking probability for constrained diffusive motion and high particle
densities, but estimated drift velocities and diffusion constants successfully within the
ground truth values. The estimation of mis-linking probabilities was more robust for
motion which is not constrained.

Detecting fluorescent dots in experimental videos we used the ADCG algorithm
and adapted our proposed methodology to apply it successfully on experimental data
sets. Generating realistic trajectories we adjusted the length of allowed steps within one
data set to compensate for missing or "extra" dots. In addition, we localized all nano-
channels in the data sets and only linked the particles present in each nano-channel. In
doing so, we do not allow a particle to move outside a nano-channel and increase com-
putational speed as we deal with considerably smaller cost matrices. To verify our re-
sults we calculated the mean square displacement (MSD) and mean displacement (MD)
of the recovered trajectories, which are proportional to the diffusion constant and drift
velocity. Through a linear fit to the MSD and MD we could obtain another set of param-
eters and compared those with the estimated parameters. We calculated the mis-linking
probabilities in the data set with the least discrepancy between the fitted and estimated
parameters. Here we could get similar results compared to the simulation.
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Chapter 6

Outlook

Here we discuss future challenges, applications, and potential improvements of our
methods.

We achieve a great rate of trajectory recovery for unconstrained diffusive motion
but lack that when working with constrained diffusive motion, in which particles are
trapped in nano-channels. Therefore, we would like to recover trajectories more ac-
curately or increase the estimation of the mis-linking probability, which in the uncon-
strained case is too low compared to the actual trajectory recovery rate. An exact idea
on how to solve this issue is still missing.

The accuracy of the parameter estimation for unconstrained diffusive motion is an-
other part we like to improve. Within our Bayesian framework, we use the nested sam-
pling approach to estimate parameters. We could exchange this part of our methodol-
ogy with other similar Monte Carlo approaches and compare the estimated parameters
to the ground truth. Here we suggest a Markov chain Monte Carlo (MCMC) method
such as the Metropolis-Hastings algorithm [15]. The Metropolis-Hastings algorithm
samples posterior values of the parameters space and finds the best-fitting parameters
by comparing them to the latest accepted posterior sample of a parameter set. Another
approach, which is probably most interesting in complex multidimensional problems,
is the tensor train (TT) representation of the parameter space [16, 17]. This approach
decomposes and approximates the parameters space and saves computational time as
the number of possible parameter combinations is significantly reduced.

Since we can work well with simulations of unconstrained diffusive motion, we now
like to apply our methodology to unconstrained diffusive experiments. Here, we aim to
extend the linking algorithm to deal with missing or extra dots similar to Jaqaman et al.
[18]. In doing so, we could introduce another physical model. One appropriate phys-
ical model could describe the particle appearance or disappearance due to on and off
switching of the fluorescent part of the molecule. Once this extra layer is implemented
we could apply our methodology to various novel systems.

A suitable and interesting experiment to apply our methodology on is e.g. a T-cell
experiment, where viruses are killed by immune cells (T-cells) after being detected by
the cells’ receptors. By labeling the viruses with a fluorescent dye and tracking them
with our methodology we could gain knowledge on the binding rates of the receptors
and viruses, which help us to understand the immune system’s work. Here we most



32 Chapter 6. Outlook

likely have to work with more physical models, which leads to the estimation of mul-
tiple parameters. This includes e.g. two diffusion constants, one for the unbound and
one for the bound state of the virus, and drift velocities in not only two but three di-
mensions, depending on the available experimental data.

Another possible application is the optical reconstruction of barcodes of deoxyri-
bonucleic acids (DNA). When stretched in silicon nano-channels, we can optically map
fluorescent labeled DNA. DNA is a chain of molecules, which we encrypt with the four
letters A C T G, and holds the blueprints of our life. Usually analyzed chemically, we
could use the ADCG algorithm to first detect and then localize specific fluorescent mark-
ers. Here we would follow the dots and generate trajectories with our Bayesian frame-
work. By averaging out any movements of the molecules in the DNA chain we obtain
precise localization of each ’letter’. The main challenge in this process is to distinguish
the different types of molecules, as they are physically close and blurry due to back-
ground noise in the data [4, 19]. When successfully applied we can construct DNA
barcodes faster than ever and outperform existing methods.

The last utilization of our Bayesian framework which we like to mention is the char-
acterization of nano- and micro-fluids. By determining the motion describing param-
eters of tracked particles in the fluid we can extract, for instance, the particle’s size
through the estimated drift velocity and diffusion constant in combination with Stokes
law. On the other hand, if our Bayesian framework is implemented using population-
based models instead of focusing on single particles, we can quantify various contents
in the fluid. Here, one could analyze the components of blood samples or other sam-
ples of patients to gain important information about the patients’ health status within
minutes. This method is not so time-intensive and does not require as much extensive
effort in the analysis compared to existing methods.
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Appendix A

Supplementary Figures

Here we present the results of the experimental data sets we did not present in section
3.3. For each of the data sets we calculate the mean squared displacement (MSD) <
[x(t)− < x(t) >]2 >= 2Dfitt (C) and mean displacement (MD) < x(t) >= vx,fitt (B)
based on the recovered steps (A). Through fitting we get the parameter values for the
drift velocity in the x-direction vx,fit and the diffusion constant Dfit. We present the data
set with the smallest difference of the estimated parameters (D∗, v∗x), using our Bayesian
framework, and the fitted parameters (Dfit, vx,fit), in figure 3.4. The here shown data
sets have larger differences and do not behave linearly as we expect and therefore do
not represent a suitable result.
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(A) (B) (C)

FIGURE A.1: Quick assessment of recovered steps in experimental data
set 1 with mean distance and mean squared distance. Based on the recov-
ered steps of ≈ 241 particles taking five steps in one experimental data set
as seen in figure (A) we calculate the mean squared displacement (MSD)
< [x(t)− < x(t) >]2 >= 2Dfitt in figure (C), after calculating the mean
displacement (MD) < x(t) >= vx,fitt. The calculated graphs are black
and through fitting to the calculation we can obtain the diffusion con-
stant Dfit ≈ 5.7µm2/s and drift velocity vx,fit ≈ −50.3µm/s when com-
paring with the gradient. The red graphs are based on the best estimates
D∗ = 6.1± 0.9µm2/s and v∗x = −48± 1µm/s from the nested sampling
approach. By comparing the red and the black graph we can ’see’ how well
the real data fits the expectations of the physical model. If the MD and MSD
behave linearly we can use this data set for further calculations. Here we
decide not to do so as experimental data set 3 in figure ?? fits better to our

expectations.
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(A) (B) (C)

FIGURE A.2: Quick assessment of recovered steps in experimental data
set 2 with mean distance and mean squared distance. Based on the recov-
ered steps of ≈ 236 particles taking five steps in one experimental data set
as seen in figure (A) we calculate the mean squared displacement (MSD)
< [x(t)− < x(t) >]2 >= 2Dfitt in figure (C), after calculating the mean
displacement (MD) < x(t) >= vx,fitt. The calculated graphs are black
and through fitting to the calculations we can obtain the diffusion con-
stant Dfit ≈ 2.9µm2/s and drift velocity vx,fit ≈ −53.5µm/s when com-
paring to the gradient. The red graphs are based on the best estimates
D∗ = 5.1± 0.8µm2/s and v∗x = −48.9± 0.9µm/s from the nested sampling
approach. By comparing the red and the black graph we can ’see’ how well
the real data fits the expectations of the physical model. If the MD and MSD
behave linearly we can use this data set for further calculations. Here we

decide not to do so as the MSD does not graduate linear in time.
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(A) (B) (C)

FIGURE A.3: Quick assessment of recovered steps in experimental data
set 4 with mean distance and mean squared distance. Based on the recov-
ered steps of ≈ 234 particles taking five steps in one experimental data set
as seen in figure (A) we calculate the mean squared displacement (MSD)
< [x(t)− < x(t) >]2 >= 2Dfitt in figure (C), after calculating the mean
displacement (MD) < x(t) >= vx,fitt. The calculated graphs are black
and through fitting to the calculations we can obtain the diffusion con-
stant Dfit ≈ 2.4µm2/s and drift velocity vx,fit ≈ −52.6µm/s when com-
paring to the gradient. The red graphs are based on the best estimates
D∗ = 6.6± 1.2µm2/s and v∗x − 50.7± 0.1µm/s from the nested sampling
approach. By comparing the red and the black graph we can ’see’ how well
the real data fits the expectations of the physical model. If the MD and MSD
behave linearly we can use this data set for further calculations. Here we

decide not to do so as the MSD does not graduate linear in time.
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(A) (B) (C)

FIGURE A.4: Quick assessment of recovered steps in experimental data
set 5 with mean distance and mean squared distance. Based on the recov-
ered steps of ≈ 236 particles taking five steps in one experimental data set
as seen in figure (A) we calculate the mean squared displacement (MSD)
< [x(t)− < x(t) >]2 >= 2Dfitt in figure (C), after calculating the mean
displacement (MD) < x(t) >= vx,fitt. The calculated graphs are black
and through fitting to the calculations we can obtain the diffusion con-
stant Dfit ≈ 2.8µm2/s and drift velocity vx,fit ≈ −53µm/s when com-
paring to the gradient. The red graphs are based on the best estimates
D∗ = 4.6± 0.8mum2/s and v∗x = −51.6± 0.9µm/s from the nested sam-
pling approach. By comparing the red and the black graph we can ’see’
how well the real data fits the expectations of the physical model. If the
MD and MSD behave linearly we can use this data set for further calcula-
tions. Here we decide not to do so as the MSD does not graduate linear in

time.
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(A) (B) (C)

FIGURE A.5: Quick assessment of recovered steps in experimental data
set 6 with mean distance and mean squared distance. Based on the recov-
ered steps of ≈ 228 particles taking five steps in one experimental data set
as seen in figure (A) we calculate the mean squared displacement (MSD)
< [x(t)− < x(t) >]2 >= 2Dfitt in figure (C), after calculating the mean
displacement (MD) < x(t) >= vx,fitt. The calculated graphs are black
and through fitting to the calculations we can obtain the diffusion con-
stant Dfit ≈ 1.7µm2/s and drift velocity vx,fit ≈ −53.2µm/s when com-
paring to the gradient. The red graphs are based on the best estimates
D∗ = 5.1± 0.9µm2/s and v∗x = −44.7± 0.9µm/s from the nested sampling
approach. By comparing the red and the black graph we can ’see’ how well
the real data fits the expectations of the physical model. If the MD and MSD
behave linearly we can use this data set for further calculations. Here we

decide not to do so as the MSD does not graduate linear in time.
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(A) (B) (C)

FIGURE A.6: Quick assessment of recovered steps in experimental data
set 7 with mean distance and mean squared distance. Based on the recov-
ered steps of ≈ 246 particles taking five steps in one experimental data set
as seen in figure (A) we calculate the mean squared displacement (MSD)
< [x(t)− < x(t) >]2 >= 2Dfitt in figure (C), after calculating the mean
displacement (MD) < x(t) >= vx,fitt. The calculated graphs are black
and through fitting to the calculations we can obtain the diffusion con-
stant Dfit ≈ 2.7µm2/s and drift velocity vx,fit ≈ −53.5µm/s when com-
paring to the gradient. The red graphs are based on the best estimates
D∗ = 6± 1µm2/s and v∗x = −52.0± 0.9µm/s from the nested sampling
approach. By comparing the red and the black graph we can ’see’ how well
the real data fits the expectations of the physical model. If the MD and MSD
behave linearly we can use this data set for further calculations. Here we

decide not to do so as the MSD does not graduate linear in time.
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