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Abstract 

Based on a two-step decomposition analysis using the logarithmic mean divisia index (LMDI), 

this paper analyses the change of greenhouse gas (GHG) emissions in Belgium over the period 

from 2008 to 2018. This ten-year period is furthermore aggregated into two distinct time periods 

to evaluate emission drivers during the two commitment periods of the Kyoto Protocol. The 

changes in GHG emissions are decomposed into the contribution of the determinants of 

economic activity, energy intensity, emission intensity, structural change, and population. 

Additionally, the economy of Belgium is represented in form of six economic sectors, whose 

contribution to emission changes is also evaluated. The obtained results indicate that Belgium 

significantly lowered its emission reduction efforts during the second commitment period in 

comparison to the first commitment period. Moreover, the conducted analysis suggests that the 

general impact of economic sectors on emissions has fallen over time, while the same cannot 

be said of the determinants. Overall, energy intensity, emission intensity and structural change 

appear to have the strongest impact on emission changes in Belgium. Based on the obtained 

results, environmental protection policies are advised to address energy-related determinants as 

the most effective levers in reducing GHG emissions. 

Keywords: air pollutants, logarithmic mean divisia index, decomposition analysis
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1 Introduction  

The emission of greenhouse gases (GHG) is the main contributor to climate change worldwide. 

These greenhouse gases mostly consist of water vapor (H2O), carbon dioxide (CO2), methane 

(CH4), and nitrous oxide (N2O) and are released to the Earth’s atmosphere (Kweku et al., 2017). 

This collection of atmospheric gases serves as effective global insulators and are called 

greenhouse gases as they capture and store heat similar to glass walls of a greenhouse (Kweku 

et al., 2017). Likewise, the resulting effect of this atmospheric gas insulation on global 

temperature is called the greenhouse effect. Despite the regular negative connotation of the 

greenhouse effect, the effect itself is not necessarily harmful to Earth’s environment. In fact, 

the greenhouse effect is the foremost factor in keeping the Earth habitable by keeping global 

temperature within a comfortable range. It is a natural process that is millions of years old and 

plays a crucial role in regulating the overall temperature of Earth (Kweku et al., 2017). It is the 

concentration of greenhouse gases in the atmosphere, however, that plays a crucial role for 

climate change and global warming. Human activities such as the extraction and consumption 

of fossil fuels, the use of chemicals for industrial processes, or deforestation and agriculture 

strongly increase the concentration of GHG within the atmosphere, thus making them harmful 

(El-Fadul & Massoud, 2001). Atmospheric CO2 concentration, for instance, has increased to 48 

percent above its pre-industrial level (European Commission, 2021). Furthermore, according to 

the European Commission, human-induced global warming is currently rising at a rate of 0.2 

percent per decade (European Commission, 2020). While not being of much relevance around 

the time of the Industrial Revolution, the growing concern for greenhouse gases and their effects 

on global temperature sparked international policy efforts to maintain atmospheric gas levels at 

reasonable levels. These policy efforts culminated in the 1992 United Nations Framework 

Convention on Climate Change (UNFCCC) and subsequently in the negotiation of the famous 

Kyoto Protocol in 1997. 

 

1.1 Belgium and the Kyoto Protocol 

The Kyoto Protocol is the first legally binding international agreement on climate protection 

(Böhringer, 2003). Within this protocol, a single European Union reduction target for 

greenhouse gas emissions of minus 8 percent compared to the base year 1990 was negotiated 

for the first commitment period from 2008 to 2012. Moreover, a Burden Sharing Agreement 

between the then 15 member states of the European Union allocated this reduction target 

between countries. The Kyoto Protocol was signed and ratified by Belgium in 1998 and 2002, 

respectively (Van Hecke & Zgajewski, 2008). Under the burden sharing agreement, Belgium 

was required to cut its emissions by 7.5 percent compared to 1990 levels during the first 
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commitment period from 2008 to 2012 (European Commission, 2019). According to Belgium’s 

2021 National Inventory Report of greenhouse gases, Belgium complied to its commitments 

during the first commitment period and even reduced emissions by 13.9 percent during that 

time span (Belgium, 2021). Moreover, Belgium’s Seventh National Communication on Climate 

Change (National Climate Commission, 2017) argues that by 2015, Belgium already decreased 

GHG emissions by 20 percent compared to 1990 levels while still growing in terms of gross 

domestic product (GDP). As such, Belgium strongly contributed to the overall cut of 11.7 

percent of GHG emissions that took place the European Union (EU) between 2008 to 2012 

(European Commission, 2020). As not all European countries were equally successful in their 

efforts of cutting GHG emissions and still maintaining economic growth, Belgium poses a 

highly interesting example for analysing what factors drove the apparent decoupling of 

emissions from economic growth and where in the economy emission reductions were most 

significant. Analysing the underlying reasons of Belgian emission changes becomes even more 

pressing when recalling the role Belgium plays for the European Union as a whole.  

According to Article 13 of the Treaty on the European Union, the EU institutional framework 

is comprised of seven institutions (European Union, 2012). These institutions include the 

European Parliament, the European Council, the Council, the European Commission, the Court 

of Justice of the European Union, the European Central Bank, and the Court of Auditors 

(European Union, 2012: p. 22). Out of these seven institutions, three are operating from 

Belgium1. As such, Belgium is the location with the most EU institutions out of all members of 

the European Union. Consequently, Belgium possesses a strong signalling value for the EU as 

a whole and is one of only a few countries within the European Union where emission-related 

reforms and policies are being implemented from. Moreover, with 122.628 kilo tonnes of CO2 

equivalent in GHG emissions, Belgium was among the Top 10 of countries in the European 

Union with the highest emission footprint in 2018 (EEA, 2020). However, despite this 

seemingly pressing relevance of Belgium for emission research, the literature body concerning 

the driving forces of Belgian emission changes remains scarce. In the next chapter, I will 

elaborate how the aim and scope of this thesis try to address this scarcity. 

 

 

 

 

 

 

1 The institutions located in Belgium include the European Council, the European Commission, as well as the 

Council. 



 

 3 

1.2 Research Aim and Scope 

Examining the driving factors of emission changes is crucial to find the economically most 

efficient ways to reduce GHG emissions based on data on countries’ GHG emissions 

throughout sectors and time. Understanding the underlying forces of a reduction or increase in 

greenhouse gas emissions becomes particularly important when trying to affect emission 

changes from a policy point of view, as policies will be most effective when the main reason 

for the emission change is addressed. The objective of this paper is thus to analyse the 

underlying drivers of changes in greenhouse gas emissions between 2008 and 2018 in Belgium. 

In doing so, I differentiate between a first commitment period (2008-2012) as established by 

the Kyoto Protocol and a second commitment period from 2013-2018. The first commitment 

period directly relates to the formally established commitment period in the 1997 adoption of 

the Kyoto Protocol and entered into force together with the Kyoto Protocol on the 16th of 

February 2005 (United Nations, 2021). The second official commitment period, however, was 

adopted in the Doha Amendment of the Kyoto Protocol in 2012 and ranges from 2013 to 2020. 

In this amendment, the Annex B countries2 agreed to extend the Kyoto Protocol to 2020 and to 

reduce their emissions by 18 percent until 2020 compared to 1990 base levels (German Federal 

Ministry for the Environment, Nature Conservation and Nuclear Safety, 2021). Notably, the 

second commitment period analysed in this paper ranges from 2013 to 2018 only. 

Unfortunately, the data needed to examine the driving forces of emission changes for the years 

2019 and 2020 is not yet provided in the data sources used for this paper. However, the slightly 

shortened commitment period from 2013 to 2018 represents 75 percent of the official second 

commitment period as established by the Doha amendment and as such is considered to provide 

a good indication for emission trends in Belgium during the second commitment period of the 

Kyoto Protocol.  

Using the Logarithmic Mean Divisia Index (LMDI) decomposition method as presented by 

Ang and Liu (2001), I take a more detailed look at the underlying dynamics of Belgium’s 

emission reduction and examine what economic sectors and determinants drove this reduction. 

In doing so, I differentiate between five determinants that can change GHG emissions on a 

sectoral level. Those determinants include an economic activity effect (Dact), a structural change 

effect (Dstr), an energy intensity effect (Dint), an emission intensity effect (Deint), as well as a 

population effect (Dpop). Furthermore, the decomposition analysis within this paper represents 

 

 

 

 

 

2 The Annex B countries include the following countries: all EU-15 states, United States, Canada, Hungary, Japan, 

Poland, Croatia, New Zealand, Russia, Ukraine, Norway, Australia, and Iceland. 
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the economy of Belgium in form of six economic sectors. The sectors within the analysis 

include an Agriculture sector, an Industry sector, an Energy sector, a Services sector, a 

Transport sector, and a Residential sector. Together, these sectors represent the full economic 

activity of the Belgian economy. Within the next chapter, a brief introduction to the different 

determinants and economic sectors is given. 

 

1.2.1 Decomposition Determinants and Economic Sectors 

In essence, the five determinants within this paper describe different economic variables that 

explain an observed change of GHG emissions in Belgium. The first of the determinants, the 

economic activity effect, is capturing to what degree changes in GHG emissions occur due to 

changes in the gross value added (GVA) per capita. GVA in general is indicating the value of 

the goods and services produced within a given economy or sector. Historically, a growing 

economy typically experiences growing emissions due to increased economic productivity, as 

emissions were found to be positively correlated with economic growth (Acheampong, 2018). 

As such, the first effect examines what impact GVA per capita changes in Belgium had on its 

emission development. The structural change effect, on the other hand, is capturing to what 

degree changes in an economy’s activity structure impact greenhouse gas emission changes. As 

an example, it is expected to observe declining emissions for countries that switch from energy 

intensive activities in primary and secondary sectors, such as mining and industry, to activities 

in tertiary service sectors (Luukkanen et al., 2015). The third effect, the energy intensity effect, 

is indicating how changes in energy intensity have affected GHG emissions. Energy intensity, 

often used as a proxy for energy efficiency (Proskuryakova & Kovalev, 2015), is essentially 

capturing how much energy needs to be consumed to produce one unit of output. Changes in 

energy intensity are typically the result of technological improvements in existing production 

technologies or from switching to different production technologies (Cansino et al., 2015). As 

such, this effect partially changes due to technological progress. The emission intensity effect 

is capturing to what degree GHG emissions change due to changes in emission intensity. 

Emission intensity itself is indicating the ratio of consumed energy to one unit of emission 

output. Changes to emission intensity are typically the result of switching to cleaner energy 

sources with less embodied emission content, for instance by switching from brown coal to 

natural gas as an energy source (Wang et al., 2017). The last effect, the population effect, is 

indicating to what degree changes in the population of Belgium impacted GHG emissions. If 

every individual is considered an emission source, then a growing number of individuals will 

most likely also lead to a growing number of emissions.  

Within the LMDI decomposition applied in this paper, the change in GHG emissions from one 

year to another can be fully explained by the five determinants discussed above without any 

unexplained residuals. Aside from analysing the impact of each of these five determinants, the 

decomposition results will furthermore differentiate between different economic sectors. The 

Belgian economy will be depicted in form of six economic sectors that represent the full 

economic activity. These sectors include an Agriculture sector, an Industry sector, an Energy 

sector, a Services sector, a Transport sector, as well as a Residential sector. Similar to the five 

determinants discussed above, the LMDI decomposition analysis performed within this paper 
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will allow to assess the impact of each of those six sectors on GHG emissions to evaluate which 

parts of the economy were of most relevance for a change in emissions. Hence, it will be 

possible to not only assess the impact of the determinants on emission changes, but also to 

evaluate which parts of the economy contributed most to changes in GHG emissions. The 

purpose of this sectoral differentiation is ultimately linked to the aim of providing an actionable 

knowledge base for policymakers to draw from. Isolating the contributions of each sector and 

determinant to emission changes enables policymakers to tackle the drivers of emission changes 

at the very root by directly addressing the respective parts of the economy. Within the next 

chapter, a brief outline on how this thesis was designed to reach its research aims is given. 

 

1.3 Outline of the Thesis 

When drafting the overall design of this thesis, one of the most important aspects was to explain 

the observed change in emissions as accurately as possible. This means to not only evaluate the 

changes from the start year to the end year of a given period, but rather to also analyse the 

annual emission changes for all years entailed in that period. Additionally, the five determinants 

discussed before may be unequally powerful in their impact on emission changes throughout 

time and across economic sectors. For this reason, I am first examining emission changes in 

Belgium per sector on a time series basis between 2008 and 2018, where I decompose emission 

changes from each year to the next one. Afterwards, I aggregate the results of the time series 

analysis into two distinct time periods, with each of these periods representing a commitment 

period relating to the ones as established in the Kyoto Protocol. This enables the reader to not 

only understand the driving forces of emission changes on a yearly basis, but to rather grasp the 

full effect of these forces in the light of the first international agreement on climate protection. 

Given Belgium’s apparent success in cutting emissions during the commitment periods of the 

Kyoto Protocol, I hope that my analysis provides valuable insights that allow for a deeper 

understanding of what drove this reduction. Moreover, the results of my decomposition analysis 

of GHG emission changes in Belgium might serve as guidance towards future policy 

implementations.  

Greenhouse gas emissions, although being released locally, have increasingly global 

consequences. As such, trying to devise the economically most efficient policies poses an 

increasingly difficult challenge for national governments and international institutions such as 

the European Union alike. Identifying what factors drive an emission reduction or increase is 

thus of great value, as it enables policymakers to devise policies that directly target the main 

emission determinants on a sectoral level. For this task to be prepared, policymakers need 

information not only of the determinant contribution on an economy-wide level, but rather on 

the sectoral contribution to GHG emission changes as well. Hence, based on Belgium’s GHG 

emission changes between 2008 and 2018, I state the following two research questions for my 

analysis: 
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1. How do the determinants and economic sectors affect greenhouse gas emissions in 

Belgium between 2008 and 2018? 

 

2. What are the driving forces of greenhouse gas emission changes within and across the 

two commitment periods of the Kyoto Protocol in Belgium? 

 

The first research question is intended to evaluate how the determinants, as well es each 

economic sector, contributed to Belgian emission changes between 2008 and 2018. With doing 

so, I hope to produce results that illustrate potential developments such as if Belgium has indeed 

become more efficient in their use of energy (indicated by the energy intensity effect) and 

whether or not increased per capita GVA results in increased emissions (indicated by the 

economic activity effect). The second research question is intended to investigate the 

differences in the underlying factors that facilitate the changes in GHG emissions and to see 

how they change based on the time aggregation level. The main intention behind this question 

is to see how the previous results regarding the driving forces of emission changes obtained for 

the first research question behave when looking at the two commitment periods separately. As 

there is a potentially large difference between the results based on the time aggregation level, I 

hope to produce outcomes that showcase the determinants of emission changes on multiple 

scales. After this introduction, this thesis will continue with a comprehensive literature and 

theory review of different relevant studies, books and articles on the subjects of either 

decomposition analysis or emission research in general. Throughout the theory section, I will 

lay focus on isolating those parts of previous literature that are relevant for the analysis 

conducted within this thesis. Furthermore, I will take time to explain why my research was 

designed as it is now and how the previous research body contributed to this design. Chapter 3 

will explain the different sources and compilation techniques that were used to compile the 

database used for the decomposition analysis within this paper. After illustrating the data that 

is being used, chapter 4 will then break down the methodology and mathematical formulae used 

to answer the research questions. Afterwards, I will present the results of the conducted analysis 

and a discussion part will deliberate about the outcomes and policy implications of the results 

obtained within this thesis. Ultimately, a conclusion is summarizing the findings of this paper. 
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2 Theory 

In general, decomposition analysis is concerned with deriving determinants that explain the 

change of a given indicator, such as for example GHG emissions. When looking at the literature 

body addressing the determinants of greenhouse gas emissions, a strong surge can be observed 

over the past decades. With emission monitoring and climate change becoming more present 

topics in policy and academia alike, assessing the drivers of emission changes has attracted 

great research interest across multiple study fields. Throughout those study fields, various 

approaches on how to assess the determinants that underlie emission changes have emerged. 

Two of the most prominent examples of evaluating changes in indicators such as greenhouse 

gas emissions are the structural decomposition analysis (SDA) and the index decomposition 

analysis (IDA). These two types of decomposition analyses have been particularly popular 

within energy research and environmental studies. Ang and Zhang (2000) have discussed 109 

IDA articles in these fields, while Hoekstra and van den Bergh (2002) summarized 29 SDA 

publications belonging to either environmental or energy research. Although both methods 

decompose the change of a chosen indicator, they have developed rather independently 

(Hoekstra & van den Bergh, 2003) and are characterized by some peculiarities that have a 

significant impact on the decomposition results. The following chapters will first illustrate the 

differences between the two decomposition approaches and then gradually go into more detail 

with regards to different theories and methodologies that had an impact on the present research 

design. Ultimately, it will be explained what is yet missing in emission research and 

decomposition analyses and how this thesis is contributing to filling the existing literature gap. 

 

2.1 Structural Decomposition Analysis 

In general, literature on structural decomposition analysis (SDA) has focused on distinguishing 

a large number of specific determinant effects (Hoekstra & van den Bergh, 2003) for a given 

indicator. Typically, historical data from two years is analysed to reveal to what degree each 

determinant has contributed to the observed indicator change. An important aspect to note is 
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that information and data needed for SDA is taken from an input-output framework3. These 

input-output frameworks describe the sale and purchase relationships between producers and 

consumers within an economy (OECD, 2021). The usage of such input-output data has 

important implications for the subsequent decomposition analysis. Originally, using input-

output based analyses for studying environmental effects was introduced in the late 1960s (see 

Isard et al., 1968; Daly, 1968; Leontief & Ford, 1972). With the introduction of the 

environmentally extended input output framework by Isard et al. (1968) and Leontief (1970), 

scholars were able to analyse economy-wide energy consumption and emissions. Subsequent 

structural decomposition analyses adopted this newly extended input output framework and 

initially focused on changes in energy-related indicators (Chen & Rose, 1990; Rose & Chen, 

1991). However, as the growing importance of climate change has become apparent, scholars 

started to apply SDA to environmental indicators such as greenhouse gas emissions as well.  

Casler and Rose (1998), for instance, use a slightly modified version of the SDA framework 

illustrated by Rose and Chen (1991) to decompose the change in CO2 emissions between 1972 

and 1982 in the United States. In doing so, they differentiate between ten effects that change 

CO2 emissions. These effects are furthermore aggregated into three broader effect categories, 

namely final demand effects, changes within aggregates effects, as well as KLEM4 effects 

(Casler & Rose, 1998). The study concluded that although economic growth strongly increased 

carbon emissions in the U.S. during the observed time period, this increase was more than offset 

by the negative structural effects exerted by fuel substitutions and KLEM substitutions (Casler 

& Rose, 1998). Later, multiple other studies have further investigated national emission 

changes using SDA and produced interesting insights (see for example Wier, 1998; De Haan, 

2001; Roca & Serrano, 2007; Lim et al., 2009). In a more recent study, Wang et al. (2017) used 

SDA to decompose global CO2 emission intensity changes. In doing so, they apply one global 

SDA model and one country level SDA model to quantify domestic and trade related effects. 

They conclude that the main contributor to decreases in global emission intensity was a change 

in emission efficiency, while international trade appears to have slightly hampered 

improvements in global emission intensity (Wang et al., 2017).  

Such previous studies showed that SDA is a valuable and widely anticipated method to 

decompose emission changes. One advantage is that due to the comprehensive structural data 

of input-output tables, SDA is capable of more detailed decompositions of the economic 

 

 

 

 

 

3 SDA is sometimes also referred to as “input-output decomposition analysis” or “input-output structural analysis” 

(Hoekstra & van den Bergh, 2003) due to its connection to the input-output framework. 

4 KLEM is an acronym summarizing capital (K), labour (L), energy (E) and materials (M). 
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structure than IDA. Moreover, input-output tables allow for a distinction between technological 

effects and final demand effects. This, amongst other aspects, enables SDA to include indirect 

effects that are not part of the IDA analysis (Hoekstra & van den Bergh, 2003). These indirect 

effects can be characterized as spill-over effects of demand that are captured by the Leontief-

Inverse of input-output models (Miller & Blair, 1985). The Leontief Inverse itself can be 

thought of as an indicator of the technological effect of changes in the intermediate output 

structure (Hoekstra & van den Bergh, 2003). However, even though SDA allows for capturing 

indirect effects and enables a more detailed analysis of the economic structure, it has been found 

to be inferior to IDA for the research purpose within this thesis. The first problem with using 

SDA for this thesis is that the data needed from input-output tables is not constructed annually 

for all sectors that are part of this research. Moreover, the six economic sectors analysed in this 

paper are aggregates of a larger set of economic activities that depict Belgium’s economy. As 

already pointed out by Su and Ang (2012), there are several issues with sector aggregation, 

spatial aggregation, and time aggregation using SDA. Particularly the issues regarding sector 

and time aggregation are relevant for the analysis conducted in this paper, as I aggregate a 

multitude of economic activities into only six sectors and furthermore aggregate a ten-year 

timespan into two distinct periods of time. Consequently, there are two potential aggregation 

issues within my analysis, which may lead to additional interaction issues when relying on 

input-output data and SDA (Su & Ang, 2012). Secondly, SDA in general limits itself to 

evaluating the absolute change of a given indicator, with only a few exceptions such as in 

Dietzenbacher et al. (2000), who decomposed labour productivity growth into partial effects of 

six determinants. Even though examining the absolute change of GHG emissions would be 

feasible as well, the approach chosen for this thesis will decompose emissions into relative 

values in form of determinants. This provides a more intuitive understanding of the results and 

allows for a better contextualization of the analysis in light of the commitment periods of the 

Kyoto Protocol. In the next subchapter, the literature on index decomposition analysis will be 

reviewed. 

 

2.2 Index Decomposition Analysis 

In contrast to structural decomposition analyses, index decomposition analysis literature has 

produced a lot of different decomposition approaches with multiple indices over time. 

Generally spoken, an index is a certain weight that is allocated to a specific determinant 

(Hoekstra & van den Bergh, 2003). In the context of IDA, changes to the index drastically 

impact the results and have been the main point of development throughout the decomposition 

literature. The earliest proposals of index decomposition models relied on indices such as the 

Laspeyres index (base year weights), the Paasche index (terminal year weights), or the 

Marshall-Edgeworth index (mean of base and terminal year weights) (Madaleno & Moutinho, 

2017). Later studies such as the ones by Boyd et al. (1987) and Reitler et al. (1987) then 

introduced decomposition models based on divisia indices. Using the divisia index method, the 

estimated effects that explain an indicator change are formulated in terms of the weighted 

average of logarithmic changes of the relevant variables (Ang & Choi, 1997). This index based 
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on the weighted average of arithmetic changes is called the conventional divisia index. This 

conventional divisia index introduced by Boyd et al. (1987) and Reitler et al., (1987) has been 

used to study energy-induced emissions by Torvanger (1991), Lin and Chang (1996), and Ang 

and Pandiyan (1997), amongst others. However, all of the abovementioned index 

decomposition studies have two problems in common. First, using any of the abovementioned 

decomposition techniques will result in a residual, as the indicator change is not fully 

decomposed. As pointed out by Ang and Lee (1994), a large residual defeats the purpose of the 

decomposition analysis, as a great part of the observed indicator change will be left 

unexplained. The second issue, first mentioned by Liu et al. (1992), is the occurrence of zero 

values in the data. Decomposition analyses typically draw from highly disaggregated datasets 

with a multitude of industrial sectors, and oftentimes sectors have zero values for certain data, 

which in turn leads to computational problems for conventional models (Liu et al., 1992). Ang 

and Choi (1997) furthermore mention that the problem of zero values is particularly apparent 

when studying interfuel substitutions or energy-induced gas emissions. As the analysis in this 

thesis is concerned with energy-induced emissions, this problem is of high relevance and should 

be avoided. As such, the conventional divisa index decomposition, although being a valuable 

improvement to previous decomposition analyses, is not considered a suitable method for the 

research aim within this thesis. Fortunately, scholars set out to meet the challenges of zero 

values and residuals and derived improved decomposition models that alleviate these issues. 

2.2.1 Logarithmic Mean Divisa Index (LMDI) 

Trying to tackle the residual problem, Liu et al. (1992) and Ang (1994) introduced the adaptive 

weighting divisia index and proposed a general framework for decomposition formulation, thus 

significantly reducing the residual. However, even though their decomposition method led to 

smaller residuals, the zero-value problem still persisted under their framework. Consequently, 

Ang and Choi (1997) introduce a refined divisia index using a logarithmic weight function. This 

approach allows for a full decomposition of the observed indicator change by leaving no 

residual and can effectively handle zero values in the dataset (Ang & Choi, 1997). In their study, 

Ang and Choi (1997) decompose aggregate energy and gas emission intensities for the industry 

sector to evaluate the differences of the conventional divisia index to their proposed refined 

divisia index method. They conclude that the refined divisia index method based on a 

normalized logarithmic weight function is preferred to the conventional one with an arithmetic 

weight function, especially when dealing with highly disaggregated data on interfuel 

substitutions or emissions (Ang & Choi, 1997). The decomposition using the conventional 

divisia index is also called Arithmetic Mean Divisia Index (AMDI) decomposition, while the 

refined method is referred to as the Logarithmic Mean Divisia Index (LMDI) decomposition.  

Nevertheless, even though solving the issues of residuals and zero values, the refined divisia 

index method proposed by Ang and Choi (1997) was criticized for not being consistent in 

aggregation (Ang & Liu, 2001; Ang, 2005). Instead of using the logarithmic mean weight 

function introduced by Vartia (1976) and Sato (1976), which the refined divisia index is based 

on, Ang and Liu (2001) propose a weight function where the logarithmic mean of the factorial 
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value is divided by the logarithmic mean of the aggregate value5. By implementing this adjusted 

weight function to the existing LMDI model, Ang and Liu (2001) achieve a complete 

decomposition model without residuals that is able to handle zero values and is consistent in 

aggregation. As the model by Ang and Liu (2001), aside from the weight function, resembles 

the refined divisia index model of Ang and Choi (1997), a differentiation is made between the 

two LMDI models. The original model by Ang and Choi (1997) is referred to as LMDI II while 

the reworked model of Ang and Liu (2001) is referred to as LMDI I. Due to the desirable 

properties of the LMDI I model, this decomposition method is chosen for the analysis within 

this paper. The LMDI approach has furthermore been frequently applied by many scholars in 

emission-related disciplines, and as such has produced different determinants that can change 

emissions. In the next chapter, a closer look will be taken on what determinants emerged from 

the application of the LMDI model and how they are relevant for the determinants used within 

this paper. 

 

2.3 Decomposition Determinants 

As mentioned earlier, decomposition analysis in general is concerned with analysing the change 

of a given indicator between two points in time. The change in value of an indicator, such as 

emissions for instance, is reflected in determinants that explain this change. These determinants, 

or effects, represent the indicator change. Throughout the available literature, the LMDI 

approach has been used to analyse greenhouse gas emissions with respect to various of these 

determinants that potentially contribute to emission changes. Fernández González et al. (2014), 

for instance, differentiate between five decomposition determinants in their decomposition 

analysis of European CO2 emissions. Their determinants include a population effect, a 

production per capita effect, a carbonization effect, a fuel mix effect, as well as an energy 

intensity effect (Fernández González et al., 2014). While varying between the respective 

European member countries, their study showed that one of the main drivers of aggregated CO2 

 

 

 

 

 

5 The weight function introduced by Ang & Liu (2001) can be formalized as wi, where the numerator represents 

the logarithmic mean of the factorial value and the denominator the logarithmic mean of the aggregate value: 

   𝑤𝑖 =

(𝐶𝑖
𝑇−𝐶𝑖

0)

(ln(𝐶𝑖
𝑇)−ln(𝐶𝑖

0))

(𝐶𝑇−𝐶0)

(ln(𝐶𝑇)−ln(𝐶0))
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emissions appears to be the fuel mix effect, which is explaining emission changes due to 

changes in fuel consumption patterns.  Moutinho et al. (2015) also analyse energy-related CO2 

emissions in Europe but differentiate between six effects that explain emission changes. Their 

effects include a carbon intensity effect, an energy mix effect, an energy intensity effect, a 

renewable productivity effect, as well as a capacity of renewable energy capita effect and a 

population effect. Their study concluded that the change in emissions was mainly driven by the 

energy mix effect, namely by switching to cleaner fuels for energy production (Moutinho et al., 

2015). Interestingly, both papers state the fuel mix effect (or energy mix effect, respectively) to 

have a significant effect on emission changes. The calculation of this fuel mix effect, however, 

requires extensive data on the composition of energy sources and fuels that are consumed within 

an economy. As my analysis is differentiating emissions not only on a national level but on a 

sub-national sectoral level, this data would need to be available up to the sectoral level for all 

energy sources. Although such detailed data regarding energy sources exists (see for example 

IEA, 2021), it is either not free of charge or has to be drawn from a multitude of different data 

sources. Both approaches are considered problematic due to financial requirements that impede 

the reproducibility of results and a lack of data consistency, respectively. As such, the analysis 

within this paper will not draw upon data on fuel types and consequently will not include a fuel 

mix effect. However, other ways of examining the quality of the energy mix exist. 

Cansino et al. (2015) use the LMDI I method to decompose changes in Spanish CO2 emissions 

between 1995-2009. In their analysis, they decompose CO2 emissions into five determinants. 

These determinants include a carbon intensity effect, an energy intensity effect, a structural 

change effect, an economic activity effect, as well as a population effect (Cansino et al., 2015). 

The study concluded that Spain is moving towards a low carbon economy that was made 

possible by improvements in carbon intensity and energy intensity, which offset the positive 

contributions to emissions coming from the economic activity effect and population growth 

(Cansino et al., 2015). Although the study by Cansino et al. (2015) has a different focus in terms 

of time scope and geography, the determinants to which emission changes are decomposed are 

the exact same ones that will be used within this paper. The reason for adopting these 

determinants for my own analysis is twofold. First, they include the most popular and widely 

acknowledged determinants of emission intensity (or carbon intensity, respectively), energy 

intensity, and structural change, which are present in a large majority of decomposition studies 

focusing on emissions (see for example Liu et al. 2007). These determinants allow to capture 

the quality of the energy mix from a GHG mitigation perspective (emission intensity effect), 

the change in energy efficiency and technology level (energy intensity effect), and the structural 

change happening in the economy (structural effect). Secondly, adding the determinants of 

economic activity and population allows the decomposition analysis to also capture income and 

population effects, respectively (Cansino et al., 2015). Most importantly, however, these five 

determinants directly relate to two of the most fundamental concepts in environmental research 

– the IPAT model and the Kaya identity. These two concepts have proven to capture the most 

fundamental forces of emission changes and have been at the root of many decomposition 

analyses throughout the past decades (see for example Ma & Cai, 2018; O’Mahoney, 2013). As 

the determinants used within my analysis strongly draw from the structure of these two 

concepts, they will be further explained in the next chapter. 
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2.3.1 Kaya Identity and the IPAT model 

In general, the Kaya identity represents the relationship between man-made emissions and four 

kinds of relevant determinants. These determinants include the emission intensity, energy 

intensity, GDP per capita, and population (Kaya, 1989, Kaya & Yokobori, 1997). The 

relationship indicated by the Kaya identity is furthermore a renovated and mathematically more 

consistent version of the general IPAT model introduced by Ehrlich and Holdren (1971). This 

IPAT model is designed to indicate the driving forces of human impact and is an acronym for 

Impact = Population x Affluence x Technology (Ehrlich & Holdren, 1971). The LMDI 

decomposition applied within this paper is using the scheme of an extended Kaya identity, as 

besides the aforementioned four determinants in the original Kaya identity I am also adding a 

determinant capturing the effect of structural change. As the Kaya identity is a reworked 

variation of the IPAT model, the determinants within the IPAT model can also be found in the 

determinants of my decomposition. Most clearly, the population effect of my decomposition 

directly relates to the population effect within the Kaya identity and the IPAT model. The 

energy intensity effect, moreover, is often used as an aggregate proxy for the energy efficiency 

or technology level of an economy (Cansino et al., 2015), thus representing the technology part 

within the IPAT model. Additionally, the economic activity effect depends on the GVA per 

capita and captures income effects on emission changes, hence representing the affluence part 

within the IPAT equation (Cansino et al., 2015).  

LMDI decomposition methods based on an extended Kaya identity have received wide 

recognition within energy and environmental studies and have been employed by a variety of 

scholars. O’Mahoney (2013), for instance, used such a model to decompose Ireland’s carbon 

emissions from 1990 to 2010 and found that scale effects of affluence and population growth 

increased Irish emissions and are countered by energy intensity and fuel substitution effects. 

Zhang et al. (2017) furthermore apply an extended LMDI model to decompose China’s 

industrial CO2 emission intensity and industrial CO2 emissions. In doing so, they extend the 

LMDI framework to include eight determinants. These determinants include effects of the 

energy emission factor, energy intensity, process carbon intensity, R&D efficiency, R&D 

intensity, investment intensity, industrial structure, as well as emission intensity (Zhang et al., 

2017). After combining the LMDI data with different simulation scenarios, they conclude that 

the most important factors facilitating a decrease in emission intensity are R&D intensity and 

energy intensity, while investment intensity is a major driver of emission intensity (Zhang et 

al., 2017). Although many of the effects mentioned in their study are not relevant for the 

analysis within this paper, it is a great piece of research to showcase the extension potential of 

LMDI and the varying effects that are investigated throughout the available literature. Now that 

the origin of the five determinants used within this thesis has been discussed, a closer look 

needs to be taken on the time application of the LMDI model. 
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2.4 Application of LMDI 

Aside from different determinants that are being examined, decomposition analyses have also 

been applied to time and sector-specific contexts. Authors such as Liu et al. (2007), for example, 

utilized LMDI to decompose China’s industrial CO2 emissions into five determinants. Their 

determinants include an activity effect, an energy intensity effect, a fuel mix effect, an emission 

coefficient effect, as well as a structural change effect. They found the overwhelming 

contributors to the change of CO2 emissions in China’s industrial sectors to be the industrial 

activity effect as well as the energy intensity effect. Although focusing on China instead of a 

European country, the discussed paper by Liu et al. (2007) shares some important 

methodological characteristics that are important for the analysis conducted within this paper. 

First, the authors focus on only one country instead of a region or group of countries and in 

doing so focus on thirty-six industrial sectors. This allows for the decomposition results to not 

only provide information on the overall effect of each determinant on the emission change, but 

also on the effect of each economic sector on the emission changes. This methodology enabled 

Liu et al. (2007) to conclude that three sectors of the economy accounted for 59.31 percent of 

total increased industrial CO2 emissions. Similarly, I am dividing the economy of Belgium into 

six sectors to evaluate which sectors play the most important role in emission changes. 

Secondly, Liu et al. (2007) perform a time series decomposition instead of a period-based 

decomposition. Many authors decompose emission changes based on periods with two 

benchmark years where the in-between years are discarded. Using time series decomposition, 

however, is considered superior to period-wise decomposition techniques (Ang & Lee, 1994; 

Ang 1994), as it better explains the underlying mechanisms of emission changes. Likewise, the 

emission decomposition within this paper will first examine emission changes using time series 

decomposition and later aggregate the observed years into two distinct time periods relating to 

the commitment periods of the Kyoto Protocol. Aside from more accurately showcasing the 

underlying mechanisms of emission changes, this approach will furthermore allow for a 

comparison between time series and period-wise decomposition of emission changes. Next, 

studies who have applied a LMDI model in the context of the Kyoto Protocol are discussed. 

2.4.1 LMDI and the Kyoto Protocol 

In their 2007 paper, Diakoulaki and Mandaraka perform a decomposition analysis within the 

EU manufacturing sector for the time period between 1990 and 2003. Similar to this thesis, they 

look at a time interval of less than fifteen years and split this interval into two distinct time 

periods for assessing the emission progress prior and past the agreement of the Kyoto Protocol 

(Diakoulaki & Mandaraka, 2007). The aim of their methodology was to assess the real effort 

undertaken in each European country prior and after the commitments made by signing the 

Kyoto Protocol. Overall, the study concluded that most EU countries made a considerable but 

not always sufficient decoupling effort, and that no significant acceleration can be observed in 

the post-Kyoto period (Diakoulaki & Mandaraka, 2007). However, these results are to be taken 

with a grain of salt. Even though Diakoulaki and Mandaraka (2007) are relating their distinct 

time periods to the signing of the Kyoto Protocol in 1997, they are not considering the 

commitment periods as established within the Kyoto Protocol. Instead, they differentiate 
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between a time interval prior to the signing of the Kyoto Protocol in 1997 and a time interval 

after the signing in 1997. Given that the first commitment period starts in 2008 only (United 

Nations, 1998), it is questionable whether countries start showing real efforts towards emission 

reductions before that, even more so as by 1997 the Kyoto Protocol was not yet in effect. This 

means that an emission decomposition relating to a pre and post Kyoto time period should split 

the time periods by the date the Kyoto Protocol became effective, as real efforts in cutting 

emissions is not expected to begin before the ratification of the Kyoto Protocol.  

Later studies, such as the one by Moutinho et al. (2015) set out to do exactly that. Within their 

analysis, they examine the differences in European CO2 emissions during two time periods pre 

and post the 2005 ratification of the Kyoto Protocol. In contrast to the study by Diakoulaki and 

Mandaraka (2007), they find significant improvements in emission reductions from the pre-

Kyoto period to the post Kyoto period. They find that these improvements mainly stem from 

changes to the energy mix and switching to cleaner fuels for end-user energy production 

(Moutinho et al., 2015). However, even though their study provides insights as to what drove 

European emission reduction after the ratification of the Kyoto Protocol, they do not examine 

the commitment periods of emission reduction as established by the Kyoto Protocol. Moreover, 

Moutinho et al. (2015) base their analysis not on sectoral data but on national data that is later 

aggregated to regional areas relating to Southern, Northern, Eastern, and Western Europe. As 

such, even though between country differences are clearly presented, a more detailed look into 

the sectoral emission developments is missing. In the next chapter, I will review the 

developments and findings of previous decomposition literature with regards to Belgium. 

2.5 LMDI decomposition in Belgium  

As shortly touched upon before, the decomposition literature for Belgium is limited. Only a few 

studies are focusing on Belgium specifically, whereas most entail Belgium as part of a broader 

study of multiple countries. Some scholars, such as Moutinho et al. (2018), have decomposed 

carbon emissions for a specific subgroup of countries that entailed Belgium. In their study, they 

applied a LMDI decomposition to decompose carbon emissions into six effects6 for the time 

period from 1985 to 2011. They find that one of the main effects leading to carbon emission 

 

 

 

 

 

6 The six effects examined in Moutinho et al. (2018) include: carbon trade intensity, fossil fuels trade effect, fossil 

fuel intensity, renewable source productivity, the financial power of electricity effect, and financial development 

effect. 
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changes in Belgium during the observed period were changes in renewable productivity 

(Moutinho et al., 2018). However, the focus of the study was not on Belgium particularly and 

as such the results for Belgium were used for comparing purposes more than for interpreting 

the results in Belgium specifically. Similarly, Fernández González et al. (2014) tracked 

European CO2 emissions through LMDI decomposition. In doing so, they apply three different 

approaches and differentiate between eight effects in total7. The five main effects entailed a 

population effect, a carbonization effect, a production per capita effect, as well as an energy 

intensity effect and as such are based on an extended Kaya identity. The study concludes that 

for Belgium, changes in the fuel mix and energy intensity have been the main driving forces of 

CO2 reductions (Fernández González et al., 2014). However, Belgium is again studied only on 

a comparative basis together with other European countries and no detailed analysis of its 

sectoral emission contribution is provided. 

In a previous approach by Albrecht et al. (2002), a Shapley decomposition of carbon emissions 

between 1960 and 1996 is applied to four countries, including Belgium. This Shapley 

decomposition method was introduced by Albrecht et al. (2002) and is based on the so-called 

Shapley value introduced by Shapley (1953) and is intended to result in a perfect 

decomposition. Although it is another approach of decomposing emission changes, its 

anticipation in recent literature has been limited and it is considered inferior to the LMDI 

approach discussed before. The Shapley decomposition applied within Albrecht et al. (2002) is 

based on the Kaya identity and differentiates between nine components. Those components 

include three carbon intensity effects, three energy intensity effects, the effect of per capita 

GDP, as well as the population effect (Albrecht et al., 2002). The results indicate that for the 

observed period there was almost no structural effect in Belgium, whereas the strongest drivers 

of carbon emissions appeared to be carbon intensity and energy intensity (Albrecht et al., 2002). 

However, even though this study explains the determinants of emission changes in Belgium a 

bit more detailed than the two papers discussed before, its ultimate purpose was to showcase 

the advantages of the Shapley decomposition in comparison to conventional decomposition 

approaches instead of interpreting the results specifically for Belgium.  

Another one of the few decomposition analyses focusing solely on Belgium is provided by 

Hambÿe et al. (2018). In their study, they use SDA to compare carbon footprint results between 

two different datasets. They use the classic multiregional input-output (MRIO) tables provided 

by the World Input-Output Database (WIOD) as well as a modified input-output table where 

they replaced the source data for Belgium used in the WIOD MRIO tables by supply and use 

 

 

 

 

 

7 The amount of effects that carbon emission changes are decomposed to depends on the approach that is applied 

within Fernández González et al. (2014). 
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tables from national sources (Hambÿe et al., 2018).  Moreover, their SDA differentiates 

between an emission intensity effect, the effect of input structure, as well as a final demand 

effect8. However, these effects are not used to determine the driving forces of emission changes 

in Belgium, but to rather serve as a base of comparison between the two different data sources.  

As such, even though applying SDA specifically to the case of Belgium, the analysis of Hambÿe 

et al. (2018) differs from the present thesis in scope as well as in purpose.  

Finally, a study by Michel (2013) is worth mentioning. In this study, Michel (2013) aims at 

highlighting contributions to Belgian emission changes in manufacturing from offshoring. The 

chosen methodology to achieve this aim combines elements of both SDA and IDA, although 

the SDA elements are significantly more relevant than the IDA elements. Using this combined 

method, Michel (2013) decomposes emission changes as well as changes in emission intensity. 

Consequently, the amount and type of determinants that are being differentiated depends on the 

indicator that is being decomposed. For changes in emissions, Michel (2013) differentiates only 

between a scale (economic activity) effect as well as an intensity effect, whereas changes in 

energy intensity are decomposed into a between effect and a within effect9. The results obtained 

indicate that the scale effect positively contributed to air emissions but was offset by the strong 

negative contribution of the intensity effect. Similar to the other studies discussed in this 

chapter, the focus of the paper by Hambÿe et al. (2013) is specifically on highlighting the impact 

of the offshoring effect on manufacturing in Belgium. As such, although decomposing air 

emission changes in Belgium, the study differs significantly from the present paper in terms of 

focus and methodology. Overall, the emission decomposition literature in Belgium remains 

scarce and very specific to particular determinants that are being analysed. 

 

 

 

 

 

 

8 It should be noted that Hambÿe et al. (2018) further split the three main effects into multiple other subcategories 

of effects that fall into the broader categories of the three effects of emission intensity, input structure and final 

demand. 

9 The within effect in Michel (2013) is indicating the contribution of changes in emission intensities for domestic 

intermediates while the between effect is measuring the impact due to a shift in the industry composition of output. 

Additionally, the within effect is further split into a technique effect, an efficiency effect, as well as an offshoring 

effect. 
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2.6 Literature Gap 

After having discussed relevant developments in emission and decomposition research, as well 

as primary findings, I will now briefly discuss the literature gap this study intends to fill. As 

touched upon in the introduction, analysing the underlying determinants of emission changes 

in Belgium poses a highly interesting and valuable field of research. Yet, when looking at the 

available literature, surprisingly little is found. In fact, to the best of my knowledge, there exists 

not a single paper utilizing LMDI to decompose GHG emission changes in Belgium with a 

focus on isolating the determinants and sector contributions to emission changes. Additionally, 

although there exist multiple decomposition studies relating to pre and post Kyoto Protocol 

periods, I failed to find a decomposition analysis focusing specifically on the actual 

commitment periods established within the Kyoto Protocol. Hence, this study is intended to fill 

this literature gap by providing the first LMDI application focused on sectoral GHG emissions 

in Belgium and putting the decomposition results in the context of the two commitment periods 

of the Kyoto Protocol. As such, this study contributes to the existing emission decomposition 

research by providing a better understanding of the driving forces and contribution of sectors 

to GHG emissions in Belgium. Moreover, this study aims at adding a valuable perspective to 

the existing literature in terms of retracing what drove emission changes during the two 

commitment periods of the first international and binding agreement on climate protection. In 

the next chapter, I will begin with discussing the data sources used for my analysis. 
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3 Data 

Within this section, the process of data acquisition and data validation is explained and a critical 

reflection on the quality and reliability of data is pursued. The method of decomposing emission 

changes in Belgium between 2008 and 2018 requires extensive data on the sectoral distribution 

of gross value added, greenhouse gas emissions, energy use, as well as population. This data is 

at the very root of the analysis and represents the raw input data needed to proceed with 

decomposing emission changes. Notably, the analysis conducted within this paper aims for a 

better understanding of the sectoral development of emissions in Belgium during the 

commitment phases as established by the Kyoto Protocol. As such, it is not enough to just look 

at data for the whole economy as a total. Instead, the values for gross value added, greenhouse 

gas emissions, energy consumption, and population need to be available at a detailed sub-

national level.  Additionally, it is imperative for the data to be consistent to produce reliable 

and conclusive results for the decomposition analysis. Varying data sources differ strongly in 

their allocation mechanisms of economic activities, especially when it comes to the sectoral 

allocation of environmental indicators such as energy consumption or greenhouse gas 

emissions. Ensuring consistency of data is hence particularly important, even more so as I am 

only using secondary data sources.  

It was thus considered beneficial to the analysis to minimize the variety of data sources. In fact, 

all data that is used as input for decomposing emission changes with the LMDI I method is 

drawn from Eurostat. Being the statistical office of the European Union and responsible for 

publishing high-quality statistics and indicators for comparisons between countries and regions, 

Eurostat is considered a highly reliable and trustworthy source of data. This quality of data is 

further ensured by the fact that Eurostat develops harmonised definitions, classifications and 

methodologies for the production of official statistics and closely cooperates with national 

statistical authorities (European Commission, 2021b). Additionally, many of the input variables 

needed for my decomposition analysis are collected through mandatory data collection within 

the European Union, thus further manifesting the quality of the data. For the purpose of 

decomposing emission changes in Belgium from 2008 to 2018, four datasets published by 

Eurostat are of relevance. These datasets contain official statistics regarding the sectoral 

distribution of gross value added, greenhouse gas emissions, energy consumption, and 

population. The title, data code, as well as last update date of the datasets that are being used 

for the present decomposition analysis are presented in the table below. 
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Table 1: Eurostat data sources 

 Gross Value 

Added 

GHG Emissions Energy 

Consumption 

Population 

Title: National 

accounts 

Aggregates by 

industry (up to 

NACE A*64) 

Air emission 

accounts by 

NACE Rev. 2 

activity 

Energy supply 

and use by 

NACE Rev. 2 

activity 

Population 

on January 

1 by age 

group and 

sex 

Code: nama_10_a64 

 

env_ac_ainah_r2 env_ac_pefasu demo_pjan 

Last update: 06/05/2021 10/03/2021 08/02/2021 27/04/2021 

Source: author illustration 

 

As can be seen above, the data used is recently updated and is drawn from four separate datasets 

containing secondary data collected and maintained by Eurostat. Since the data is drawn from 

four different datasets, it is important to ensure a consistent was of allocating each of the four 

input variables to the same sectors and industries across the different datasets. One important 

aspect of my analysis is that I want to depict the total emission footprint of the Belgian 

economy, while still being able to differentiate between the most important economic sectors. 

Moreover, I am interested in depicting the economy with only six sectors as this significantly 

eases result interpretation while still maintaining a reasonable level of sectoral differentiation. 

As such, a reference framework for the aggregation of economic activities is needed. A widely 

known and anticipated framework for doing so has been developed by the European Union and 

is known as the European Classification of Economic Activities (NACE) framework. This 

reference framework is further discussed in the next chapter. 
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3.1 The NACE framework 

The Statistical Office of the European Communities (2006, p. 6) states that “NACE is the 

acronym10 used to designate the various statistical classifications of economic activities 

developed since 1970 in the European Union”. The use of this system is mandatory within the 

European Statistical System and allows for comparability at the world level of statistics, as 

NACE is part of an integrated system of statistical classifications developed under the auspices 

of the United Nations Statistical Divisions (Statistical Office of the European Communities, 

2006, p. 6). In general, NACE is derived from the United Nations’ International Standard 

Industrial Classification (ISIC) of all economic activities. Both frameworks aim at explaining 

a given economy in economic activities and sectors. However, even though having the same 

sector items at the highest levels, NACE is more detailed at lower levels of economic activities. 

The coding structure of the NACE reference framework is organized in four different 

aggregation levels that are described in Figure 1 below (Eurostat, 2008, p. 15). 

 

Figure 1: Structure and Coding of the NACE reference framework 

i. A first level consisting of headings identified by an alphabetical code (sections) 

ii. A second level consisting of headings identified by a two-digit numerical code 

(divisions) 

iii. A third level consisting of headings identified by a three-digit numerical code 

(groups) 

iv. A fourth level consisting of heading identified by a four-digit numerical code 

(classes) 

Source: Eurostat, 2008, p. 15 

 

 

 

 

 

 

10 NACE is derived from the French title "Nomenclature générale des Activités économiques dans les Communautés 

Européennes" (Statistical classification of economic activities in the European Communities) (Statistical Office of the 

European Communities, 2006) 
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While the first level based on sections represents the broadest classification of activities, the 

fourth level represents the most detailed one. In general, the sections are coded in alphabetical 

order while divisions, groups and classes are coded numerical. Notably, the section level code 

is not integrated in the NACE code that identifies the division, group and class of a given 

activity (Eurostat, 2008). The activity “Manufacture of glues”, for instance, is identified by the 

code 20.52, where 20 is the code for division, 20.5 the code for the group level, and 20.52 the 

code for the class (Eurostat, pp. 15-16). On the section level the activity “Manufacture of glues” 

belongs to section C, which is however not indicated in the code 20.52. Moreover, it is worth 

mentioning that some number gaps exist in the numerical coding of economic activities. This 

is a conscious decision by the NACE creators to allow the introduction of additional divisions 

without having to change the complete NACE coding system (Eurostat, 2008). Aside from the 

four coding levels within the NACE classification system, there also exist four levels of 

hierarchy that structure economic activities based on different level aggregates of activities. At 

the broadest level, the A*10 hierarchy is applied, followed by the more detailed A*21 and A*38 

hierarchies, where the number behind the asterisk always indicates the number of economic 

activities present in the respective hierarchy. The most detailed hierarchy is called A*64 and 

differentiates between sixty-four economic sectors. A full overview of the structure of this 

system is provided by the OECD and can be observed in Appendix A. 

As mentioned earlier, I will differentiate between six economic sectors within the analysis in 

this paper. However, as my goal is to analyse and depict the full economy of Belgium, I need 

to aggregate economic activities of a more detailed level into the broader six sectors that I am 

analysing. Hence, I group economic activities into broader sectors based on the division coding 

of the NACE reference system (see Figure 1). Each of the six final sectors thus consists of 

various division activities present in the A*64 hierarchy of economic activities, allowing the 

full economy to be represented within the six sectors. An overview of the classification system 

used for aggregating the final six sectors is provided in Table 2 below.  

 

Table 2: Sectoral aggregation of NACE Rev. 2 divisions 

 Agriculture Industry Energy Services Transport Residential 

NACE 

Rev. 2 

A*64 

divisions 

entailed 

in the 

sector 

01, 02 and 03 05, 06, 07, 

08, 09, 10, 

11, 12, 13, 

14, 15, 16, 

17, 18, 20, 

21, 22, 23, 

24, 25, 26, 

27, 28, 29, 

30, 31, 32, 

41, 42 and 

43 

19 and 35 33, 36, 37, 

38, 39, 45, 

46, 47, 52, 

53, 55, 56, 

58, 59, 60, 

61, 62, 63, 

64, 65, 66, 

68, 69, 70, 

71, 72, 73, 

74, 75, 77, 

78, 79, 80, 

81, 82, 84, 

85, 86, 87, 

49, 50, and 

51 

97 and 98 
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88, 90, 91, 

92, 93, 94, 

95, 96 and 

99. 

Note: see Appendix A for a full breakdown of NACE Rev. 2 divisions and hierarchies, Source: author illustration 

 

As can be seen in the above table, all sectors defined within this thesis entail multiple divisions. 

As such, the total values reported for each of the six sectors represent the sum of the values of 

all divisions entailed in the respective sector. Notably, the aggregation of divisions into the six 

broader sectors is not arbitrary or by random selection. Instead, the divisions were aggregated 

to the six sectors based on the methodology that was used for the construction of the Eurostat 

energy balance (Eurostat, 2019, pp. 31-34). In general, the energy balance published by Eurostat 

is the most complete statistical accounting of energy products and their flow in the economy 

(Eurostat, 2019, p. 3). While not being of relevance for this thesis from a data point of view, 

the energy balance provided by Eurostat aggregates economic activities into multiple broader 

sectors that closely relate to the ones being used within this thesis. It should be noted, however, 

that the economic activities within the energy balance are aggregated using the very detailed 

third and fourth coding level of the NACE reference framework (see Figure 1). This means that 

some sectors in the energy balance contain only certain groups or sub-classes of an economic 

activity, which relate for example to specific energy products or fuel types. Notably, the 

aggregation of sectors within this paper is not considering variations in that much detail. As 

such, only the second coding level based on divisions is used to aggregate the economic 

activities into broader sectors. Nevertheless, the six sectors within this thesis relate directly to 

the ones used for aggregation in the energy balance, with only a few exceptions. The sectors 

that were aggregated in the exact same way as in the energy balance include the Transport sector 

and the Residential sector (see Table 2). However, due to the higher degree of detail in the 

aggregation of the energy balance methodology, there are some minor differences in the 

aggregation of the Agriculture sector, the Industry sector, the Services sector and the Energy 

sector. These differences are shortly outlined below. 

3.1.1 The Agriculture Sector 

The Agriculture sector within this paper is an aggregate of the NACE Rev. 2 Divisions 01, 02 

and 03. Notably, the Eurostat energy balance differentiates between an Agriculture & Forestry 

(Divisions 01 and 02) sector as well as a fishing sector (Division 03). The reason that I add 

Division 03 to the Agriculture sector is twofold. First, on a broader level of the NACE 

hierarchy, such as A*21 or below, these three divisions are put together into one section with 

the same alphabetical code A (see Appendix A). Secondly, fishing ultimately serves the same 

purpose as agriculture in generating a source of food. As I want to keep the number of sectors 

within my analysis at a reasonable yet fairly detailed level, I decided to add NACE division 03 

to the Agriculture sector instead of treating it separately.  
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3.1.2 The Industry Sector 

The Industry sector within this paper is an aggregate of the NACE Rev. 2 Divisions 05, 06, 07, 

08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 41, 

42 and 43. Again, as I only differentiate between activities up to the division level, there are 

groups and classes that are part of the industry sector within this paper but not part of the 

industry sector of the energy balance. The first difference can be found in division 24. The 

industry sector within the energy balance includes only the NACE Rev. 2 groups 24.1, 24.2, 

24.3 and 24.4, as well as the classes 24.51, 24.52, 24.53 and 24.54. The reason that the energy 

balance is not including all of division 24 into the industry sector is its differentiation between 

activities that belong to final consumption and those who serve as an intermediate input or 

output (Eurostat, 2019). As I am only interested in the emission relevant use of energy per 

sector and not its role in the overall energy flow, the differentiation based on groups or classes 

of division 24 is not necessary for my analysis. The same logic applies to divisions 07, 08 and 

09, where the energy balance excludes classes 07.21 and 08.92 from the industry sector and 

only takes into account class 09.9 of division 09. In the present thesis, the full divisions of 07, 

08, 09 and 24 are part of the industry sector. Aside from these particular groups and classes, the 

divisions entailed in the industry sector within this thesis exactly match the ones used for the 

aggregation within the energy balance. 

3.1.3 The Energy Sector 

The energy sector within my analysis is arguably the sector with the largest difference when 

compared to the energy balance. Within the energy balance, the energy sector is treated as a 

medium block and not as a final consumption block and includes the NACE Rev. 2 divisions 

05, 06, 19 and 35, as well as the group 09.01 and the NACE Rev. 2 classes 07.21 and 08.92. 

Again, the reason for only including particular classes of a given division is the energy balances’ 

differentiation between transformation inputs, transformation outputs, and final consumption. 

Since this differentiation is not relevant for my analysis, the energy sector within this paper will 

only include division 35 and 19. As mentioned before, divisions 05, 06, 07, 08 and 09 are part 

of the Industry sector within this thesis. Consequently, the NACE Rev. 2 classes 07.21 and 

08.92 as well as group 09.01 are also part of the Industry sector instead of the Energy sector.  

3.1.4 The Service Sector 

The Service sector within this paper consists of the NACE Rev. 2 divisions 33, 36, 37, 38, 39, 

45, 46, 47, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 

78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96 and 99. Except for a single class, 

these divisions correspond exactly to the ones used for the aggregation of the Service sector 

within the energy balance. The one class that is not included in the Service sector of the energy 

balance is class 84.22, which includes military fuel use for all mobile and stationary combustion 

(Eurostat, 2019, p. 34). This class is part of division 84, representing public administration and 

defence as well as compulsory social security activities (see Appendix A). Within the energy 

balance, class 84.22 is part of a sector that is not elsewhere specified (Eurostat, 2019). 
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Considering I am aiming for a full emission decomposition, it is not desirable for my analysis 

to have non-specified sectors consisting of only one particular class. As such, given that division 

84 clearly belongs to public services, class 84.22 is treated as a part of the Service sector within 

this paper as well. After having discussed the aggregation techniques used for composing the 

final six sectors, I will now further discuss the data that is being allocated to the six sectors that 

were just defined. As shortly touched upon before, this data includes the gross value added 

(GVA), greenhouse gas emissions, energy use, as well as population of Belgium for all years 

between 2008 and 2018. 

 

3.2 Gross Value Added 

The data for Gross Value Added (GVA) is provided by Eurostat and is drawn from the National 

accounts Aggregates by industry (up to NACE A*64) dataset (see Table 1). In general, this 

dataset contains detailed breakdowns of main GDP aggregates by industry and consumption 

purpose and covers the European Union, the euro area, EU member states, the EFTA (European 

Free Trade Association) countries and Candidate countries (Eurostat, 2021). National accounts 

provide an overall picture of the economic situation and are a coherent and consistent set of 

macroeconomic indicators, which are widely used for economic analysis and forecasting, policy 

design and policy making (Eurostat, 2021). For the decomposition analyses conducted within 

this paper, the gross value added of each of the sixty-four NACE activities was the variable of 

interest. The unit of measure for this type of GVA data was chosen to be constant 2015 chain 

linked volumes of million euro. Using chain linked volumes for the analysis is valuable for two 

reasons. First, chain linked volumes are less sensitive to extreme values that might occur in 

some years. For example, if current prices of million euro are chosen as the unit of measure, 

extreme values may become problematic as they have the potential to significantly alter the 

results of the analysis depending on the year that is chosen. Second, chain linked volumes allow 

for different currencies to be converted to the same unit. As such, using chain linked volumes 

of million euro allows for a much better comparability across countries if the results of the 

analysis are to be put into context with those of other countries with varying national currencies. 

The data for gross value added entailed in the annual national accounts is furthermore compiled 

in accordance with the European System of Accounts (ESA 2010), which is the newest 

internationally compatible EU accounting framework for a systematic and detailed description 

of an economy (Eurostat, 2021; Eurostat, 2013). The final gross value added data compiled for 

the six sectors of the decomposition analysis within this paper can be observed in Appendix 

B.1. Within the decomposition analysis, gross value added is indicated by the letter Q. 
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3.3 Greenhouse Gas Emissions 

The data for greenhouse gas emissions is again provided by Eurostat and can be found in the 

Air emission accounts by NACE Rev. 2 activity dataset (see Table 1). This dataset reports the 

emissions of greenhouse gases and air pollutants broken down by sixty-four industries 

classified according to NACE Rev. 2 (Eurostat, 2021b). In general, air emission accounts are a 

subset of environmental-economic accounts and record flows of gaseous and particulate 

materials that are emitted to the atmosphere as a result of economic productivity (Eurostat, 

2021b). The greenhouse gas emission data within the dataset is compiled by National Statistical 

Institutes (NSI) and is submitted to Eurostat through annual mandatory data collection. This 

collection of data includes an electronic questionnaire with regards to data collection methods 

as well as a quality report, again highlighting the strong data quality standards employed by 

Eurostat. While the dataset reports values for more than ten different air pollutants across 

economic sectors, I am focusing on greenhouse gas emissions in general. Focusing on GHG 

instead of just a particular air pollutant, such as CO2 for example, has two main benefits. First, 

GHG’s entail emissions from various air pollutants and as such incorporate emissions from 

multiple gaseous and particulate substances. As such, they provide a much more complete 

picture of the actual emission situation within a country compared to when only focusing on a 

particular air pollutant. Second, using GHG as the emission indicator enables a more balanced 

perspective on the released emissions within an economy, as not all sectors have similar shares 

of air pollutants. The transport sector, for example, has been found to be responsible for almost 

two thirds of all nitrogen oxides (NOx) emissions within Europe (EEA, 2021). Similarly, the 

German Federal Environmental Agency states that air polluting Ammonia (NH3) mainly comes 

from agriculture while non-methane volatile organic compounds (NMVOCs) mainly arise from 

the use of solvents in industrial processes (Umweltbundesamt, 2020). As such, the share of 

different pollutants strongly differs across economic sectors and focusing on only one pollutant 

would inevitably lead to a skewed picture of the actual emission distribution within a given 

economy. Within greenhouse gases, all air pollutants are represented as their respective CO2 

equivalents, thus capturing the full emission footprint of an economy and its sectors. These 

GHG emissions in form of CO2 equivalents are reported in thousand tonnes. The emissions 

have been allocated to their respective economic activities based on the NACE Rev. 2 

classification framework and were aggregated to broader sectors in accordance with the 

economic activity allocation presented in Table 2. The final data for greenhouse gas emissions 

in thousand tonnes for each of the six sectors within my analysis can be found in Appendix B.2. 

Within the decomposition analysis, greenhouse gas emissions are indicated by the letter C. 

 

3.4 Energy Use 

The data used for energy consumption is drawn from the Energy supply and use by NACE Rev. 

2 activity dataset from Eurostat. This dataset is part of the broader physical energy flow 

accounts (PEFA), representing one module of the European environmental-economic accounts 
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(Eurostat, 2020). PEFA accounts are conceptually rooted in the international statistical standard 

System of Environmental-Economic Accounting (SEEA) (United Nations, 2021b). Moreover, 

PEFA accounts are also compliant with internationally established concepts and definitions for 

energy statistics from the International Recommendations for Energy Statistics (IRES) (United 

Nations, 2018). Within physical energy flow accounts, such as in the one being used for the 

decomposition analysis within this paper, three concepts are essential to note. First, a 

differentiation between three generic types of energy flows as suggested in the SEEA is 

established. These three energy flows are 1) natural energy inputs, 2) energy products, and 3) 

energy residuals (United Nations, 2014). The first of these flows, natural energy inputs, 

captures flows from the environment into the economy, such as fossil energy carriers and 

kinetic energy in form of wind or geothermal heat for example (Eurostat, 2021c). Energy 

products on the other hand are output flows from production processes that occur within the 

economy and are typically produced by extractive industries such as power plants or refineries 

(Eurostat, 2021c). Lastly, energy residuals are mainly energy in form of dissipative heat arising 

from the end use of energy products, flowing from the economy into the natural environment 

(Eurostat, 2021c). For the decomposition analysis within this paper, I chose to consider all three 

types of energy flows instead of just focusing on one. This will result in the most complete set 

of energy that is ultimately consumed by economic activities.   

The second important concept relevant for PEFA accounts is that the accounting framework of 

supply and use tables established in national accounts and the System of Environmental-

Economic Accounting (SEEA) is kept for coherency. This means that energy use is accounted 

for in accordance with the same concepts as in the SEEA. Third, the energy flows within PEFA 

accounts follow the residence principle as established by the SEEA, meaning that energy flows 

are assigned in relation to the resident unit’s activities, regardless of where the energy use 

occurs geographically (Eurostat, 2021c). That way, it can be ensured to also include the energy 

use of Belgian activities that is not being consumed domestically. Furthermore, the Energy 

supply and use by NACE Rev. 2 activity dataset allows to differentiate the energy flows based 

on supply, transformation use, (end) use, as well as emission-relevant use. For the analysis 

conducted within this paper, emission-relevant use of energy was chosen as the variable of 

interest. Although emission-relevant use mainly entails energy products, it is referring to the 

combustive use of all three types of energy flows, thus capturing the full effect of energy use 

that is relevant for emissions. In general, the definition of emission-relevant use is confined to 

processes of combustion and is derived from guidelines established for the compilation of 

emission inventories (European Comission, 2018). This means it refers to fossil fuel 
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combustion processes delineated and recorded in emission inventories under the CRF/NFR11 

source code 1.A (European Comission, 2018, p. 13). Overall, the data that is drawn for the 

energy use variable is the emission-relevant use of energy, considering the energy flows of 

natural energy inputs, energy products, and energy residuals. All values are reported in 

Terajoule (TJ) and available for each of the sixty-four economic sectors as established by 

NACE Rev. 2. As such, the final energy consumption value reported for each of the six sectors 

within my analysis represents the sum of the values of all respective sub-divisions entailed in 

that sector (see Table 2). The final values for energy use per sector in Belgium between 2008 

and 2018 are reported in Appendix B.3. Within the decomposition analysis, the variable of 

energy use is indicated by the letter E. 

 

3.5 Population 

The population data used as input to the decomposition model has been drawn from the 

Population on 1 January by age and sex dataset from Eurostat (see Table 1). The dataset is part 

of the larger population and migration statistics and reports the number of inhabitants of a given 

area on January 1 of the year in question (Eurostat, 2021d). The term population in this context 

refers to the usually resident population. This usual residence principle is referring to the place 

where a person normally spends the daily period of rest, regardless of temporary absences 

(Eurostat, 2021d). In the present dataset, this includes those who have lived in their place of 

usual residence for a continuous period of 12 months before reference time and those who 

arrived in their place of usual residence during the 12 months before the reference time with 

the intention of staying there at least for one year (Eurostat, 2021d). Typically, member states 

send the population data to Eurostat on the 31 December of the reference year under Regulation 

No. 1260/2013 (European Parliament, 2013), which is then conventionally published by 

Eurostat on the 1 January of the following year (Eurostat, 2021d). In this context it should be 

noted that the collection and report of population data by age, sex, and region is mandatory for 

member states since 2014 (Eurostat, 2021d). From an application point of view, the data on 

 

 

 

 

 

11 CRF/NFR are internationally harmonised classifications for emission sources employed by air emission inventories. 

Common Reporting Format (CRF) is applied in greenhouse gas inventories under the UN Framework Convention on Climate 

Change. Nomenclature for Reporting (NFR) is applied in inventories for air pollutants under the UNECE Convention on Long-

Range Transboundary Air Pollution. (European Commission, 2018, p. 13). 



 

 29 

population needs to be available only on the country level, not on the sector level. The reason 

for this is that the population data is only used for the calculation of the GVA per capita as well 

as for analysing the change from one year to another. As such, a sectoral differentiation of 

population is not needed. The final values for the population in Belgium between 2008 and 

2018 are provided in Appendix B.4. Within the decomposition analysis, population is indicated 

by the letter P. After now having discussed the different data sources and compilation 

techniques used to arrive at the final data values, the next part of this paper will illustrate the 

methodology applied to decompose GHG emission changes. 
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4 Methodology 

In general, the methodology discussed within this chapter is designed in a way that is considered 

to answer the stated research questions in the best possible way. While the first research 

question is focused on a better understanding of the general development of the driving forces 

of emission changes in Belgium from 2008 to 2018, the second question is more specifically 

focusing on the two commitment periods of the Kyoto Protocol and how the contribution of the 

determinants and economic sectors differs between the two commitment periods. The intuition 

behind the phrasing of the research questions was to produce holistic results that showcase not 

only the general development of emission determinants and sectors in Belgium throughout time, 

but also to put them into the context of the first legally binding climate protection agreement. 

In line with this twofold research aim, the decomposition analysis within this paper will be 

conducted in two steps. The first step is a time-series analysis, where I decompose the emission 

changes of Belgium from each year to the next one for all ten years that are being observed. 

This will produce results that indicate the contribution and development of each determinant 

and economic sector on a yearly basis between 2008 and 2018. In the second step, this time 

series data is then aggregated into two distinct time periods from 2008-2012 and from 2013-

2018, with each one relating to a commitment period of the Kyoto Protocol. By doing so, the 

second research question can be answered, and valuable insights can be drawn as to what 

determinants and economic sectors were most relevant for reducing GHG emissions in Belgium 

during the commitment periods of the Kyoto Protocol. Additionally, as pointed out by Ang & 

Lee (1994), the aggregation of time series decomposition data into periods has the advantage 

of not discarding the in-between years of a given time period, which is sometimes the case for 

decomposition analyses. However, before starting with the actual decomposition, the first step 

is to handle the zero values present in the data. 

 

4.1 Zero Values 

After ensuring a sectoral aggregation methodology that allows me to represent the Belgian 

economy with just six sectors, the next step of my analysis is to process the data for each of 

those six sectors. As shortly touched upon before, all values that are reported for each of the six 

sectors are the sum of the values reported for all divisions entailed in the respective sector. 

Unfortunately, as already pointed out by Liu et al. (1992), highly disaggregated data often 

contains zero values. As the data I use for my analysis stems from highly disaggregated datasets 

that differentiate between sixty-four economic activities, the occurrence of zero values is rather 

likely. As such, a solution needs to be identified on how to deal with those zero values. Ang 

(2005) suggests dealing with this issue by replacing all zero values in the data by a small 
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positive constant between 10-10 and 10-20. Notably, the final six sectors in my analysis are 

aggregates of a multitude of divisions. This means that a given sector in my analysis can only 

take on the value of zero if all divisions entailed in the sector have the value zero, which is a 

scenario that is rather unlikely. Nevertheless, there exist potential zero values on a divisional 

level and those need to be taken care of. As such, the next step of my analysis after defining the 

sectoral structure is to replace all zero values in my data sets by the small positive constant of 

10-15. Even though the difference from using a small positive constant to simply using zero as 

a value is marginal on the aggregate level, I still choose to replace zero values for the theoretical 

case of decomposing emission changes on a more disaggregated divisional level to ensure 

methodological coherency. After augmenting the data to not include any zero values, I begin 

with applying the LMDI model to decompose GHG emission changes. 

 

4.2 Multiplicative LMDI model 

The nature of the research questions requires a detailed analysis of population, sectoral energy 

use, GHG emissions and value added per sector to be answered. Additionally, the driving forces 

of GHG emission changes across industries need to be isolated to measure their impact on 

emission changes. The method chosen for this analysis is the multiplicative logarithmic mean 

divisia index (LDMI I) method as presented by Ang and Liu (2001). As already pointed out in 

the theory section, there are multiple benefits this method offers in comparison to other index 

decomposition analyses linked to different indices or structural decomposition analyses (SDA). 

From an application perspective, the main advantage in comparison to other methods is that the 

LDMI approach yields perfect decomposition results without an unexplained residual term that 

potentially hardens result interpretation (Ang, 2005). Moreover, it is consistent in aggregation 

and can effectively handle zero values. However, a differentiation needs to be made between 

the multiplicative application of the LMDI scheme and the additive application of the LMDI 

scheme. The main difference between these two approaches is that the additive LMDI 

decomposes the absolute difference of a given indicator over time, whereas multiplicative 

LMDI decomposes the ratio of a given indicator. A mathematical formulation of the two 

different application methods is provided in Figure 2. Within Figure 2, V represents an energy-

related aggregate, such as for example greenhouse gas emissions. Moreover, changes to this 

aggregate over time come from n factors, with each factor being associated with a quantifiable 

variable whereby there are n variables ranging from x1 to xn (Ang, 2005). Additionally, there 

may be a sub-category of the aggregate that is to be studied, for example economic sectors. 

Such a sub-category can be represented by the subscript i, which in this case would indicate a 

given economic sector. While both the multiplicative as well as the additive approach 

decompose the energy-related aggregate under inspection, the additive formula is decomposing 

into differences (∆𝑉𝑥𝑛), whereas the multiplicative formula is decomposing into determinant 

effects (𝐷𝑥𝑛). The total overall indicator change is indicated by the subscript tot.  
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Figure 2: Additive and multiplicative decomposition formulae 

Additive formula: ∆𝑉𝑡𝑜𝑡 = 𝑉𝑇 − 𝑉0 = ∑∆𝑉𝑥𝑛 = ∆𝑉𝑥1 + ∆𝑉𝑥2 +⋯+ ∆𝑉𝑥𝑛 

with ∆𝑉𝑥𝑛 = ∑ ∆𝑉𝑥𝑛,𝑖𝑖  

Multiplicative formula: 𝐷𝑡𝑜𝑡 =
𝑉𝑇

𝑉0
= ∏𝐷𝑥𝑛 = 𝐷𝑥1 × 𝐷𝑥2 ×…× 𝐷𝑥𝑛 

with 𝐷𝑥𝑛 = ∏ 𝐷𝑥𝑛,𝑖𝑖  

Source: Ang (2005) 

Based on the information of Figure 2, the general index decomposition analysis (IDA) identity 

can be formalized as in equation (1), where at the sub-category level the relationship 𝑉𝑖 =
𝑥1,𝑖 × 𝑥2,𝑖 × …× 𝑥𝑛,𝑖 holds. Again, V is representing an energy-related indicator, whereas the 

xn,i values represent the variables associated with each factor that can change the indicator. The 

subscript i denotes a sub-category under inspection, such as economic sectors for instance. 

 

(1) 𝑉 = ∑ 𝑉𝑖𝑖 = ∑ 𝑥1,𝑖 × 𝑥2,𝑖 ×…× 𝑥𝑛,𝑖𝑖  

 

Based on the general IDA identity in (1), the analysed indicator V changes from 𝑉0 = ∑ 𝑉𝑖
0

𝑖 =
∑ 𝑥1,𝑖

0 × 𝑥2,𝑖
0 × …× 𝑥𝑛,𝑖

0
𝑖  in the base year 0 to 𝑉𝑇 = ∑ 𝑉𝑖

𝑇
𝑖 = ∑ 𝑥1,𝑖

𝑇 × 𝑥2,𝑖
𝑇 × …× 𝑥𝑛,𝑖

𝑇
𝑖  in the 

comparison year T. Depending on the aim as well as on the methodology of the analysis, this 

change can be evaluated using either additive or multiplicative LMDI decomposition (see 

Figure 2). The general formulae for both approaches, together with the underlying IDA identity, 

are illustrated in Table 3. 

 

Table 3: LMDI formulae for the general case with n factors 

IDA 

identity 
𝑉 =∑𝑉𝑖

𝑖

=∑𝑥1,𝑖 × 𝑥2,𝑖 × …× 𝑥𝑛,𝑖
𝑖

 

Scheme Multiplicative decomposition: 

 

𝐷𝑡𝑜𝑡 =
𝑉𝑇

𝑉0
=∏𝐷𝑥𝑛 = 𝐷𝑥1 × 𝐷𝑥2 × …× 𝐷𝑥𝑛  

Additive decomposition: 

 

∆𝑉𝑡𝑜𝑡 = 𝑉𝑇 − 𝑉0 =∑∆𝑉𝑥𝑛

= ∆𝑉𝑥1 + ∆𝑉𝑥2 +⋯+ ∆𝑉𝑥𝑛  

 

 

LMDI 

formulae 
𝐷𝑥𝑛 = exp⁡(∑

(𝑉𝑖
𝑇 − 𝑉𝑖

0)

(ln(𝑉𝑖
𝑇) − ln(𝑉𝑖

0))

(𝑉𝑇 − 𝑉0)
(ln(𝑉𝑇) − ln(𝑉0))

𝑖
× ln(

𝑥𝑛,𝑖
𝑇

𝑥𝑛,𝑖
0 )) 

 

∆𝑉𝑥𝑛 =∑
𝑉𝑖
𝑇 − 𝑉𝑖

𝑇

ln(𝑉𝑖
𝑇) − ln⁡(𝑉𝑖

𝑇)𝑖
× ln⁡(

𝑥𝑛,𝑖
𝑇

𝑥𝑛,𝑖
0 ) 

Source: Ang (2005) 
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As can be seen in Table 3, the main difference between the two approaches is that the 

multiplicative decomposition results in determinants explaining the indicator change in terms 

of the relative contribution of a given factor (Dxn), while the outcome of the additive 

decomposition is simply the absolute change contributed by a given factor (∆𝑉𝑥𝑛). Even though 

the two LMDI application approaches in Table 3 may appear dissimilar, they relate to each 

other through the additive property of the multiplicative LMDI approach and the general 

relationship between the multiplicative and additive decomposition. The additive property of 

the multiplicative approach is shown in (2), while the relationship between the two approaches 

is formalized in (3). 

 

(2) ln(𝐷𝑡𝑜𝑡) = ln(𝐷𝑥1) + ln(𝐷𝑥2) + ⋯+ ln⁡(𝐷𝑥𝑛) 

 

(3) 
∆𝑉𝑡𝑜𝑡

ln⁡(𝐷𝑡𝑜𝑡)
=

∆𝑉𝑥1

ln⁡(𝐷𝑥1)
=

∆𝑉𝑥2

ln⁡(𝐷𝑥2)
= ⋯ =

∆𝑉𝑥𝑛

ln⁡(𝐷𝑥𝑛)
 

 

The decomposition reversibility due to the multiplicative LDMI results’ additive property 

(shown in (2)) and the simple relationship between the additive and multiplicative 

decomposition (shown in (3)) makes a separate decomposition between the two schemes 

unnecessary (Ang, 2005). Another important advantage of the LDMI method that was 

mentioned before is that it is consistent in aggregation (Ang & Liu, 2001). This property is 

particularly beneficial for the research within this thesis, as the estimates on a yearly basis can 

be aggregated to give the corresponding estimates at grouped time ranges (Ang, 2005), which 

is relevant for the aggregation of the two commitment periods of the Kyoto Protocol. However, 

there are also certain limitations to this method that need to be anticipated. The LDMI formulae 

contain multiple logarithmic terms, which means the respective variables cannot have negative 

values (Ang, 2005). Although the occurrence of negative values in index decomposition 

analysis (IDA) is rare, their existence does limit the LDMI. A more likely situation that results 

in the same limitation is the presence of zero values in the data. This problem was solved by 

replacing all zeros in the data by a small positive constant of 10-15. After deciding on using the 

multiplicative LMDI approach, the next step of my analysis is to calculate all coefficients that 

are needed as intermediary inputs for the calculation of the five determinants. 

 

4.3 Coefficient calculation (intermediary inputs) 

After allocating the processed input data to the six economic sectors under inspection, I 

calculate a multitude of coefficients that are needed to proceed with the decomposition analysis. 

These coefficients include the GVA per capita (U), the value-added shares of each sector (Si), 

the energy intensity of each sector (Ii), and the emission intensity of each sector (Ki). Each of 
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these coefficients serves as an intermediary input that is needed for the computation of the 

determinants in the next step. Additionally, the weight coefficient (wi) that is needed for the 

determinant calculation is also being computed in accordance with Ang and Liu (2001). The 

first of the coefficients, the GVA per capita (U), is calculated by simply dividing the population 

(PT) of the respective year T from the overall GVA for the same year (QT). Its formal 

representation is described in (4). 

 

(4) 𝑈𝑇 =
𝑄𝑇

𝑃𝑇
 

 

The next coefficients that need to be calculated for the decomposition of GHG emissions are 

the value-added shares of each sector (Si). This ratio indicates the relative contribution of each 

sector to overall GVA. Consequently, it is calculated by dividing the added value of a given 

sector at a given time (Qi
T) by the total GVA at the same time (QT). The formal representation 

of the value-added shares Si
T can be found below in (5). 

 

(5) 𝑆𝑖
𝑇 =

𝑄𝑖
𝑇

𝑄𝑇
 

 

The third coefficient calculated from the raw input data is the energy intensity for each sector. 

Before coming to its formal representation, however, it is important to highlight the difference 

between the energy intensity coefficient described here and the energy intensity determinant 

that is part of the final results of my analysis. While the energy intensity calculated here is 

simply the ratio of consumed energy to GVA (Ii
T), the energy intensity determinant (Dint) is a 

coefficient that indicates the effect of a change in energy intensity on GHG emissions. As such, 

the energy intensity determinant is part of the decomposition result while the energy intensity 

here serves as an intermediary input only. This intermediary energy intensity is calculated by 

dividing the energy use of a given sector for a given year (Ei
T) by the GVA of the same sector 

in the same year (Qi
T). The formal representation of this coefficient is provided in equation (6). 

 

(6) 𝐼𝑖
𝑇 =

𝐸𝑖
𝑇

𝑄𝑖
𝑇 

 

The fourth coefficient needed to proceed with the decomposition analysis is the emission 

intensity (Ki) for each sector at a given year. Although similar to energy intensity in its name, 

emission intensity is computed without any GVA data. Instead, it represents the ratio of GHG 

emissions (Ci
T) to energy use (Ei

T). As such, it is indicating the relationship between energy use 
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and the GHG emissions that go along with it. Again, this coefficient needs to be differentiated 

from the emission intensity determinant (Deint), which is indicating the effect of a change in 

emission intensity on GHG emissions. The formal representation of the emission intensity ratio 

Ki
T is provided below. 

 

(7) 𝐾𝑖
𝑇 =

𝐶𝑖
𝑇

𝐸𝑖
𝑇 

 

Finally, the weight coefficient must be calculated. This weight coefficient is at the root of the 

decomposition analysis and has been the main object of adjustment and improvements 

throughout the available decomposition literature. As already touched upon in the theory 

section, the decomposition analysis within this paper follows the LMDI I approach proposed 

by Ang and Liu (2001). In contrast to previous weight functions, Ang & Liu’s (2001) approach 

is consistent in aggregation, thus allowing me to aggregate time series data into the two 

commitment periods of the Kyoto Protocol. In the weight function proposed by Ang and Liu 

(2001), the logarithmic mean of the factorial value is divided by the logarithmic mean of the 

aggregate value. The formal representation of the weight function can be found in (8), where 

the numerator represents the logarithmic mean of the factorial value and the denominator the 

logarithmic mean of the aggregate value. 

 

(8) 𝑤𝑖 =

(𝐶𝑖
𝑇−𝐶𝑖

0)

(ln(𝐶𝑖
𝑇)−ln(𝐶𝑖

0))

(𝐶𝑇−𝐶0)

(ln(𝐶𝑇)−ln(𝐶0))

 

 

The intermediary inputs for all decomposed time intervals can be found in Appendix C. The 

weight coefficient is calculated for each sector separately an can be found in Appendix E. Next, 

after calculating all coefficients that are needed as intermediary inputs, I proceed by finalizing 

the decomposition analysis and computing the determinants. The determinants represent the 

final outcomes of my analysis and indicate the effect of each determinant on GHG emission 

changes. Each of the determinants is calculated using the raw input data and the intermediary 

input data that was calculated before.  
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4.4 Determinant Calculation 

As shortly touched upon in the theory section, I differentiate between five determinants of GHG 

emission changes in my application of the LMDI I model. The product of these determinants, 

also being referred to as effects throughout this paper, explains the observed change of 

emissions between two years. Furthermore, the determinants used to assess emission changes 

were not chosen randomly, but instead are based upon the Kaya identity (Kaya, 1989) and the 

IPAT model (Ehrlich & Holdren, 1971). While the original Kaya identity differentiates between 

four determinants that explain man-made emission changes (Kaya, 1989), the model within this 

thesis considers five determinants. As such, the LMDI I model within this paper follows the 

example set by Ang and Liu (2001) and is based on an extended Kaya identity. The four 

determinants of the initial Kaya identity, which were also adopted for my decomposition 

analysis, include an energy intensity effect (Dint), an emission intensity effect (Deint), a GVA 

per capita effect (Dact), as well as a population effect (Dpop) (Kaya, 1989, Kaya & Yokobori, 

1997). The fifth determinant added to my analysis is the effect of structural change on emission 

changes (Dstr). As was shown in the theory section, there exist multiple other potential 

determinants that are based on an extended Kaya identity, but for the purpose of my analysis 

the five determinants discussed before are considered the most fitting. The following 

paragraphs provide a detailed explanation of each determinant, its formal representation and 

what it is supposed to capture in the context of my analysis. I first present the four determinants 

also present in the Kaya identity, and then proceed by discussing the added structural change 

determinant. 

The energy intensity determinant Dint indicates to what degree changes in energy intensity have 

contributed to the emission changes from the base year to the validation year. As changes in 

energy intensity are typically the result of technological improvements or from switching to 

different technologies (Cansino et al. 2015), this determinant serves as an indicator for how 

energy-related technological advancements affect GHG emissions. It is important to note, 

however, that this effect is capturing only the effect that changes in energy intensity had on 

emission changes, not what drove the changes in energy intensity itself. The formal 

representation of this determinant is provided below. 

 

(9) 𝐷𝑖𝑛𝑡 = exp⁡(∑ 𝑤𝑖 ∗𝑖 ln⁡(
𝐼𝑖
𝑇

𝐼𝑖
0)) = exp⁡(∑

(𝐶𝑖
𝑇−𝐶𝑖

0)

(𝑙𝑛⁡𝐶𝑖
𝑇−ln⁡𝐶𝑖

0)

(𝐶𝑇−𝐶0)

(ln𝐶𝑇−ln𝐶0)

𝑖 ∗ ln(
𝐼𝑖
𝑇

𝐼𝑖
0)) 

 

The emission intensity determinant Deint on the other hand indicates to what degree changes in 

emission intensity have contributed to the observed emission changes. As was shown in formula 

(7), emission intensity is the ratio of CO2 equivalent GHG emissions to consumed energy at a 

given period and sector. Hence, a lower emission intensity means that the same amount of 

consumed energy led to fewer emissions or that the same amounts of emissions was achieved 

consuming less energy, respectively. This ratio between emissions and consumed energy is 
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mainly dependent on what type of energy sources are consumed, as different energy sources 

also have different embodied emission content. Brown coal, for example, has a significantly 

higher embodied emission content than natural gas, as indicated by their respective emission 

factors (IPCC, 2006). Consequently, emission intensity represents the quality of the energy mix 

from a GHG mitigation perspective (Cansino et al., 2015). The formal representation of the 

emission intensity determinant Deint is provided below in equation (10). 

 

(10) 𝐷𝑒𝑖𝑛𝑡 = exp⁡(∑ 𝑤𝑖 ∗𝑖 ln⁡(
𝐾𝑖
𝑇

𝐾𝑖
0)) = exp⁡(∑

(𝐶𝑖
𝑇−𝐶𝑖

0)

(𝑙𝑛⁡𝐶𝑖
𝑇−ln⁡𝐶𝑖

0)

(𝐶𝑇−𝐶0)

(ln𝐶𝑇−ln𝐶0)

𝑖 ln(
𝐾𝑖
𝑇

𝐾𝑖
0)) 

 

Next, the economic activity determinant Dact is explained. This determinant captures to what 

degree changes in GVA per capita contributed to changes in GHG emissions for the observed 

time interval. In general, GVA per capita is the ratio of production to population as seen in 

equation (4). Consequently, changes to this determinant are the result of changes in either GVA 

or population. For instance, if the economic activity determinant is below one despite a growing 

GVA per capita, it would indicate a decoupling process of emissions from per capita GVA. As 

furthermore showcased by Cansino et al. (2015), this effect represents the affluence effect 

within the traditional IPAT equation. The formal representation of the economic activity 

determinant Dact is provided below. 

 

(11) Dact = exp⁡(∑ 𝑤𝑖 ∗𝑖 ln⁡(
𝑈𝑇

𝑈0)) = exp⁡(∑

(Ci
T−Ci

0)

(ln⁡Ci
T−lnCi

0)

(CT−C0)

(lnCT−lnC0)

i ln(
𝑈𝑇

𝑈0)) 

 

The fourth determinant calculated within my decomposition analysis is the population effect 

Dpop. This effect is present both in the original IPAT equation as well as in the regular Kaya 

identity. As the name might already suggest, this determinant captures to what degree changes 

in the population of Belgium affect changes in GHG emissions during the observed time 

interval. As long as the population is growing, this determinant is also expected to grow. If the 

determinant would be below one despite a growing population, this would indicate a decoupling 

of emissions from population growth. However, throughout the reviewed literature there was 

not a single example of a growing population that had a negative effect on emissions. Typically, 

this determinant is only below one when the population of a country is shrinking. The formal 

representation of the population determinant Dpop is provided below. 
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(12) Dpop = exp⁡(∑ 𝑤𝑖 ∗𝑖 ln⁡(
𝑃𝑇

𝑃0
)) = exp⁡(∑

(Ci
T−Ci

0)

(ln⁡Ci
T−lnCi

0)

(CT−C0)

(lnCT−lnC0)

i ln(
𝑃𝑇

𝑃0
)) 

 

Finally, the structural change determinant Dstr is indicating to what degree changes in the 

economy structure of Belgium affect emission changes during the observed time interval. In 

essence, this determinant is dependent on the composition of economic activities within 

Belgium. As not all sectors and activities within an economy are equally contributing to GHG 

emissions, changes in the economic structure of Belgium might have a significant impact on 

emission changes. If the structural change determinant is below one, this might indicate a 

transition towards activities with a lower carbon footprint. Likewise, if above one, this 

determinant might indicate a transition towards more emission-heavy activities such as many 

manufacturing activities. The formal representation of the structural change determinant Dstr is 

provided below. 

 

(13) 𝐷𝑠𝑡𝑟 = exp⁡(∑ 𝑤𝑖 ∗𝑖 ln⁡(
𝑆𝑖
𝑇

𝑆𝑖
0)) = exp⁡(∑

(𝐶𝑖
𝑇−𝐶𝑖

0)

(𝑙𝑛⁡𝐶𝑖
𝑇−ln⁡𝐶𝑖

0)

(𝐶𝑇−𝐶0)

(ln𝐶𝑇−ln𝐶0)

𝑖 ln(
𝑆𝑖
𝑇

𝑆𝑖
0)) 

 

Moreover, multiplying all five determinants will result in the total emission effect Dtot. As 

mentioned before, the five determinants explain the observed change in GHG emissions. 

Consequently, this means that the total emission determinant Dtot is equal to the ratio of GHG 

emissions from the terminal year to the base year. This relationship between determinants and 

emission changes within the multiplicative LMDI model can be formalized as in equation (14), 

where Dtot represents the product of all five determinants and CT as well as C0 represent 

emissions in the terminal year and base year, respectively. 

 

(14) 𝐷𝑡𝑜𝑡 =⁡
𝐶𝑇

𝐶0
= 𝐷𝑖𝑛𝑡 × 𝐷𝑒𝑖𝑛𝑡 × 𝐷𝑎𝑐𝑡 × 𝐷𝑠𝑡𝑟 × 𝐷𝑝𝑜𝑝 

 

Additionally, the total effect can be calculated by either multiplying all determinants or by 

multiplying the contributions of all sectors as shown in equation (15). The calculated total 

effect will be the same for both equations. 
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(15) 𝐷𝑡𝑜𝑡 =
𝐶𝑇

𝐶0
= 𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 × 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 × 𝐸𝑛𝑒𝑟𝑔𝑦 × 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠 × 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 × 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 

 

With the calculation of the different determinants on a time series basis being complete, the 

next step of my analysis is to aggregate these results into the two commitment periods of the 

Kyoto Protocol. Based on the research design discussed before, the determinants will first be 

calculated on a yearly basis for all years between 2008 and 2018. Afterwards, the results of the 

time series analysis will be aggregated into the two distinct commitment periods of the Kyoto 

Protocol. Doing so ensures to capture the magnitude of all effects in the commitment periods 

of the Kyoto Protocol without discarding the in-between years. This means that the relationship 

between the decomposition on a yearly basis and on an aggregated basis can be described as in 

equation (16) and (17). 

 

(16) 𝐷𝑛
𝐾𝑦𝑜𝑡𝑜_1

= 𝐷𝑛
08−09 × 𝐷𝑛

09−10 × 𝐷𝑛
10−11 × 𝐷𝑛

11−12 

 

 

(17) 𝐷𝑛
𝐾𝑦𝑜𝑡𝑜_2

= 𝐷𝑛
12−13 × 𝐷𝑛

13−14 × 𝐷𝑛
14−15 × 𝐷𝑛

15−16 × 𝐷𝑛
16−17 × 𝐷𝑛

17−18 

 

In (16), the superscript Kyoto_1 is indicating the aggregated time period relating to the first 

commitment period of the Kyoto Protocol. The superscripts 08-09, 09-10, 10-11, 11-12 are 

indicating the respective years that are part of the first commitment period for which the 

determinants have been calculated in the step before. The subscript n is indicating a given 

determinant, such as for instance the energy intensity determinant. This means that the energy 

intensity effect on the aggregated level is the product of all energy intensity determinants 

reported for the entailed years. The same logic applies to equation (17), which is depicting the 

aggregated time period relating to the second commitment period. Based on the formulae (1) – 

(15), the LMDI decomposition for GHG emissions in Belgium can formalized. All LMDI 

formulae needed for the decomposition of GHG emissions in Belgium are presented in Table 

4, together with the underlying IDA identity. 
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Table 4: LMDI formulae for decomposing GHG emissions in Belgium 

IDA 

identity 
𝐶 =∑𝐶𝑖

𝑖

=∑
𝑄

𝑃
×
𝑄𝑖
𝑄
×
𝐸𝑖
𝑄𝑖

×
𝐶𝑖
𝐸𝑖

𝑖

× 𝑃 =∑𝑈 × 𝑆𝑖 × 𝐼𝑖 × 𝐾𝑖 × 𝑃

𝑖

 

Scheme Multiplicative decomposition: 

 

 

𝐷𝑡𝑜𝑡 =
𝐶𝑇

𝐶0
=∏𝐷𝑛 = 𝐷𝑎𝑐𝑡 × 𝐷𝑠𝑡𝑟 × 𝐷𝑖𝑛𝑡 × 𝐷𝑒𝑖𝑛𝑡 × 𝐷𝑝𝑜𝑝 

 

 

 

Weight coefficient: 

 

𝑤𝑖 =

(𝐶𝑖
𝑇 − 𝐶𝑖

0)

(ln(𝐶𝑖
𝑇) − ln(𝐶))

(𝐶 − 𝐶0)
(ln(𝐶𝑇) − ln(𝐶))

 

 

LMDI 

formulae 

 

𝐷𝑎𝑐𝑡 = exp(∑ 𝑤𝑖
𝑖

× ln (
𝑈𝑇

𝑈0)) 

 

 

𝐷𝑠𝑡𝑟 = exp(∑ 𝑤𝑖
𝑖

× ln (
𝑆𝑖
𝑇

𝑆𝑖
0)) 

 

 

𝐷𝑖𝑛𝑡 = exp(∑ 𝑤𝑖
𝑖

× ln (
𝐼𝑖
𝑇

𝐼𝑖
0)) 

 

𝐷𝑒𝑖𝑛𝑡 = exp(∑ 𝑤𝑖
𝑖

× ln (
𝐾𝑖

𝑇

𝐾𝑖
0)) 

 

𝐷𝑝𝑜𝑝 = exp(∑ 𝑤𝑖
𝑖

× ln (
𝑃𝑇

𝑃0
)) 

 
 

 

Note: Based on the determinant results obtained on a yearly basis, the aggregate values of the determinants will 

then be calculated to the commitment periods as described in equation (15) and (16). Source: author illustration 

 

In general, if any of the determinants takes on a value of below one, it means that this 

determinant contributed to a decrease in emissions. Similarly, if above one, the respective 

determinant contributed to emission increases. When looking at the determinant results, their 

relative contribution to emission changes can be evaluated based on the difference between the 

value of the determinant and the value of one. For example, if the energy intensity effect takes 

on the value Dint = 1.09, then this means that the energy intensity effect increased emissions by 

9 percent. Similarly, if the same determinant has a value of Dint = 0.94 it means that the changes 



 

 41 

in energy intensity reduced emissions by 6 percent. After now having discussed the different 

parts of my methodology and approach on decomposing Belgian GHG emission changes, the 

next chapter will present the results of the analysis followed by a discussion and interpretation 

of the obtained results.  
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5 Emperical Analysis  

The empirical analysis section contains multiple chapters that serve different purposes. First, a 

results chapter will present the results of the decomposition analysis and provide a brief 

explanation of the results that were obtained. This will be done first for the time series analysis 

and then for the aggregated commitment periods in a separate sub-chapter. Afterwards, I will 

critically reflect on the results and put my findings into the context of the research aim as well 

as previous research. In doing so, I will highlight the differences and similarities that are found 

when comparing this paper with previous studies. Furthermore, I will discuss the role of my 

findings for potential policy implementations. When discussing different policy implications, I 

will lay focus on isolating the determinants and economic sectors that would serve as the most 

effective levers in regulating GHG emissions. 

 

5.1 Results 

After discussing the methodology being used for decomposing GHG emission changes as well 

as explaining the data being used, I will now proceed by presenting the results of my analysis. 

As two research questions were stated, the presentation of the results will also be split into two 

parts, with each part relating to the respective step of my analysis. First, the results of the time 

series decomposition are presented. 

 

5.1.1 Time Series Decomposition Results 

The first step of my analysis was to decompose the GHG emission changes in Belgium for all 

years between 2008 and 2018. Analysing the emission changes from each year to the next one 

has the great advantage of providing a clear and detailed picture of the development of 

determinants and economic sectors over time. This allows to assess the impact of each 

determinant and economic sector on emission changes over time. Additionally, it may indicate 

trends that have emerged throughout the observed years. At first, a closer look will be taken on 

the development of the GHG emission determinants between 2008 and 2018. The results of the 

decomposition analysis for each determinant are provided in Table 4. Within Table 4, all values 

have been rounded to only contain four decimals. The reason I did not round them further is 

that in some cases there are only small differences which would not be visible if there were 

only one or two decimals. 
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Table 5: Time Series Decomposition Results for Determinants 

 

 Dact Dstr Dint Dpop Deint Dtot 

2008-2009 0,9701 0,9545 0,9985 1,0081 0,9674 0,9017 

2009-2010 1,0192 1,0442 1,0170 1,0081 0,9728 1,0614 

2010-2011 1,0039 0,9842 0,9201 1,0148 1,0117 0,9334 

2011-2012 1,0016 0,9692 0,9936 1,0068 0,9936 0,9649 

2012-2013 0,9978 0,9712 0,9980 1,0056 1,0014 0,9739 

2013-2014 1,0116 1,0192 0,9331 1,0038 1,0150 0,9803 

2014-2015 1,0167 1,0564 1,0095 1,0050 0,9571 1,0430 

2015-2016 1,0028 0,9681 1,0282 1,0066 0,9868 0,9916 

2016-2017 1,0122 0,9801 0,9989 1,0036 1,0007 0,9954 

2017-2018 1,0145 0,9409 1,0628 1,0041 0,9791 0,9973 

Note: For a full presentation of decomposition results, please refer to Appendix D. Source: author calculations 

 

In general, the table above differentiates between the five determinants as well as the total effect 

of these determinants on greenhouse gas emissions. For the first period from 2008 to 2009, 

GHG emissions decreased by roughly 10 percent, indicated by the total effect of Dtot ≈ 0,90. 

Having a closer look at the five determinants, it can be observed that the structural change effect 

contributed most to this decrease in emissions (Dstr ≈ 0,95), whereas the population effect 

positively contributed to emissions (Dpop ≈ 1,008). The other determinants also contributed to 

the emission decrease during that period, although not as much as the structural change 

determinant. Interestingly, the next period from 2009 to 2010 exhibits increasing GHG 

emissions of around 6 percent in Belgium (Dtot ≈ 1,06). During that period, it appears that this 

increase in emissions was mostly driven by the economic activity determinant (Dact ≈ 1,019) 

and the structural change determinant (Dstr ≈ 1,044). Furthermore, the energy intensity effect as 

well as the population effect also positively contributed to this increase in GHG emissions. The 

only effect that counteracted the positive contribution of the previous four determinants was the 

emission intensity effect, which had a negative impact on GHG emissions in the period from 

2009-2010 (Deint ≈ 0,97). For the period between 2010 and 2011, GHG emissions have 

decreased by roughly 7 percent (Dtot ≈ 0,93). Notably, out of the five determinants, only two 

contributed to this negative emission development, whereas three determinants had a positive 

impact on emissions. The economic activity effect, as well as the population effect and emission 

intensity effect all led to an increase in emissions. However, their positive contribution was 

offset by the strong negative impact on emissions by the energy intensity effect (Dint ≈ 0,92) 

and the structural change effect (Dstr ≈ 0,98). 

From 2011 to 2012, a decrease in emission of around 4 percent can be observed (Dtot ≈ 0,96). 

This reduction was mainly driven by structural changes (Dstr ≈ 0,97), although energy intensity 

and emission intensity also slightly contributed to this reduction with around 1 percent each. 

The economic activity determinant as well as the population determinant on the other hand 

positively contributed to GHG emissions, but only to a rather small degree (Dact ≈ 1,002 and 

Dpop ≈ 1,007). For the period from 2012 to 2013, GHG emissions decreased by around 3 percent 

(Dtot ≈ 0,97). This reduction was again mainly driven by the structural change determinant (Dstr 
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≈ 0,97). Contrary to the period from 2011 to 2012, however, the economic activity determinant 

also negatively contributed to this development (Dact ≈ 0,99), whereas the emission intensity 

determinant slightly increased GHG emissions (Deint ≈ 1,001). Nevertheless, the changes in 

determinants from the period of 2011-2012 to 2012-2013 were only marginal and in general 

the two periods exhibit a very similar pattern of determinant contributions. The next period is 

the one from 2013 to 2014. During this time, a reduction of GHG emission of around 2 period 

can be observed (Dtot ≈ 0,98). This decrease was driven solely by changes in energy intensity 

(Dint ≈ 0,93), as in fact all other determinants positively contributed to GHG emissions. Of the 

other four determinants, the structural change effect was the one contributing most to an 

increase in emissions (Dstr ≈ 1,019). Contrary to the last three time periods, the period from 

2014-2015 was marked by a relatively strong increase in GHG emissions (Dtot ≈ 1,043). This 

increase was mainly driven by the structural change effect (Dstr ≈ 1,056), as well as by 

contributions from the economic activity determinant (Dact ≈ 1,017), the energy intensity 

determinant (Dint ≈ 1,009), and the population determinant (Dpop ≈ 1,005). The emission 

intensity determinant was the only one negatively contributing to emission changes (Deint ≈ 

0,96), however, not enough to offset to positive contributions of the other four effects.  

During the period from 2015-2016, emissions then slightly decreased again by almost 1 percent 

(Dtot ≈ 0,99). This decrease was the result of structural changes (Dstr ≈ 0,97) as well as of 

changes in emission intensity (Deint ≈ 0,99). The other three determinants were instead 

positively contributing to emission changes, with energy intensity being the strongest 

contributor (Dint ≈ 1,03). The time period between 2016 and 2017 also exhibits a decreasing 

amount of GHG emissions, but only by around 0,5 percent (Dtot ≈ 0,995). The structural change 

determinant (Dstr ≈ 0,98) as well as the energy intensity determinant (Dint ≈ 0,999) contributed 

to this reduction, whereas the other three determinants positively contributed to GHG 

emissions. Lastly, the time period from 2017 to 2018 again exhibits a small reduction of 

greenhouse gas emissions of around 0,3 percent (Dtot ≈ 0,997). This reduction was driven by 

structural change (Dstr ≈ 0,94) as well as by changes in emission intensity (Deint ≈ 0,98). The 

remaining three determinants instead positively contributed to emission changes, with the 

economic activity determinant being the strongest driver of emissions (Dact ≈ 1,014).  

Interestingly, it should be noted that throughout the periods between 2010 and 2014, the 

reduction of GHG emissions has steadily decreased. While decreasing by almost 7 percent 

between 2010 and 2011, emissions decreased by less than 2 percent in the period from 2013 to 

2014. Afterwards, emissions appear to be reduced at even smaller margins and in some periods 

even increase again (for example from 2014 to 2015). However, intuitively presenting the 

results in form of a table is hard to do. Hence, for a more intuitive representation of the 

decomposition results, Figures 3 and 4 represent the decomposition results as a time series line 

plot. Figure 3 showcases the development of the total effect over time, whereas Figure 4 

indicates the development of the remaining five determinants. In Figures 3 and 4, the time 

periods are shown on the x-axis whereas the determinant value is shown on the y-axis. 
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Figure 3: Time Series decomposition - Total Effect 

 

Source: author illustration 

 

In general, Figure 3 is indicating the development of the total effect over time. However, as the 

total effect equals the ratio of emissions from one year to the next (see equation (14)), Figure 3 

is essentially portraying the GHG emission development over time. Whenever the value of the 

total effect is above one, then emissions were increased during that time. When it is below one, 

emissions decreased. Looking at Figure 3, a few interesting developments can be observed. 

First, there is a large difference in the total effect from the period 2008-2009 to 2009-2010. In 

the period from 2010-2011, the total effect is again significantly different from the previous 

period. Presumably, this behaviour can be traced back to the global financial crisis that also hit 

Belgium at the time. This assumption will be further discussed in the discussion chapter. 

Secondly, it seems like the total effect exhibits a rising trend throughout the last periods 

observed, indicating that the reduction rate of GHG emissions sunk over time. The reason for 

this behaviour is most likely linked to the fact that Belgium exceeded its 7.5 percent goal of the 

first commitment period quite early and by a large margin (see Belgium, 2021), and hence did 

not feel political pressure to maintain this strong reduction in later periods. This possibility will 

also be discussed in more detail within the discussion chapter of this paper.  

The total effect, however, only portraits the change of emissions from one year to another 

without explaining what drove this change. For a better intuition of the driving determinants 

that led to the development of the total effect in Figure 3, a line plot of the developments of the 

five driving determinants is provided in Figure 4. Again, time periods are shown on the x-axis 

and determinant values are shown on the y-axis. 
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Figure 4: Time Series decomposition - Determinants 

 

Source: author illustration 

 

Looking at above illustration, a few interesting trends can be observed. First, looking at the line 

for the population determinant (Dpop), it appears that it is consistently hovering slightly above 

1.00 throughout the different time periods. This result is unsurprising, as an increase in 

population is usually also connected to a rise in emissions (see for example Cansino et al., 

2015). If the population determinant would drop below one despite a growing population, this 

would indicate a decoupling of population from emissions and that more people lead to less 

emissions. The economic activity effect (Dact), although being significantly below one in the 

first period, also remains slightly above one for most observed time periods. This means that 

changes in per capita GVA are typically also connected to a slight but constant rise in emissions. 

The significantly lower value of the economic activity determinant in the period from 2008-

2009 is most likely related to the global financial crisis, which would also explain the strong 

surge in the following period from 2009-2010, when the economy recovered from the financial 

shock.  

Next, a closer look is taken on the determinants of structural change (Dstr) and energy intensity 

(Dint). While the two lines behave somewhat similar for the time periods between 2008 and 

2011, it appears that from 2011 onwards they move counter directional. Especially for the last 

period from 2017 to 2018, the structural change determinant significantly reduced emissions, 

whereas the energy intensity determinant appears to be the main driver of increasing emissions. 

In general, it might be concluded that an upwards trend of energy intensity can be observed 

from 2013 onwards, whereas the structural change determinant exhibits more of a downwards 

trend from 2014 onwards. However, it should be kept it mind that with only ten years being 

analysed, the observed time period within this thesis is rather short and as such not sufficient in 

showcasing long-term trends. Lastly, the emission intensity (Deint) determinant does not appear 
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to show a consistent pattern throughout time periods, although it is negatively contributing to 

emissions for most periods. After discussing the development of determinants throughout time, 

I will now continue by discussing the impact of the different economic sectors within the 

observed periods to evaluate which sectors were of most importance in reducing or increasing 

GHG emissions. The decomposition results for each economic sector throughout the observed 

time periods is provided in Table 6. Again, all values in Table 6 have been rounded to four 

decimal points. 

 

Table 6: Time Series Decomposition Results for Economic Sectors 

 Agriculture Industry Energy Services Transport Residential 

2008-2009 1,0013 0,8990 1,0053 1,0063 0,9901 1,0000 

2009-2010 1,0009 1,0489 1,0080 1,0086 0,9943 1,0000 

2010-2011 0,9961 0,9911 0,9666 0,9858 0,9924 0,9999 

2011-2012 0,9985 0,9744 0,9972 1,0017 0,9927 1,0000 

2012-2013 1,0009 1,0020 0,9862 0,9987 0,9859 0,9999 

2013-2014 1,0037 0,9932 0,9918 0,9823 1,0093 0,9999 

2014-2015 1,0061 0,9980 1,0080 1,0106 1,0195 1,0000 

2015-2016 1,0011 1,0043 0,9895 0,9985 0,9982 1,0000 

2016-2017 1,0020 1,0029 0,9989 1,0025 0,9888 1,0003 

2017-2018 0,99904 1,0025 1,0027 0,9990 0,9940 1,0000 

Note: For a full presentation of decomposition results, please refer to Appendix D. Source: author calculations 

 

Looking at Table 6, the contribution of each economic sector on GHG emission changes is 

showcased. One important aspect to note is that the total effect on GHG emissions is not 

provided in above table. The reason for this is that, as mentioned before, the product of all 

sector effects within a given time period equals the total effect of the same period shown in 

Table 5. That means that the product of all determinant effects is the same as the product of all 

sector effects (see equation (15)). As such, I will discuss the sector effects not from one period 

to the next, but rather discuss their development throughout periods and highlight certain 

periods that stand out. First, looking at the Agriculture sector, it can be seen that the values for 

all time periods are somewhat close to the value of one, where in some periods the Agriculture 

sector increased emissions and in others it decreased emissions. However, its negative 

contribution to emissions is never exceeding 0,4 percent (in the period from 2010-2011), while 

its contribution to increasing emissions is 0,6 percent at most (in the period from 2014-2015). 

In general, the Agriculture sector does not appear to have a great impact on reducing emissions, 

nor in increasing them. The Industry sector, on the contrary, appears to have more of an impact 

on GHG emissions. In the period from 2008-2009, it contributed a little more than 10 percent 

to the overall reduction in GHG emissions (Industry ≈ 0,89). Afterwards, the Industry sector in 

some periods continues to reduce emissions, whereas in other periods it increased emissions. 

In the period from 2009-2010, for instance, it increased emissions by almost 0,5 percent 

(Industry ≈ 1,048). Between 2011-2012, the Industry sector again decreased emissions by a 

rather high amount of around 3 percent (Industry ≈ 0,97). Although the Industry sector also 
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contributed to emission reductions and increases in other periods, its impact was not as 

significant as in the three time periods just discussed. Next, a closer look is taken on the Energy 

sector. While also being ambiguous in its contribution to GHG emissions, the time period from 

2010-2011 is marked by its strongest contribution to emission decrease of around 3.4 percent 

(Energy ≈ 0,96). In the periods from 2012-2013 and from 2015-2016, the Energy sector reduced 

emissions by around 1,4 percent (Energy ≈ 0,986) and 1,1 percent (Energy ≈ 0,989), 

respectively. Interestingly, it does not appear that the Energy sector significantly contributed to 

emission increases in any of the observed time periods, with the highest contribution to 

emission increase being only 0,8 percent in the period from 2014-2015 (Energy ≈ 1,008). The 

Services sector, similar to most other sectors, is ambiguous in its contribution to GHG emissions 

throughout time. In fact, the Services sector increased emissions in exactly as many time periods 

as in which it decreased them. However, the overall impact the Services sector had on emissions 

was rather low in general, with the strongest negative impact from 2010 to 2011 (Services ≈ 

0,98) and the strongest positive impact in the period from 2014 to 2015 (Services ≈ 1,01). 

The Transport sector contributed mostly negatively to GHG emissions changes, with exception 

for the periods from 2013 to 2014 and from 2014 to 2015. The strongest positive contribution 

to GHG emissions was in the period from 2014 to 2015, where the Transport sector contributed 

almost 2 percent (Transport ≈ 1,02) to emission increases. In all other periods, the Transport 

sector negatively contributed to GHG emissions, with the strongest negative contribution being 

1.5 percent in the period from 2012 to 2013 (Transport ≈ 0,985). Lastly, the Residential sector 

is marked by a remarkably little impact on GHG emissions throughout time. While in general 

being very close to the value of one, the impact of the Residential sector also differs based on 

the period under observation. However, the impact of the Residential sector in either direction 

never exceeded 0.0006 percent, which was the case in the period from 2010 – 2011 (see 

Appendix D). As such, its contribution to GHG emission changes can be considered marginal. 

For a better visualization of the development of economic sectors throughout time, Figure 4 

provides a line plot of the sectoral development throughout periods. 

 

Figure 5: Time Series decomposition – Sectors 

 

 

 

 

 

 

 

Source: author illustration 
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In above Figure, the x-axis is indicating the different time periods and the y-axis is showing the 

determinant values. The first thing that becomes apparent when looking at Figure 5 is that the 

different sectors become less impactful over time. Especially the Industry sector as well as the 

Energy sector stand out, as their impact appears to be shrinking the most over time. In general, 

the results portrayed in Figure 4 suggest that the impact of sectors on GHG emissions becomes 

less relevant over time. Notably, such a development was not observed for the five determinants 

(see Figure 4). If the impact of the sectors falls over time while the impact of the determinants 

is remaining more or less constant (independent of whether or not this impact is negative or 

positive), then this would mean that the determinants become relatively more important in 

driving GHG emissions. This has important implications for policies trying to tackle GHG 

emissions in the most effective way, which will be further discussed in the policy implications 

chapter. However, before coming to the policy implications, the results of the aggregated 

decomposition will be presented first. 

 

5.1.2 Aggregated Decomposition Results 

The second step of my analysis was the aggregation of years into two commitment periods 

relating to the ones established in the Kyoto Protocol and the Doha amendment, respectively. 

As shortly touched upon in the methodology section, one of the advantages of using the 

multiplicative LMDI approach is that the results can be aggregated easily and consistently. This 

means that the values for each determinant on the aggregated level are the product of the values 

for the same determinant of all years entailed in the respective commitment period (see 

equations (16) and (17)). The decomposition results for the first commitment period are 

reported in Table 7. 

 

Table 7: Determinant Decomposition Results First Commitment Period (08-12) 

 Dact Dstr Dint Dpop Deint Dtot 

First Commitment 

Period  

 

0,9942 

 

 

0,9507 

 

 

0,9284 

 

 

1,0383 

 

 

0,9460 

 

 

0,8620 

 

Source: author calculations 

 

Looking at above table reveals interesting insights. First, it appears that during the first 

commitment period of the Kyoto Protocol, the population effect was the only determinant 

contributing to an increase in GHG emissions of around 4 percent (Dpop ≈ 1,04). All other 

determinants contributed to a decrease in GHG emissions. In terms of parts of the total effect, 

the energy intensity effect contributed the strongest to the overall reduction of GHG emissions 

(Dint ≈ 0,93). The structural change effect as well as the emission intensity effect contributed to 

this decrease with Dstr ≈ 0,95 and Deint ≈ 0,95, respectively. The economic activity effect only 
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had a small negative effect on GHG emissions of around 1 percent (Dact ≈ 0,99). Overall, the 

total effect of Dtot ≈ 0,86 suggests that in the first commitment period of the Kyoto Protocol, 

Belgium reduced its emissions by almost 14 percent. This result is exactly in line with the GHG 

emission reductions that were reported in the 2021 National Inventory Report of greenhouse 

gases in Belgium (Belgium, 2021). However, in contrast to the 2021 National Inventory Report, 

the decomposition analysis carried out within this paper allows to evaluate what determinants 

drove this reduction of GHG emissions. Figure 6 illustrates the determinant contributions to 

emission changes in form of a radar chart for a more intuitive understanding of what 

determinants drove this emission reduction in Belgium during the first commitment period of 

the Kyoto Protocol. In general, if the value for a given determinant is close to the centre of the 

radar chart, then it had a decreasing effect on emissions. If the value lies more on the outer lines 

above 1.000, then the determinant increased emissions. 

 

Figure 6: Radar Chart of Emission Determinants (2008-2012) 

 

 

 

 

 

 

 

 

 

 

 

 

Source: author illustration 

 

Above illustration allows to put the values reported in Table 7 in a graphical context. Here, it 

can be clearly seen that the population effect was the only determinant significantly above the 

value of one and hence increasing emissions. While all other determinants contributed to the 

emission reduction, the population determinant increased emissions, however, not enough no 

offset to strong negative effect on emissions of the other determinants. It can also be clearly 
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seen that the energy intensity effect contributed the most to the overall reduction in GHG 

emissions during the first commitment period, as it is closest to the centre of the chart. After 

having inspected the contribution of determinants to emission changes during the first 

commitment period, the contribution of each economic sector is now presented. The 

decompostition results for each economic sector during the first commitment period are 

reported in Table 8. 

 

Table 8: Sector Decomposition Results First Commitment Period (08-12) 

 Agriculture Industry Energy Services Transport Residential 

First commitment 

period  

 

0,9969 

 

0,9107 

 

0,9768 

 

1,0022 

 

0,9698 

 

1,0000 

Source: author calculations 

 

Looking at the decomposition results for the economic sectors during the first commitment 

period reveals interesting information as to what parts of the Belgian economy were of most 

relevance for the emission reduction observed. Most clearly, the Industry sector contributed to 

emission reductions by around 9 percent (Industry ≈ 0,91). The Energy sector and the Transport 

sector were furthermore also important contributors to the overall decrease in GHG emissions, 

with around 2.4 percent (Energy ≈ 0,976) and 3 percent (Transport ≈ 0,97), respectively. 

Interestingly, the Services sector appears to have contributed to an increase of emissions instead 

(Services ≈ 1,002). The reason for this increase is most likely an emission facilitating form of 

structural change and the migration of workforce across economic sectors. The underlying 

reasons for the observed changes are further discussed in the next chapter. Lastly, while the 

Agriculture sector appears to have made a small negative contribution to GHG emissions 

(Agriculture ≈ 0,99), the Residential sector appears to not have much of an impact on emission 

changes at all (Residential ≈ 1,00). 

After inspecting the decomposition results for the first commitment period, it is now time to 

discuss the decompostition results of the second commitment period. In accordance with the 

second research question, the results will be presented in a way that highlights the similarities 

and differences between the two commitment periods. The determinant decomposition results 

for the second commitment period are reported in Table 9. 

 

Table 9: Determinant Decomposition Results Second Commitment Period (13-18) 

 Dact Dstr Dint Dpop Deint Dtot 

Second Commitment Period  1,0568 0,9336 1,0264 1,0291 0,9406 

 

0,9803 

 
Source: author calculations 
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When looking at above table, the first thing that becomes obvious is that the reduction of GHG 

emissions has been significantly less in the second commitment period than in the first 

commitment period (see Table 7 & 9). In fact, Belgium has decreased its GHG emissions by 

around 2 percent only in the second commitment period (Dtot ≈ 0,98) compared to almost 14 

percent in the first commitment period. While still being a reduction of emissions, it is 

interesting to see that the amount of GHG emissions that was reduced shrank by almost 12 

percentage points compared to the first commitment period (see Table 7). While it was only 

one determinant contributing to emission increases during the first commitment period, there 

are now three determinants that contributed to an increase in emissions in the second 

commitment period. These determinants include the economic activity effect (Dact ≈ 1,06), the 

energy intensity effect (Dint ≈ 1,03), as well as the population effect (Dpop ≈ 1,03). Fortunately, 

the negative contributions of the structural change effect (Dstr ≈ 0,93) and the emission intensity 

effect (Deint ≈ 0,94) were sufficient to offset the positive contribution of the remaining three 

determinants. Again, a radar chart is presented to highlight the differences between the different 

determinants and to showcase the contribution of each determinant to GHG emission changes. 

 

Figure 7: Radar Chart of Emission Determinants (2013-2018) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: author illustration 
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Looking at Figure 7, the differences between the first and second commitment period become 

apparent. While the only spike during the first commitment period was found in the corner of 

the population effect, it can now clearly be seen that in the second commitment period three 

determinants increased GHG emissions. The economic activity effect as well as the energy 

intensity effect are of particular relevance here. While being negative contributors to GHG 

emission during the first period (see Figure 6), they are positive contributors to GHG emissions 

in the second commitment period. Again, this development may reflect the fact that Belgium 

had exceeded its emissions reduction goals in the first commitment period, and thus did not 

have political pressure to continue reducing emissions at the same rate. The discussion chapter 

will discuss this aspect in further detail. Having presented the results of the determinant 

decomposition, a closer look is now taken on the sectoral contribution to GHG emissions in the 

second commitment period to evaluate what differences exist when comparing the different 

economic sectors. The sectoral decomposition results of the second commitment period are 

reported in Table 10. 

 

Table 10: Sector Decomposition Results Second Commitment Period (13-18) 

 Agriculture Industry Energy Services Transport Residential 

Second 

commitment 

period 

1,0130 1,0029 0,9772 0,9915 0,9954 1,0004 

Source: author calculations 

 

At first glance, the values reported for the second commitment period do not appear to be 

significantly different from the ones of the first commitment period (see Table 8). However, 

some differences do exist. First, the strong negative contribution of the Industry sector in the 

first commitment period is now in the second commitment period reversed, as the Industry 

sector is contributing to increasing emissions by 0.2 percent (Industry ≈ 1,002). The impact of 

the Agriculture sector has furthermore also reversed, now contributing to increasing emissions 

by roughly 1 percent (Agriculture ≈ 1,013). The contribution of the Energy sector, on the other 

hand, remains more or less the same when compared to the first commitment period (Energy ≈ 

0,98). The Services sector is negatively contributing to GHG emissions in the second period by 

almost 1 percent (Services ≈ 0,99), whereas it contributed positively during the first 

commitment period. The Transport sector is still negatively contributing to emission in the 

second commitment period (Industry ≈ 0,99), although not as much as it has during the first 

commitment period. Lastly, the Residential sector remains largely unchanged, with it still being 

of little relevance to the overall change in GHG emissions (Residential ≈ 1,00). For a better 

visualization of the differences in sectoral contribution to GHG emissions, a combined radar 

chart showcasing the contribution of sectors during the two commitment periods is provided in 

Figure 8. 
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Figure 8: Sectoral Contribution to GHG emissions during commitment periods 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: author illustration 

 

Looking at above figure, the differences between the two commitment periods in the sectoral 

contribution are clearly visible. The impacts of the Residential and Energy sector are almost 

identical for the two commitment periods, whereas especially the Industry sector appears to 

have undergone substantial changes. The comparatively small changes to the Transport, 

Services, and Agriculture sector are also made obvious. This may indicate that the Industry 

sector is the most important sector of the economy when trying to affect emissions from a policy 

point of view. This result would be in line with Henriques and Kander (2010), who emphasize 

the relatively high importance of industry and manufacturing for reducing environmental 

impacts. The surface covered by each of the two graphs furthermore represent the total 

reduction or increase in emissions. The smaller surface area of the first commitment period 

indicates a greater reduction of GHG emissions compared to the second commitment period. 

Within the next chapter, the results will be discussed in relation to the research aim and previous 

research. Furthermore, the findings of this analysis will be put into context with regards to their 

policy implications. 
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5.2 Discussion 

Starting with the economic activity determinant it was found that changes in GVA per capita 

increased GHG emissions for almost all periods, with the only exceptions being the periods 

from 2008-2009 and the one from 2012-2013. This indicates that for most periods, a growing 

per capita GVA in Belgium contributed to an increase in emissions. These results are in line 

with previous decomposition analyses for Belgium, which also find changes in the per capita 

production to increase emissions (Albrecht et al., 2002; Fernández González et al., 2014). 

Interestingly, the study by Albrecht et al. (2002) focused on the time period between 1960 and 

1996, whereas the observed time span of Fernández González et al. (2014) stretches from 2001 

to 2010. Together with this study, which observes the time period from 2008-2018, almost sixty 

years of emission developments in Belgium are analysed. The fact that increases in production 

per capita effects contributed to an increase in emissions for most years in all these studies 

indicates a long-term trend of emissions being increased by increases in per capita production. 

Given that the periods from 2008-2009 and 2012-2013 are the only periods within this study 

with a negative contribution of the economic activity determinant, a closer look needs to be 

taken at these periods. The period from 2008-2009 in this study was the only period under 

observation where total GVA reduced (see Appendix B), which is likely to have happened due 

to the global financial crisis of 2008 that had significant impacts on the Belgian economy (De 

Bruycker & Walgrave, 2013). A similar negative contribution of the economic activity 

determinant due to the global financial crisis has been pointed out by Cansino et al. (2015) for 

Spain. The period from 2012-2013, on the other hand, is the only observed time period where 

the economic activity determinant contributed to decreasing emissions despite Belgium 

growing in terms of GVA (see Appendix B & C). However, looking at GVA per capita for the 

respective periods (see Appendix C), it can be seen that the periods from 2008-2009 and 2012-

2013 are the only periods with a decreasing GVA per capita from one year to the next. This 

means that the negative contribution of the economic activity determinant can be explained by 

the decrease in GVA per capita and no decoupling of emissions from per capita GVA growth 

can be inferred. 

Furthermore, the decomposition of GHG emissions showed that two of the strongest drivers of 

emission changes in Belgium, both positive and negative, were the energy intensity determinant 

as well as the emission intensity determinant (see Table 5 and Figure 4). However, their overall 

impact on emissions was ambiguous and changed depending on the observed time period. After 

aggregating the time series results into the two commitment periods relating to the Kyoto 

Protocol, it became clearer what drove emission changes during these two distinct periods. 

During the first commitment period, the strongest reduction in GHG emissions came from the 

energy intensity determinant and the emission intensity determinant. During the second 

commitment period the emission intensity determinant maintained its negative impact on 

emissions, whereas the energy intensity determinant started positively contributing to emissions 

(see Table 9). These results relate strongly to the ones obtained in Albrecht et al. (2002), who 

observed emission changes in Belgium from 1960 to 1996. For the emission intensity 

determinant, Albrecht et al. (2002) found similar results in the negative contribution to 

emissions in Belgium. The energy intensity determinant, moreover, is also ambiguous in its 

impact on emissions in Albrecht et al. (2002). According to Fernández González et al. (2014), 
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the strongest contribution to reducing emissions in Belgium from 2001 to 2010 came from the 

energy intensity and fuel mix determinant, which is line with the results obtained for the first 

commitment period in this paper. As mentioned in the theory section, the fuel mix determinant 

indicates the quality of the energy mix similar to the emission intensity determinant within this 

paper (Cansino et al., 2015). This means that energy intensity and a switch to cleaner energy 

sources had the strongest impact on emissions in Belgium from 2001 to 2010 according to 

Fernández González et al. (2014). Again, the results obtained in this thesis confirm that energy 

intensity and reduced emission intensity, fostered by a switch to cleaner energy sources, led to 

the most emissions reductions in Belgium from 2008 to 2012. 

Next, the structural change determinant is discussed. Within this thesis it was shown that 

structural change is ambiguous in its impact between 2008 and 2018, although its impact on 

emissions was strongly negative for both commitment periods (see Table 7 & 9). Unfortunately, 

none of the papers regarding decomposition analysis in Belgium analyse a structural change 

determinant. However, multiple other studies such as the ones by Liu et al. (2007), Cansino et 

al. (2015), or Zhang et al. (2017) have examined the impact of structural changes and thus allow 

for a comparison with the results obtained in this thesis. Interestingly, all of the abovementioned 

studies concluded that the impact of structural change on emissions varies significantly and that 

no clear trend can be observed. As the results in Figure 4 suggest, a similar ambiguous 

behaviour of the structural change determinant can be observed for Belgium. Given that the 

other studies examining a structural effect have a focus on countries such as Spain (Cansino et 

al., 2015) or China (Liu et al., 2007; Zhang et al., 2017), the results indicate that the ambiguity 

of the structural change effect is not only characteristic for Belgium. Instead, it seems as if no 

clear trend of the effect of structural change on emissions can be observed throughout time for 

multiple countries. Notably, the results obtained for the two commitment periods suggest a 

strong negative contribution of the structural change determinant for both commitment periods 

(Table 7 & 9). If only the commitment periods were observed without considering all in-

between years, one might wrongfully conclude that structural change consistently decreases 

emissions, when in fact its impact is quite ambiguous. As such, the two-step methodology 

chosen for the analysis within this paper has proven to be successful, as the in-between years 

were not discarded and show the actual pattern of the structural change determinant.  

The role of population as a driving force of emissions has been widely discussed in emission 

research, as it is a part of the IPAT model by Ehrlich and Holdren (1971) as well as of the Kaya 

identity (Kaya, 1989; Kaya & Yokobori (1997). Similar to many other studies, the results of 

my thesis also indicate a consistent positive contribution of population to increases in GHG 

emissions. Such a positive contribution of population growth on emissions is in line with 

previous findings and suggests a consistent impact of population changes on emissions 

(Moutinho et al., 2015; Liu et al., 2007). As the population determinant is solely dependent on 

changes in the population of Belgium, the consistency of its impact on emissions reflects a 

fairly steady growth rate of the Belgian population, confirmed by the population data obtained 

from Eurostat (see also Appendix E). As shortly touched upon before, a negative value of the 

population determinant despite a growing population would indicate a decoupling of emissions 

from population. Given that no other study that was reviewed for this thesis showed a negative 

contribution of population growth on emissions, the results of the population determinant are 

as expected. 
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Looking at the decomposition results for each economic sector furthermore reveals interesting 

insights as to what parts of the economy drove emission changes. Having a closer look at Figure 

5, it appears as if the importance of each economic sector on GHG emissions in Belgium has 

decreased over time. While having a strong impact in the first period, regardless of the impact 

being negative or positive, the overall effect of economic sectors on emissions has decreased. 

Particularly the Industry sector appears to have become less impactful in terms of its 

contribution to GHG emissions. This finding is in line with previous findings by Marrero & 

Ramos-Real (2013), who find that the Industry sector develops less of an impact on emissions 

throughout time12. The Services sector, however, is found to have increased in importance for 

emissions in the paper of Marrero & Ramos-Real (2013). Contrary to their paper, which is 

analysing sectors on a European basis, the findings for Belgium suggest that the Service sector 

also lost in importance and is increasingly aligned to the value of one, hence not having much 

of an impact on GHG emissions (see Figure 5). In fact, the only sector that appears to maintain 

its impact on emissions is the Transport sector. It was found that the impact of the Transport 

sector on emissions was not the strongest to begin with, but it maintained its relevance for 

emissions in contrast to most other sectors. This development suggests that the Transport sector 

might be becoming relatively more important than other sectors in the future in terms of its 

GHG mitigation potential. These findings are in line with studies such as by Andreoni and 

Galmarini (2012), who argue that the Transport sector has a strong impact potential for 

emissions.  

The Agriculture and Residential sector, on the other hand, were found to have the smallest 

impact on emission changes in Belgium. It was shown that their impact on emissions was very 

low to begin with and continued its marginal impact throughout al observed time periods. 

Although the Agriculture and Residential sector do not appear to have much of an impact on 

emission changes in Belgium between 2008 and 2018, there are multiple studies stressing the 

importance of these sectors for climate change and global warming in other regions and 

countries (see e.g.  Robaina-Alves & Moutinho, 2014; Nejat et al., 2017; Yeo et al., 2015; 

O’Mahoney et al., 2012). For the case of the agriculture sector, Lesschen et al. (2011) found 

that there are large differences across EU countries in GHG emissions per unit product, which 

might explain why no strong impact of this sector can be found for Belgium. Similar differences 

for the contribution of the Residential sector to emissions are found across the European Union, 

indicating no consistent trend across in sectoral emission contribution of countries. However, I 

find there is one flaw to a large majority of studies examining the contribution of the Agriculture 

and Residential sector. It appears to me that a vast majority of decomposition research focusing 

 

 

 

 

 

12 In this context it should be noted that, although similar, the definition of the industry sector within the paper of 

Marrero & Ramos-Real (2013) slightly differs from the one employed within this thesis. 
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on sectoral emission contribution is only considering CO2 emissions instead of all air pollutants 

(see e.g. O’Mahoney et al., 2012; Yeo et al., 2015; Nejat et al., 2015). As mentioned before in 

the data section, I consider all GHG emissions to achieve the full air emission footprint of the 

Belgian economy. As an illustrative example, Table 11 showcases the differences between 

emissions of the Belgian Residential sector when considering either all GHG emissions or only 

CO2 emissions. 

 

Table 11: Comparison of Residential Emissions in Belgium 

 2015 2016 2017 2018 2019 

CO2 

emissions 

35,326 39,351 70,986 75,928 82,846 

GHG 

emissions 

35,545 39,621 71,374 76,314 83,232 

Difference 

(in %) 

0.6% 0.7% 0.5% 0.5% 0.5% 

Note: emission values are provided in thousand tonnes and have been rounded to three decimal points, Source: 

Eurostat 

As can be seen in Table 11, the difference between CO2 emissions compared to GHG emissions 

in the Residential sector of Belgium is marginal, with the difference being 0.7 percent at best. 

This means that for the Residential sector, there is no large difference when examining either 

CO2 emissions or GHG emissions in general. Next, the same comparison of emissions is 

provided for the agriculture sector of the Belgian economy between 2015 and 2019 in Table 

12. 

 

Table 12: Comparison of Agriculture Emissions in Belgium 

 2015 2016 2017 2018 2019 

CO2 

emissions 

2855,128 3091,194 3157,449 3201,829 3196,563 

GHG 

emissions 

12959,483 13068,957 13262,745 13171,256 13163,564 

Difference 

(in %) 

354% 323% 320% 311% 312% 

Note: emission values are provided in thousand tonnes and have been rounded to three decimal points, Source: 

Eurostat 
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Comparing Table 12 with Table 11 immediately shows the difference the choice of air 

emissions has on sectoral emissions. For the agriculture sector in Belgium, the difference 

between CO2 emissions and GHG emissions is above 310 percent for all five years shown. This 

means that if I would have analysed only CO2 emissions, I would have severely overestimated 

the role of the Residential sector for emission changes while ignoring a large part of the 

emission footprint of the agriculture sector. If similar differences for emissions depending on 

the air pollutant choice exist for countries studied in other decomposition analyses, then it can 

be expected that on average the effect of the residential sector is overestimated while the effect 

of the agriculture sector is underestimated. For the case of Belgium, both sectors appear to have 

little impact on overall emission changes even when considering all GHG emissions. Given the 

strong potential differences between countries, however, it might be useful to revise some of 

the decomposition studies considering only CO2 emissions to see how the obtained results hold 

when considering all air pollutants. This becomes particularly important when giving advice to 

policymakers, as an incomplete depiction of the air pollutant situation will inevitably produce 

skewed results and not allow for a real representation of the emission situation within an 

economy. After having discussed different aspects of the results, I will now proceed with the 

policy implications that can be drawn from the analysis conducted within this paper. 

 

5.3 Policy Implications 

Based on the results obtained and the discussion highlighting relevant parts of the analysis, 

important policy implications can be drawn. First, it has been shown that emission reduction 

efforts in Belgium decreased significantly from the first commitment period of the Kyoto 

Protocol to the second commitment period. Many of the determinants that fostered a decrease 

in emissions during the first commitment period are no longer contributing to reducing 

emissions in the second commitment period (see Figure 5 & 6). The main reason for this 

development likely lies in the political commitments Belgium agreed upon in the Kyoto 

Protocol. According to the Burden Sharing Agreement of the Kyoto Protocol, Belgium was 

required to cut its emissions by 7,5 percent compared to 1990 levels in the first commitment 

period from 2008-2012 (European Commission, 2019). Belgium exceeded this landmark by far 

and actually decreased its emissions by almost 14 percent during the first commitment period 

until 2012 (Belgium, 2021; see Table 7). According to the Doha Amendment, the emission 

reduction goal for the second commitment period from 2013-2020 was to further cut emissions 

by 18 percent compared to 1990 levels until 2020 (German Federal Ministry for the 

Environment, Nature Conservation and Nuclear Safety, 2021). Given the strong progress in 

reducing GHG emissions during the first period, it is fair to assume that Belgium felt less of a 

political pressure to maintain the strong negative growth rate of the first commitment period. 

As a low reduction rate during the second commitment periods sufficed to accomplish the 

reduction targets established in the Doha amendment, there was no need to increase political 

efforts to further reduce GHG emissions, at least not from a sheer economic point of view. This 

lack in political effort to reduce GHG emissions past the agreed amount in the Doha amendment 

is reflected in the changing contribution of determinants and economic sectors (see Figure 5, 6 
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& 7). However, it is highly likely that new commitments in form of additional climate 

protection agreements will follow, and as such Belgium needs to identify which parts of the 

economy reduce emissions most effectively. 

 

5.3.1 Economic Sectors 

Despite not maintaining the strong reduction rate of GHG emissions during the second 

commitment period, it is still in the interest of the Belgian government to devise policies that 

reduce emissions in the economically most effective way. As one of the aims of this thesis was 

to provide an actionable knowledge base for policy implementation, the most effective levers 

in reducing GHG emissions were identified. In terms of economic sectors, it was observed that 

the contribution on emissions of most sectors, whether negative or positive, seems to have 

shrunk over time. The Agriculture sector, the Industry sector, the Energy sector, the Service 

sector, as well as the Residential sector all decreased in their impact on GHG emissions over 

time (see Figure 4). The only exception can be found in the contribution of the Transport sector, 

which appears to remain volatile throughout all time periods, although its effect on emissions 

was negative for most periods. This volatility makes the Transport sector an interesting point 

of departure for potential policy implementations, as it appears to be changing dependent on 

the economic and political circumstances.  

The strong CO2 reduction potential within the Transport sector has already been pointed out by 

multiple studies. In a study focused on European countries, Andreoni and Galmarini (2012) 

examined the main drivers of CO2 emissions in the Belgian sectors of aviation transport and 

water transport from 2001 to 2008. Interestingly, they find that within the water transport sector 

the energy intenstiy determinant significantly reduces emissions, whereas the energy intensity 

effect in the aviation transport sector was among the strongest contributors to emission 

increases (Andreoni & Galmarini, 2012). On the contrary, they also find that the structural 

change determinant increases emissions in aviation transport only slightly, whereas it is the 

single strongest contributor to emission increases in the water transport sector. Andreoni and 

Galmarini (2012) argue that this development stems from the increasing share of maritime 

transport activities in the total EU27 GDP. Relating their findings to the results of the present 

paper indeed suggests a potentially large emission saving potential for the Transport sector, 

especially given the relative increase of relevance of the Transport sector compared to other 

sectors. In the case of Belgium, this would mean devising policies that support technological 

advancements to reduce emission intensity in the transport sector, as well as arranging politicial 

instruments that can cope with the increasing emissions that might emerge from the rising share 

of water transport activities within the EU. The strong emission reduction potential of policies 

addressing the transport sector has also been shown by Gambhir et al. (2015), who find that by 

spending around $64 billion per year on the transport sector, China’s road transport sector could 
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reduce emissions from a projected 2.08 GtCO2
13 in 2050 to only 1.24 GtCO2 instead. Given 

that the transport sector in Belgium appears to become one of the most relevant sectors in terms 

of impact on emissions (see Figure 5), it is considered valuable to perform similar cost-benefit 

analyses for the Belgian transport sector to evaluate the exact reduction potential of the transport 

sector. However, the transport sector is not the only part of the economy with great emission 

reduction potential. 

After discussing the results obtained from the decomposition analysis, particular attention 

should also be paid to the Industry sector. Not only is it the sector that reduced most of its 

impact on emissions over time (see Figure 5), it is also the sector with the largest impact 

deviation when comparing the first commitment period to the second commitment period (see 

Figure 8). While significantly reducing emissions during the first period, the Industry sector is 

positively contributing to emissions during the second commitment period. It hence seems as 

if the Industry sector also possesses a great impact potential on  GHG emissions, showcased by 

its strong deviation over time. The underlying driver of this change in the Industry sector is 

likely to be found in the energy intensity determinant, which changed its contribution to GHG 

emissions in the same direction as the Industry sector from the first commitment period to the 

second (see Figure 7). In general, when discussing emission-reducing policies for the industry 

sector, it is crucial to address the underlying determinant that drove the change in the sector to 

devise the economically most efficient strategies to reduce emissions. Additionally, addressing 

the underlying determinants instead of addressing any of the sectors specifically is potentially 

more effective, as it allows to address the underlying causes that drive GHG emissions in all 

parts of the economy instead of only focusing on one particular sector. Due to the generally 

stronger impact of the determinants, I will thus continue with discussing the policy implications 

of the different determinants and then relate them to the impact of the economic sectors. 

 

5.3.2 Determinants 

The analysis conducted within this paper has shown that out of the five determinants under 

inspection, the effects that have the most emission reduction potential are the energy intensity 

effect, the emission intensity effect, as well as the structural change effect. The reason those 

effects have the most reduction potential is due to the fact that they change the most over time 

(see Figure 4), while other determinants such as the population effect or economic activity 

 

 

 

 

 

13 GtCO2 = Gigatonnes of carbon dioxide 
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effect appear more consistent in their impact on emissions. The energy intensity effect as well 

as the emission intensity effect are mainly dependent on energy use, with energy intensity 

indicating the amount of energy consumed to produce one unit of output and emission intensity 

being an indicator of the embodied emission content of energy sources. The strong emission 

reduction potential of these two determinants has been widely mentioned in emission literature 

for a long time (see e.g. Casler & Rose, 1998; Wang et al. 2017), with authors urging politicians 

to derive supportive strategies fostering the negative contribution of the two determinants on 

emissions. However, when devising policies supporting improvements in energy intensity or 

emission intensity, it is important to keep in mind that two different aspects are at the root of 

the two determinants. While improvements in energy intensity are typically the result of 

technological progress, improvements in emission intensity are mostly the result of improving 

emission efficiency by switching to cleaner energy sources (Wang et al., 2017). In the case of 

Belgium, improved energy intensity during the first commitment period appears to have had a 

significant impact on reducing emissions (indicated by the energy intensity determinant), 

whereas in the second period it seems like energy intensity changes actually contributed to 

emissions (see Figure 5 & 6). This might indicate that Belgium invested a lot into more effective 

technologies that reduce emissions during the first period, without investing the same amount 

in the second period. However, investments in sustainable technology are just one policy aspect 

that might drive down emissions, it could also be that Belgium simply devised stricter 

regulations for the use of energy. Future studies might look into what led to the strong reduction 

of energy intensity during the first commitment period and what changed during the second 

commitment period. As this thesis did only decompose emissions and not energy intensity, it 

can only presumed what led to the change in energy intensity based on existing literature. Given 

the large difference between the two time periods, however, it is clear that the energy intensity 

determinant has a great potential of being influenced by policies, as it can be directly affected 

through facilitating technological progress focused on emission reduction.  

Policy can intervene by subsidizing less energy-intensive technologies or by taxing energy-

intensive technologies, respectively, which has been shown to be a major driver of emission 

reductions (Landis et al., 2019). In their study of 9.734 Swiss households, Landis et al. (2019) 

find that at the economy-wide level taxing energy is five times as cost-effective as promoting 

energy savings. Nevertheless, they conclude that there are important trade-offs between 

efficiency and equity in environmental policy design for Switzerland (Landis et al., 2019). 

Interestingly, a similar equity-efficiency trade-off has been identified for Belgium by Vandyck 

and Van Regemorter (2014). Similar to Switzerland, Belgium might substantially decrease 

emissions by regulating the costs of technologies based on their level of energy intensity. 

Moreover, financially supporting companies to switch from their outdated production 

technologies to revised and more emission-friendly technologies bears a huge potential to 

further dampen GHG emissions. However, the trade-off pointed out in Vandyck and Van 

Regemorter (2014) also highlights why such environmental policies will hardly be implemented 

without political pressure coming from commitments such as the Kyoto Protocol, as economic 

trade-offs pose a substantial obstacle for implementing environmental policies (Landis et al., 

2019). Ultimately, future research is required to find ways to minimize this trade-off. Based on 

the current state of research, it can be assumed that environmental policies tackling energy-

related emissions in Belgium are more efficient when energy is taxed instead of promoting 

energy savings.  
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Similarly, incentivizing a switch from conventional energy sources to renewable energy sources 

can greatly improve emission intensity and help building a more sustainable economy. As of 

now, studies have shown that one of the main obstacle holding companies back from switching 

to cleaner technologies or energy sources are sunk costs that have been already invested in 

existing production structures (see e.g. Davidson, 2019). Alleviating this obstacle by financially 

supporting a switch to cleaner energy sources would lead to a significant decrease in emission 

intensity, which in turn would drive down GHG emissions by a large margin. As both energy 

intensity and emission intensity are dependent on the energy use, adressing these determinants 

is furthermore most effective in those economic sectors which consume a lot of energy. Looking  

at the energy use of sectors in Appendix D reveals that the Industry sector is the most energy-

intensive part of the economy, followed by the Energy sector14. Consequently, the biggest 

potential for policies to reduce GHG emissions in Belgium is by devising policies that foster 

improvements in energy intensity and emission intensity through subsidizing costs of 

technological development and from switching to cleaner energy sources. That way, not only 

would they improve economy-wide emissions from an energy point of view, but also this 

improvement would be strongest in the sectors that are most dependent on energy and most 

relevant for changes in emissions. 

As mentioned earlier, the structural change effect also has been found to be one of the top three 

drivers of emission changes, both negative and positive. Altough structural change in general 

refers to shifting shares of all sectors within the economy, it is mostly connected to the transition 

away from primary activities towards service activities (see e.g. Duernecker et al., 2017). This 

switch from energy-intensive industries to service activities is widely thought to substantially 

reduce emissions. Looking at Figure 4, it appears that especially since 2015 a trend of negative 

contribution to emissions can be observed for the strucutral change determinant. Additionally, 

the value added shares of the service sector have been constantly rising since 2015 (see 

Appendix C), indicating that the transition towards service activities leads to reduced emissions. 

This result would be in line with the concept of the Environmental Kuznets Curve (EKC) 

introduced by Panayotou (1993), which is based on Kuznets curve for income and equality 

relations by Kuznets (1955). This EKC proposes that a transition towards a service economy is 

one of the main reasons for a reduced environmental impact of economic growth (Panayotou, 

1993). However, as Kander (2005) as well as Henriques and Kander (2010) suggest, the real 

environmental impact of a service transition is limited. Instead of a transition towards service 

activities, Henriques and Kander (2010) argue that the main reductions in energy intensity come 

from the manufacturing sector. The point they make is also reflected in my results obtained for 

Belgium, as the Industry sector that entails all manufacturing activities appears to change the 

 

 

 

 

 

14 It should be noted that many studies analyse the energy sector as part of the industry sector.  
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most in accordance with the energy intensity effect (see Figure 6 & 7). Moreover, even though 

the structural change determinant appears to reduce emissions in both commitment periods (see 

Table 7 & 9), its overall impact on emissions throughout time is far more ambiguous than that 

(see Figure 4). As such, even though it might be possible to affect emissions through policies 

fostering the restructuring of economic activities, there are other ways to do so more effectively. 

Lastly, the economic activity determinant as well as the population determinant have been 

found to remain fairly consistent in their impact on emissions over time, which is in line with 

previous findings of many other scholars (e.g. Albrecht et al., 2002; Fernández González et al., 

2014; Moutinho et al., 2015; Liu et al., 2007). Although this development is not necessarily 

indicating a general inability of environmental policies to address these determinants, it does 

suggest that the impact of these determinants is somewhat constant and seems to be dependent 

on variables that are hardly to be addressed from a policy point of view (such as for example 

the number of residents in a country or the overall GVA per capita of residents). Consequently, 

devising policies that address those determinants will be less successful than policies that 

address determinants that appear to be more sensitive to policy changes. Overall, the results 

obtained imply that emission-related policies in Belgium are most effective when addressing 

energy intensity and emission intensity as well as regulations of the industry sector. There exist 

other potential parts of the economy that policies might tackle successfully, but further research 

is required to ensure their viability. The next chapter will conclude the paper and summarize 

the findings and results that the decomposition analysis produced. Additionally, the results will 

be put into context of my research aims and objectives and a short outlook on potential future 

research will be given. 
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6 Conclusion 

Within this paper, the development of greenhouse gas emissions in Belgium was analysed and 

changes to emissions were decomposed into the contribution of the underlying determinants 

and economic sectors. Moreover, the time series results obtained for Belgium in the years from 

2008 to 2018 were aggregated into two commitment periods relating to the ones established in 

the Kyoto Protocol. As such, this thesis provided the first two-step application of the LMDI I 

model to decompose GHG emission changes of Belgium in the context of the two commitment 

periods of the Kyoto Protocol. Amongst other aspects, it was found that Belgium decreased its 

emission reduction efforts significantly from the first commitment period to the second 

commitment period. In this context, the results suggested that energy intensity, emission 

intensity, as well as structural change had the largest effect on emission changes between the 

two periods. Additionally, the industry sector was found to play a pivotal role in explaining the 

emission changes observed in the two periods. However, not only the two commitment periods 

were observed, but they were also put into context of time series results to examine yearly 

changes in more detail. The time series decomposition revealed that out of the five 

determinants, the energy intensity effect, the emission intensity effect, and the structural change 

effect were most volatile over time. The population determinant and the economic activity 

determinant on the other hand remained rather constant in their positive contribution to 

emissions. Additionally, it was found that the impact of the different economic sectors on 

emissions appears to have decreased substantially over time. This indicates that the relative 

importance of sectoral contributions to emission changes has sunk. Comparing the time series 

results with the results obtained for the aggregated time periods furthermore emphasized the 

need to not discard the in-between years when analysing longer time periods. It was shown that 

significant differences in the impact of emission contributions exist between aggregated and 

time series results, which might lead to wrongful conclusions if only one of the two approaches 

is considered. Lastly, the need for analysing the full air emission footprint was reinforced and 

it was shown that only considering specific air pollutants results in a skewed picture of reality 

that over- or underestimates parts of the economy depending on the air pollutant used. 

 

6.1 Research Aims & Objectives 

One of the most important aspects when evaluating the quality of my analsis is its success in 

working towards the research aims and objectives. As such, it is now time to evaluate how 

successful the chosen research design was in achieveing the desired aims and objectives. As a 

quick reminder, the two research questions mentioned in the thesis outline are stated again 

below. 
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1. How do the determinants and economic sectors affect greenhouse gas emissions in 

Belgium between 2008 and 2018? 

 

2. What are the driving forces of greenhouse gas emission changes within and across the 

two commitment periods of the Kyoto Protocol in Belgium? 

 

In alignment with the two research questions, the present paper had the aim to produce holistic 

results that showcase not only the general development of emission determinants and sectors in 

Belgium throughout time, but also to put them into the context of the first legally binding 

climate protection agreement. Moreover, the results are supposed to serve as an actionable 

knowledge base when trying to affect emission changes from a policy point of view, as policies 

will be most effective when the main reason for the emission change is addressed. As such, the 

objective for my decomposition analysis was to analyse the underlying forces of reductions or 

increases of GHG emissions in Belgium from 2008 to 2018 and to relate these results to the 

context of the two commitment periods of the Kyoto Protocol. The obtained results indicate 

that most determinants (aside from the economic activity effect and the population effect) are 

ambiguous in their impact on emissions over time, whereas the impact of the economic sectors 

appears to shrink over time. It was shown that population and economic activity increase 

emissions quite steadily over time, whereas the remaining three determinants strongly fluctuate 

between increasing and decreasing emissions. After aggregating the time series results to the 

two commitment periods, it was shown that during the first commitment period Belgium 

strongly reduced emissions, which was driven mainly by the energy intensity determinant and 

the industry sector. During the second commitment period, Belgium did not decrease emissions 

at the same rate, and energy intensity changes actually contributed to an increase in emissions. 

However, their positive contribution was offset by the strong negative effect of structural 

change and emission intensity. Putting these results into context with the results obtained from 

the time series decomposition clearly showed the differences between the two approaches and 

helped in preventing wrongful conclusions by identifying the underlying yearly contributions 

within the commitment periods. As such, the conducted analysis was successful in isolating the 

driving forces of emissions both on a time series basis as well as on an aggregated basis, 

allowing policymakers to comprehend the impact of the driving forces on multiple scales. 

Consequently, the development of emissions can be understood from on a yearly basis from 

one year to the other as well as in light of the first internationally binding agreement on climate 

protection. Additionally, the magnitude of factors contributing to emission changes was clearly 

presented, allowing policymakers to draw from the results and devise policies considering the 

relative impact of each factor. Moreover, it was shown that the chosen research design also 

helped in preventing wrongful conclusions due to a limited choice of air pollutants. Choosing 

GHG emissions as the emission variable under observation allowed to produce holistic results 

that really showcase the full air emission footprint of Belgium and how this footprint behaves 

between 2008 and 2018. Overall, it was clearly shown how determinants and sectors develop 

between 2008 and 2018 and what forces drove emission changes within and across the two 
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commitment periods of the Kyoto Protocol. As such, the chosen methodology and research 

design was successful in achieving the overall aims and objectives of the thesis and generated 

valuable insights for future research and policy proposals. 

 

6.2 Practical Implications 

After having discussed and interpreted the decomposition results, important conclusions have 

been drawn in terms of practical implications for policy. First, it was clearly shown that the 

sectoral contribution to emissions has decreased over time. This implies that devising policies 

that address only specific sectors become relatively less efficient, as the impact of sectors in 

general has declined. Consequently, policies have a greater impact potential when addressing 

the underyling determinants of emission changes, which has been shown to most effectively be 

the energy intensity determinant and the emission intensity determinant. Addressing these 

determinants furthermore has the advantage of creating a positive impact in all parts of the 

economy, as energy-related policies are not confined to a single sector. In terms of energy-

related policies, the exisiting research suggests that taxing energy might be more cost-effective 

than promoting energy savings (Landis et al., 2019). Nevertheless, it seems as if environmental 

and energy policies in Belgium face an equity-efficiency trade-off, which often hinders policies 

from being implemented when there is no political pressure. This behaviour was also reflected 

in the differences from the first commitment period to the second commitment period. Such an 

economic trade-off is also the reason why many industries do not switch to cleaner energy 

sources. Here, the Belgian government could intervene by subsidizing a switch to cleaner 

energy sources and production technologies, which would significantly reduce the 

abovementioned trade-off from a company point of view. By doing so, Belgium would actively 

facilitate improvements in energy intensity and emission intensity and thus further drive down 

emissions. Given the obtained results, it can be expected that the effect of such policies would 

be most significant in the industry and energy sector, as those are the most energy-intensive 

parts of the economy (see Appendix D). In terms of research design, it was shown that it is 

imperative for decomposition analyses to not discard the in-between years of time periods, as 

this might lead to wrongful conclusions with regards to the driving forces of emissions. More 

specifically, when decomposing sectoral emission changes, it is also of great importance to 

consider all air pollutants being emitted to ensure an accurate representation of the air emission 

footprint of the economy. Focusing on only a particular air pollutant has been shown to lead to 

substantial differences in the sectoral contribution to emissions and thus lead to a wrongful 

representation of the actual emission situation within an economy. 
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6.3 Future Research 

Aside from providing new insights into the emission dynamics of Belgium between 2008 and 

2018, the analysis conducted within this paper has also highlighted the shortcomings of existing 

research. First, it would be extremely beneficial to have a larger body of literature decomposing 

emission changes during the two commitment periods for multiple countries. As mentioned 

before, to the best of my knowledge is this the first application of a decomposition model 

analysing emissions for the two commitment periods of the Kyoto Protocol specifically. Having 

a decomposition of emission changes during the Kyoto Protocol commitment periods for all 

European countries, for instance, would allow for a comparison between successful and less 

successful countries in reducing emissions and provide an evaluation of what drove their 

success or failure. This would clearly show what parts of the economy are the most relevant 

ones for reducing emissions in Europe and would theoretically enable policymakers to devise 

European-wide policies that facilitate a reduction of emissions. In terms of research concerning 

Belgium, an interesting aspect for future research would be to decompose emission changes in 

more detail by differentiating between more sectors of the economy. That way, policymakers 

could address emission drivers on a more sophisticated level and tailor policies to the respective 

parts of the economy. In this context it should also be noted that based on the results of this 

study the transport sector in Belgium appears to be growing in its relative importance for 

mitigating GHG emissions. Providing a cost-benefit analysis for emission-reducing 

investments in the transport sector, such as Gambhir et al. (2015) have done for the Chinese 

transport sector, might produce clear scenarios and objectives policymakers can work towards.  

Given the discrepancy between sectoral emission contributions based on the chosen air 

pollutant, future research is also advised to revise some of the existing decomposition literature 

that limited its sectoral decomposition to only include particular air pollutants. By doing so, a 

more complete picure of the emission footprint can be achieved and previous findings and 

implications for policy can be confirmed or updated depending on new results. Lastly, it would 

be worth studying energy intensity and emission intensity of Belgium in more detail. As was 

shown in this paper, these two determinants are important contributors to changes in GHG 

emissions and appear to be effective levers for policy to reduce emissions in Belgium. It would 

hence be of great value to decompose energy intensity and emission intensity for the two 

commitment periods to examine what exactly drove the changes in those two determinants and 

how policy can further regulate their development. 

 

6.4 Chapter Summary 

Within this thesis, the first chapter provided an introduction to the topic at hand as well as an 

outline of the overall thesis scope and purpose. Afterwards, a comprehensive review of previous 

research and relevant literature was pursued and presented in the second chapter. The third 

chapter then discussed the quality and reliability of the data sources used, whereas the fourth 
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chapter explained the LMDI methodology and its components in detail. The fifth chapter then 

presented the obtained results and interpreted them based on a sophisticated discussion which 

was followed by mentioning the implications of the results for policy proposals. Lastly, this 

chapter has concluded and summarized the most important aspects and findings of my analysis 

and has provided an outlook of what future research might want to look into. 
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Appendix A 

A.1. A*10 to A*64 hierarchy of economic activities 

 

 Description A*64 A*38 A*21 A*10 

1 Crop and animal production, hunting and 

related service activities 

01 A A A 

2 Forestry and logging 02 

 

3 Fishing and aquaculture 03 

4 Mining and quarrying 05-09 B B B-E 

5 Manufacture of food products, beverages 

and tobacco 

10-12 CA C 

6 Manufacture of textiles, wearing apparel, 

leather and related products 

13-15 CB 

7 Manufacture of wood and of products of 

wood and cork, except furniture; articles 

of straw and plaiting materials 

16 

 

CC 

8 Manufacture of paper and paper products 17 

9 Printing and reproduction of recorded 

media 

18 

10 Manufacture of coke and refined 

petroleum products 

19 CD 

11 Manufacture of chemicals and chemical 

products 

20 CE 

12 Manufacture of basic pharmaceutical 

products and pharmaceutical preparations 

21 CF 

13 Manufacture of rubber and plastics 

products 

22 CG 
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14 Manufacture of other non-metallic 

mineral products 

23 

15 Manufacture of basic metals 24 CH 

16 Manufacture of fabricated metal products, 

except machinery and equipment 

25 

17 Manufacture of computer, electronic and 

optical products 

26 CI 

18 Manufacture of electrical equipment 27 CJ 

19 Manufacture of machinery and equipment 

n.e.c. 

28 CK 

20 Manufacture of motor vehicles, trailers 

and semi-trailers 

29 CL 

21 Manufacture of other transport equipment 30 

22 Manufacture of furniture, other 

manufacturing 

31-32 CM 

23 Repair and installation of machinery and 

equipment 

33 

24 Electricity, gas, steam and air 

conditioning supply 

35 D D 

25 Water collection, treatment and supply 36 E E 

26 Sewerage, waste collection, treatment and 

disposal activities; materials recovery; 

remediation activities and other waste 

management services 

37-39 

27 Construction 41-43 F F F 

28 Wholesale and retail trade and repair of 

motor vehicles and motorcycles 

45 G G G-I 

29 Wholesale trade, except of motor vehicles 

and motorcycles 

46 

30 Retail trade, except of motor vehicles and 

motorcycles 

47 
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31 Land transport and transport via pipelines 49 H H 

32 Water transport 50 

33 Air transport 51 

34 Warehousing and support activities for 

transportation 

52 

35 Postal and courier activities 53 

36 Accommodation and food service 

activities 

55-56 I I 

37 Publishing activities 58 JA J J 

38 Audiovisual and broadcasting activities 59-60 

39 Telecommunications 61 JB 

40 IT and other information services 62-63 JC 

41 Financial service activities, except 

insurance and pension funding 

64 K K K 

42 Insurance, reinsurance and pension 

funding, except compulsory social 

security 

65 

43 Activities auxiliary to financial service 

and insurance activities 

66 

44 Real estate activities 68 L L L 

45 Legal and accounting activities; activities 

of head offices; management consultancy 

activities 

69-70 MA M M-N 

46 Architectural and engineering activities; 

technical testing and analysis 

71 

47 Scientific research and development 72 MB 

48 Advertising and market research 73 MC 

49 Other professional, scientific and 

technical activities; veterinary activities 

74-75 
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50 Rental and leasing activities 77 N N 

51 Employment activities 78 

52 Travel agency, tour operator, reservation 

service and related activities 

79 

53 Security and investigation activities; 

services to buildings and landscape 

activities; office administrative, office 

support and other business support 

activities 

80-82 

54 Public administration and defence; 

compulsory social security 

84 O O O-Q 

55 Education 85 P P 

56 Human health activities 86 QA Q 

57 Residential care and social work activities 87-88 QB 

58 Creative, arts and entertainment activities; 

libraries, archives, museums and other 

cultural activities; gambling and betting 

activities 

90-92 R R R-U 

59 Sports activities and amusement and 

recreation activities 

93 

60 Activities of membership organizations 94 S S 

61 Repair of computers and personal and 

household goods 

95 

62 Other personal service activities 96 

63 Activities of households as employers; 

undifferentiated goods- and services-

producing activities of households for 

own use 

97-98 T T 

64 Activities of extraterritorial organizations 

and bodies 

99 U U 
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Appendix B 

B.1. Gross Value Added for Belgium (2008-2018) 
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B.2. Greenhouse Gas Emissions for Belgium (2008-2018) 
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B.3. Energy Use for Belgium (2008-2018) 
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B.4. Population for Belgium (2008-2018) 
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Appendix C 

 

C.1. Intermediary Inputs for Period 2008-2009 

 

 

 

 

 

 

 

 

 

 

C.2. Intermediary Inputs for Period 2009-2010 
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C.3. Intermediary Inputs for Period 2010-2011 

 

 

 

 

 

 

 

 

 

 

 

C.4. Intermediary Inputs for Period 2011-2012 
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C.5. Intermediary Inputs for Period 2012-2013 

 

 

 

 

 

 

 

 

 

 

 

C.6. Intermediary Inputs for Period 2013-2014 
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C.7. Intermediary Inputs for Period 2014-2015 

 

 

 

 

 

 

 

 

 

 

 

C.8. Intermediary Inputs for Period 2015-2016 
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C.9. Intermediary Inputs for Period 2016-2017 

 

 

 

 

 

 

 

 

 

 

 

C.10. Intermediary Inputs for Period 2017-2018 
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Appendix D 

 

D.1. Decomposition Results for Period 2008-2009 

 

 

 

 

 

 

D.2. Decomposition Results for Period 2009-2010 

 

 

 

 

 

 

D.3. Decomposition Results for Period 2010-2011 
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D.4. Decomposition Results for Period 2011-2012 

 

 

 

 

 

 

D.5. Decomposition Results for Period 2012-2013 

 

 

 

 

 

 

D.6. Decomposition Results for Period 2013-2014 

 

 

 

 

 

 

D.7. Decomposition Results for Period 2014-2015 
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D.8. Decomposition Results for Period 2015-2016 

 

 

 

 

 

 

D.9. Decomposition Results for Period 2016-2017 

 

 

 

 

 

 

D.10. Decomposition Results for Period 2017-2018 
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Appendix E 

E.1. Weight Coefficient for each Economic Sector 
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Appendix F 

F.1. Decomposition Results for the two commitment periods 

 


