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Abstract

In recent years, the popularity of discontinuous Galerkin methods has increased. As shown in
[19], a result exists that states that the Discontinuous Galerkin space approximations (DG) are
equivalent to the Lobatto IIIC Runge-Kutta method. This thesis therefore outlines the adap-
tation of Hairer’s implementation of the Radau IIA Runge-Kutta method to the Lobatto IIIC
method, extended with an adaptation of Pinto et al.’s two step error estimation found in [17]. As
an alternative to the classical Three staged Radau IIA Runge Kutta method.
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Popular Scientific Description

Ordinary differential equations (ODEs) are the backbone of physics, chemistry and biology. How-
ever these cannot be solved over a continuous region in time and space, rather they need to be
solved on a discrete grid, while iterating over different points in time.

Runge Kutta methods are one of the methods to solve these problems. In this thesis we dis-
cuss the implementation of one such method, the Lobatto IIIC, by adapting the implementation
of a similar method, the Radau IIA, done by Hairer [14]. Further we expand upon the implemen-
tation by including a newer method by pinto et al. for the local error estimation at the different
steps [17].
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Introduction

In numerical mathematics a common field of interest is solving ordinary differential equations.
These equations are commonly used when describing how values that depend on each other
change over time. Many different methods for solving these problems exist, one group being
the family of Runge-Kutta methods. However, it is not possible to solve these problems, for
example the temperature in a room, at every single point within that region. Therefore the
regions get discritized in space, which means that one picks a discrete number of points within
this region and reformulates the problem to describe the relation between points. Another type
of discretization is temporal discretization, where instead of picking points in space one picks
points in time.

In recent years, discontinuous Galerkin methods have become more popular than previousely
[19]. These methods allow one to discritize in both space and time. This is benificial since it al-
lows us to prove different properties mathematically, such as, for example entropy stability.
However these methods are not as easy to use as the methods that we have for solving ODEs.
Luckily a result exists proving that the Lobatto IIIC Runge Kutta method is equivalent to one
of hte Discontinuous Galerkin methods, specifically the spatial Discontinuous Galerkin approx-
imation [19]. Hence when we use the Lobatto IIIC method we have the same properties as we
have for the Discontinuous Galerkin space approximation. There has not been to much focus
on the Lobatto IIIC method since it has lower order than the Radau method. Furthermore the
difference between the methods is solely in their coefficient. This work therefore aims to adapt
Heirer’s implementation for the Radau IIA Runge Kutta method into an implementation of the
Lobatto IIIC method [14]. Furthermore we will incorporate newer results from pinto et al. that
improve upon the error estimation disccused by Hairer [17].

We begin by giving a formal definition for the Runge-Kutta method in Section 2. Section 2.1
focuses on the initial conversion of the method into a linear algebra setting. In Section 2.2 we
focus on the Newton iteration in the method, along with its starting and stopping conditions.
Section 2.3 discusses further simplifications that can be done to the method to improve simula-
tion time. In Sections 2.4 and 2.5 we discuss the approximation of the error and how to apply
this to dynamically adjust the step size of the method. We then mention a few differences be-
tween the coefficients and their corresponding Runge-Kutta methods while also introducing the
Lobatto IIIC coefficient in section 2.6
Section 3 focuses on the package we implemented our method in, while Section 4 discusses the
numerical results.
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Chapter 1

Prerequisites

Throughout this work we assume general knowledge of numerical linear algebra and numerical
analysis. However, in the rest of this section we shall reiterate some of the concepts that will be
used heavily throughout the rest of this work.

1.1 Numerical Linear Algebra
We shall begin this section by giving the definition of the Kronecker product which we utilize
later throughout this work and then follow up with the LU-decomposition in conjunction with
the Newton iteration.

Definition 1.1.1. The Kronecker product (⊗) between two matricise A and B is defined as

A⊗B=

 a1,1B · · · a1,nB
... . . . ...

am,1B · · · am,nB



Given a function f , f : Rn → Rn, the Newton iteration is a method which attempts to find
zeros of the function f . In other words, we obtain an x such that f (x)= 0. This method is defined
by the following iterative formula.

x(k+1) = x(k) − f (x(k))
f ′(x(k))

Remark 1.1.2. The Newton iteration can be generalized to multiple dimensions by using the
Jacobian J of f instead of f ′ and solving the following instead iteratively

J∆x(k) = f (x(k)) (1.1)

x(k+1) = x(k) −∆x(k) (1.2)

Note the equation (1.1) is a linear system of equations.

If the starting point, x(0), of the Newton iteration is close enough to the wanted solution, we
can use something called the simplified Newton iteration. The difference between these two

1



Edmund Lehsten

methods is that the Jacobian (or derivative) is only evaluated once and then reused for the rest
of the steps. The benefit with this is that computing the Jacobian can be costly depending on
the function, the simplified method removes this cost as it only computes it once. Despite that
the simplified Newton method comes with the trade of that it is only locally linearly convergent
instead of being quadratically convergent like the classical method. This means that the domain
in which a starting point will converge to a zero can be smaller depending on the function.
Further more the simplified Newton method often requires slightly more iterations to converge.
However since the computation of the Jacobian can be extremely costly overall the simplified
Newton method is still an improvement [7]. To further improve upon this method we introduce
the LU-decomposition

Definition 1.1.3. An LU-decomposition of a square matrix A is the decomposition A = LU ,
where L is a lower triangular matrix and U is an upper triangular matrix.

The benefit of the LU-decomposition becomes apparent when repeatedly solving linear sys-
tems of equations. Solving a lower/upper triangular system is done by either forward or back-
wards substitution and hence is faster to compute than a full system. When solving Ax = b we
instead solve for Ly = b and then for Ux = y. Both of these are straight forward to compute
and hence solving a system given the LU-decomposition of A is more efficient than solving the
original system. Therefore, since we want to repeatedly solve J∆x(k) = f (x(k)), for different x(k),
we can compute the LU-decomposition of J once and use it for the repeated Newton iterations
to make the computations more efficient.

1.2 Ordinary Differential Equations and Numerical Math-
ematics

This section is based no chapter 12 in [18].
Ordinary differential equations (ODE)s are common in numerical mathematics. Many different
methods exist for finding approximate solutions to these problems. The aim of this work is to
implement such a method. However, before we can begin discussing the method we will focus
on later, some apriori knowledge is required. We begin with the definition of an ODE and initial
value problem.

Definition 1.2.1. An ordinary differential equation (ODE) is an equation of the form

y′(x)= f (x, y(x)) (1.3)

where y(x) is a function and x is a variable, commonly x is considered to be time.

As with integrating where the solution contains an arbitrary constant, ODEs can have an
infinite amount of solutions known as solution curves.

To uniquely define just one solution curve, an initial value (x0, y0), with y(x0) = y0, is given.
This value is a form of starting point from which we begin drawing our curve.

Definition 1.2.2. An initial value problem is an ODE together with an initial value.

Commonly a numerical method can only find an approximate solution ỹ(x) of y(x) for a given
x. To arrive at a certain point x, most methods take multiple steps calculating yn ≈ y(xn) for
each step, i.e., x0 → x1 → x2 →···→ xn = x. The step size of a step xi → xi+1 is hi := xi+1 − xi.
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To measure the accuracy of these methods we can observe the global error of the method.
That is we can chooses a point xn and compute ỹ(xn) and then compare this result with the so-
lution y(xn). However, in most cases a true solution in unknown. We can therefore not evaluate
the accuracy of the method. To ensure that the method is still sufficiently accurate we instead
study a local error* estimate which compares two methods of different order at the same point,
as found in [8]. We denote this error at xn as Tn: the greater Tn is the greater the local error is.
The order of a method is defined as follows

Definition 1.2.3. A numerical method is said to have order (of accuracy) p, if p is the largest
positive integer such that, for any sufficiently smooth solution curve (x, y(x)) in the solution do-
main of the initial value problem, there exist constants K and h0 such that

|Tn| ≤ Khp for 0< h ≤ h0

for any pair of points (xn, y(xn)), (xn+1, y(xn+1)) on the solution curve

Definition 1.2.4. A numerical method is consistent with the differential equation (1.3) if the
local error, is such that for any ε> 0 there exists a positive h(ε) for which |Tn| < ε for 0 < h < h(ε)
and any pair of points

(
xn, yn

)
,
(
xn+1, yn+1

)
on the solution curve.

*Also known as the Local Truncated Error

3



Chapter 2

The Runge-Kutta Method

The idea of the Runge-Kutta method is to extend upon the standard Euler method, as defined in
[18], for numerical integration. Instead of evaluating the function f once per step, one evaluates
it multiple times. This idea of using a multiplicity of evaluations was originally proposed by
Runge in 1895, and was developed further by Heun in 1900 and Kutta in 1901. The latter
characterized the set of Runge-Kutta methods of order 4 and proposed the first methods of order
5, as Butcher points out in [8].
Given an initial value problem as defined in definition 1.2.2, we can use the Runge-Kutta method
to take a step from x0 → x1 = x0 +h and find y1 = f (x1).

Definition 2.0.1. An s-stage Runge-Kutta method is defined as:

g i = y0 +h
s∑

j=1
ai, j f (x0 + c jh, g j) , i = 1, . . . , s (2.1a)

y1 = y0 +h
s∑

j=1
b j f (x0 + c jh, g j) (2.1b)

with ai, j,bi, ci being constant coefficients that are method specific (Radau IIA, Lobbato IIIC, etc.),
and h being the step size .

Note that h needs to be sufficiently small for the Runge-Kutta method to be stable.

The Runge-Kutta methods can be roughly grouped into two variants, the explicit and the
implicit methods, the explicit methods having the further restriction on the coefficient that ai, j =
0 ∀ j ≥ i, this alters the sum in (2.1a) and the method becomes as follows:

Definition 2.0.2. An s-stage explicit Runge-Kutta method is defined as:

g i = y0 +h
i−1∑
j=1

ai, j f (x0 + c jh, g j), i = 1, . . . , s (2.2a)

y1 = y0 +h
s∑

j=1
b j f (x0 + c jh, g j) (2.2b)

with ai, j,bi, ci being constant coefficients that are method specific.

4
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We are interested in the Lobatto IIIC method which is an implicit method. We therefore
refer to definition 2.0.1 when we talk about the a Runge-Kutta method throughout the rest of
this work.

The selection of these constants results from further conditions imposed on the method en-
suring it is consistent and converges. However, the creation of these coefficients is beyond the
scope of this text. For further reference refer to Butcher [8, section 33 & 340]. Additionally,
Butcher introduced the following structure for grouping the coefficients [8]

c1 a1,1 a1,2 · · · a1,s
c2 a2,1 a2,2 · · · a2,s
...

...
...

...
cs as,1 as,2 · · · as,s

b1 b2 · · · bs

For further convenience we shall group the individual coefficients into a matrix and vectors
following the same structure:

A =


a1,1 a1,2 · · · a1,s
a2,1 a2,2 · · · a2,s

...
...

...
as,1 as,2 · · · as,s


b = (b1, · · · ,bs)
c = (c1, · · · , cs)

2.1 Initial Implementation
The following sections are based on chapter IV.8 from Hairer [14] unless stated otherwise.
To start the implementation of the implicit Runge-Kutta method, we begin by introducing zi as

zi = g i − y0 (2.3)

This change is done to reduce round-off errors in floating point calculations*. g i are the stage
values, i.e., the values that we would have at times t+ cih respectively. By looking at the differ-
ence we get that zi are the increments of the stage values. This is desired since the increments
should be small when taking small steps. Observe that the terms in (2.3) are all vectors of
dimension n. By calculating the increment instead of the actual value we avoid round-off errors.

Incorporating these terms into equation (2.1a) we get

zi = h
s∑

j=1
ai, j f (x0 + c jh, y0 + zi) i = 1, . . . , s (2.4)

*When considering all numbers that can be represented by the float point data structure, these numbers are
more dense around 0 and less the further away they are.

5
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Note equation (2.4) can be written in vector notation as follows:

Z=


z0
z1
...
zs

= A


hf (x0 + c1h, y0 + z1)
hf (x0 + c2h, y0 + z2)

...
hf (x0 + csh, y0 + zs)

 (2.5)

Observe that each term zi is a vector of size n.
Then, assuming A−1 exists, we can introduce (d1, . . . ,ds) = (b1, . . . ,bs)A−1, and equation (2.1b)
becomes:

y1 = y0 +
s∑

j=1
d j z j (2.6)

Note that in equation (2.6) the d j are scalars. Furthermore the d j ’s are only defined by the
method constants and can thus be pre-calculated. This removes the need to determine the
inverse of A while using the method.

2.2 Newton’s Method
We now use Newton’s method to evaluate ~Z in equation (2.5). For this we rearrange the equation
to:

~Z− A


hf (x0 + c1h, y0 + z1)
hf (x0 + c2h, y0 + z2)

...
hf (x0 + csh, y0 + zs)

= 0 (2.7)

The Jacobian of this system is:

I −h

 a1,1
δ f
δy (x0 + c1h, y0 + z1) · · · a1,s

δ f
δy (x0 + csh, y0 + zs)

as,1
δ f
δy (x0 + c1h, y0 + z1) · · · as,s

δ f
δy (x0 + csh, y0 + zs)

 (2.8)

Note that in equation (2.8) each term δ f
δy (·, ·) is a matrix of dimension n×n. Moreover these terms

can all be approximated as follows:

δ f
δy

(x0 + cih, y0 + zi)≈ δ f
δy

(x0, y0)=J

This allows us write an approximation to (2.8) as follows:

I −hA⊗J (2.9)

where ⊗ is the Kronecker product as in definition 1.1.1. Note that from this point on I always
denotes the identity matrix of appropriate dimension.
Thus, the Newton iteration becomes

(I −hA⊗J )∆~Zk =−~Zk +h(A⊗ I)F(~Zk) (2.10a)
~Zk+1 =~Zk +∆~Z (2.10b)

with F(~Zk)= (
f (z0), . . . , f (zs)

)
6



Edmund Lehsten

2.2.1 Newton Starting Value
There are different alternatives for the starting value of the Newton iteration. Since we are
taking a small step and are calculating the increments, we know that they should be small.
Hence setting Z0 = 0 (that is the zero vector of suitable size) is a valid choice, and is what we
decided to use. However, other options exist, for instance one could take a small initial step using
the explicit Euler method and then use that as the starting value. These other methods have
the benefit of arriving at the stopping condition (see next section) in fewer iterations with the
downside of being slightly more computationally intensive in the setup. However, the reduction
in iterations can often compensate for their initial setup expense and, overall, these methods
could yield faster solution compared to the basic approach. Our choice was made to simplify the
implementation and since the final problem we will test this method on, see section 4, is linear
and a single iteration will be sufficient.

2.2.2 Newton Stopping Condition
For the stopping condition to the Newton iteration we again look to Hairer [14, see IV.8]. We
begin by estimating the convergence rate

Θk =
||∆Zk||
||∆Zk−1|| (2.11)

where ∆Zk is the result of this iteration and ∆Zk−1 the result of the previous iteration. Then,
we define the stopping condition to stop iterating if

ηk||∆Zk|| ≤ κ ·Tol with ηk =
Θk

1−Θk
(2.12)

holds†.
Once stopped we accept Zk as the approximation Z∗ to Z. Here Tol denotes the desired toler-
ance of the solution. As mentioned by Hairer, κ is arbitrary and must be chosen by the user,
Hairer suggest a value around 10−1 or 10−2. To reduce the necessary Jacobian computation, we
shall only recompute the Jacobian if the Newton iterations start to diverge, which we define by
Θk ≥ 1.

2.3 Simplification for Implementation
The Runge-Kutta method discussed above has a few drawbacks, mainly in the computational
intensity. Currently for each Newton iteration we must compute:

• s evaluations of f

• solve an n · s×n · s-dimensional linear system

†Note that this stopping condition for the Newton iteration requires a minimum of two steps. Hairer makes
a suggestion on how this could be improved for linear (or near linear) problems where one iteration would be
sufficient. We have implemented it in code but left it out of this work as it is of no further interest.

7
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If the diagonalization of A−1 exists i.e.

T−1A−1T =Λ (2.13)

then, by pre-multiplying (2.10a) with (hA−1)⊗ I and introducing the term Wk = (T−1 ⊗ I)Zk,
equations (2.10a) and (2.10b) become:

(H−1Λ⊗ I − I ⊗ J)∆Wk =−h−1(Λ⊗ I)Wk + (T−1 ⊗ I)F
(
(T ⊗ I)Wk)

(2.14a)

Wk+1 =Wk +∆WK (2.14b)

From this point on we will focus mainly on the Runge-Kutta methods with s = 3‡.
For the ideal case that A−1 has three real eigenvalues λ1,λ2,λ3 then

Λ=
 λ1 0 0

0 λ2 0
0 0 λ3

 (2.15)

This would imply that the matrix in front of ∆Wk in equation (2.14a) would become: λ1I −J 0 0
0 λ2I −J 0
0 0 λ3I −J

 (2.16)

Note here that each element is a block matrix of size n×n. Solving this system can be simplified
by splitting it into solving three n×n systems instead of solving one 3n×3n system. Unfortu-
nately, most for most Runge-Kutta methods their respective A−1 matrices do not have three real
eigenvalues. Rather they have one real, γ, and a complex pair, α±βi. In this case, the matrix
infront of ∆Wk in equation (2.14a),

(
the equivalent to (2.16)

)
would look as follows: γI −J 0 0

0 αI −J −βI
0 βI αI −J

 (2.17)

Here again one can split it into smaller sections to help the computer while solving this. There-
fore instead of one 3n×3n system it would come down to one n× n and one 2n×2n system.
For the 2n×2n system further tricks exist to aid the computer in solving this. However, that is
beyond the scope of this text§. Since the left hand side (LHS) of equation (2.14a) does not change
throughout the consecutive iterations within one time step we compute the LU-decomposition of
these two matrices (the n×n and 2n×2n) to significantly decrease the solve time of the systems.
If the function and Jacobian are relatively easy to evaluate then this decomposition becomes the
bottle neck, that is to say the most costly part, of the method. Hence, if the step size does not
change one can reuse the decomposition from the previous step.

‡This is done since the source text [14] also makes this choice.
§for reference refer to Hairer page 122 [14]

8
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2.4 Local Truncation Error
To estimate the local error we use a similar method to Hairer in chapter IV.8 [14]. His method
consists of computing an approximate solution ŷn ≈ yn which is of slightly lower order. Then the
difference between these two solutions gives an estimate of the error err = ŷn − yn.

ŷn+1 = yn +h
3∑

i=1
b̂i zi (2.18)

Remark 2.4.1. These error methods are also known as embedded methods since they reuse the
zi terms from the current step.

It now remains to find coefficients b̂i such that the method in (2.18) is of the desired order.
As mentioned by Pinto et al. in [17] finding embedded methods of order higher than s−1 is
in most cases not possible. This means that our lower order approximation will be of order 2.
One possible choice would be

(
b̂1, b̂2, b̂3

) = (−1
2 ,2,−1

2

)
as found in [20]. On the other hand the

difference between the order of the two methods is not ideal. We therefore turn to Butcher’s idea
found in [8], where he suggests to look for a method with s+1 stages where the first s stages are
identical. With this we would hope to find a method of order 3. Unfortunately, as mentioned,
it is unlikely to find such embedded methods for methods of order ≥ 2s−2. Furthermore, these
methods would require more function evaluations which is undesired since they could be costly.
Hairer instead suggests using the method of order s−1 but adding an explicit step at it and
arrive at the following method:

ŷn+1 = yn +hb̂0 f (x0, y0)+
3∑

i=1
b̂i zi (2.19)

Hairer further suggests the choice of b̂0 = γ, with γ being the real eigenvalue of A−1. Through
this explicit step the hope is to improve the order up to s. In our case, s = 3, the embedded
method would then have order 3 while the actual method has order 4. Note, however, that the
embedded method still requires a further function evaluation. Consequently, we look at the
suggestion by Fabien and Jason in [13]. Their idea was that instead of one step of size h, one
makes two of size h/2. Then an approximation can be computed as

ŷn+1 = yn +
2s∑
i=1

b̂i zi (2.20)

where z1, . . . , zs are the stage values for the first step and zs+1, . . . , z2s are the stage values for the
second step. This method has one drawback which is that whenever a step is rejected one must
reject the last two steps since they must always be of equal step size. This issue was addressed
by Pito et al. [17]. Their idea was to adjust the coefficients bi depending on the ratio between
the last two step sizes.

Assume that the last step yn−1 → yn with tn = tn−1 +hn−1 has been successful. Then for the
approximate solution of the next step yn → yn+1 with tn+1 = tn +hn, we have

ŷn+1 = yn +
3∑

i=1
δn,i zn−1,i +

3∑
i=1

βn,i zn,i (2.21)

9



Edmund Lehsten

here zn−1,i,zn+1,i denote the stage values from yn−1 → yn and yn → yn+1 respectively and δn,i,βn,i

both depend on rn = hn
hn−1

. These coefficients can be determined from the following conditions:

βT
n es = 0, δT

n 1= 0 (2.22)

δT
n A(c−1) j−1 + r j

nβ
T
n Ac j−1 = r j

j
j = 1, . . . , p̂ (2.23)

where es is a vector of dimension s with all zeros except for the last term which is 1, 1 is an
s-dimensional vector filled with 1’s and p̂ is the desired approximation order. Note that for our
case, s = 3 an p̂ = 3, equations (2.22) and (2.23) give us and under determined system. We
therefore wish to impose a further condition, to that end we must define the stability function
r(z) of a numerical method.

This section on the stability function is based on [15]
We being by defining the linear stability domain of a method.

Definition 2.4.2. For a numerical method with constant step size h, with results yn ≈ y(x0+h ·n)
applied to the linear ODE

y′(t)=λy(t), t ≥ 1, y(0)= 1, (2.24)

the stability domain D, of the method, is the set of all numbers h ·λ ∈ C such that the limit
limn→∞ yn = 0.

Remark 2.4.3. Note that for Re(λ) < 0 we have that for the exact solution of (2.24), the limit
limt→∞ y(t)= 0

When applying a Runge-Kutta method to (2.24), we get that

ξi = y0 +h
s∑

j=1
ai, jξ j, i = 1, . . . , s, (2.25a)

yn+1 = yn +hλ
s∑

j=1
b jξ j, (2.25b)

with

ξ=


ξ1
ξ2
...
ξs

= (I −hλA)−11yn, (2.26)

where 1 is the vector of dimension s with all ones. We denote by Pα the set of polynomials of
maximum order α. Similarly, by Pα/β we denote the set of rational functions p̂/q̂ where p̂ ∈ Pα
and p̂ ∈Pβ.

Lemma 2.4.4. For every Runge-Kutta method of order s applied to (2.24) there exists ρ ∈ Ps/s
such that

yn = [
ρ(hλ)

]n , n = 0,1, . . . (2.27)

10
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Proof. We shall only give a brief outline of the proof here.
From (2.25b),(2.26) and (2.27) we get that

yn+1 = yn +hλ
s∑

j=1
b jξ j

= [
1+hλbT(I −hλA)−11

]
yn

⇒ [
ρ(hλ)

]n+1 = [
1+hλbT(I −hλA)−11

] · [ρ(hλ)
]n

⇒ ρ(hλ)= 1+hλbT(I −hλA)−11

⇒ ρ(z)= 1+ zbT(I − zA)−11, with z ∈C (2.28)

The rest of this proof now consists of proving that ρ(z) is indeed an element of Ps/s, the proof of
which we shall not shown here but can be found in [15].

Lemma 2.4.5. Suppose that an application of a numerical method to the linear ODE (2.24)
produces a solution sequence yn = [

ρ(hλ)
]n , n = 0,1, . . . , where ρ is an arbitrary function. Then

D = {z ∈C : |ρ(z)| < 1}. (2.29)

Proof. The proof of this follows directly from the definition of D in Definition 2.4.2

As Pinto explains, we can view the embedded method (2.21) as a Runge-Kutta method of 2s
stages. Therefore, by lemma 2.4.4, a function ρ(z) exists such that yn = [ρ(hλ)]n for this method.
We denote it by R̂(z). We can now impose the further condition on our coefficient in (2.21) that
lim|z|→∞ R̂(z) = R̂(∞) = 0¶. This condition ensures the stability of the embedded method and is
enforced through the following equation, as found in [17].

R̂(∞)= 1−βT
n 1+ (−1)s+1

s
δT

n A−11= 0 (2.30)

Solving this system of equations (2.22,2.23,2.30) for Lobatto IIIC coefficients (see section 2.6.2)
with respect to r = rn with the condition that p̂ = 3 results in the following coefficients for the
embedded method:

β1 = 12r3+14r2+21r+9
4r3+4r2+3r−3 δ1 = 12r3+9r2+3r

4r3+4r2+3r−3
β2 = 16r3+8r2−12r−12

4r3+4r2+3r−3 δ2 = 8r4−24r3−36r2−12r
4r3+4r2+3r−3

β3 = 0 δ3 = −δ1 −δ2

(2.31)

Note that β1,β2,δ1,δ2,δ3 all become undefined when r = 0.5. Plotting these coefficients we get
the graph seen in Figure 2.1.
To avoid errors as r gets close to 0.5 we redefine r to be 0.4 if r is in [0.4,0.6] and adjust hn+1
accordingly before we take our step. This prevents any errors that could appear due to multiply-
ing with large numbers and circumvents dividing by 0. Since this can only occur when the step
size is currently decreasing, it just decreases it a bit extra. See the next section for more on the
step size adjustment.

¶This is also beneficial to us since we do not fulfill Theorem 2.1 in [17] which implies that R̂(∞) is bounded,
hence by requiring this condition we ensure that it stays bounded
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Figure 2.1: plotting the coefficient in (2.31)

Observer that the above error estimate does not work for the initial step, since we cannot cal-
culate r. Thus, for the first step we must use a different method. Pinto et al. suggest solving
the above equations with the added restriction δ1 = δ2 = δ3 = 0. However, since that would also
result in an order 2 method we instead choose to use method (2.19) mentioned before. We now
have an approximate error in each term as follows

err = ŷn+1 − yn+1 (2.32)

Note that both methods for ŷn+1 are of the form yn +∑
. Similarly we have yn+1 = yn +∑

. In fact
for Lobatto IIIC with s = 3 we have yn+1 = yn + z3. We therefore change the error estimates to

err = hγ f (x0, y0)+
3∑

i=1
b̂i zi − z3 (2.33)

for the first step and

err = a

(
3∑

i=1
δn,i zn−1,i +

3∑
i=1

βn,i zn,i − z3

)
(2.34)

for all other steps. The term a is introduced by Pinto et al. and is a free parameter with the only
restriction being a > 0. We chose a value of a = 0.05 which yielded good results, after doing some
initial numerical experimentation with the problem discussed in section 4. However, a more
thorough investigation into this parameter would be needed to optimize this error estimation
and ensure that it works for a general problem.

2.5 Step Size Prediction
For this section we use hnew synonymously to hn+1 from the previous section on error estimation.
The approximate error calculated in (2.32) is per term, we now need to combine these n terms

12
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into a single term. For this we use the norm introduced by Hairer in [14] :

||err|| =
√√√√ 1

n

n∑
i=1

(
err i

sci

)2
(2.35)

with sci = Atol i +max(|y0,i|, |y1,i|)∗Rtol i. The index i refers to the i’th element in the corre-
sponding vectors. Atol and Rtol are the desired absolute and relative tolerances per index in
the resulting vector. The difference between this norm and a the two-norm is that this one
weights the different indexes, giving one the possibility to be more precise in one index than the
other.
Hairer then suggests the following step size control formula†

hnew = f ac ·hold · ||err||−1/4 (2.36)

The power of −1/4 stems from the order of the approximate solution ŷn+1 being 3, which means
that the exact solution ỹn = ŷn+O (h4). Note however, that in the first time step our approximate
solution ŷn+1 is only of order 2 therefore in the first step instead of (2.36) we use

hnew = f ac ·hold · ||err||−1/3 (2.37)

The f ac term is dependent on the number of Newton iterations and is defined as

f ac := 0.9× 2kmax +1
2kmax +Newt

with kmax being the maximum number of Newton iterations and Newt being the actual number
required until the stopping condition was reached. Hairer commented that they noticed best
results setting kmax to around 7 or 10.

To not have to recompute the LU-decomposition on every step we shall keep the old step size
hold if

c1hold ≤ hnew ≤ c2hold (2.38)

Here Hairer suggests a value of 1.0 and 1.2 for c1 and c2 respectively. However, in our case, the
step size seems to decrease continuously by a small fraction for the first 100 steps. Therefore
we chose to set c1 = 0.97. When the step size does not change and the Jacobian does not need
to be recomputed then the LU-decomposition can be reused from the previous time step. This
significantly reduces the number of LU-decompositions that need to be done.

2.6 The Classes of implicit Runge-Kutta Methods
We begin this section by giving a brief description of Radau and Lobatto method, and then
examine the different Lobatto methods in more detail. As mentioned before the Runge-Kutta
methods differ only in their choice of coefficients ai, j,bi, ci. The choice of these coefficients stems

†Pito et al. suggest another method for step size control that could be applied as an extension However, is is
beyond the scope of this work.
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from the restrictions imposed on the method. As Hairer mentions one begins with the simplified
assumptions

B(p) :
s∑

i=1
bi c

q−1
i = 1

q
q = 1, . . . , p

C(η) :
s∑

j=1
ai, j c

q−1
j = cq

i

q
i = 1, . . . , s, q = 1, . . . ,η

D(ξ) :
s∑

i=1
bi c

q−1
i ai, j =

b j

q
(1− cq

j ) j = 1, . . . , s, q = 1, . . . ,ξ

We now present, without a proof, a theorem connecting the simplified assumptions to the order
of the Runge-Kutta method. A proof may be found in [8]

Theorem 2.6.1. If the coefficients bi, ci,ai, j of a Runge-Kutta method satisfy B(p),C(η),D(ξ) with
p ≤ η+ξ+1 and p ≤ 2η+2, then the method is of order p.

One can now use these conditions and aim for maximum order. Doing this results in the Gauss
method of order 2s. However, for this method the ci are not located at either of the end points.
By imposing further restrictions on the c j terms we get the Radau and Lobatto methods. These
methods have this name since they are based on the Radau and Lobatto quadrature formulas.
The c j ’s where chosen according to the zeros of

I :
ds−1

dxs−1

(
xs(x−1s−1)

)
(2.39)

II :
ds−1

dxs−1

(
xs−1(x−1s)

)
(2.40)

II :
ds−1

dxs−1

(
xs−1(x−1s−1)

)
(2.41)

Butcher called the Runge-Kutta methods with these ci ’s processes of type I,II and III, also
known as Radau Left, Radau Right and Lobatto. The Radau left and right have those names
since in Radau left the c0 value is 0 and in Radau right the rightmost (last) ci value is 1. Which
means that in Radau left we have a node at the left endpoint and in Radau right we have one at
the right endpoint. Since these both have an extra restriction it is reasonable for their order to
be less the optimum, which is known as the Gauss method and has the best possible order of 2s.
In fact they are both of order 2s−1. Lobatto on the other hand has an endpoint at both left and
right side giving it one more restriction and an order of 2s−2 [14].
As mentioned before for this work we are interested specifically in the Lobatto IIIC method.

2.6.1 A, B & C
The following section is based on the text by Laurent O. Jay.[16]
The Lobatto method is not unique even with the choice of the ci ’s given by (2.41). However, since
the ci ’s are defined the bi ’s they are also the same for all variants of Lobatto. That means the
only coefficients that differ are the ai, j ’s.

• A:
For the Lobatto IIIA method the coefficients are defined by C(s), together with satisfying
D(s−2) and the condition that as, j = b j and aa, j = 0 for j = 1, . . . , s.
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• B:
For the Lobatto IIIB method the coefficients are defined by D(s) along with satisfying
C(s−2) and ai,1 = b1 along with ai,s = 0 for i = 1, . . . , s.

• C:
The Lobatto IIIC method is defined by ai,1 = b1 and C(s−1). They satisfy D(s−1) and
as, j = b j for j = 1, . . . , s.

The difference between the A,B and C methods is in their stability. When talking about the
stability of Runge Kutta methods one generally looks at weather they are A-Stable, B-Stable
and/or L-stable. The different stability’s look at different properties of the methods to analyse
how well different numerical methods approximate the solutions to stiff ODEs. For example
A-stability has to do with the stability function defined in (2.28). See [8] for more in-depth
explanation on the different stability’s. While all three are A-Stable neither A or B is L-stable or
B-stable and hence neither is algebraically stable. The Lobatto IIIC method on the other hand
is both L-stable and algebraically stable and hence also B-stable.

2.6.2 Lobatto IIIC
As mentioned before we are interested specifically in the Lobatto IIIC method. Additionally we
focus on the three staged method, hence the coefficients we use are as follows [8, 14, 16]:

0 1/6 −1/3 1/6
1/2 1/6 5/12 −1/12
1 1/6 2/3 1/6

1/6 2/3 1/6

(2.42)
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Chapter 3

Integration into Assimulo

Assimulo is a Python package that entails many ODE solvers written in different languages. It
aims to provide a high-level interface for a variety of solvers. Thereby providing an easy way
to compare different solvers for the same problem without having to redefine the problem in a
different language to adjust for the different solvers [2]. We chose to implement the Lobatto IIIC
solver as an extension to the Assimulo package for ease in the later comparison process of results
and complexity to other solvers. In addition this solution allows for easier reuse of the code later
on for other interested parties. We continue discussing some specifics of the implementation, for
the full code consult the appendix.

3.1 The solver class
To define our own solver in Assimulo all we are required to do is to define our own class as a
child of Explicit_ODE. This class should overload the integrate method which is called when
the solver is asked to solve a problem. We have split our implementation into two classes, the
RKS3CBase and Lobatto4ODE with the latter being a child of the former. This was done so that
we could easily implement different Runge-Kutta methods later.

3.1.1 Integrate method
The integrate method is defined as def integrate(self,t,y,tf,opts) with t being the ini-
tial time x0, y being the initial value y0, tf being the final time and opts being the options.
The method is then expected to return the ID_PY_OK object along with a list of time stamps and
a corresponding list or approximations for each time stamp, tres and yres respectively in our
case. Note that we did not use the options in our implementation. These options could be used
to specify that we only wish to receive outputs at certain time points but wish to have a smaller
step size, i.e. only store some points. Doing this would help reducing the memory requirements
of the entire Runge-Kutta method. The integrate method itself is just a loop, taking a step and
then storing the results of the new xn and yn in the tres and yres lists respectively. The step
method is just a helper method which calls the _newton method and passes the results back to
the integrate. The reason that we have the step method at all is that the _newton sometimes
calls itself recursively when the step fails.
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3.1.2 Newton Iteration method
The _netwon method is the main part of the code. This implements the entire Newton iteration
described in section 2.2 together with all the simplifications from section 2.3. To perform the
newton iteration described in equation (2.14) we require the left hand side (LHS) and right
hand side (RHS) of equation (2.14a) so that we can solve for ∆Wk. The computation of these
sides is done in the methods _compLHS and _compRHS respectively.

The _compLHS method constructs the blocks for the block matrix in (2.17). This requires only
the Jacobian J of the problem, which can be passed as a sparse or dense matrix. This method
is only called once per newton iteration and only if the step size h, called h in the code, has been
adjusted. In addition once _compLHS is called the result gets passed into the LU-decomposition
method. The result of the LU-decomposition is then stored as an instanced variable to be reused
in later newton iterations.

The _compRHS computes −h−1(Λ⊗ I)Wk + (T−1 ⊗ I)F
(
Zk)

, see equation (2.14a), which only
depends on the current Zk,Wk and the function f of the ordinary differential equation. This
method is called once per newton step, and has three evaluations of the function f . It then
returns a single numpy vector of size 3n

The _netwon method also evaluates the error after the Newton iteration terminates with
err_mag = self._normed_aprox_err(zk,y0,y1,n). Further it adjusts the step size or restarts
the step if the error was to large. The method _normed_aprox_err is defined within the Lobatto
class and is error approximation method.
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Chapter 4

Numerical Results

4.1 Rotating Pulse Problem
To test our implementation we used the rotating pulse problem discussed in Section 5.3 in [5].

δC
δt

−∇·
{( −4y

4x

)
C−D∇C

}
= 0 (4.1)

with the Dirichlet boundary and initial conditions from the analytical solution

C(x, y, t)= 2σ2

2σ2 +4Dt
exp

(
− (x̄− xc)2 + ( ȳ− yc)2

2σ2 +4Dt

)
(4.2)

with x̄ = xcos(4t)+ ysin(4t), ȳ =−xsin(4t)+ ycos(4t). We shift the domain to Ω= (0,1)2 instead
of (−0.5,0.5)2 and use the parameters D = 10−3, xc = 0.25, yc = 0 and 2σ2 = 0.004. The time
interval for the simulation is [0,0.25]. This problem describes a rotating heat pulse which cools
down over time as can be seen in Figure 4.1 where we show 8 instances in time extending the
simulation time to see the effect more clearly. The benefit of using this specific problem is that
an analytical solution exists. On that account we are able to directly measure the error between
approximation and analytical solution.

We used an implementation of the problem in the DUNE framework [6, 3, 4, 9, 10, 1, 12].
Then we pass the RHS, f , of our ODE, along with the jacobian J from DUNE to Assimulo. To
define a ODE problem in Assimulo is as simple as calling Explicit_Problem(rhs,y0). Which
returns a model object. Here rhs is the function, f , in our code and should have inputs rhs(t,y).
While the input y0 is the initial condition, y0 = f (x0), of our ODE. Unless an addition parameter
for x0 is passed in it is assumed to be zero. To then find the solution at xN 6= x0 one first defines
a solver, in our case Lobatto4ODE(model) which returns a simulator. Here model is the model
object returned from the Explicit Problem. To then simulate this simulator until xN we simply
call .simulate(end) where end is xN . This returns a list of time points and a corresponding list
of solutions.

We run the code* with two different spatial resolutions, the first discretization discretizes
the space into a grid of 20×20 points and the second having 2 ·20×2 ·20 points, referred to as
resolution 1 and resolution 2 respectively from here on. As a point of comparison we will compare
the error from our method to the error in the RADAU5 method implemented by Hairer in [14],

*See appendix for the code used to setup and solve the problem.
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which has already been implemented into the Assimulo package[2]. Since our Lobatto method is
of order 4 while the already existing Radau method is of order 5 we expect the Radau method to
outperform our method. For a more fair comparison we will also compare the to RungeKutta34
method in Assimulo. This method is of order 4 and as such should behave similar to our method.

(a) t=0.25 (b) t=0.5 (c) t=0.75 (d) t=1.00

(e) t=1.25 (f) t=1.5 (g) t=1.75 (h) t=2.00

Figure 4.1: A sequence of results from the numerical experiment at different points in time
showing the movement of the pulse.
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4.2 Results

Lobatto Radau5 RungeKutta34
Resolution 1 2 1 2 1 2

Computation
7.98 159 11.36 403 0.69 17.61

time (sec)
Number of

70 76 62 58 380 980
function calls

Number of
1 1 1 1 - -

Jacobi evaluations
Number of

6 9 4 4 - -
LU-decompositions

Number of
18 18 14 13 76 196

steps
L2 Error 0.00225 0.000244 0.00226 0.000254 0.00226 0.000251

Average number of
3.888 4.222 4.429 4.462 5.000 5.000

function calls per steps

Table 4.1: A comparison between the Lobatto IIIC, Radau IIA and RungeKutta34 method when
simulating the rotating pulse problem as described above with a relative and absolute tolerance
of 10−5

Figure 4.2: Showing the relationship between computation time in seconds and the achieved
accuracy of our Lobatto IIIC method. Observe that both axes are in logarithmic scale
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Resolution 1 2
Computation

3.68 43.7
time (sec)
Number of

60 60
function calls

Number of
1 1

Jacobi evaluations
Number of

2 2
LU-decompositions

Number of
16 16

steps
L2 Error 0.00226 0.000250

Average number of
3.75 3.75

function calls per steps

Table 4.2: Comparison between resolutions when running our implementation of the Lobatto
IIIC method with a constant step size for the rotating pulse problem as described above

21



Edmund Lehsten

4.3 Comparison of Methods
Table 4.1 shows the difference in the stats gathered while simulating the rotating pulse prob-
lem between our Lobatto implementation, Hairers Radau5 and the RungeKutta34 method in
Assimulo. We continue by discussing their differences in the following sections.

4.3.1 L2 Error
The L2 error of all the methods does not go down to zero, this is because we are taking the
norm between our result and a discritization of the exact solution, this discritization introduces
a small error. This is also the reason why the error for all methods is nearly the same.

4.3.2 Computational Time
The computational time is the time that our computer clock measures between starting the sim-
ulation and finishing. The difference in computational time between the different methods is
mainly due to the differences in the implementation of the methods. Making this a bad met-
ric to judge the different methods by. Our Lobatto code for example is written completely in
Python while the Radau5 code is written in FORTRAN and we only call it in from Python. Since
Python is an interpreted language instead of a compiled one it is slightly slower and therefore
will take more time per step. In addition the Radau5 code is unable to use the sparse matrix
representation used for the Jacobian and hence for each Jacobian evaluation the matrix must
be converted to dense representation first. This might be why for resolution 2 the Radau5 takes
longer to compute compared to our Lobatto method. Similarly taking an LU decomposition of a
large dense matrices takes longer in comparison to sparse matrices if the matrix is large enough
and is filled with significantly many zeros.

We have further investigated the computation time of our Lobatto IIIC method compared
to the achieved error, see figure 4.2. To generate this graph we changed the resolution of the
discretization. The finer the grid the lower the error however at the cost of computation time.

4.3.3 Number of Function Calls
The number of function calls is directly related to how many steps were taken and how many
of those steps failed. As can be seen in all three methods the more steps one needs the more
function calls are required. However the Radau5 method has at least one extra function call per
step through its error evaluation while the Lobatto method does not. Hence, if we look at the
average number of function calls per step we see that our Lobatto method has fewer. Since we
only solve for t = 0.25 very few steps need to be taken however as the end time increases so dose
the number of steps, and as this problem is linear the average number of steps in Lobatto will
go to 3 while in Radau it will go to 4.

4.3.4 Number of Jacobian Evaluations
Due to the structure of this problem a single Jacobian evaluation is enough and both our Lobatto
and the Radau5 method utilize this.†

†The RungeKutta34 method probably also uses this considering how fast it is.
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4.3.5 Number of LU-decompositions
Our Lobatto method has a few more LU-decompositions than the Radau5 method. The decompo-
sition is recalculated whenever the step size was adjusted. This means that the Radau5 method
was slightly faster at determining the required step size‡.

4.3.6 Number of Steps
The number of steps is directly linked to the step size. Since the Lobatto method is not as good
as the Radau method in terms of order, more steps will need to be taken to achieve the same
accuracy in the results. Similarly the RungeKutta34 method is, like our Lobatto, order 4. Hence
we would expect to see a similar amount of steps. The spatial discritization we used is optimized
for the Lobatto points, which is probably why the Lobatto Method requires slightly fewer steps
than RungeKutta34.

4.3.7 Overall
Over all our Lobatto method has performed as expected. Being slightly better than the RungeKutta34
but still not as good as the Radau5 method in all metrics other than computation time. How-
ever, computation time, as explained is not a good metric since it would require all methods
to be implemented in the same programming language with the same amount of optimization.
Note further for both our implementation of the Lobatto method and the Radau5 method from
Hairer [14] neither of the two significantly increase as the resolution increases, however, the
RungeKutta34 method more than doubles the amount of steps it takes.

4.4 Constant step
The interest of this project was sparked due to the result in [19] stating that the Lobatto IIIC
method is equivalent to the space time DG approximation. When solving for a space time dis-
critization, the step size is the dicritization in time and is kept constant. We therefore run the
before mentioned problem again with a fixed step size of h = 1

60 , and get the results shown in ta-
ble 4.2. This table shows, that when solving linear problems, manually determining a constant
step size can be beneficial. The fact that a lower number of steps still gives an accurate result is
probably due to an suboptimal choice of our free parameter a in equation (2.34)

‡An idea exists to only recalculate the LU-decomposition when Newton diverges, this was not done here however
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Chapter 5

Conclusion

In this work we have outlined the implementation of the Lobatto IIIC Runge-Kutta method as
described by Hairer in [14]. We have then done a more in-depth discussion about the different
existing error estimates for the local truncated error, and chosen to adapt a method from Radau
to Lobatto that Pinto et al. describes in [17].

Comparing our method to the Radau5 method from Hairer the only improvement we see is a
lower average amount of function calls per step. However as discussed the Radau5 method has a
higher order and hence is expected to outperform our Lobatto IIIC implementation. When com-
paring our method to the RungeKutta34 method instead, we see that we have significantly fewer
steps and hence significantly fewer function calls. Be that as it may, we have only conducted one
numerical experiment comparing the methods and further experiments must be conducted with
varying ODEs for a thorough comparison.

Further improvements could still be made to our method, such as thorough investigating
into a good choice for the free parameter a in equation (2.34) and the multitude of extensions
mentioned throughout this work which were excluded due to the limited scope of this study.
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Chapter 7

Appendix

7.1 Lobatto IIIC Implementation

1 import sys #for min float number
2 import numpy as np
3 import scipy.sparse as sp
4 import scipy.sparse.linalg as alg
5 from scipy.sparse.linalg import splu
6 from abc import ABC, abstractclassmethod
7 from scipy.linalg import lu_factor,lu_solve
8

9 from assimulo.explicit_ode import Explicit_ODE
10 from assimulo.ode import ID_PY_OK,NORMAL
11

12

13

14 class RadauError(Exception):
15 def __init__(self,expr):
16 self.expr = expr
17 def __str__(self):
18 return self.expr
19

20 class RKS3CBase(ABC,Explicit_ODE): #Runge-Kutta S=3 Complex eigen pair Base class
21

22

23

24 rtol=1.e-4 #realative tolerance
25 atol=1.e-4 #absolute tolerance
26 tol =1.e-4 #tollerance for newton itteration
27 kappa = 1e-1 #The kappa value used for newton stopping in eq (15)
28 maxit=10 #maximum number of newton itterations
29 maxsteps=10000000 #maximum number of steps
30 r=1 #r is the ratio between the previouse step size and the current
31

32 #used for stoping after single newton itt
33 Uround = sys.float_info.min
34

35 #the bounds to decide weather or not to adjust the step size eq (41)
36 c1 = 0.95
37 c2 = 1.2
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38

39

40 def __init__(self,problem):
41 """
42 Initiates the solver.
43

44 Parameters::
45

46 problem
47 - The problem to be solved. Should be an instance
48 of the 'Explicit_Problem' class.
49 """
50 Explicit_ODE.__init__(self, problem) #Calls the base class
51

52 #Solver options
53 self.options['h'] = problem.h
54 self.h = problem.h
55 self._sparceJ = True
56 self._dynamic_step = True
57

58 #Statistics
59 self.statistics["nsteps"] = 0
60 self.statistics["nfcns"] = 0
61 self.num_jac_evals = 0
62 self.num_lu_decomps = 0
63

64 #method parameter:
65 self.y_dim = len(self.problem.y0)
66 self.RTol = np.array([self.rtol]*self.y_dim)
67 self.ATol = np.array([self.atol]*self.y_dim)
68 self._3ATol = np.hstack((self.ATol,self.ATol,self.ATol))
69 self._3RTol = np.hstack((self.RTol,self.RTol,self.RTol))
70

71 #internal flags
72 self._first = True
73 self._recomp_jac = True
74 self._recomp_LHS = True
75 self._newt_fail_flag = False
76

77 #internal values
78 self.J = None
79 self._lu = None
80

81

82 #set and get for sparce Jacobian, need to redifine the lu decompose and
83 #lu solve methods here
84 def _set_sparce(self,sp):
85 self.options["sparce"] = bool(sp)
86 if sp:
87 def lu_decomp_s(LHS):
88 lu1 = splu(LHS[0])
89 lu2 = splu(LHS[1])
90 return (lu1,lu2)
91 self._LUDecomp = lu_decomp_s
92

93 def lu_solve_s(lu,RHS):
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94 n = RHS.shape[0]//3
95 dwk = np.zeros_like(RHS)
96 dwk[:n] = lu[0].solve(RHS[:n])
97 dwk[n:] = lu[1].solve(RHS[n:])
98 return dwk
99 self._LUSolve = lu_solve_s

100 else:
101 def lu_decomp_d(LHS):
102 lu1 = lu_factor(LHS[0])
103 lu2 = lu_factor(LHS[1])
104 return (lu1,lu2)
105 self._LUDecomp = lu_decomp_d
106

107 def lu_solve_d(lu,RHS):
108 n = RHS.shape[0]//3
109 dwk = np.zeros_like(RHS)
110 dwk[:n] = lu_solve(lu[0],RHS[:n])
111 dwk[n:] = lu_solve(lu[1],RHS[n:])
112 return dwk
113 self._LUSolve = lu_solve_d
114 def _get_sparce(self):
115 return self.options["sparce"]
116 _sparceJ = property(_get_sparce,_set_sparce)
117

118 #set and get for h parameter, when h changes we also want to recompute the
119 #LHS
120 def _set_h(self,h):
121 self.options["h"] = float(h)
122 def _get_h(self):
123 return self.options["h"]
124 h=property(_get_h,_set_h)
125

126

127 def integrate(self,t,y,tf,opts):
128 """
129 _integrates (t,y) values until t > tf
130 """
131 self.h = min(self.h,abs(tf-t))
132

133 tres = []
134 yres = []
135

136 z0 = np.zeros((self.y_dim*3))
137

138 #lists for storeing results
139 for i in range(self.maxsteps):
140 if t>= tf:
141 break
142

143 t,y = self._step(t,y,z0)
144

145 self._first = False
146

147 self.t = t #used for Radau error approximation
148

149 #store the results in array to be returned when done
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150 tres.append(t)
151 yres.append(y.copy())
152

153

154 if self.h > np.abs(tf-t):
155 h_old = self.h / self.r
156 self.h = np.abs(tf-t)
157 self.r = self.h/h_old
158 self._recomp_LHS=True
159

160 if abs(self.r-0.5)<0.1:
161 #if we are to close to the explosion point, change value
162 h_old = self.h/self.r
163 self.r = 0.35
164 self.h = self.r * h_old
165 self._recomp_LHS=True
166

167 if abs(self.h) < self.Uround:
168 break
169

170 else:
171 raise RadauError(f"final time not reached within maximum number of steps ({self.maxsteps})")
172 return ID_PY_OK, tres, yres
173

174

175 def _step(self,t,y,z0):
176 #update statistics
177 self.statistics["nsteps"] += 1
178 #recomp jacobian if the flag is set
179 if self._recomp_jac:
180 self.J = self._jacobian(t,y)
181 self._recomp_jac = False
182 self._recomp_LHS = True
183

184 #newton itteration
185 y,h = self._newton(self.J,y.copy(),t,z0)
186 return t + h, y
187

188 def _newton(self,J,y0,t,z0=None):
189

190 #handy dimension variable
191 n = self.y_dim
192

193 #setup newton starting value
194 zk = z0 if type(z0) is np.ndarray else np.zeros(3*n)
195 wk = self._zTOw(zk)
196

197 #newton stopping variables
198 ndzk = None #Norm of delta Zk
199 theta_k = None #Theta_k
200

201 #setup LHS and lu decompose if needed
202 if self._recomp_LHS or self._lu == None:
203 LHS = self._compLHS(J)
204 self._lu = self._LUDecomp(LHS)
205 self.num_lu_decomps += 1
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206 self._recomp_LHS = False
207

208 for i in range(1,self.maxit):
209 #compute the RHS
210 RHS = self._compRHS(wk,zk,y0)
211

212 #compute the delta W_k
213 dwk = self._LUSolve(self._lu,RHS) #eq (17a)
214

215 #convert delta W_ktodelta Z_k
216 dzk = self._wTOz(dwk)
217

218 #increment wk and zk with the corresponding delta values
219 wk += dwk #eq (17b)
220 zk += dzk
221

222 #---------newton stopping condition-----------
223

224 #for sci we require the max of z_k and z_{k-1} termwise
225 diff = dzk.copy()
226 diff[diff>0] = 0 #wherever the value has increased we want to keep
227 sci = self._3ATol + (zk-diff)*self._3RTol
228

229 #norm of delta zk
230 ndzk = self._norm(dzk,sci)
231

232 #declare the eta_k variable so it is outside the if scope
233 eta_k = None
234 if i == 1 :#first step in newton
235 if '_eta' in self.__dict__:
236 #one step stopping
237 eta_k = max(self._eta,self.Uround)**.8
238 else:
239 #first time step, needs at least 2 newton
240 ndzkm1 = ndzk
241 continue
242 else:
243 #compute theta_k and eta_k
244 theta_k = ndzk/ndzkm1 # eq (14)
245 eta_k = theta_k/(1-theta_k) #eq (15)
246

247 #check if we are diverging
248 if theta_k > 1:
249

250 if not self._dynamic_step:
251 raise RadauError(f'newton itteratio diverged')
252

253 #adjust step size
254 self.h /= 2
255 self.r /= 2
256

257 #if r is to close to 0.5 adjust it down further,
258 #this is due to explosion of values in error estimation
259 #TODO: move this into the set h function.
260 if (self.r-0.5)<0.1:
261 self.h *= 0.35 /self.r
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262 self.r = 0.35
263

264 #recompute the jacobian
265 self.J = self._jacobian(t,y0)
266 self._recomp_LHS = True
267

268 #re-run newton
269 return self._newton(self.J,y0,t,z0)
270

271 #test if newton has converged, eq (14)
272 if eta_k * ndzk <= self.kappa * self.tol:
273 #save old eta for singe step stopping
274 self._eta = eta_k
275

276 #new y value
277 y1 = self._zTOy(y0,zk)
278 #the h value that was used
279 h = self.h
280

281 #------determine approximate error---------
282 if self._dynamic_step:
283 #approximate error magnitude
284 err_mag = self._normed_aprox_err(zk,y0,y1,n)
285

286 #if error magnitude > 1 last h will not be changed since
287 #we will rerun this step.
288 h_old = self.h/ ( self.r if err_mag > 1 else 1)
289

290 #compute new step size
291 h_new = self._adjust_h(err_mag,step_accept = err_mag < 1, itt = i)
292 #test if we should adjust step eq (41):
293 if not (self.c1*self.h <= h_new and h_new <= self.c2 * self.h):
294 #set flag to recompute the LHS in the next itteration
295 self._recomp_LHS = True
296 #calculate the new ratio
297 r = h_new/h_old
298

299 #special condition for the Lobatto to avoid coefficient
300 #explosion when computeing the error magnitude
301 if abs(r-0.5)<0.1:
302 #if we are to close to the explosion point, change value
303 r = 0.35
304 h_new = r * h_old
305 #save adjusted values
306 self.r = r
307 self.h = h_new
308 else:
309 #if we dont adjust step size
310 h_new = self.h
311 self.r = 1.0
312

313

314 if err_mag > 1:
315 #approximate error is to large, restart with smaller step size
316 return self._newton(J,y0,t,z0)
317
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318 #store z^(k-1) for error estimation in the next step.
319 self.zkm1 = zk.copy()
320

321 #return result and the h used.
322 return y1, h
323

324 #update the norm for newton stopping condition
325 ndzkm1 = ndzk
326

327 else:
328 #if we do not converge within number of newton itteration steps
329 if not self._newt_fail_flag:
330 self._newt_fail_flag = True
331 #rerun with new Jacobian if not done yet
332 self.J = self._jacobian(t,y0)
333 self._recomp_LHS = True
334 #re-run newton
335 return self._newton(self.J,y0,t,z0)
336 #otherwise raise
337 raise RadauError(f'newton itteratio did not converge after {self.maxit} itterations')
338

339 @abstractclassmethod
340 def _normed_aprox_err(self,zk,y0,y1,n):
341 #abstaract method that each version of this code must impliment seperately
342 return np.Inf
343

344 @abstractclassmethod
345 def _adjust_h(self,err_mag,TOL = 1e-5,step_accept = True,itt = 0):
346 return np.Inf
347

348 def _norm(self,vec,sc):
349 #calculates the norm of a vector according to eq (38)
350 return np.sqrt(
351 (1/vec.shape[0])*
352 np.sum(
353 (vec/sc)**2
354 )
355 )
356

357

358

359 def _compRHS(self,wk,zk,y):
360 #computes the RHS of eq (17a)
361

362 #dimenson of system
363 n = self.y_dim
364 #initial term:
365 term1 = -np.array(n*[self.gamma/self.h] + \
366 2*n*[(self.alpha)/self.h]) \
367 * wk
368 term1[n:2*n] += self.betta/self.h * wk[2*n: ]
369 term1[2*n: ] -= self.betta/self.h * wk[n:2*n]
370

371 #function term
372 fcn = self.problem.rhs
373 f = np.array([fcn(self.t+self.c[0]*self.h,y + zk[:n]),
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374 fcn(self.t+self.c[1]*self.h,y + zk[n:2*n]),
375 fcn(self.t+self.c[2]*self.h,y + zk[2*n:])])
376 prod = (self.TI @ f).flatten()
377

378 self.statistics["nfcns"] += 3
379

380 return term1 + prod
381

382 def _compLHS(self,J):
383 #construction of the LHS of eq (17a)
384 #dimension of system
385 n = self.y_dim
386

387 #construct of blocks according to eq (20)
388 e1 = np.diag(n*[self.gamma/self.h])-J
389 e2 = np.zeros((2*n,2*n))
390 np.fill_diagonal(e2,self.alpha/self.h)
391 e2[:n,:n] -= J
392 e2[n:,n:] = e2[:n,:n]
393 np.fill_diagonal(e2[ :n,n: ],-self.betta/self.h)
394 np.fill_diagonal(e2[n: , :n], self.betta/self.h)
395

396 #if sparce then convert to sparce format
397 if self._sparceJ:
398 e1 = sp.csc_matrix(e1)
399 e2 = sp.csc_matrix(e2)
400 return (e1,e2)
401

402 def _jacobian(self,t,y):
403 """
404 calculates the jacobian
405 """
406 if self.problem_info['jac_fcn']:
407 self.num_jac_evals += 1
408 J = self.problem.jac(t,y)
409 self._recomp_jac = False
410 return J
411 else:
412 raise RadauError('The current implimentation cannot calculate an approximate jacobian yet,' +
413 'hence a jacobian function must be given in the problem')
414

415 def _zTOw(self,z):
416 #TODO: this might one returns return directly...
417 #convert from z to w
418 w = (self.TI@ z.reshape((3,-1))).flatten()
419 return w
420

421 def _wTOz(self,w):
422 #convert from w to z
423 z = (self.T @ w.reshape((3,-1))).flatten()
424 return z
425

426 def _zTOy(self,y,z):
427 #convert from z to y
428 y = y + self.d @ z.reshape((3,-1))
429 return y
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430

431 def print_statistics(self, verbose=NORMAL):
432 """
433 Prints the run-time statistics for the problem.
434 """
435 Explicit_ODE.print_statistics(self, verbose) #Calls the base class
436 self.log_message(' Number of J evaluations : ' + str(self.num_jac_evals), verbose)
437 self.log_message(' Number of LU decompos : ' + str(self.num_lu_decomps), verbose)
438 self.log_message('\n\n\n',verbose)
439

440

441 class Lobatto4ODE(RKS3CBase):
442

443 #-------- Method constants -----------
444 # T matrix
445 T = np.array([
446 [0.4072639531732107,-0.44308062047843144,0.31680119776208315],
447 [0.18547209365357897,0.1305271017756723,-0.38187534481524843],
448 [0.8942796961362183,0.735153359223255,0.0]
449 ])
450 # T inverse matrix
451 TI= np.array([
452 [1.0326372242409414,0.8566688421623923,0.47027336073401904],
453 [-1.2561549117980622,-1.0420976007887581,0.7881948366175593],
454 [0.07217833861373389,-2.558776912784013,0.49781525580043673],
455 ])
456

457 #eigen values gamma, alpha and betta
458 gamma = 2.6258168189584676
459 alpha = 1.6870915905207662
460 betta = -2.508731754924879
461

462 # c,d and b (see paper for reference)
463 c = np.array([0.,1/2.,1.])
464 d = np.array([0,0,1])
465 b = np.array([1/6,2/3,1/6])
466

467 #e used for one step error approximation
468 #e = np.array([-.5,2,-.5])-b
469 e = np.array([-4.0,0,-1]) #this is e A^-1
470

471 #free parameter a used in error estimation
472 a = 5
473

474 def __init__(self,problem):
475 RKS3CBase.__init__(self,problem)
476

477 #list for storeing error compairison if flag is set
478 self.err_comp = []
479

480 #overwrite z to y conversion to be more efficient
481 def _zToy(self,y,z):
482 return y + z[2*self.y_dim:]
483

484

485 #Method to calculate the coefficients for the error estimation
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486 def coef(self,r):
487 if abs(r-0.5)<0.09:
488 raise RadauError(f'Some internal error; the relative distance in step size is to close to 0.5, r:{r}')
489

490 #TODO: Optimize this method
491 #-devisor is always the same
492 #-delta3 = -delta1 -delta2
493 #-precalculate r^3 and r^2 (this might make it more efficient?)
494 r2 = r**2
495 r3 = r*r2
496 r4 = r*r3
497 div = 1/(4*r3 + 4*r2 + 3*r - 3)
498 beta1 = (12*r3 + 14*r2 + 21*r + 9)*div
499 beta2 = (16*r3 + 8*r2 - 12*r - 12)*div
500 beta3 = 0
501 delta1=(12*r3 + 9*r2 + 3*r)*div
502 delta2=(8*r4 - 24*r3 - 36*r2 - 12*r)*div
503 #delta3=(-8*r4 + 12*r3 + 27*r2 + 9*r)*div
504 return (beta1,beta2,delta1,delta2,-delta1-delta2)
505

506

507 def _normed_aprox_err(self,zk,y0,y1,n):
508 #calculate scaleing of error in the norm from hairer
509 sc = self.ATol + np.maximum(np.abs(y0),np.abs(y1))*self.RTol
510

511 #if we are in the first step
512 if self._first or self._do_comp_err:
513 #do one step error estimation
514 zpart = self.e[0] * zk[:n] + self.e[1] * zk[n:2*n] + self.e[2] * zk[2*n:]
515 ydiff = self.h*self.problem.rhs(self.t,y0)/self.gamma + zpart
516 self.statistics["nfcns"] += 1
517

518 #normalize error vector
519 mag = self._norm(ydiff,sc)
520

521 #if we want to compair the error to the two step error
522 if (not self._first):
523 beta1,beta2,delta1,delta2,delta3 = self.coef(self.r)
524 err_vec_tmp = self.a * (zk[2*n:] - (delta1*self.zkm1[:n] \
525 + delta2*self.zkm1[n:2*n] + delta3*self.zkm1[2*n:] \
526 + beta1 * zk[:n] + beta2 * zk[n:2*n]))
527 err = self._norm(err_vec_tmp,sc)
528 err_old = mag
529 #return err
530

531 self.err_comp.append((err ,mag,self.t,self.h))
532 if mag > 1:
533 self.statistics["nfcns"] += 1
534 mag = self._norm(self.h * self.problem.rhs(self.t,y0)/self.gamma + zpart,sc)
535

536

537 else:
538 err = mag
539 #if the step fails do more accurate error estimation
540 if err > 1:
541 self.statistics["nfcns"] += 1
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542 err = self._norm(self.h * self.problem.rhs(self.t,y0)/self.gamma + zpart,sc)
543 return err
544

545 else:
546 #do two step error estimation
547 #calculate coefficient
548 beta1,beta2,delta1,delta2,delta3 = self.coef(self.r)
549 #determine error vector
550 err_vec = self.a * (zk[2*n:] - (delta1*self.zkm1[:n] \
551 + delta2*self.zkm1[n:2*n] + delta3*self.zkm1[2*n:] \
552 + beta1 * zk[:n] + beta2 * zk[n:2*n]))
553 #normalize error
554 err = self._norm(err_vec,sc)
555 return err
556

557 def _adjust_h(self,err_mag,TOL = 1e-5,step_accept = True,itt = 0):
558 #function to adjust the step size
559 fac = 0.9 * (2*self.maxit+1)/(2*self.maxit+itt)
560 return fac * self.h * err_mag ** (-1/4)
561

562

563 if __name__ == '__main__':
564 #-----example usage-----
565 from assimulo.ode import Explicit_Problem
566 import matplotlib.pyplot as plt
567

568 #define the problem
569 g : float = 9.81
570 l : float = 0.5
571 theta : float = np.pi/2.
572 def rhs(t,y):
573 return np.array([
574 y[1],
575 np.sin(y[0])*g/l
576 ])
577

578 def J(t,y):
579 return np.array([
580 [0, 1],
581 [np.cos(y[0])*g/l,0]
582 ])
583

584 #--helper functions for calculating period
585 def arith_geo_mean(a,b):
586 while True:
587 a,b = (a+b)/2, np.sqrt(a*b)
588 yield a,b
589

590 from itertools import islice
591 def elliptic_integral(k,tol=1e-5,maxiter=100):
592 a_0,b_0 = 1.,np.sqrt(1-k**2)
593 for a,b in islice(arith_geo_mean(a_0,b_0),maxiter):
594 if abs(a-b) < tol:
595 return np.pi /(2*a)
596 else:
597 raise Exception('Algorithm did not converge')
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598

599 periode = 4*np.sqrt(l/g) * elliptic_integral(np.sin(theta/2),tol=1e-10)
600

601 #----Initialize Problem
602 pend_model = Explicit_Problem(rhs,y0=np.array([theta,0.]))
603 pend_model.name = 'Pendulum simulation'
604 pend_model.jac = J
605 pend_model.h = 0.01
606

607 #----Initialize Solver
608 # sim = Radau5ODE(pend_model)
609 sim = Lobatto4ODE(pend_model)
610 sim.h = 0.016
611 sim._do_comp_err = True
612 sim.maxit=10
613 #----Simulate the solver
614 t,y = sim.simulate(periode)
615 #----Show results
616 sim.plot()
617 plt.show()
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7.2 Experiment implementation
The following code is written by Robert Klöfkorn with the help of [11]

1 import numpy
2 import matplotlib
3 matplotlib.rc( 'image', cmap='jet' )
4 from matplotlib import pyplot
5

6 #########################################################
7 ## Assimulo imports
8 #########################################################
9 #import assimulo.solvers as aso

10 from Lobatto_IIIC_Assimulo import Lobatto4ODE
11 import assimulo.ode as aode
12 import assimulo.solvers as aso
13

14 #########################################################
15 ## DUNE imports
16 #########################################################
17 #from dune.grid import structuredGrid as leafGridView
18 from dune.grid import cartesianDomain
19 from dune.alugrid import aluCubeGrid as leafGridView
20 #from dune.alugrid import aluSimplexGrid as leafGridView
21 from dune.common import FieldVector
22 from dune.grid import reader
23 from dune.fem import parameter
24 #from dune.fem.space import dgonb as dgSpace
25 from dune.fem.space import dglagrangelobatto as dgSpace
26 from dune.fem.operator import molGalerkin as molGalerkin
27 from dune.fem.function import uflFunction, integrate
28 from dune.ufl import Constant
29 from ufl import TestFunction, TrialFunction, SpatialCoordinate, triangle, FacetNormal
30 from ufl import dx, ds, grad, div, grad, dot, inner, sqrt, exp, conditional, sin, cos
31 from ufl import as_vector, avg, jump, dS, CellVolume, FacetArea, atan, pi
32 from dune.femdg.rk import ssp3, euler
33

34 # useAssimulo = False
35 useAssimulo = True
36

37 # 3rd order 4-stage Runge-Kutta (R.Alexander)
38 Stepper = ssp3(4,explicit=False)
39

40 # Explicit/Implicit Euler
41 #Stepper = euler(explicit=False)
42

43 time = Constant(0., "time")
44 dt = Constant(0.005,"dt")
45

46

47 class SpatialOperator:
48 def __init__(self,form,space,cfl=0.45):
49 # create method of lines Galerkin operator from PDE form
50 self._op = molGalerkin( form )
51 self.cfl = cfl
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52 self.space = space
53 # discrete functions uTmp and vTmp
54 self.uTmp = space.interpolate([0], name='uTmp')
55 self.vTmp = space.interpolate([0], name='vTmp')
56 self.localTimeStepEstimate = [dt.value/self.cfl]
57

58 # v = L[u]
59 def apply(self, u, v):
60 self._op(u,v)
61 self.localTimeStepEstimate = [dt.value/self.cfl]
62 return
63

64 # jacobian of L[\bar{u}]
65 def jacobian(self, ubar):
66 from dune.fem.operator import linear as linearOperator
67 return linearOperator(self._op, ubar=ubar).as_numpy
68

69 # v = L[u]
70 def __call__(self,u,v):
71 self.apply(u,v)
72 return
73

74 # make current simulation time known to operator
75 def setTime(self, t):
76 time.value = t
77 self._t = t
78

79 def stepTime(self,t0, dt0):
80 global time
81 if hasattr(self._op.model, "time"):
82 print(f"Setting time to {self._t} + {t0 * dt}")
83 self._op.model.time.value = self._t + t0 * dt
84 else:
85 time.value = self._t + t0 * dt
86 # set time to model time if available
87 # since time is not in the form we don't need this here
88 #if hasattr(self._op.model,"time"):
89 # print("Model has time")
90 #elif hasattr(self._op.model,"t"):
91 # print("Model has t")
92

93 def applyLimiter(self, u):
94 pass
95

96 ####################################################
97 # rhs function for Assimulo forwarding to apply
98 ####################################################
99 def rhs(self, t, y):

100 """ Function that calculates the right-hand-side. Depending on
101 the problem and the support of the solver, this function has
102 the following input parameters:
103

104 rhs(t,y) - Normal ODE
105 """
106 ## set time for PDE operator
107 self.setTime(t)
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108 # copy content of y into uTmp
109 self.uTmp.as_numpy[:] = y[:]
110 # apply spatial discretization operator L
111 self.apply(self.uTmp, self.vTmp)
112 # store result in y
113 yn = y.copy()
114 yn[:] = self.vTmp.as_numpy[:]
115 return yn
116

117 def jac(self, t, y, sw=None):
118 # copy content of y into uTmp
119 self.uTmp.as_numpy[:] = y[:]
120 return self.jacobian( self.uTmp ).toarray()
121

122 parameter.append({"fem.verboserank": 0})
123

124 ##########################################################
125 ##
126 ## Spatial discretization
127 ##
128 ##########################################################
129

130 domain = cartesianDomain([0, 0], [1, 1], [20, 20])
131 gridView = leafGridView(domain, dimgrid=2 )
132 space = dgSpace(gridView, order=2, storage="fem")
133

134 u = TrialFunction(space)
135 v = TestFunction(space)
136 n = FacetNormal(space)
137 he = avg( CellVolume(space) ) / FacetArea(space)
138 hbnd = CellVolume(space) / FacetArea(space)
139 x = SpatialCoordinate(space)
140

141 center = as_vector([ 0.5,0.5 ])
142 x0 = x[0] - center[0]
143 x1 = x[1] - center[1]
144

145 ux = -4.0*x1
146 uy = 4.0*x0
147

148 # diffusion factor
149 epsilon = 0.001
150

151 # transport direction and upwind flux
152 b = as_vector([ux,uy])
153 def u0(x,t):
154 sig2 = 0.004
155 sig2PlusDt4 = sig2+(4.0*eps*t)
156 xq = ( x0*cos(4.0*t) + x1*sin(4.0*t)) + 0.25
157 yq = (-x0*sin(4.0*t) + x1*cos(4.0*t))
158 return (sig2/ (sig2PlusDt4) ) * exp (-( xq*xq + yq*yq ) / sig2PlusDt4 )
159

160 # transport direction and upwind flux
161 #b = as_vector([1,1])
162

163 #def u0(xp,t):
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164 # res = 1.
165 # for d in range(len(xp)):
166 # res *= sin(2.*pi *(xp[d] - t))
167 # return res
168

169

170 # upwind (same as LLF in this case)
171 hatb = (dot(b, n) + abs(dot(b, n)))/2.0
172

173 # diffusion factor
174 eps = Constant(epsilon,"eps")
175

176 # penalty parameter for DG scheme
177 beta = Constant( 10*space.order**2 if space.order > 0 else 1,"beta")
178

179 # exact solution
180 exact = uflFunction(gridView, name="exact", order=3, ufl=u0(x,time))
181

182 # d_t u + div( F(u) - eps grad u) = 0
183 # integration by parts on spatial terms yields
184 aInternal = inner(eps*grad(u) -b*u, grad(v)) * dx
185 advSkeleton = jump(hatb*u)*jump(v)*dS \
186 +(hatb*u + (dot(b,n)-hatb)*exact)*v*ds
187

188 # B(u,v) = \int_\Omega grad(u)*grad(v)
189 # - \int_\Omega { grad(u) } * [ v ] + [ u ] * { grad(v) }
190 # + \int_\Gamma \eta*h^-1 [ u ] * [ v ]
191 #
192 # interior skeleton
193 diffSkeleton = -eps*inner(jump(u,n), avg(grad(v)))*dS \
194 -eps*inner(avg(grad(u)),jump(v,n))*dS \
195 +eps*beta/he*jump(u)*jump(v)*dS
196 # boundary skeleton
197 diffSkeleton += -eps*(u-exact)*dot(grad(v),n)*ds \
198 -eps*dot(grad(u),n)*v *ds \
199 +eps*beta/hbnd*(u-exact)*v*ds
200 #rhs = eps*8.*pi*pi* inner(exact,v) * dx
201

202 # minus since we are solving d_t u = L[u]
203 # which leads in the simplest form to
204 # unew = uold + dt * L[uold]
205 # However, in dune-fem we assume that
206 # d_t u + L[u] = 0
207 # therefore we implement -L[u] since we solve
208 # something like d_t u = -L[u]
209 form = -(aInternal + advSkeleton)
210 if abs(epsilon) > 0:
211 form -= diffSkeleton
212 # form += rhs
213

214 ## Create right hand side operator
215 op = SpatialOperator(form, space, cfl=0.25)
216

217

218 error0 = 0.
219 eoc = 0
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220

221 # 3 EOC loops
222 for i in range(2):
223 t = 0
224 op.setTime( t )
225 time.value = t
226

227 # interpolate exact solution onto discrete space
228 uh = space.interpolate( exact, name="solution")
229 #uh.plot()
230

231 # write initial data
232 gridView.writeVTK("adv",number=0,celldata=[uh],pointdata=[uh,exact])
233

234 # T
235 endTime = 0.25
236

237 # time derivative
238 if useAssimulo:
239 # uh.plot()
240 y0 = numpy.zeros( uh.size )
241 y0[:] = uh.as_numpy[:]
242

243 AdvDiff = aode.Explicit_Problem(op.rhs, y0, 0.)
244 AdvDiff.name = 'Rotating Pulse'
245 AdvDiff.h = dt.value
246 AdvDiff.jac = op.jac
247

248 ###Choose which solver to use
249 #solver = aso.RungeKutta34(AdvDiff)
250 solver = Lobatto4ODE(AdvDiff)
251 #solver = aso.Radau5ODE(AdvDiff)
252 solver.report_continuously = True
253

254 solver.atol = 1e-5
255 solver.rtol = 1e-5
256 solver.h = 0.0001
257 #Option for our Lobatto method
258 #solver._dynamic_step = False
259

260

261 t, y = solver.simulate(endTime)
262

263

264 # copy last solution back to uh
265 uh.as_numpy[:] = y[-1][:]
266 else:
267 stepper = Stepper(op, cfl=op.cfl)
268

269 uh_n = uh.copy()
270 while t < endTime:
271 stepper( uh, dt.value )
272 t += dt.value
273 op.setTime( t )
274 print(f"time = {t}, dt = {dt.value}")
275
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276 #safe result
277 gridView.writeVTK("adv",number=1,celldata=[uh],pointdata=[uh,exact])
278

279 # compute L2 error
280 error1= numpy.sqrt( integrate(gridView,dot(uh-exact,uh-exact),order=6))
281

282 # plot solution
283 #uh.plot()
284 # exact.plot()
285

286 # compute EOC
287 if i > 0:
288 eoc = [ numpy.log(error1/error0) / numpy.log(0.5) ]
289 print(f"Step {i}: L2-error {error1} | EOC {eoc}")
290 error0 = error1
291

292 # refine grid to half grid size (delta x)
293 gridView.hierarchicalGrid.globalRefine(1)
294 # adjust time step size
295 dt.value *= 0.25
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