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Abstract

In 1993, Per Bak and Kim Sneppen proposed a model of co-evolution be-
tween species, where survival of a particular species affects the survival of its
neighbouring species. In the discrete case of the model, each species, or an
entry in a set with periodic boundary conditions, is an element xi ∈ {0, 1},
in the set of size N , where xi represents the fitness. An entry of the least
fitness is chosen and replaced together with its two neighbours each with
Bernoulli(p), p ∈ (0, 1) random variables. If the parameter p is larger than
some pcr [1], the whole set is consumed with 1.

In this paper, we study the generalizations of the discrete case of Bak-
Sneppen model and evaluate pcr both analytically and numerically. For that
end, we first examine the case where in each iteration a vertex xi and its
both neighbours xi−1, xi+1 are replaced by the same Bernoulli(p) variable.
Then, we study the case where the type of the model - whether the entry
is replaced alone or with its neighbours - is determined by a Bernoulli(r)
variable. Finally, we find a non-trivial pcr for a 2-dimentional set of entries.
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Introduction

Historical Background
The term ”self-organised criticality” was coined by the physicist Per Bak in
his 1987 paper ”Self-organized criticality: an explanation of 1/f noise”, which
describes a property of scale-invariance in dynamic systems as they move to-
wards the critical point of a phase transitions. There he shows that the power
laws of pink noise can be modelled by the dynamic of self-organised critical
state of minimally stable clusters. [5]

This phenomenon is later explored in the paper ”Punctuated equilibrium
and criticality in a simple model of evolution” [6], where Per Bak and Kim
Sneppen apply self-organised criticality to explain the theory of punctuated
equilibrium. This theory says that that species stay in stasis until a major
rapid change occurs, which invokes a change in species - either mutations or
appearance of new ones. Each species is represented by a particular fitness,
which is a parameter describing its ability to survive. Imitating the real-life
setting, each species fitness depends on some other species fitness, and when-
ever a rapid change in the system occurs, the change of ”connected” species
is likely to change together.
Motivated by the complexity of the original Bak-Sneppen model, multiple
researches explored its discrete case. The main interest for the studies is the
phase transition between the two states of the system - when it is consumed
by species with fitness 0, by species with fitness 1. In this paper, we look at
several generalizations of the discrete Bak-Sneppen model and try to evalu-
ate numerically and analytically the moment of the phase transition for each
of them.
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Overview
The discrete case of the model is represented by the following design.
In the set N of n Bernoulli(p) variables xi ∈ {0, 1} with periodic boundary
conditions, each vertex represents a fitness of a species. At a discrete time
step ti, a vertex with the least fitness, typically a zero, is chosen, and together
with its two neighbours replaced by three new Bernoulli(p) variables. A
neighbour can be a zero or a one, it must not necessarily be a zero. If
there are no zeros in the set, then the least fitness vertex will be one. The
same algorithm is repeated at ti+1, for the updated setting. The setting xii
for i → ∞ is a Markov Chain that converges to the stationary distribution
π(n)(p) [1], where p is the parameter of a Bernoulli distribution, equal to a
probability of replacing the least fitness vertex with a ”1”.

Definition 0.0.1 A stationary distribution is a distribution that remains
unchanged after a shift of the time scale.

This definition is partially taken from [9].
Then by [1], the probability of one randomly chosen vertex being a ”1” is

νn(p) =
∑

xi∈{0,1}
πn(p) · 1xi=1

Furthermore, for a particular parameter p of Bernoulli(p), after multiple
repetitions, the zeros in the set will not survive, and the model will implode
to ones. That is, the probability ν(p) of a randomly chosen vertex in the set
being one will tend to 1 as the number n of repetitions will tend to infinity.

lim
n→∞

νn(p) = 1

Intuitively, such a critical value would be somewhere between 0.6 and 1.
But the simulations indicate that the phase transition is happening at the
value p ≈ 0.36.
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On this graph, we see the fraction of ”1” in the set of length 100, after 10000
repetitions of the algorithm described above. Before some value pc of p, the
fraction ν(p) is increasing, but after pc it is approximately 1.
Multiple researches attempt to pinpoint the critical value for this classical
discrete case, and the closest approximation found so far is 0.41 by S. Volkov
[1]. In this paper, we attempt to find the upper bound p∗ for the critical
value for the following variations of the model:

• Solidarity. We assume that the least fitness species and its neighbours
are all replaced by the same Bernoulli(p) variable. The simulations
show that the upper bound p∗in this case should be around 0.2. We
attempt to find it analytically.

• Sometimes, just itself. We add a level to the algorithm. Now, we
introduce a new parameter, r ∈ [0, 1]. At each time step, we either re-
place the least fit species according to the original Bak-Sneppen model
with probability 1 − r, or we replace it solely without its neigbours,
with probability r. The goal is to find a pcr(r) as a function of r, if
that is possible.

• Two particular cases. We find the upper bound for the cases where
n = 4, n = 5.

• Ladder. We extend the discrete Bak-Sneppen model to a two-dimensional
case.

The reason why these generalizations are interesting is because to my knowl-
edge, no one has done that before, and since the upper bound for the classical
discrete Bak-Sneppen model is counter-intuitively small, one would possibly
expect the generalizations to also behave in a curious manner.
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Mechanism
Let ξ(t) denote the configuration of a set of size n at a time step t, and let
Z(t) be a set of indices that satisfies the following properties:

1. ξk(t) = 1 for all k /∈ Z(t)

2. Z(t) has the smallest number of elements among such sets

3. Z(t) has periodic boundary conditions

In every case above, we define Dt =card(Z(t)) as the largest distance between
the leftmost and the rightmost zero.

Definition 0.0.2 (Cardinality) A cardinality of a set is the number of en-
tries in that set.

For example,
ξ(t1) = (1, 0, 1, 0, 0, 0), Dt1 = 5
ξ(t2) = (1, 0, 0, 0, 0, 0), Dt2 = 5
ξ(t3) = (1, 1, 1, 0, 0, 0), Dt1 = 3

In [1] and [2], the following method was used. At each time step, when
the configuration changes from ξ(t) to ξ(t + 1), we find the shift Dt+1 −Dt

in the cardinality of the set .
If at the time step t : t+1 the distance between the left- and the rightmost

zero increases by 1, we say that Dt+1 −Dt = 1. We then try to bound Dt+1
from above by the function Mt+1. For all tasks in this thesis except for the
last one we define Mt+1 as follows:

Mt+1 = Dt+1 − β(1R + 1L),
where R means that the entry to the right of the leftmost zero is also

zero, and L means that the entry to the left of the rightmost zero is zero.
The role of β ∈ [0, 1

2 ] is to ”tune” Mt+1. When there are a lot of zeros at the
border, the chances of these zeros being replaced by ones are higher, so we
subtract β to counteract this notion.
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Definition 0.0.3 (Martingale) A discrete-time martingale is a stochastic
process for which the conditional expectation of the next state given all pre-
vious to it observations is equal to its current state.

E(Xn+1|X1, X2, ..., Xn) = Xn

Definition 0.0.4 (Supermartingale) A discrete-time supermartingale is
a stochastic process for which the conditional expectation of the next state
given all previous to it observations is less or equal than its current state.

E(Xn+1|X1, X2, ..., Xn) ≤ Xn

Let I(t) ∈ Z(t) denote the set of indices [1, .., k] that satisfy the following
properties:

1. I1(t) = Z3(t)

2. Ik(t) = Zn−2(t)

Suppose that Dt ≤ 6, Then by [1], Mt+1 ≤Mt on I(t), while on it /∈ I(t),
for p > pcr and some ε(p) > 0, it holds that

∆t+1 = E(Mt+1 −Mt|F) < −ε
In this equation, M is a supermartingale. We are aiming at finding such

pcr that ensures that ∆t+1 < 0, that is, the smallest pcr for which I(t) will
decrease in size.
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Solidarity

In this task, we assume that instead of drawing 3 different variables from
the Bernoulli(p) distribution and replacing the entries with them, the new
variable is drawn once for all 3 elements.

First we look at the case where Di < n.
When choosing a zero that is close to the left corner, there exist 4 possible
outcomes ξ, listed below. The reason they look like this is because the
leftmost element of I(t) should be 0 to satisfy the conditions, and the two
elements that follow it can be any configuration of 0 and 1.

ξ00 = (1, 1, 1, 0, 0, 0...)

ξ11 = (1, 1, 1, 0, 1, 1...)
ξ01 = (1, 1, 1, 0, 0, 1...)
ξ10 = (1, 1, 1, 0, 1, 0...)

Then the drift ∆t+1 = E(Mt+1−Mt|F) in each of these cases will be bounded
from above by:

T00 = (1− p) + p(−2 + β) + p(−3 + β) + pβ

T11 = (1− β)(1− p)− 3p
T01 = (1− p)−+p(−3 + β) + p(−3 + β)
T10 = (1− β)(1− p)− 2p− β(1− p)]

The calculations above are illustrated in the figures in the end of the
section.
In order to compute the value of p that will be the largest possible so that
T’s are non-positive, the latter are represented as functions of p ∈ [0, 1] and
β ∈ [0, 1

2 ].
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Then we take the projections of T’s on the XY plane (where p is rep-
resented by x, and β is represented by y), and find the largest p on the
intersection of the areas that correspond to the negative values of T.

We separate the area for which all T’s will be non-positive:

From the plot it is visible that the point of intersection between T00 and
T11 contains the smallest possible p so that all T’s are non-positive. Solving
T00 = 0 and T11 = 0 for (p, β) gives: p = 0.1937, β = 0.2792.(1− p) + p(−2 + β) + p(−3 + β) + pβ = 0

(1− β)(1− p)− 3p = 0
⇐⇒

1− 6p+ 3pβ = 0
β = 1− 3p

1−p

⇐⇒

1− 3p− 9p2

1−p
= 0

β = 1− 3p
1−p

⇐⇒

1− 4p− 6p2 = 0
β = 1− 3p

1−p

For the case where Dt = n : δt+1 = E(Mt+1−Mt|F) = (−3−β)p−β(1−
p) = −3p− β < 0. The drift for this case is negative for any pair (p, β) .

The simulations show the fraction of 1’s in several sequences of length L
after n iterations. It is easy to notice that as the number of iteration increase,
the value p = p∗ is more visible to be around 0.2.
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0.1 Calculations for the Solidarity model

T00

Probability x = (11000*...) D = M(t+1)-M(t)

1st 0:  (1-p) (10000*...) 1

p (11110*...) -2 + b

2nd 0: (1-p) (11000*...) 0

p (11111*...) <= -3 + b

3d 0: (1-p) (110000...) 0

p (110111...) beta

T01

Probability x = (11001*...) D = M(t+1)-M(t)

1st 0:  (1-p) (10001*...) 1

p (11110*...) -2 + b

2nd 0: (1-p) (11000*...) 0

p (11111*...) <= -3 + b

T11

Probability x = (11011*...) D = M(t+1)-M(t)

1st 0:  (1-p) (10001*...) 1 - b

p (11111*...) <= -3

T10

Probability x = (11010*...) D = M(t+1)-M(t)

1st 0:  (1-p) (10000*...) 1 - b

p (11110*...) -2

2nd 0: (1-p) (110000*...) -b

p (110111...) 0
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Sometimes, just itself

In this section, we combine the classical Bak-Sneppen model with a new
model, called «just itself», where only a single zero is replaced by 0 or 1.
First, we draw a random Bernoulli(r) variable to determine which algo-
rithm to use. With probability r we replace just the chosen zero with a
new Bernoulli(p) variable, and with probability (1-r) we replace the chosen
zero together with its two neighbours, each is replaced independently by a
Bernoulli(p) random variable.
The objective now is to study how pcr depends on p and r, and to estimate
the upper bound p∗ for the critical value pcr as a function of r.
First we compute the boundaries for the drift ∆t+1. Since for every config-
uration of 0 and 1 there are four possible settings for the beginning of the
sequence, starting from the left, we consider four possible upper boundaries,
for each of the cases. We denote them Ti,j, where i, j ∈ (0, 1), for the se-
quences starting with (11000), (11001), (11010), (11011), just as in the pre-
vious section.
Since this section deals with the conditional expectation, the general formula
for Ti,j will be of the form:

Ti,j = (1− r) · Toriginal + r · Tjust−itself

The new Ti,j are now:

T10 = 1
2(1−r)[(1−p)3(1−2β)+p(1−p)2(2−4β)+p2(1−p)(−2β)+p3(−2)]+1

2r(−2p),

T01 = 1
2(1−r)[(1−p)3+(1−p)2p(1+2β)+(1−p)p2(6β−3)+p3(−6+3β)]+1

2r(−p+2pβ),

T00 = 1
3(1−r)[(1−p)3+(1−p)2p(1+3β)+(1−p)p2(7β−3)+p3(−5+3β)]+1

3r(pβ−p),

T11 = (1− r)[(1− p)3(1− β) + (1− p)2p(2− 2β)− p3]− 3pr,

11



see the calculations on the bottom of this section.

Now Ti,j are the functions that bound the drift for every of the four cases
from above, so we set them equal to zero and find the smallest p∗(r) such
that for every p(r) > p∗(r) it holds that T (p(r), β) < 0 on p ∈ [0, 1], r ∈
[0, 1], β ∈ [0, 1

2 ]
T00, T11 are the two largest functions which projections on the (p, β) plane

intersect at the point pcr which is the smallest p for which T00, T11 are nega-
tive. Solving the equation T00 = T11 = 0 for β gives

β = −4p3r − 4p3 + p2r − p2 − 7pr − p− 2r + 2
2p3r − 2p3 − 2p2r + 2p2 − pr + 3r − 3

β(p, r) from
different angles

Substituting β into T00 or T11 we get

Q = p5r2−2p5r+4p4r2+p5−8p4r−p3r2+4p4−p3r−3p2r2+2p3+3p2r+3p2−r2+2r−1.

Setting Q = 0 and solving for r we get

r(p) = 2p5 + 8p4 + p3 − 3p2 − 2±
√
−12p7 − 39p6 + 30p5 + 45p4 + 12p2

2(p5 + 4p4 − p3 − 3p2 − 1) ,

Since r is the probability that lies withing the range[0,1], we only consider
the first solution to the equation, where the square root is positive (otherwise
r is negative.)

p(r) = 2p5 + 8p4 + p3 − 3p2 − 2 +
√
−12p7 − 39p6 + 30p5 + 45p4 + 12p2

2(p5 + 4p4 − p3 − 3p2 − 1)

From r(p) we can differentiate the upper bound for p(cr) implicitly by
taking its inverse r−1(p) on p ∈ [0, 1], r ∈ [0, 1] :
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For r = 0, p that lies within the range [0, 1] is equal to that of a classical
Bak-Sneppen model (0.4549286537), and for r = 1, p is equal to 0, meaning
that for every p it will hold true that limn→∞ ν

(n)(p) = 1

Calculations for the ”Sometimes, just itself”
model
The calculation for the drifts for the original case were taken from the article
[1]. For the «just itself» model:

T00

Index of zero picked Probability Setting Drift
1 (1− p) 11000 0

p 11100 −1
2 (1− p) 11000 0

p 11010 β
3 (1− p)2p 11000 −β

p 11001 0

T00 = 1
3(−p+ pβ)

T10

Index of zero picked Probability Setting Drift
1 (1− p) 11010 0

p 11110 −2
2 (1− p) 11010 0

p 11011 0
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T10 = 1
2(−2p)

T01

Index of zero picked Probability Setting Drift
1 (1− p) 11001 0

p 11101 −1 + β
2 (1− p) 11001 0

p 11011 β

T01 = 1
2(−p+ 2pβ)

T11

Index of zero picked Probability Setting Drift
1 (1− p) 11011 0

p 11111 −3

T11 = (−3p)
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Two particular cases

Now we are trying to estimate ν(p), the fraction of ”1”’s, as a function of
p for the length n = 4, n= 5 of the set with periodic boundary conditions,
where the states are changing according to the solidarity model.
First we consider the case where n =4. The possible states are (0000), (0001), (1110),
(1111). This is because 3 entries are changed at once so it’s possible to only
change to the states where there are 3 identical entries in a row. The fol-
lowing table shows the transition probabilities from the states represented in
the columns to the states in the rows:

0000 0001 1110 1111
0000 1− p 2

3(1− p) 0 0
0001 0 1

3(1− p) 1− p 1− p
1110 p 2

3p 0 0
1111 0 1

3p p p

Solving πP = π′, where P is the transition matrix with an added column
[1111]T for the condition π1 + π2 + π3 + π4 = 1 and π is the vector of
probabilities, we get

[π1 π2 π3 π4]·


1− p 0 p 0 1

2
3(1− p) 1

3(1− p) 2p
3

p
3 1

0 (1− p) 0 p 1
0 (1− p) 0 p 1

 = [π1 π2 π3 π4 1] =

[2(p2 − 2p+ 1)
p+ 2

−3p(−1 + p)
p+ 2

−2p(−1 + p)
p+ 2

3p2

p+ 2]

We find the expectation from this distribution, by introducing the new
variable xi that represents the fraction of ”1” in state i, and multiplying it
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with the corresponding probabilities:

ν(p) =
4∑

i=1
πi·xi = 2(p2 − 2p+ 1)

p+ 2 ·0+−3p(−1 + p)
p+ 2 ·14+−2p(−1 + p)

p+ 2 ·34+ 3p2

p+ 2 ·
4
4

= −9p(−1 + p)
4(p+ 2) + 3p2

p+ 2

= 3p2 + 9p
4(p+ 2) .

Plotting the graph of this function:

ν(p), n = 4.

Now we consider the case where n=5. The possible states of the process
are (00000), (00001), (00011), (00111), (01111), (11111). The transition ma-
trix for these states is:

00000 00001 00011 00111 01111 11111
00000 1− p 1

2(1− p) 0 0 0 0
00001 0 1

2(1− p) 2
3(1− p) 0 0 0

00011 0 0 1
3(1− p) 1− p 1− p 1− p

00111 p 1
2p

1
3p 0 0 0

01111 0 1
2p

1
3p 0 0 0

11111 0 0 1
3p p p p

Solving πP = π′ for π, where P is the transition matrix with an added
column [111111]T for the condition π1 + π2 + π3 + π4 + π5 + π6 = 1 and π
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is the vector of probabilities, we get

[π1 π2 π3 π4 π5 π6 1]·



1− p 0 0 p 0 0 1
1
2(1− p) 1

2(1− p) 0 1
2p

1
2p 0 1

0 2
3(1− p) 1

3(1− p) 1
3p

1
3p

1
3p 1

0 0 1− p 0 0 p 1
0 0 1− p 0 0 p 1
0 0 1− p 0 0 p 1


=

[π1 π2 π3 π4 π5 π6] =

[− 2(−1 + p)3

p2 + 3p+ 2
4p(−1 + p)2

p2 + 3p+ 2
−3p3 + 3p
p2 + 3p+ 2

2p(−1 + p)2

p2 + 3p+ 2
−4p2(−1 + p)
p2 + 3p+ 2

3p3 + 3p2

p2 + 3p+ 2]

The expectation is therefore

ν(p) =
4∑

i=1
πi · xi

= 0 · − 2(−1 + p)3

p2 + 3p+ 2 + 1
5 ·

4p(−1 + p)2

p2 + 3p+ 2 + 2
5 ·
−3p3 + 3p
p2 + 3p+ 2 + 3

5 ·
2p(−1 + p)2

p2 + 3p+ 2

+4
5 ·
−4p2(−1 + p)
p2 + 3p+ 2 + 5

5 ·
3p2(1 + p)
p2 + 3p+ 2

= 10p(−1 + p)2

5p2 + 15p+ 10 + 2(−3p3 + 3p)
5p2 + 15p+ 10 −

16p2(−1 + p)
5p2 + 15p+ 10 + 15p2(1 + p)

5p2 + 15p+ 10

= 35p3 − 21p2 + 16p
5p2 + 15p+ 10 .

ν(p), n = 5.
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We see that for N=5 the dependency looks slightly closer in shape to that
in the Solidarity model, because the multiplicity of p is higher.
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Ladder

Now we look at a two-dimensional case of the model, called a ladder. A
ladder is a graph with the vertices (i, j), where j = 0, 1, and i = 0, 1, .., n, so
that x(i,j) is connected with x(i−1,j), x(i+1,j), x(i,1−j)

C is connected with A, D and E

Just like before, we use the function T that bounds the drift from above,
but this time with no correction β, in order to simplify the calculations.
Looking at the left-hand side, there are several possibilities for the initial
setting. They are:

ξ1 = 1 1 1 1
1 1 0 1 ,

ξ2 = 1 1 0 1
1 1 0 1 ,
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ξ3 = 1 1 0 1
1 1 0 0 ,

ξ4 = 1 1 0 1
1 1 1 0 ,

ξ5 = 1 1 0 0
1 1 0 0 ,

ξ6 = 1 1 0 0
1 1 1 1 ,

ξ7 = 1 1 1 0
1 1 0 0 .

For this case, let ξ(i,j)(t) be a vertex of the set N with coordinates (i, j)
at time t, and let Z(t) be a 2-dimensional set of indices that satisfies the
following properties:

1. ξ(k,m) = 1 for all i, j /∈ Z(t),

2. Z(t) has the smallest number of elements among such sets,

3. Z(t) has periodic boundary conditions.

That is, Z(t) constitutes a rectangular array of indices to all columns of
the discrete set that have at least one 0. The corresponding one-dimensional
subset I(t) = [1, .., k] will be defined as follows:

1. I1(t) = Z(3,j)(t)

2. Ik(t) = Z(n−2,j)(t)

Then on any vertex i /∈ I(t), for some ε(p) > 0, when p > pcr, it holds that

∆t+1 = E(Mt+1 −Mt|F) < −ε

In each of the cases ξi above it is possible to choose the element with the
least fitness randomly, and this fact is taken into account while calculating
Ti.
Writing out the Ti functions for every of the cases, we get:

T1 = (1− p)4 + 3p(1− p)3 + 0 · (1− p)p3 + 3(1− p)2p2 − 2p4
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T2 = (1− p)4 + 3p(1− p)3 + 0 · (1− p)p3 + 3(1− p)2p2 − 2p4

T3 = 2
3(1− p)4 + 2p(1− p)3 + 0 · (1− p)p3 + 2(1− p)2p2 − p4

T4 = 1
2(1− p)4 + 3

2p(1− p)
3 + 0 · (1− p)p3 + 3

2(1− p)2p2 − 1
2p

4

T5 = 1
2(1− p)4 + 3

2p(1− p)
3 + 0 · (1− p)p3 + 3

2(1− p)2p2 − 1
2p

4

T6 = 1
2(1− p)4 + p(1− p)3 − 2(1− p)p3 − 5

2p
4

T7 = 1
3(1− p)4 + 2

3p(1− p)
3 − 4(1− p)p3 − 4p4

Now we try to find such value of p that for each p > p∗ ≤ pcr, all Ti(p)
will be negative. Observing that T1 = T2 and T4 = T5, we plot T1, T3, T4, T6
and T7 and see that T4 is the greatest function that intersects the p axis at
the point pcr such that (T1(pcr), T3(pcr)) < 0.

Solving T4 = 0 on p ∈ [0, 1], we get p∗ ≈ 0.68233.
Running the computer simulation for a ladder of length 1000 with 10000

repetitions for p = 1
100 ,

2
100 , ..,

100
100 , we get the following result:
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According to the graph, after p that is approximately equal to our result,
the fraction of ”1” in the ladder asymptotically approaches 1. It implies that
the analytical result is correct. We therefore fond the upper bound p∗ > pcr

for the parameter p that is smaller than a trivial upper bound.
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