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Abstract 

Background: Tumour-infiltrating lymphocytes (TILs) that persist in chronic infections gradually 

lose their effector functions and become “exhausted”. Immune checkpoint blockade is an 

emerging cancer treatment which aims to induce exhausted TILs into regaining their effector 

function to fight neoplastic cells. However, response to treatment varies significantly between 

different cancer types and may be the result of cancer specific TIL populations within the 

tumour microenvironment.  

Purpose: to investigate and compare CD8+ TIL populations in three carcinomas (hepatocellular, 

non-small-cell lung and breast carcinoma) and their relative prevalence.  

Materials & Methods: Single-cell RNA sequencing (scRNA-seq) datasets from three studies 

concerning TIL gene expression were imported into Seurat, a scRNA-seq analysis package 

written for R Studio. Datasets were integrated and clustered to identify differentially expressed 

genes for each cluster. A pseudotemporal analysis was performed to suggest the evolutionary 

pathway for the TILs.  

Results: CD8+ TIL populations with ‘effector’, ‘effector-memory’ and proliferating signatures 

were found in all three carcinomas. ‘Pre-exhausted’ cells previously defined in non-small-cell 

lung carcinoma were shown to be more common in breast carcinoma; conversely ‘exhausted’, 

‘naïve-like’ and CD20+CD8+ TILs were more common in lung carcinoma. ‘MAIT’ lymphocytes 

were particularly enriched in hepatocellular carcinoma samples. 

Conclusions: Most of the identified lymphocyte populations possess anti-neoplastic functions 

that may potentially be exploited for the development of future precise cancer-specific 

immunotherapies. However, explaining why the populations were present in different 

proportions in the cancer types is challenging because the original studies used different 

scRNA-seq technologies. Instead, the analysis provides a useful framework for future 

comparisons between scRNA-seq datasets once more studies will be available.  

 

258 words  
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Svensk populärvetenskaplig sammanfattning 

Cancer är en sjukdom där celler i kroppen för förmågan att dela sig okontrollerat, vilket 

bildar svulster som påverkar kroppens funktion eller som sprider sig till andra kroppsdelar.  

Eftersom det är ett stort hälsoproblem så har forskare försökt ta fram nya angreppspunkter mot 

tumörer förutom metoder som cellgifter, cellskadande strålning eller kirurgi. 

Immunförsvaret är ett antal olika celler och lösta ämnen som bekämpar främmande 

smittämnen i kroppen, där de vita blodkropparna hör till. Cancerceller, som är egentligen 

främmande celler, borde dödas av de vita blodkropparna men har en unik egenskap att undvika 

destruktion. Detta sker bland annat genom att vita blodkroppar som kämpat länge mot 

cancercellerna får signaler från omgivningen att trappa ner försvaret och blir ”utmattade”. Detta 

behövs för att undvika förödelse under vanliga infektioner men låter dessvärre cancerceller leva 

vidare. 

Nya läkemedel har utvecklats som kan stoppa signalerna som gör vita blodkroppar 

”utmattade” så att de kan vakna igen och förgöra cancern. Däremot är det oklart varför de inte 

fungerar mot alla sorters cancer. Man undrade om de vita blodkropparna har olika egenskaper 

beroende på vilken sorts cancer man har. Förutom ”utmattade” vita blodkroppar har kroppen 

även ”toxiska” blodkroppar som angriper cancercellerna direkt, ”minnes-blodkroppar” som lever 

i flera år och reagerar ifall cancern dyker upp igen eller ”naiva” blodkroppar som aldrig stött på 

cancerceller tidigare.  

För att iaktta om sammansättningen av de vita blodkropparna skilde sig mellan cancrar så 

jämförde jag vita blodkroppar från lever-, lung- och bröstcancer. Jämförelsen byggde på vilka gener 

blodkropparna uttryckte. En gen är ett arvanslag och olika blodkroppar uttrycker olika gener för 

att erhålla sin funktion. Genom att studera generna kunde jag dela in blodkropparna i olika 

kategorier.  

Resultaten visade att ”toxiska” blodkroppar och ”minnes-blodkroppar” fanns i ungefär 

lika stor utsträckning i alla cancertyperna. Lungcancer innehöll mer ”utmattade” celler och celler 

som kunde vara ”naiva”, medan bröstcancern hade flest celler som verkade vara ”på väg att 

utmattas”. Eftersom studierna hade använt olika metoder för att samla in informationen om 

generna var det svårt att förklara skillnaderna, men resultaten visade att en jämförelse mellan helt 

skilda studier var möjlig. Slutsatsen var att det finns både möjlighet för universella och cancer-

specifika läkemedel för vita blodkroppar; framtida studier kommer förmodligen upptäcka fler 

skillnader när det finns mer data att jämföra.   
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1 Introduction 

1.1 The Role of Tumour-Infiltrating Lymphocytes in Cancer 

T cells are a core part of the adaptive immune response and include naïve lymphocytes 

(circulating antigen-specific T cells which have never met their antigen), activated lymphocytes (T 

cells which have encountered their antigen and acquired effector functions) and memory 

lymphocytes (T cells that have responded to the antigen, that persist long-term and that can 

proliferate vigorously following antigen re-encounter)1-3. These lymphocytes defend against 

pathogens but can also react against cancer cells. Tumour-infiltrating lymphocytes (TILs) are 

cancer-reactive lymphoid T cells that migrate to and surround solid tumours. They are part of the 

host response against cancer and include CD4+ regulatory T cells (Tregs), CD4+ TH1-like T cells and 

cytotoxic CD8+ T cells4-6.  

Conversely, the ability of tumour cells to evade immune destruction is a recent addition to 

the classic ‘hallmarks of cancer’ 7. One way this is achieved is by inducing CD8+ T cells in the 

tumour microenvironment into gradually losing their effector functions so that they become 

exhausted8. Exhausted CD8+ T cells are a class of dysfunctional T cells, together with anergic and 

senescent T cells. They are generated when cytotoxic lymphocytes increase the expression of 

inhibitory receptors, also known as immune checkpoints, after chronic exposure to tumour 

antigens8,9. This growing family of receptors include Programmed cell death protein 1 (PD-1), 

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), Hepatitis A virus cellular receptor 2 

(HAVCR2, also known as TIM-3), T cell immunoreceptor with Ig and ITIM domains (TIGIT) 

and Lymphocyte-activation gene 3 (LAG3)5,10. This impairs effector and memory T cell functions, 

enabling unrestricted cancer growth.  

1.2 The Foundations of Immunotherapy 

Over the past decades, cancer treatment has been transformed by the introduction of 

immune checkpoint inhibitors11. These drugs seek to relieve dysfunctional T cells from the 

inhibitory molecules’ effects, enabling them to destroy the neoplastic cells12,13. However, not all 

types of cancer respond effectively to this form of immunotherapy14,15. One reason for the 

heterogenous response between individuals and cancer types may be the potential differences in 

the type of TILs residing in the tumour5.  

Previous studies have illustrated the correlation between certain TIL subpopulations 

within a patient and their response to therapy. For instance, a high proportion of exhausted CD8+ 

TILs in a tumour is a poor prognostic marker for immune checkpoint blockade therapy14. Likewise, 

exhausted CD8+ T cells have been divided into ‘progenitor’ and ‘terminally’ exhausted T cells, but 

only the former have shown to proliferate after anti-PD-1 blockade12. Because the presence or 
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absence of certain TIL population affects treatment efficacy, understanding which populations can 

be found in cancer can predict a patient’s response to immune checkpoint inhibitors.  

Knowing the importance of profiling TILs, previous studies have sought to define TIL 

subsets in melanoma14,15, colorectal cancer16, non-small-cell lung cancer17,18 and ovarian cancer19. 

However, a direct qualitative and quantitative comparison of TIL subsets across cancers is lacking. 

This would not only shed light on why certain cancer types respond better to immunotherapy, but 

also suggest which treatments may be effective for particular cancer types.  

1.3 Single-cell RNA Sequencing and its Applications 

Classifying heterogenous cell populations into defined subsets requires observing their 

components at a cellular level. Single-cell RNA sequencing (scRNA-seq) is a powerful tool to study 

the gene expression in multiple cells at once and has already revolutionised the field of 

transcriptomics20. Whereas RNA microarrays and bulk RNA sequencing have long been used to 

sequence the transcriptome, they combine genetic material from a large cell population and cannot 

capture cell-specific gene expression differences21. By using a variety of methods to separate cells, 

scRNA-seq allows mRNA to be isolated from one cell at a time. The mRNA can then be reverse 

transcribed to cDNA, sequenced and matched against a database of human genes. scRNA-seq 

quantifies genes expressed by a single cell to provide useful information on its origin, behaviour 

and pathways of differentiation. Hence, scRNA-seq is ideal for characterising TILs across cancer 

types.  

The establishment of scRNA-seq has spurred the development of effective toolkits for 

analysing gene expression data such as Seurat, an analysis package written for R Studio22,23. This 

tool can process, compare and visualise scRNA-seq data, but can also group cells into clusters 

using algorithms such as Principal Component Analysis (PCA) and Uniform Manifold 

Approximation and Projection (UMAP)24,25. Briefly, these processes identify ‘principal 

components’: sets of genes commonly expressed together. Each component separates cells based 

on how much they express the genes in question. The components are then superimposed to 

distribute cells on a two-dimensional scatter plot. Cells with similar features crowd together and 

can be grouped into clusters based on the distance between them. Finally, the most differentially 

expressed genes in each cluster can be calculated. Therefore, the multitude of commands available 

to the user makes Seurat a compelling choice to analyse the scRNA-seq data.  

1.4 Scope of the Present Comparison 

In order to construct a valid yet achievable comparison between TIL subsets present in 

different cancer types, I initially decided to compare three cancer types using raw data from 

previously published studies. Three datasets were selected from the NCBI Gene Expression 
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Omnibus (GEO) database: a study by Chunhong Zheng et al. profiling TILs from mostly HBV-

positive hepatocellular carcinoma (HCC); a study by Xinyi Guo et al. on TILs from non-small-cell 

lung carcinomas (NSCLC) and a study by Elham Azizi et al. on TILs from breast carcinoma (BC)26-

28. The authors had sequenced TILs from tumour, adjacent normal tissue, blood and, in Azizi’s 

case, even lymph nodes from a select group of patients.  

Due to time constraints, I could only compare a fraction of the data and therefore chose 

to focus on the CD8+ TILs as they are the main target of immune checkpoint blockade and the 

most important effector cells against the tumour12,14,29,30. Besides, many subsets with useful 

properties have already been identified for this cell type1,2,6,15,30-38. Another restriction that was 

imposed was to only analyse TILs sampled from the tumour. Although TILs in a patient’s normal 

tissue and peripheral blood express different genes from TILs in the same patient’s tumour5, the 

tumour-resident TILs were deemed of greatest interest since they interact directly with the 

neoplastic cells.  

1.5 Purpose  

Thus, the aim of my thesis was to define and compare the genes expressed in CD8+ TIL 

populations in HCC, NSCLC and BC tumours using scRNA-seq gene expression analysis.  

1.6 Research Questions 

The following questions were used to guide my study: 

1. Which TIL populations can be found in the three cancer types, and what gene expression 

signatures define them?  

2. Which TIL populations are common across the cancer types, and which are unique? 

2 Method 

2.1 Selection of the Datasets  

The datasets from the original articles had been created by analysing lymphocytes in 

biopsies taken from tumour, adjacent normal tissue and peripheral blood from treatment-naïve 

cancer patients only26-28. Zheng et al. had sequenced 5,063 T cells from six HCC patients and Guo 

et al. had analysed 12,346 T cells from fourteen NSCLC patients27. Although Azizi et al. had studied 

the greatest number of cells (47,016 cells from eight BC patients), their scope had not been limited 

to T cells but had extended to all resident immune cells26. Finally, whereas Zheng and Guo had 

used fluorescence activated cell sorting (FACS) data to classify their cell datasets into CD8+, CD4+ 

and Treg populations, Azizi had published his raw data without labelling which cells were CD8+. 

Therefore, to ensure that only CD8+ T cells were compared across the cancer types, the relevant 

cells would first have to be found in Azizi’s data.  
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2.2 Comparison of the Technology used 

Prior to sequencing, the mRNA in the original studies had been prepared using different 

scRNA-seq protocols. Guo et al. and Zheng et al. had employed the Smart-Seq2 method devised 

by Picelli et al.39 whereas Azizi had utilized the inDrop method developed by Klein et al.40 to 

construct the BC dataset. Smart-Seq2 is an older protocol which places the cells into wells for 

sequencing; inDrop fills droplets with one cell each and a “bead” to bind the mRNA. Briefly, the 

two methods differ in the “depth” of the sequencing (how many mRNA molecules are sequenced 

per cell) and the number of cells examined. Whereas inDrop is a high-throughput method sequencing 

thousands of mRNA molecules per cell from many cells, Smart-Seq2 is a low-throughput method 

sequencing potentially millions of mRNA molecules per cell but from fewer cells41-43.  

2.3 Import of Data into R Studio 

Raw gene expression matrices for the three articles were downloaded from the NCBI Gene 

Expression Omnibus44-46 into R Studio version 1.2.5019, running on R version 3.6.147,48, and 

transformed into Seurat files. Only TILs from tumour (not from peripheral blood and normal 

tissue) were retained. For Zheng and Guo’s data, only CD8+ cells as labelled by FACS were selected 

and analysed. For Azizi’s data, this selection was delayed until the cells had been pre-processed. 

Moreover, since the BC dataset had been created with three types of breast cancer, only 

data from the most common type of cancer in the dataset (ER+/PR–/HER2–) were included, 

reducing the dataset to 8187 white blood cells. 

2.4 Pre-processing of Data according to Gene Expression 

The number of genes expressed and the number of mRNA molecules sequenced per cell 

was determined. In order to exclude dying cells or empty droplets (reads with low gene counts) 

and so-called “doublets” (reads from droplets containing two cells)49, the cells were ranked by the 

number of genes expressed per cell. The bottom and top 2.5% of the data were removed so that 

only cells expressing 2300 to 6080 genes for Zheng’s data, 1384 to 4987 genes for Guo’s data and 

21 to 2500 genes for Azizi’s data remained. However, given that Azizi’s data was positively skewed 

and that 21 genes were unlikely to be enough to define the immune phenotype, the lower limit was 

increased to 100 genes (the 30.4th percentile).  

The percentage of expressed genes that were mitochondrial was examined because high 

percentages of mitochondrial gene expression are often a sign of cell membrane rupture in dying 

cells50. This was not possible for Zheng and Guo’s studies, who had not published the 

mitochondrial gene counts27,28. In Azizi’s dataset, cells expressing greater than or equal to 17.5% 

mitochondrial genes were discarded. This criterion removed 754 cells, compared to 2710 cells 

removed in the previous step.  
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2.5 Selection of CD8+ cells from the Breast Cancer Dataset 

Seurat was employed to identify and extract the CD8+ cells from Azizi et al.’s BC dataset 

as the authors had not used FACS to identify their TIL populations. After normalising and 

logarithmically scaling the data, a principal component analysis (PCA) was carried out. The 

principal components to be used in the clustering were selected by graphing their standard 

deviation onto the y-axis of an elbow plot, a type of scatter plot with each component on the x-

axis sorted by the percentage of the gene expression variance that it explained. The first fifteen 

were used to run a Uniform Manifold Approximation and Projection (UMAP) analysis, which 

clustered the TILs into eight populations at a resolution of 0.1. Cluster 2, assumed to contain the 

CD8+ TILs, was extracted from the subset and used for further analysis.  

The final BC and HCC datasets contained 398 and 735 CD8+ TILs respectively, compared 

to 2070 in the processed NSCLC dataset. Hence only a sample of 735 cells from the NSCLC 

dataset was used for further analysis. This was done so that the dataset would not skew the TIL 

clusters in the integration.  

2.6 Comparison of BC Dataset with Integrated HCC and NSCLC Dataset 

The HCC and the NSCLC datasets were integrated at first to assess the extent to which 

the BC dataset could be mapped onto the remaining data. After the integration, the combined 

HCC-NSCLC dataset was scaled, mapped onto a UMAP projection and clustered into eight 

clusters using the 15 strongest PCs and a resolution of 0.3. To test the correspondence between 

the combined dataset and the BC TILs, the same PCs were used to classify the BC TILs. The result 

of the comparison is described in section 4.2 of the results and suggested that an integration of all 

three datasets was possible. 

2.7 Integration of HCC, NSCLC and BC Datasets 

Next, the datasets were combined, scaled and subjected to PCA. Using eleven PCs and a 

resolution set to 0.4, eight unsupervised clusters were created. The most differentially expressed 

genes for each cluster were calculated using the natural logarithm of the average fold-change (ratio) 

between the number of gene reads for the cluster in question and the number of gene reads in all 

other clusters. This measure is hereafter referred to as the ln(FC) for brevity. A p-value calculated 

by the Wilcoxon Rank Sum Test with Bonferroni correction applied was also computed. The 

Bonferroni correction is a formula for adjusting the p-value, advised in cases where several null 

hypotheses are being tested at once; it is an appropriate test to use when comparing one cluster to 

numerous other clusters simultaneously51. 
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2.8 Pseudotemporal analysis of the integrated HCC, NSCLC and BC Dataset 

With the integrated dataset split into eight distinct clusters, the dataset was subjected to 

temporal analysis using Monocle version 2, a package for R Studio written by Trapnell et al52. The 

Seurat object was transformed into a Monocle CellDataSet, and the default ordering algorithm 

calculated the inferred order in which the cells had emerged. 

3 Ethical considerations 

Zheng, Guo’s and Azizi’s studies had been respectively approved by the Ethics Committee 

of Beijing Shijitan Hospital, the Ethics Committee of Peking University and the Institutional 

Review Board at the Memorial Sloan Kettering Cancer Center26-28. According to the authors, all 

patients had given their informed consent to participate in their studies. The published datasets 

contain no personal information which can be traced back to the original patients. Moreover, since 

the data is freely accessible on the internet, we conclude that the potential benefits of guiding 

immunotherapy outweigh any harm that may be done in conducting this comparative study.  

4 Results 

4.1 Summary of the Processed Data 

Prior to filtering the datasets, several violin plots were used to visualise the number of 

genes expressed in each cell (Figure 1, Figure 2 and Figure 3) and the number of mRNA molecules 

sequenced (Figure 4, Figure 5 and Figure 6). Figure 6 shows a positive skew in the distribution of 

mRNA molecules per cell for the BC dataset. Since the inDrop technology employs “beads” to 

capture mRNA molecules, accidentally adding two beads per droplet leads to “cells” with a 

misleadingly high mRNA count. Hence, after observing the graph, 136 cells containing more than 

2500 mRNA molecules were eliminated from the BC dataset. Figure 7 shows the original 

distribution of mitochondrial genes in the same dataset used to justify the 17.5% cut-off. This cut-

off was also chosen because higher cut-offs made Seurat use these contaminating genes to cluster 

cells. After excluding the unwanted cells, the datasets contained 737, 2071 and 4587 cells for HCC, 

NSCLC and BC TILs respectively.  

The elbow plot for the PCs used to identify the CD8+ TILs in the BC dataset is shown in 

Figure 8: I decided to use the first fifteen as the standard deviation for the next components was 

deemed too low to segregate the data. The clusters from this dataset are shown in Figure 9. Figure 

10 gives the expression level of CD4 and CD8 for each cluster. Cluster 2 was assumed to contain 

the CD8+ TILs based on its high expression of CD8 and low expression of CD4. Cluster 2 also 

expressed high levels of CD8+ T cell markers such as NKG7 (Natural Killer Cell Granule Protein 

7), FGFBP2 (Fibroblast Growth Factor Binding Protein 2), PRF1 (Perforin-1) and GZMB 
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(Granzyme B) compared to other cells (p < 10–240 by Wilcoxon Rank Sum test), consistent with 

their assumed identity6,15. The 4189 remaining cells were removed so that only 398 cells remained. 

Some characteristics of the final data is summarised in Table 1 and Table 2 on page 35.  

4.2 Clusters in the Integrated HCC-NSCLC Dataset are Conserved in the BC Dataset  

Prior to integrating the three datasets together I wanted to verify that the BC dataset, which 

had been created using a different technology, would be compatible for integration with the HCC 

and the NSCLC datasets. After merging and clustering the HCC and the NSCLC dataset, the 398 

BC TILs were sorted into the eight clusters shown in Figure 11. 246 TILs (61.8%) were assigned 

to cluster 3; 137 (34.4%) were assigned to cluster 6; 12 (3.0%) were assigned to cluster 0 while 3 

(0.8%) were assigned to cluster 5. Some known markers for cluster 3 and cluster 6 are presented 

in Table 3 and Table 4. For each gene in the table, the average ln(FC) is given. A larger number 

indicates that this gene was more expressed in this cluster compared to other clusters. The results 

show that cluster 3, where most of the BC TILs was grouped, showed a cytotoxic T cell signature 

whereas cluster 6 expressed several naïve T cell signature genes.  

4.3 Eleven PCs Define Eight Clusters in the Integrated HCC, NSCLC and BC Dataset 

Prior to clustering the integrated dataset, an elbow plot was used to visualise the standard 

deviations for the suggested PCs (Figure 12). As the standard deviation was constant after the 11th 

PC onwards, only the first 11 were used for dimensional reduction. PC #2 was particularly 

interesting as it selected positively for exhaustion-related genes such as HAVCR2, TIGIT and 

ENTPD1 (Ectonucleoside Triphosphate Diphosphohydrolase 1). The first two genes code for 

known immune checkpoints whereas the third is an enzyme capable of producing the 

immunosuppressant adenosine6. On the contrary, nine of the ten most negatively selected genes 

were ribosomal genes of unknown significance. However, the PC was nevertheless chosen. PC #4 

was also noteworthy as it segregated naïve CD8+ TIL markers such as CCR7 and IL7R from 

memory TIL markers FGFBP2 and CX3CR11,34. A more comprehensive list of genes generated 

by the PCA can be found in Table 9 in the appendices.  

Figure 13 shows the integrated dataset on a UMAP plot with cells coloured by their original 

dataset; Figure 14 shows the same plot after clustering. The proportion of cells that were assigned 

to each cluster is shown in Table 5 on page 36. To quantify the most differentially expressed genes 

in each cluster, the ln(FC) was calculated for a selection of markers. The most differentially 

expressed genes for each are presented as a heatmap on Figure 15 and a second heatmap with only 

known TIL markers is given in Figure 16. Cells of a cluster where a gene was highly expressed are 

shown in yellow.  
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4.4 Cluster 0, 3 and 6 TILs are Common to HCC, NSCLC and BC  

As shown in Table 5, cluster 0 was the most prominent type of TIL in the HCC and the 

NSCLC datasets (accounting for 51.3% and 25.9% respectively), and the second most common 

type in the BC dataset. This cluster had a significant higher expression of effector/cytotoxic genes 

such as GZMK, CCL4, CCL3, CCL20, FOS and JUNB, even if other cytotoxic genes such as 

S100A4, GZMB or GNLY were downregulated (p < 0.01, see Table 6 on page 37). The cluster 

also had a significantly higher expression of IFNG (p = 0.008) and a slightly increased expression 

of TNF (p = 0.11), suggesting cells in this cluster were capable of cytokine production. The 

cluster’s effector capability is confirmed by its upregulation of SLAMF7 (average ln(FC) 0.24, p = 

1.19 × 10–11). Although upregulating the naïve marker SELL (p = 5.40 × 10–71), the average ln(FC) 

for this gene was only 0.06. The results of the pseudotemporal analysis indicate that this cell type 

persisted throughout pseudotime and was neither an early nor a late TIL population (Figure 20).  

Another cluster conserved across cancer types was cluster 3, which made up between one-

tenth and one-fourteenth of all TILs in the datasets. Cluster 3 expressed effector/memory genes 

such as FGFBP2, CX3CR1, ITGAM, KLRD1, KLRG1 (p < 0.0003), as well as cytotoxic-related 

genes PRF1, NKG7 and CST7. The cells in the cluster downregulated naïve genes (p < 0.004), 

resident memory genes such as CD44, CD69 and CXCR3 and exhaustion-related genes (p < 

0.0001, except for TIGIT which had p = 0.13), see Table 7.  

Cluster 6 was also well-conserved across cancer types. This cluster upregulated genes 

involved in proliferation such as MKI67 (average ln(FC) 1.53, p = 7.35 × 10–15) and tubulin genes 

TBA1B/TUBB (p < 3.82 × 10–17). Yet this cluster also had a significantly higher expression for 

‘exhausted’ genes such as ENTPD1 and TIGIT (p < 0.02).  

4.5 Cluster 2, 4 and 7 TILs are More Common in NSCLC Tissue 

Cluster 2 varied broadly in proportions between the cancer types. It accounted for 3.8% 

of BC TILs but 18.6% of NSCLC TILs where it was the second largest cluster. As shown in Figure 

16 and Table 8, cluster 2 principally expressed exhaustion-related genes such as ENTPD1, 

HAVCR2, TIGIT, TOX and PDCD1 (p < 0.0003), but also expressed several interferon-inducible 

genes such as IFI44L, IFI44 and IFI35 (p < 0.002). Genes associated with naïve CD8+ cells such 

as TCF7, SELL and IL7R were noticeably downregulated (p < 0.003), see Table 8. Cluster 2 also 

significantly downregulated ‘effector’ genes such as MYB, MYC, KLF2 and FOS (p < 0.007), 

consistent with exhausted CD8+ T cells. KLF3, JUNB, FOSB, KLF13 and JAK3 were also 

downregulated, albeit not significantly. Moreover, the pseudotemporal analysis suggested that 

cluster 2 was late to develop (Figure 20) and that exhausted markers such as ENTPD1 became 

more expressed in the integrated dataset over pseudotime (Figure 21).  
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Another cluster that was frequent in the NSCLC dataset was cluster 4, containing every 

seventh NSCLC TIL. As shown in Figure 16 and Figure 17, both cluster 4 and cluster 5 had a 

significant upregulation of the naïve T cell markers IL7R and CCR7. This made both clusters 

candidates for naïve T cells. Cluster 4 had a strong expression of IL7R (average ln(FC) 1.22, p = 

1.44 × 10–16), yet 43 of the 50 most differentially expressed genes were ribosomal genes from the 

RPL and the RPS families as hinted at on the y-axis in Figure 15. Compared to cluster 5, cluster 4 

had a higher expression of naïve TIL markers such as SELL, LEF1, IL7R, CCR7 and TCF7 (ln(FC) 

> 0.28) however in none of these cases was the difference significant (p = 1.00). Compared to all 

other clusters, cluster 4 significantly downregulated exhausted, cytotoxic and effector markers 

(such as HAVCR2, PDCD1, TIGIT, ENTPD1, GZMB, GZMA, PRF1, KLRG1) and was 

exclusively found in the beginning of the pseudotemporal analysis (Figure 20), when IL7R 

expression was high (Figure 21).  

Cluster 7 was ten times as common in the NSCLC dataset compared to either the BC or 

the HCC datasets. It strongly expressed the canonical B-cell marker MS4A1 (CD20) with average 

ln(FC) 2.00, p = 1.50 × 10–3. However, it did not upregulate other typical B-cell markers such as 

CD19 or CD40 (average ln(FC) –0.001 and –0.02 respectively, p = 1.00 in both cases). Moreover, 

there was no significant difference in CD3 and CD8 expression compared to the other clusters (p 

= 1.00). Hence, it was theorised that this was a unique CD20+CD8+ T cell population. 

4.6 Cluster 5 TILs are More Common in HCC Tissue 

Like cluster 4, cluster 5 expressed some naïve-related genes such as IL7R (average ln(FC) 

0.49, p = 2.77 × 10–19) and CCR7 (0.35, p = 2.15 × 10–11). Other naïve genes were downregulated 

and/or not significant, such as SELL, (–0.43, p = 1.00). Instead, cluster 5 had a higher expression 

of genes associated with mucosal-associated invariant T (MAIT) cells, such as KLRB1, RORC, 

CCR6, ZBTB16, IL18R1 and SLC4A1028,53. Compared to cluster 4, all genes had a ln(FC) greater 

than 0.60 except for IL18R1 which had 0.15, and three of these six genes (KLRB1, RORC and 

SLC4A10) were significantly upregulated with p < 0.00002. When compared to all clusters, even 

CCR6 and ZBTB16 were found to be significantly upregulated (p < 0.008). This cluster, which 

vanished halfway through pseudotime (Figure 20), was the second largest cluster in the HCC 

dataset.   

4.7 Cluster 1 TILs are More Common in BC Tissue 

Cluster 1 was the largest cluster in the BC dataset, accounting for 40.2% of the BC TILs. 

Likewise, it was also the second largest cluster in the NSCLC dataset, where it contained 20.7% of 

TILs. This cluster significantly upregulated the tissue-resident memory T cell (TRM) marker ITGAE 

(average ln(FC) 0.34, p = 6.98 × 10–11 and visualised in Figure 16)37,38, but also expressed the naïve 
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marker IL7R (ln (FC) 0.30, p < 0.0003). The most differentially expressed genes included ZNF683, 

coding for the transcription factor Homolog Of Blimp-1 In T Cells, or HOBIT for short (average 

ln(FC) 0.74, p = 4.39 × 10–19, see Figure 15).  

4.8 Pseudotemporal Analysis Distinguishes Cluster 3, Cluster 4, Cluster 5 and Cluster 7 

TILs from Cluster 2 and Cluster 6 TILs 

Using the Monocle toolkit for R Studio, the integrated dataset was plotted across two 

principal components and visualised in “pseudotime”, summarised by Kumar et al. as “an artificial 

ordering of cells based upon a statistically inferred trajectory often interpreted as time.” 54 The 

toolkit suggested a single pathway of development ending in two branches (Figure 18), which could 

be seen in all datasets regardless of technology (Figure 19). This suggests that the cells could be 

mapped onto the same trajectory regardless of how their transcriptome had been sequenced. By 

filtering the trajectory by cluster, it appears that cluster 3, 4, 5 and 7 were early populations whereas 

cluster 2 and 6 emerged later (Figure 20). Cluster 0 and 1 were present throughout development. 

The results also suggest that cluster 6 may consist of two diverging populations.  

A few differentially expressed genes have also been plotted across pseudotime in Figure 

21. The results indicate that CX3CR1, GZMK and IL7R expression declined with pseudotime, 

being replaced with ENTPD1 and later, MKI67. MS4A1 rose early on but declined soon after.  

5 Discussion 

5.1 Integration of Datasets Identifies Conserved CD8+ TIL Populations 

Immunotherapy has had varying degrees of success in treating cancer and since CD8+ TILs 

in tumour are currently the target cells of this treatment, understanding which CD8+ TIL 

populations are consistently found and which populations are specific to certain tumours is of 

great use. This study has integrated CD8+ TIL gene expression data obtained through single-cell 

RNA sequencing from hepatocellular carcinoma, non-small cell lung carcinoma and breast 

carcinoma with the aim of defining common TIL populations. Although the BC dataset had been 

created using a different technology from the HCC/NSCLC datasets, a comparison between the 

BC dataset and an integrated HCC-NSCLC dataset illustrated that the BC CD8+ TILs shared 

properties with the HCC-NSCLC cells such as cytotoxicity or naïve T cell gene expression, 

validating an integration of all three datasets. 

5.2 Clusters 0 and 3 are Conserved Across Cancer Types and Correlate with Established 

TIL Phenotypes 

The eight TIL populations may can be grouped into three categories: well-defined 

common clusters, well-defined cancer-specific clusters and doubtful clusters. Clusters 0 and 3 were 
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conserved across the cancer types examined and demonstrated a clear ‘effector’ and an ‘effector-

memory’ phenotype.  

Cluster 0 was amongst the largest TIL subsets in the integrated dataset and expressed 

several effector or cytotoxic genes. This makes the cluster alike the 

CCR7−PTPRC+CD27lowCD28lowKLRG1+ “long-lived effector-type T cells” (TEMRA) cells reviewed 

by Braun et al55 or alike the SELL−Slamf7hiCX3CR1−PD-1−CD8+ cluster described as “memory-

precursor-like TILs” by Kurtulus et al30. Kurtulus’ cells produced various cytokines, underwent a 

TCF7-dependent proliferation after combined HAVCR2/PD-1 blockade in mice and were 

associated with a good prognosis. Thus, given cluster 0’s omnipresence across all cancer types and 

their ability to respond to immunotherapy, further studies comparing cluster 0 with Kurtulus’ 

population would be valuable. Studies to determine why this ‘effector’ cluster was enriched in the 

HCC dataset would also be of interest.  

A less common but nevertheless conserved cluster was cluster 3, which expressed effector 

and memory genes. This cluster phenotypically resembles the “memory T cells with effector 

function” described in mice by Böttcher et al34. The pseudotemporal analysis found that this 

‘effector-memory’ cluster was more prevalent in early cells (Figure 20) and that CX3CR1 

expression decreased with pseudotime (Figure 21): an unusual pattern for memory T cells. On the 

contrary, Böttcher claims that “[v]irus-specific CX3CR1+ memory CD8+ T cells are scarce during 

chronic infection in humans and mice but increase when infection is controlled spontaneously or 

by therapeutic intervention.” Indeed, a study by Yan et al. found that CX3CR1 identified PD-1 

therapy-responsive CD8+ T cells that could fight neoplastic cells following chemotherapy 

combined with PD-1 blockade56. Both studies described the expression of GZMB in this cell line, 

which was indeed expressed in cluster 3 (average ln(FC) 0.35, p = 2.58 × 10–12). Having outlined 

the potential of memory T cells in successful immunotherapy, finding this ‘effector-memory’ 

cluster across all cancer types is thus important.  

5.3 Clusters 1, 2 and 5 are Cancer-Specific TIL Subsets 

Cluster 1, 2 and 5 were also well-defined clusters but were more specific to certain cancer 

types. Cluster 2 was specific to NSCLC tissue, where it was two times more common compared 

to HCC tissue and five times more common compared to BC tissue. This cluster closely resembled 

exhausted CD8+ T cells, previously described as antigen-specific T cells that have lost effector 

functions such as IL-2 production, cytotoxicity and proliferation3. Moreover, its late emergence in 

the pseudotemporal analysis is consistent with how exhausted T cells develop by gradually losing 

their effector functions after chronic antigenic exposure8. The expression of interferon-inducible 

genes is unexpected and hints at an ongoing interferon-stimulation along with the inhibition. Why 
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this cluster was enriched in NSCLC cannot be answered, as it contrasts with a review concluding 

that HCC had more exhausted CD8+ T cells than NSCLC5. This highlights the possibility that a 

shortage of cells made the clustering more sensitive to parameters such as the numbers of PCs and 

the resolution.   

Cluster 1 was twice as common in BC tumours as in NSCLC tumours and six times more 

common when compared to HCC tumours. This cluster was marked by its expression of ITGAE 

and ZNF683 and closely resembles a tissue-resident memory T cell subset found by Guo et al., 

who labelled it “pre-exhausted” 27. Cluster 1 was placed adjacent to the ‘exhausted’ cluster 2 on the 

UMAP plot in Figure 14, but did not flag positive for the typical exhaustion-genes in the heatmap 

in Figure 15. This evidence suggests that cluster 1 can be interpreted as a ‘pre-exhausted’ 

population. Like the ‘effector’ cluster 0, cluster 1 was found throughout pseudotime (Figure 20). 

The decline in the expression of the ‘effector’ marker GZMK across the whole dataset paralleled 

the increased expression of the ‘exhausted’ marker ENTPD1 (Figure 21), implying a continuous 

turnover from ‘effector’ to ‘pre-exhausted’ TILs. In the original study, Guo et al. claimed that a 

high ratio of “pre-exhausted” to ‘exhausted’ was associated with better prognosis for lung 

adenocarcinoma27. Given that this ratio varied twenty-fold from 0.6 in HCC to 10.7 in the BC 

dataset, further studies could elucidate the effect of the ‘pre-exhausted’ cluster on survival.  

The ‘MAIT’ cell cluster 5 was the third largest cluster in the HCC dataset, where it was 

four times more common than the NSCLC dataset (mirroring previous studies5) and six times 

were common than the BC dataset. This accurately reflects how MAIT cells are enriched in HCC 

compared to other carcinomas, but also reflects their how they are scarce when compared to 

normal liver tissue where they make up between 20% and 40% of T lymphocytes57,58. MAIT cells 

may be useful against cancer as they express cytotoxic effector molecules59. On the other hand, 

they have also been shown to promote tumour growth, for example by secreting IL17A which 

promotes angiogenesis58,59. Hence, it is unclear how this ‘MAIT’ cluster could be exploited in 

immunotherapy.  

Although being rather cancer-specific, discovering the ‘pre-exhausted’ cluster 1 and the 

‘MAIT’ cluster 5 in smaller proportions in other datasets was noteworthy because it challenges the 

notion that TILs are completely unique to cancer types. Concerning cluster 1, Guo et al. had 

defined their subset of “pre-exhausted” ZNF683+CD8+ tissue-resident memory T cells from the 

NSCLC data, but this cluster was in fact twice as prominent in the BC dataset. Secondly, the 

‘MAIT’ cluster had been found by Zheng in HCC tissue and to a smaller extent by Guo in NSCLC 

tissue but had not been mentioned in the BC study26-28. This highlights the clinical possibility of 



 

Page 20 of 40 

using a cluster-specific immunotherapy drug against multiple cancers or using multiple cluster-

specific drugs against the same cancer for an effective treatment.  

5.4 Clusters 4, 6 and 7 Define Unfamiliar Immune Phenotypes 

On the other hand, not all clusters were straightforward to define. One cluster that proved 

challenging to identify was cluster 6, a relatively conserved cluster across the cancer types. The co-

expression of exhausted and proliferating genes suggested that cluster 6 may contain the 

‘progenitor exhausted’ CD8+ TILs described by Miller et al., who used scRNA-seq to distinguish 

these from ‘terminally exhausted’ CD8+ TILs in an experimental chronic viral infection model. 

The ‘progenitor exhausted’ TILs demonstrated “improved proliferative capacity, survival and 

ability to differentiate into cytotoxic terminally exhausted CD8+ T cells” 12. This proliferating group 

was also found by Li et al. who used scRNA-seq to sequence TILs from melanoma patients and 

who labelled these cells ‘transitional’ on a spectrum between “cytotoxic” and “dysfunctional” 60. 

As described elsewhere, ‘progenitor’ exhausted cells are associated with response to 

immunotherapy12,14, thus discovering a similar cluster conserved across the cancer datasets is of 

great significance.  

However, challenges to treating cluster 6 as a ‘progenitor exhausted’ population include 

downregulation of the TCF7 gene (–0.31, p < 0.0002), which was previously linked to the 

‘progenitor’ blockade-responding CD8+ TILs12,14. Instead, the cluster upregulated the ‘exhausted’ 

transcription factor BATF (0.43, p < 0.00007), suggesting that cluster 6 may be closer to the 

‘terminally exhausted’ state than to a ‘progenitor exhausted’ state. The pseudotemporal analysis is 

difficult to interpret: it is hard to accept that MKI67 was only expressed at the end of the 

development (Figure 21). Moreover, if this cluster were indeed to represent the ‘progenitor 

exhausted’ T cells, then one may ask why the proportion of ‘progenitor exhausted’ TILs was almost 

identical across cancer types whereas the proportion of ‘exhausted’ cells varied. Indeed, the ratio 

of ‘exhausted’ to ‘progenitor exhausted’ varied from 1.50 in the BC dataset, to 1.90 for the HCC 

dataset and 5.71 in the NSCLC dataset. The reasons for this are not clear.  

The ‘CD20+’ Cluster 7 was an unusual find but resembled a CD20+CD8+ T cell population 

reported by Schuh et al. in thymus, bone marrow and secondary lymphatic organs, and making up 

3–5% of circulating human T cells61.  This cluster was especially frequent in the NSCLC 

population, where it made up 3.7% of the TILs compared to 0.3% in both the BC and HCC 

datasets. Since the authors claimed that the CD20+CD8+ cells produced more IL-4, IL-17, IFN-γ 

and TNF-α than CD20– T cells, this suggests these “double-positive” CD8+ TILs as targets for 

immunotherapy in the context of NSCLC. 
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Cluster 4, an early population assumed to contain ‘naïve-like’ cells, was enriched in the 

NSCLC dataset, expressed many ribosomal genes but was difficult to distinguish from the ‘MAIT’ 

cluster 5. Although the earlier HCC-NSCLC integration found a naïve cluster (Table 4 

Table 4), it is unclear whether cluster 4 is indeed a naïve cluster or an artificial cluster 

created by Seurat grouping together cells expressing ribosomal genes. The identity of this cluster 

remains thus uncertain.   

5.5 Pseudotemporal Analysis is Consistent with Cluster Identity 

As briefly mentioned above, six of the eight clusters were assigned to extremes of the 

inferred evolutionary pathway by the Monocle toolkit. This distinguished the early TIL populations 

(‘effector-memory’, ‘naïve-like’, ‘MAIT’ and ‘CD20+’) from the two late populations (‘exhausted’ 

and the ambiguous ‘proliferating’ cluster 6). For all clusters except cluster 6, the temporal findings 

are consistent with the accepted pathway of differentiation of the clusters’ proposed TIL identity, 

and the gene expression signature’s evolution from naïve to effector to exhausted (Figure 21) 

recapitulates the normal journey for TILs.  

Recently, much work has been done to reverse T cell exhaustion using immune checkpoint 

blockade11,30,62. However, the results suggest that future immunotherapies could instead attempt to 

prevent transformation to the ‘exhausted’ state, since this appeared inevitable for all populations 

present at an early stage except for the ‘effector’ and the ‘pre-exhausted’ cell states.  

Nevertheless, the pseudotemporal analysis should be interpreted with caution as it is 

heavily variable. For example, Zheng’s HCC study also considered the CX3CR1+ ‘effector-

memory’ cluster 3 an early population28, whereas Guo’s NSCLC analysis placed them on a late 

branch opposite to the exhausted TILs27. This again highlights the consequences of having too 

few cells to compare against.  

5.6 Limitations of the Study and Weaknesses of the Analysis 

Before concluding, a few limitations in this study merit further discussion. Firstly, the 

number of CD8+ TILs used in this study was low compared to previous publications. Although 

expensive to achieve, future studies focusing on CD8+ TILs could prepare more cells before 

removing CD8– cells using FACS. This would make it possible to determine whether difficult-to-

define clusters, such as the ‘naïve-like’ cluster 4, were in fact mixed pools of different immune 

phenotypes.  

Secondly, the authors had processed their datasets with different criteria before publishing 

them: even after filtering the cells, Azizi’s TILs expressed an average of 11.2% mitochondrial genes, 

which was still higher than Guo’s 10% threshold27. Hence, when more datasets become available 

future studies should consider the quality of the datasets to be compared.  
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Most importantly, this comparative study was inherently limited by using datasets created 

with different technologies and different sequencing depths. By sequencing at a lower depth, 

inDrop data offers less “technical noise” from housekeeping genes compared to Smart-Seq241,42. 

This is also due to inDrop using unique molecular identifiers (UMIs) which are DNA fragments 

that “barcode” original mRNA molecules to differentiate them from unwanted copies made during 

the conversion of mRNA to cDNA41. On the contrary, SmartSeq2 offers greater sensitivity in 

finding weakly expressed genes41. Although the integration algorithm performed well despite the 

BC dataset expressing on average five times fewer genes per cell, this precluded comparing gene 

expression in the same cluster across cancer types after integration. Hence it was not possible to 

investigate if different transcription factors could explain the differences in cluster sizes between 

cancer types. Although this study was helpful in testing the feasibility of a cross-technology 

comparison, only comparisons between the same technology can uncover potential mechanisms 

behind these patterns.  

Finally, this study also had weaknesses that could have been corrected by further analysis 

given more time. For example, the inclusion of all proliferating cells into one cluster may have 

been caused by not regressing out cell cycle markers when scaling the data. Seurat could have 

“normalised” cells by their progression in the cell cycle to minimise interference with the 

clustering. Another step that could have been implemented was to use databases of TIL markers 

to numerically score the signature of a cell population, as opposed to manually checking for known 

markers. These databases, available from sites such as Gene Ontology, could have helped to 

systematically identify clusters.  

6 Conclusions 

The prospect of treating cancer with immunotherapy is an emerging alternative to 

chemotherapy or radiotherapy, but more work is needed to understand why the efficacy varies 

between patients and cancer type. This study has compared CD8+ tumour-infiltrating lymphocytes 

from three carcinomas and identified eight conserved populations. ‘Effector’, ‘effector-memory’ 

and proliferating TIL populations were found in all three carcinomas. ‘Pre-exhausted’ cells defined 

in NSCLC were shown to be more common in BC; conversely ‘exhausted’, ‘naïve-like’ and 

CD20+CD8+ TILs were more common in NSCLC. ‘MAIT’ cells were particularly enriched in HCC 

samples. Most of these populations possess anti-neoplastic functions that could be used in cancer 

therapy. Although the results’ value is compromised by comparing cells sequenced with different 

technologies, the comparison nevertheless provides a useful framework for future studies when 

scRNA-seq will be more accessible.  
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9 Figures and Tables 

9.1 Gene Expression in Raw Datasets 

 
Figure 1: Distribution of 
number of unique genes 

expressed per cell prior to 
filtering for HCC dataset 

 
Figure 2: Distribution of 
number of unique genes 

expressed per cell prior to 
filtering for NSCLC dataset 

 
Figure 3: Distribution of 
number of unique genes 

expressed per cell prior to 
filtering for BC dataset 

 
Figure 4: Distribution of mRNA 
molecule count per cell prior to 

filtering for HCC dataset 

 
Figure 5: Distribution of mRNA 
molecule count per cell prior to 

filtering for NSCLC dataset 

 
Figure 6: Distribution of mRNA 
molecule count per cell prior to 

filtering for BC dataset 
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Figure 7: Distribution of the percentage of unique genes that were mapped to mitochondrial 

genome per cell in the BC dataset 

 

9.2 Clustering of Breast Cancer data 

 
Figure 8: Elbow plot for the most significant PCs proposed by Seurat for identification of CD8+ cells in 

BC TIL sample. The y-axis graphs the standard deviations of the twenty most significant principal 
components. The “elbow” around the fifteenth PC indicates that further PCs can be excluded from the 

analysis, as the standard deviation is too low to distinguish cells from different populations.  
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Figure 9: UMAP projection of the BC TIL dataset (15 PCs used, resolution set to 0.1) 

 

 
Figure 10: Expression level (the logarithm of the ratio between the number of mRNA molecules found 

in a cell and the total number of mRNA molecules in that cell) for CD4 and CD8A genes across 
clusters (x-axis) for BC TILs, sorted by highest to lowest expression. The graph illustrates that cluster 
2 had the highest expression of CD8A, and hardly any expression of CD4. Cluster 0 featured more 

cells, but had a lower average CD8A expression as well as a noticeable CD4 expression. It was 
therefore deemed to contain double-positive T lymphocytes.  
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9.3 Integration of HCC and NSCLC datasets 

 
Figure 11: UMAP plot of the integrated HCC-NSCLC dataset, coloured by cluster (15 PCs, resolution 

0.3) 

9.4 Determining PCs to use for integrating the HCC, NSCLC and BC datasets 

 
Figure 12: Elbow plot of the 20 most significant PCs for the integrated HCC, NSCLC and BC datasets. 

The curve flattens out at the 11th PC, indicating that the first 11 PCs were useful for discriminating 
between clusters.  
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9.5 Integration of the HCC, NSCLC and BC Datasets 

 
Figure 13: UMAP plot of the integrated HCC, NSCLC and BC dataset (11 PCs) 

9.6 Clustering of the HCC, NSCLC and BC Datasets 

 
Figure 14: Clusters in the integrated HCC, NSCLC and BC dataset (11 PCs, resolution 0.4) 
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Figure 15: Heatmap illustrating the gene expression for the eight most differentially expressed genes 

for each cluster in the integrated HCC, NSCLC and BC dataset 

 

 

Figure 16: Heatmap illustrating the gene expression across clusters for a selection of known effector, 
cytotoxic, exhausted and naïve TIL markers. The figure shows a moderate cytotoxic signature in 

cluster 0, a strong exhausted/interferon-inducible signature in cluster 2, a strong memory signature in 
cluster 3, a sparse naïve signature across clusters 4 and 5 and a proliferation signature in cluster 6.  
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Figure 17: Ridge-plot illustrating gene expression level (logarithm of the ratio between mRNA counts 
for the gene and mRNA counts in the whole cell) in each cluster for two naïve TIL markers. Cluster 4 

and 5 appear as likely candidates for naïve CD8+ populations. 

9.7 Possible Developmental Trajectory for the Integrated Dataset 

 
Figure 18: Proposed developmental trajectory for the integrated dataset graphed across two principal 
components, created using Monocle for R Studio, with individual cells coloured by “pseudotime”. This 

represents the most likely order in which the cells emerged. “Time” advances thus from the right to 
the left, finishing with the population branching into two paths. 
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Figure 19: Proposed development for the integrated dataset, split by sequencing technology used. 
The consistency of the trajectory’s shape suggests that sequencing technology did not affect the 

results in the previous figure.  

 

 
Figure 20: Proposed development for the integrated dataset in ‘pseudotime’ grouped by cluster. The 

graph suggests that cluster 3 (‘Effector-memory’), 4 (‘Naïve-like’), 5 (‘MAIT’) and 7 (‘CD20+’) represent 
cells early in development, and that cluster 2 (‘Exhausted’) and 6 (‘Proliferating’) are late in their 

development.  
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Figure 21: Relative gene expression in the integrated dataset across “pseudotime” for selected genes 
mentioned in the Discussion. Memory, naïve and cytotoxic genes (shown here by CX3CR1, IL7R and 
GZMK) decreased with pseudotime whereas ENTPD1 and MKI67 increased. MS4A1 was limited to 

expression on early cells. 

 

9.8 Summary of datasets prior to and after processing 

Table 1: Distribution of unique genes expressed per cell across datasets before and after data pre-
processing. For the BC dataset, a summary of the extracted CD8+ population is also given. 

 
Hepatocellular 

Carcinoma 

Non-Small Cell Lung 

Cancer 
Breast Cancer 

 Before After Before After Sampled Before After CD8+ 

Number of Cells 777 735 2182 2070 735 8187 4587 398 

Minimum 665 2308 954 1385 1389 14.0 101.0 131.0 

1st Quartile 3052 3080 2398 2451 2454 66.0 364.0 520.0 

Median 3570 3567 3112 3111 3096 404.0 583.0 703.0 

Mean 3720 3677 3161 3146 3138 600.8 727.8 778.3 

3rd Quartile 4207 4170 3933 3898 3890 874.0 983.0 1017.8 

Maximum 13107 6076 10358 4981 4955 6394.0 2496.0 2033.0 

Table 2: Distribution of mRNA molecules per cell across datasets prior to and after data pre-
processing. As above, a summary of the extracted CD8+ population is also given. 

 
Hepatocellular 

Carcinoma 

Non-Small Cell Lung 

Cancer 
Breast Cancer 

 Before After Before After 
Sample

d 
Before After CD8+ 

Minimum 1343 19793 41198 41198 119129 13.0 17.3 53.5 

1st Quartile 599920 610930 448224 451067 449244 54.0 397.2 562.0 

Median 780591 784299 621454 619357 601683 437.4 635.1 706.6 

Mean 895498 888597 666934 660845 647081 655.6 743.9 735.8 

3rd Quartile 1128306 1125182 806395 793149 779504 852.4 968.5 882.1 

Maximum 7385913 3437635 3819276 2398056 2070682 11828.0 2497.3 2036.1 
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9.9 Comparison of BC Dataset with Integrated HCC and NSCLC Dataset 

Table 3: Upregulated known TIL markers in cluster 3 in the integrated HCC-NSCLC dataset, into 
which 61.8% of the BC TILs were sorted.  

 Average 

ln(FC) 

p-value (Wilcoxon Rank Sum test 

with Bonferroni correction) 
Type of Marker 

GNLY 2.06 1.23 × 10–43 Cytotoxic CD8+ T cells31,36 

CX3CR1 1.95 3.05 × 10–35 Cytotoxic memory CD8+ T cells31,34 

FGFBP2 1.95 8.95 × 10–34 Effector Memory CD8+ T cells6 

KLRD1 1.23 5.70 × 10–30 Effector Memory CD8+ T cells6 

GZMH 1.14 6.88 × 10–32 NK cells63 

KLRG1 0.97 7.35 × 10–27 Effector CD8+ T cells1 

GZMB 0.65 1.21 × 10–19 Cytotoxic CD8+ Cells15 

PRF1 0.49 9.45 × 10–16 Cytotoxic CD8+ T cells15 

KLF2 0.34 1.00 Memory lymphocytes64 

 

Table 4: Upregulated known TIL markers in cluster 6 in the integrated HCC-NSCLC dataset, into 
which 34.4% of the BC TILs were sorted.  

 Average 

ln(FC) 

p-value (Wilcoxon Rank Sum test 

with Bonferroni correction) 
Type of Marker 

SELL 1.55 3.06 × 10–16 Naïve T cell1,15 

FOS 1.48 8.22 × 10–14 Activated T cells6 

LEF1 1.26 8.06 × 10–15 Naïve T cell15 

CCR7 1.05 6.41 × 10–16 Naïve T cell6,15 

IL7R 0.56 8.18 × 10–7 Naïve T cell6 

KLF2 0.43 5.33 × 10–9 Memory lymphocytes64 

IFNG 0.25 1.00 Cytotoxic or Activated T cells6,15 

 

9.10 Cluster properties in the Integrated HCC, NSCLC and BC Dataset 

Table 5: Proportions of cells in the separate datasets and the integrated datasets distributed to each 
cluster. The proposed cluster titles from the Discussion are also given in column 1.  

Cluster 

Percentage of 

BC Cells 

Percentage of 

HCC Cells 

Percentage of 

NSCLC Cells 

Percentage of 

All Cells 

0 (‘Effector’) 38.7 51.3 25.9 38.6 

1 (‘Pre-exhausted’) 40.2 6.3 20.7 19.2 

2 (‘Exhausted’) 3.8 10.1 18.6 12.1 

3 (‘Effector-memory’) 7.3 9.3 10.2 9.2 

4 (‘Naïve-like’) 5.3 5.3 14.7 9.0 

5 (‘MAIT’) 2.0 12.2 3.0 6.4 

6 (‘Proliferating’) 2.5 5.3 3.3 3.9 

7 (‘CD20+’) 0.3 0.3 3.7 1.6 
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Table 6: Differentially expressed genes for cluster 0 in the integrated HCC, NSCLC and BC dataset, 
sorted by the average ln(FC). Although cytotoxic genes were both increased and decreased in 

expression, cytokine genes such as IFNG and TNF were moderately increased. Genes with average 
ln(FCs) between −0.25 and +0.25 or that had an associated p-value equal to 1.00 (calculated by the 
Wilcoxon Rank Sum test with Bonferroni correction applied) are not included here as their differential 

expression could not be deemed significant. 

Gene 
Average 

ln(FC) 

p-value (Wilcoxon Rank Sum 

test with Bonferroni 

correction) 

Type of Marker 

GZMK 0.96 1.26 × 10−92 Memory CD8+ T cells6 

CCL4 0.63 2.76 × 10−12 Cytotoxic CD8+ T cells15 

FOS 0.55 2.34 × 10−16 Activated CD8+ T cells6 

IFNG 0.43 8.43 × 10−3 Cytotoxic CD8+ T cells15 

CCL3 0.38 7.81 × 10−5 Cytotoxic CD8+ T cells15,32 

CCL20 0.33 3.87 × 10−9 Cytotoxic CD8+ T cells32 

EOMES 0.31 1.64 × 10−18 Central Memory CD8+ T cells2 

JUNB 0.30 2.05 × 10−8 CD4+ TH17 cells65 

CD69 0.27 1.82 × 10−9 Resident Memory CD8+ T cells66 

TNF 0.26 1.06 × 10−1 Activated CD8+ T cells6 

IFIT2 –0.27 7.38 × 10−10 Interferon-inducible elements67 

KLRB1 –0.35 1.40 × 10−7 TH17 CD4+ cells6 

GZMB –0.37 4.35 × 10−5 Cytotoxic CD8+ Cells15 

ID2 –0.38 2.76 × 10−6 Effector Memory CD8+ T cells2 

KLRD1 –0.52 6.13 × 10−2 Effector Memory CD8+ T cells6 

S100A4 –0.65 1.03 × 10−26 Cytotoxic CD8+ T cells68 

GNLY –1.15 8.64 × 10−14 Cytotoxic CD8+ T cells36 
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Table 7: Differentially expressed genes for cluster 3 in the integrated HCC, NSCLC and BC dataset, 
sorted by the average ln(FC). Effector-related and memory-related genes appear to be upregulated, 
compared to exhaustion- or naïve-related genes. As before, statistically insignificant genes are not 

included. 

Gene 
Average 

ln(FC) 

p-value (Wilcoxon Rank 

Sum test with Bonferroni 

correction) 

Type of Marker 

FGFBP2 1.84 5.89 × 10–58 Effector Memory CD8+ T cells6 

CX3CR1 1.73 1.28 × 10–55 Cytotoxic Effector CD8+ T cells34 

GNLY 0.98 6.27 × 10–35 Cytotoxic CD8+ T cells31,36 

GZMH 0.97 3.73 × 10–32 NK cells63 

ITGAM 0.97 1.08 × 10–35 Effector CD8+ T cells1  

KLRD1 0.92 1.92 × 10–32 Effector Memory CD8+ T cells6 

KLRG1 0.81 4.01 × 10–25 Effector Memory CD8+ T cells1 

PRF1 0.79 6.87 × 10–37 Cytotoxic CD8+ T cells15 

NKG7 0.74 5.63 × 10–35 Cytotoxic CD8+ T cells15 

CST7 0.71 2.92 × 10–31 Cytotoxic CD8+ T cells15 

ITGB1 0.71 2.49 × 10–13 Memory CD8+ T cells1 

S100A4 0.50 1.61 × 10–7 Cytotoxic CD8+ T cells68 

ITGA4 0.48 8.84 × 10–7 Effector CD8+ T cells1  

TBX21 0.40 3.10 × 10–7 Effector Memory CD8+ T cells2 

KLF2 0.39 4.66 × 10–20 Memory lymphocytes64 

ITGAL 0.38 8.29 × 10–8 Memory CD8+ T cells1 

GZMB 0.35 2.58 × 10–12 Cytotoxic CD8+ Cells15 

ITGB2 0.35 4.99 × 10–4 Memory CD8+ T cells1 

PTPRC 0.26 3.46 × 10–4 Effector CD8+ T cells1 

CD244 0.25 9.56 × 10–1 Exhausted Cytotoxic CD8+ T cells3 

SELL –0.28 3.95 × 10–3 Naïve CD8+ T cells1,15 

CD38 –0.30 4.32 × 10–2 Effector CD8+ T cells32 

CCL20 –0.39 4.39 × 10–3 Cytotoxic CD8+ T cells32 

TIGIT –0.39 1.34 × 10–1 Exhausted CD8+ T cells15 

IFI44 –0.45 2.30 × 10–4 Interferon-inducible elements67 

JUN –0.47 2.71 × 10–2 Activated CD8+ T cells6 

CD44 –0.48 6.10 × 10–7 Resident Memory CD8+ T cells66 

CD69 –0.52 3.34 × 10–5 Resident Memory CD8+ T cells66 

CXCR3 –0.56 9.40 × 10–14 Resident Memory CD8+ T cells2 

HAVCR2 –0.59 7.85 × 10–9 Exhausted Cytotoxic CD8+ T cells6,15 

PDCD1 –0.69 1.68 × 10–10 Exhausted Cytotoxic CD8+ T cells6,15 

CCR7 –0.78 6.56 × 10–18 Naïve CD8+ T cells6,15 

IL7R –0.80 5.42 × 10–7 Naïve CD8+ T cells6 

CD27 –0.95 3.27 × 10–26 Memory CD8+ T cells1 

GZMK –1.08 7.91 × 10–15 Memory CD8+ T cells6 

ITGAE –1.16 2.30 × 10–30 Exhausted CD8+ T cells6 
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Table 8: Differentially expressed genes for cluster 2 in the integrated HCC, NSCLC and BC dataset, 
sorted by the average ln(FC). Several exhaustion-related or interferon-inducible genes can be found 
amongst the highly expressed genes, whereas naïve-related genes were lowly expressed. As before, 

statistically insignificant genes are not included. 

Gene 
Average 

ln(FC) 

p-value (Wilcoxon Rank 

Sum test with Bonferroni 

correction) 

Type of Marker 

IFI44L 1.18 7.78 × 10–8 Interferon-inducible elements67 

ENTPD1 1.06 2.24 × 10–6 Exhausted CD8+ T cells6 

HAVCR2 1.04 1.50 × 10–26 Exhausted Cytotoxic CD8+ T cells6,15 

GZMB 0.92 7.00 × 10–25 Cytotoxic CD8+ Cells15 

TIGIT 0.89 2.50 × 10–20 Exhausted CD8+ T cells15 

IFI44 0.89 2.97 × 10–8 Interferon-inducible elements67 

ITGAE 0.84 9.51 × 10–20 Tissue-resident memory T cells38 

FASLG 0.82 1.24 × 10–11 Effector CD8+ T cells32 

IFI35 0.63 1.53 × 10–3 Interferon-inducible elements67 

TOX 0.55 2.88 × 10–8 Exhausted CD8+ T cells 9 

CCL3 0.55 2.47 × 10–4 Cytotoxic or Exhausted CD8+T cells15 

GZMA 0.53 2.55 × 10–7 Cytotoxic or Exhausted CD8+T cells15 

ID2 0.49 3.32 × 10–12 Effector Memory CD8+ T cells2 

PDCD1 0.49 2.59 × 10–4 Exhausted Cytotoxic CD8+ T cells6,15 

IFNG 0.44 7.02 × 10–4 Cytotoxic CD8+ T cells15 

CD27 0.34 8.93 × 10–4 Memory CD8+ T cells1 

STAT3 0.30 2.46 × 10–1 Central Memory CD8+ T cells2 

CCR7 –0.28 3.73 × 10–13 Naïve CD8+ T cells6,15 

CD44 –0.29 1.39 × 10–1 Resident Memory CD8+ T cells66 

TCF7 –0.31 1.29 × 10–3 Memory or Naïve CD8+ T cells15,64 

SELL –0.31 2.58 × 10–3 Naïve CD8+ T cells1,15 

ITGAL –0.33 5.89 × 10–1 Effector Memory CD8+ T cells1 

ITGB2 –0.34 7.10 × 10–3 Effector Memory CD8+ T cells1 

KLF2 –0.36 2.51 × 10–7 Memory lymphocytes64 

CST7 –0.38 2.59 × 10–2 Cytotoxic CD8+ T cells15 

SLAMF7 –0.42 2.04 × 10–7 Effector CD8+ T cells30 

EOMES –0.54 1.72 × 10–11 Central Memory CD8+ T cells2 

JUNB –0.59 7.03 × 10–1 CD4+ TH17 cells65 

KLRG1 –0.86 4.95 × 10–20 Effector Memory CD8+ T cells1 

GZMK –0.94 5.17 × 10–25 Memory CD8+ T cells6 

IL7R –1.10 2.38 × 10–25 Naïve CD8+ T cells6 

FOS –1.52 8.61 × 10–9 Activated CD8+ T cells6 
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10 Appendices 

10.1 Principal Components used for clustering the HCC, NSCLC and BC dataset 

Table 9: Summary of the five most positively and five most negatively selected genes for the eleven 
PCs used to analyse the integrated HCC, NSCLC and BC dataset 

 Positively selected genes Negatively selected genes 

PC #1 TXNIP, SNORA33, IL7R, RPS6, RPLP2  BIRC5, ASPM, KIF23, MKI67, CEP55  

PC #2  HAVCR2, CXCL13, TIGIT, TNFRSF9, 

ITGAE  

SNORA33, RPLP2, RPS12, RPL27A, 

RPS18  

PC #3  A2M, CXCR5, PDLIM1, GZMK, FCRL6  RPS19, RPLP1, RPLP2, SNORA33, RPL32  

PC #4  GZMK, CXCR4, CCR7, GPR183, ITM2C  FCGR3B, FGFBP2, FCGR3A, CX3CR1, 

GNLY  

PC #5  CCL4L1, NR4A2, DUSP2, DUSP1, 

NR4A1  

VIM, ZNF683, TAGLN2, RSAD2, CISH  

PC #6  CCNB1, IFI44L, ZNF683, CDC20, PLK1  TYMS, MCM2, FAM111B, MCM4, GINS2  

PC #7  GZMK, CD74, COTL1, GZMH, EOMES  RORC, SLC4A10, KLRB1, ZBTB16, CCR6  

PC #8  SPIB, HBA2, HBA1, HBB, CDCA7  TPPP, CRIP2, KRT86, CD14, PLPP2  

PC #9  IFIT1, IFIT3, IFI44L, RSAD2, MX1  HTRA1, KRT86, TMEM173, TXNIP, PTGIS  

PC #10 GLUL, CXCR4, COTL1, PDK4, 

HERPUD1  

SPIB, HBA2, HBA1, HBB, GPR183  

PC #11  RORC, SLC4A10, GZMK, FCRL3, 

IGFBP7  

GLUL, ZNF683, HSPA1B, ANXA1, HSPA1A  

 


