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Abstract
Mortgage loan providers estimate the credit risks it caries when approving a
mortgage loan to their clients. Further, defaulting a mortgage loan is a risk
that has been calculated through decades using statistical models. By using
entries at the time of a mortgage application, the goal of the thesis is to com-
pare the accuracy between logistic regression and Support Vector Machine
in predicting a mortgage loan default. For this purpose, Fannie Mae 30-year-
fixed-rate single-family mortgage loans are used for the years; 2000, 2005 and
2010. The models aim is to predict probability of default during five years
period from the loan acquiring date. While the result showed that logistic re-
gression was both faster and less complex to implement, SVM proved to have
a marginally better prediction with the drawback of a longer computational
time. The forecast accuracy to compare the two models at hand was ROC
and Precision-recall, although precision-recall was favored due to the unbal-
anced data.
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Dictionary
Default - the failure to fulfill an obligation to repay a loan

PD - Probability of Default

SVM - Support Vector Machine Learning

NN - Neural Network

OTC - Over the Counter

SVM - Support Vector Machine

PRC - Precision Recall Curve

ROC - Receiving Operating Characteristics

AUC - Area Under Curve

SMOTE - Synthetic Minority Oversampling Technique

PRC - Precision Recall Curve

RBF - Radial Basis Function

FICO - Fair Isaac Corporation, is the company providing with credit-risk
model with a score, i.e. borrowers credit score.

DTI - Debt to Income

LTV - Loan to Value
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1 Introduction

1.1 Background

The news were out on September 15 2008, that the well know financial in-
stitute Lehman Brothers had collapsed and a full blown financial crisis had
started, the so called sub-mortgage market crisis. The financial screens were
flashing red and the new era of regulations on the financial and mortgage
market was to be imposed. As a result banks had to scrutinize their risk ex-
posures and mortgage takers more in-depth.

The extraordinary instability in the financial and real estate market condi-
tions during the financial crisis lead to the housing crash in the late 2000s
where there was a dramatic increase in mortgage defaults. In 2011, 14.2 % of
mortgages were in difficulty to repay their mortgages, total mortgage debt was
roughly USD 10 trillion which is a big figure of potential mortgage defaults.
The potential loss to mortgage lenders stresses the financial system and was
one of the main factors contributing to the larger economic downturn of the
financial crisis. The event have underscored the importance of understanding
household incentives to default on mortgages. Not to exclude the cost arising
for a mortgage lender when a mortgage loan defaults. (Copeland 2017)
Artificial Intelligence and Machine Learning are two buzzwords often used.
Both of the terms crop up in topics such as Big Data, analytics and other
waves of technological changes which are sweeping through our world. For
the purpose of clarification the two terms are explained before going further
on the topic.

Artificial Intelligence is the broader concept of machines being able to carry
out simulation of intelligent behavior or the capability to imitate intelligent
human behavior. Machine Learning is an application of AI based on giving
machines access to data and let them learn for themselves. The great Amer-
ican pioneer, Professor Arthur Samuel, in the field of artificial intelligence
coined the term ”machine learning” in 1959, ”field of study that gives com-
puters the ability to learn without being explicitly programmed”, Samuel
(1959)

However, mortgage lenders have their own way of processing and modelling
the probability of an individual not fulfilling obliged repayments. There is not
a uniform calculation which gives the same probability of default, every bank
has their own way of modelling this probability. Hence, an individual who ap-
plies for a mortgage loan could have a different probability of default figure,
depending on the commercial bank’s model. Hence, this thesis is aimed at
calculating the probability of default for a mortgage borrower, using machine
learning techniques.
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1.1.1 Credit Quality

Credit quality is a way of informing the risk of default of an individual or en-
tity. Investors want to have an accurate view on the risk they are taking upon
themselves, to not end up losing a portion of their investment. Furthermore,
since the financial crisis, credit risk has become more important and new reg-
ulatory laws have been and are being implemented. For instance after the fi-
nancial crises the government requires that the final terms of a mortgage have
to be shown to borrowers at least three business days before the closing date,
to prevent mortgage takers from making hurried decisions or signing off on a
mortgage without fully understanding the terms. Moreover, additional rules
have been implemented to tighten the lending standards, “ability to repay”
rules. Under these rules, lenders get greater legal protections if they make so-
called “qualified mortgages”, in which borrowers’ monthly debt payments do
not exceed 43 per cent of their income. General rules (§ 1026.31) Consumer
Financial Protection Bureau

In the over the counter (OTC) market, where derivatives and securities are
being traded off-exchange, counterparties need to minimize the risk of a coun-
terparty not being able to pay its obligations. An example is if two counter-
parties, A and B, are transacting a derivative. Derivatives are leveraged and
volatile in the sense that the derivative prices can move dramatically. Coun-
terparties have to post collateral when they transact, this collateral is chang-
ing depending on the derivatives position, that is if counterparty A or B is
making money. Hence, the collateral required by the counterparties is to cover
future obligations with a high degree of certainty.

In the commercial space, banks will always see risk with lending money to
a borrower due to the uncertainty of modelling and calculating the risk of a
borrower not being able to pay its obligations in the future. Therefore, the
bank will charge the interest, risk-free interest plus a premium for the default
risk. The premium is composed of the degrees of presumed risk. The riskier
a grade, the higher the actual interest rate. The presumed risk can be calcu-
lated and represented in many ways, such as;

• PD model (Probability of default) - A model that predicts the probabil-
ity of a particular borrower’s loan to default.

• LGD model (Loss given default) - If the borrower default, the lender
can recover some amount by selling the collateral. A common exam-
ple is: the borrower defaults on the mortgage, so the lender forecloses
the house and the sale of the house decreases the actual loss. Hence, if
the borrower defaulted while owing a mortgage balance of 100k, and the
house was sold through foreclosure for 50k, then LGD = 50/100 = 50%,
since the lender lost 50% of the balance.
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• EAD model (Exposure at default) - A model that tries to predict what
the amount owed will be at the time of default, such as the above exam-
ple.

Probability of default is the risk measure that will be covered in this thesis.
The risk of a default (or probability of default) is not always the easiest to
calculate. It is highly complex and therefore undertaken by specialised finan-
cial institutions (”rating agencies”) such as Moody’s, Fitch and Standard &
Poor’s which rate debt securities in several market segments related to public
and commercial securities, including the government, municipal and corporate
bond space. The quality of a debt being repaid is rated from highest quality
and the lowest quality.

However, the mortgage loan space is different in the sense that commercial
banks lending mortgage loans have their own way of processing and modelling
the probability of an individual not fulfilling the obliged repayment. There is
not a uniform calculation which gives the same probability of default, every
bank has their own way of modelling this probability. Hence, an individual
who applies for a mortgage loan would have a probability of default depend-
ing on the commercial bank’s model which can vary, as mentioned earlier.

1.1.2 Artificial Intelligence

Artificial intelligence as we know it gained its popularity in Professor Samuel
Arthur’s paper written (1959), where his work on game of checkers was one
of the earliest examples of non-numerical computation and were adopted by
many computer designers. In his paper it was verified that a computer can
be programmed so that it will learn to play a better game of checkers than
can be played by the person who wrote the program. It was also shown that
the principals of machine learning were applicable to many other situations.
Professor Samuel’s work is still worth reading and have been the foundation
for Machine Learning. As Professor Samuel wrote in his paper:

... it can learn to do this in a remarkably short period of time (8 or 10 hours
of machine-playing time) when given only the rules of the game, a sense of
direction, and a redundant and incomplete list of parameters which are thought
to have something to do with the game, but whose correct signs and relative
weights are unknown and unspecified.

Even though the concept of Artificial Intelligence is several decades old the
Artificial Intelligence market is $ 3.6 billion and predicted to grow to $ 36
billion in 2020, that is a growth taking into account hardware, software and
services. The technology might be best known by an example of famously
self driven Tesla. However, many more successful applications exists such as
finding frauds across transactions, detecting anomalous behavior, speeding
up drug discoveries, and voice recognition. Many firms such as IBM, Google,
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Microsoft and Facebook are offering their machine learning platforms for de-
velopers to create products and enhance existing ones, Bughin (2017)

Technological innovations in computer science and storage has slowly but
surely reached levels which have made it practical to implement complex al-
gorithms, especially neural networks to mimic the human brain. Since Pro-
fessor Arthur’s first paper on machine learning, many methods have evolved.
However, this thesis is not intended to give an in-depth explanation of all ex-
isting methods. Nevertheless, a in-depth analysis of Logistic Regression and
Support-Vector-Machine Learning will be carried out in the thesis.

Figure 1: The evolution of AI

1.2 Literature Study

The thesis will have its foundation from one of the earliest papers on Machine
Learning, Arthur L (1959), which was mentioned earlier in the introduction.
Arthur L (1959) used programming to train a computer to play a game of
checkers, the program learned by rewarding and punishing moves, to play and
even become better than the programmer. The more game time the better the
program became.

1.2.1 Probability of Default

Early on, Von Furstenberg (1969) and (1970) established the influence on
home mortgage default rates of variables such as income, loan age, and loan-
to-value ratio. Von Furstenberg (1969) concluded that it was the financing
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characteristics of the mortgage loan which accounted for much of the observed
variation in default risk. Moreover, Von Furstenberg (1970) reemphasized that
characteristics of the mortgagor, such as age and income, are statistically far
less powerful explanatory variables of the level of default rates. Rather Loan-
To-Value was the only mortgage characteristic, correlated with income, whose
causal relation to risk could firmly be established.

Additional variables were investigated by Gau (1978) and Vandell (1978).
Gau (1978) investigated through application of factor analysis, 64 interrelated
variables describing the financial, property, and borrower characteristics of
residential mortgages were transformed into a smaller number of dependent
factor dimensions. The model derived could then be utilized to identify the
relative risk of default of conventional mortgages. Vandell (1978) found that
default risk is predicted to increase when a household income is lowered. The
empirical results were derived by fitting a model with relating variables associ-
ated with the borrower, property, and mortgage instrument to the probability
of default over time.

1.2.2 Machine Learning

Two pattern recognition approaches are investigated in Vapnik (1995) who
combined three ideas to support-vector network;

1. The solution technique from optimal hyperplanes (that allows for an
expansion of the solution vector on support vectors).

2. The idea of convolution of the dot-product (that extends the solution
surfaces from linear to non-linear).

3. The notion of soft margins (to allow for errors on the training set).

The algorithm developed by Vapnik (1995) was tested and compared to the
performance of other classical algorithms at that point of time. Despite the
simplicity of the design in its decision surface the new algorithm exhibited a
adequate performance in the comparison study. Schölkopf (2000) built upon
Vapnik’s (1995) work and proposed a new class of support vector algorithms
for regression and classification.

Schölkopf (2000) let effectively a parameter to control the number of support
vectors. The parameterization had the benefit of enabling one to eliminate
one of the other free parameters of the algorithm, i.e. the accuracy parame-
ter in the regression case, and the regularization constant in the classification
case.
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Chang, Dae-oong Kim and Kondo (2016) predicted default risk of lending
club loans by analyzing different methods such as logistic regression, Naive
Bayes and SVM. Within these methods further improvements were made
by using different sample sizes, looking for high bias or variances. From the
comparisons and fine tunings to predict default rates(optimizing specificity),
Naive Bayes with Gaussian performed well with independent feature sets.
However, most classifiers show significant deterioration in performance when
dealing with skewed data sets which is the case here. He and Ghodsi (2010),
showed that two proposed special modified SVM methods had consistent im-
provement over ordinary SVM performances.

1.3 Problem Formulation

As mentioned earlier in the introduction, defaulting mortgages is costly for
mortgage providers. Currently all mortgage providers use proprietary calcu-
lations to generate the risk profile for the mortgagor. However, due to the
mechanics of the global economic markets banks are highly inter-connected
which was evident during the financial crisis with many mortgage loans de-
faulting and leading the financial system into distress.

The aim of the thesis is to help mortgage providers to classify a clients proba-
bility of defaulting a mortgage. A simplified scenario could be a client apply-
ing for a mortgage loan for a specific property and enters their personal infor-
mation to hopefully be accepted by the lender. The lender should be able to
calculate the risk, including probability of the client not being able to repay
the mortgage, given the client’s information and financial background check.
The risk calculated is translated into a mortgage interest rate.

This thesis will help predicting the probability of default, the probability of
a household not being able to repay their mortgage. Additionally, compar-
ing the two common known methods, SVM and Logistic Regression from the
computational complexity, strength and predictive stand points.

The thesis will address the following questions;

• How will SVM perform predicting probability of default on mortgage
loan’s taken pre 2007 financial crisis, 2000-2005?

• How will SVM perform predicting probability of default of mortgage
loan’s over the period of 2007, 2005-2010?

• How will SVM performs in predicting probability of default on mortgage
loans post financial crisis era, 2010-2015?

• How does the above result stand compared to a Logistic Regression
model?
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2 Data

Figure 2: The steps in the process of this thesis. Selecting the best subset from
Fannie Mae was carried out with help of previous studies.

Data is downloaded from Fannie Mae, Single-Family loans guaranteed or owned
by Fannie Mae. The loans are 30-year, fixed-rate mortgage, fully amortized
and documented. The attributes chosen is selected from previous work, the
loan to value (LTV) a mortgage characteristic correlated with Income, where
the causal relation to risk could firmly be established as per George M. and
Von Furstenbergs (1970) work. A Raising LTV increases default rates far
more drastically and consistently than lowering a mortgage takers income. It
was established that characteristics of the mortgagor, such as age and income,
are statistically far less powerful explanatory variables of the level of default
rate.

Kerry D and Vandell (1978) stated in their work that interest rate has im-
plications on the mortgage default risk and can be predicted to increase or
decrease roughly, however moderately and still within an acceptable range

Von Frustenberg (1969) also concluded that LTV had a major significance
for defaults. The loan-value ratio is the variable governing the level of default
rates over the life of the mortgage. Reducing the downpayment in the high-
est LTV range by as little as 1 % of home value can cause default rates to rise
by 50 % . Moreover, neither age nor income, but rather the financing charac-
teristics of the mortgage correlated therewith, which account for much of the
observed variation. Income definitely cannot compete with LTV as the princi-
pal variable explaining the higher default rates for lower income group. Hence,
Debt-to Income should account the factor of not only the income itself rather
how much indebted the borrower is. This factor believed to be reflected at by
the FICO Score, which will be explained later

Public available data for the period 2000-2015 was downloaded from The Fed-
eral National Mortgage Association, known as Fannie Mae, database. Fan-
nie Mae is a United States government-sponsored enterprise and provide ac-
cess to mortgage financing. The dataset used includes Fannie Mae’s 30-year
fixed-rate, fully documented, single-family amortizing loans that the company
owned on or after January 1 2000. All the available variables when acquiring
a house loan is seen in the table below.

The explanatory variables for the analysis was narrowed down to only numer-
ical values, leaving only 10 variables of the original 22. The 10 variables were
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Figure 3: Mortgage loan acquisition variables from Fannie Mae database.

lastly narrowed down to 4 variables, to only use continuous data at the point
of acquiring a mortgage loan. Loans which had been altered, that is a new
mortgage taken on an existing house was not considered.
The four explanatory variables left was, Original Interest Rate, Loan-To-Value
ratio (LTV), Debt-to-Income ratio (DTI) and Borrower credit score (FICO).
Below will give a throughout explanations of each one of the explanatory vari-
ables.

• The initial Loan-To-Value (LTV) ration, that is loan to purchase price
of the property of a mortgage reflects the amount of equity a borrower
have invested in the purchased property. A default would cause the bor-
rower to lose this equity. A common sense view would be a lower LTV,
more equity invested, should repel a investor of defaulting, as more is at
stake for the borrower.
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• Debt-to-Income ration (DTI) is the total amount of borrowers monthly
gross income going towards paying obligations at the time of acquiring
the mortgage loan. A high DTI would most probably restrict the bor-
rowers mortgage amount.

• Interest rates of each mortgage loan is taken into account. As mentioned
before, interest rates also reflects riskiness of a loan. The higher the in-
terest rate the higher the risk of the specific borrower.

• Lastly, borrower Credit Score (FICO score) is a numerical value used
throughout the financial industry to evaluate borrowers creditworthi-
ness. The FICO mortgage score is between 300 and 850, a higher num-
ber indicates a lower credit risk of the borrower. The exact model used
to compute the FICO score is not public, however, the percentage of
each component is public, as per figure 4.

Figure 4: The calculation of Mortgage FICO Score

Finally, for each specific loan with the explanatory variables the delinquency
status was investigated during a 5 year period, 2000-2005, 2005-2010 and
2010-2015. That is, mortgage loans undertaken during 2000 and investigate if
the borrower has defaulted during a 5 years period, i.e. up to 2005. Likewise
for 2005-2010 and 2010-2015 time periods. Note that when during these 5
years the borrower has defaulted in not considered. There is no consensus on
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the definition of a default and after how many days of delinquency a mortgage
loan is considered defaulted. However, according to FICO, a payment delayed
by more than 30-days is flagged, consequently resulting in a decreased score,
and stays on your FICO credit report for seven years. Therefore, a heuris-
tic used within this thesis is to consider a delinquency status of more than 30
days as defaulted.

All the explanatory variables was scaled [0 ,1] and delinquency status fields
were altered. Any repayment delayed more than 30 days was labeled defaulted,
a binary approach is taken where 1 is considered defaulted and 0 not defaulted,
i.e repaid or still repaying according to agreement.
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Data
Variable Description Value
Interest
Rate

The interest on a mortgage loan in effect for
the periodic installment due.

Percentage

Loan- To
- Value
(LTV)

A ratio calculated at the time of origination
from a mortgage loan. The original LTV
reflects the loan-to-value ratio of the loan
amount secured by a mortgage property on
the origination date of the underlying mort-
gage loan.

Percentage (0% -
97%)

Debt- To
- Income
(DTI)

A ratio calculated at origination derived by
dividing the borrower’s total monthly obliga-
tions (including housing expenses) by his or
her stable monthly income. This calculation
is used to determine the mortgage amount for
which a borrower qualifies

Percentage (1% -
64% )

Borrower
Credit
Score

A numerical value used by financial services
industry ti evaluated the quality of borrower
credit. Credit scores are typically based on
a proprietary statistical model that is devel-
oped for use by credit data repositories. The
credit repositories apply the model to bor-
rower credit information to arrive at a credit
score. When this term is used by Fannie Mae,
it is referring to the ”classic” FICO score de-
veloped by Fair Isaac Corporation.

Numerical (300-
800)

Delinquency
Status

The number of days, represented in months,
the obligator is delinquent as determined by
the governing mortgage documents

0 = Current, or
less than 30 days
past due
1 = 30 - 59 days
2 = 60 - 89 days
3 = 90 - 119 days

Table 1: Variables chosen for this thesis.

2.1 Unbalanced Data

The data set contained 1.3 - 1.7 million observations for each time period with
a high non-default rate. On average approximately 12 percent of the observa-
tions were defaulted mortgages. The classifiers will have hard time predicting
the skewed underrepresented observations. There is multiple methods to bal-
ance the data, oversampling, undersampling and Synthetic Minority Oversam-
pling Technique (SMOTE), Haibo He (2009). SMOTE creates new synthetic
observations of the minority class so that both defaulted and non-defaulted
mortgages has equal representation. A new synthetic observations is generated
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by finding the nearest neighbor of a minority observation. The thesis will use
SMOTE to balance the uneven data.

3 Method

3.1 Logistic Regression

The base case and golden standard for probability prediction when it comes
to machine learning is Logistic Regression and many previous work has been
done on probability predictions with Logistic Regression as a benchmark, re-
ferring to one of the many previous work in the field, Sirignano, J., Sashwani,
A. Giesecke, K. (2016). Logistic Regression is a machine learning algorithm
that can be used for binary classification problems like predicting the proba-
bility of default or no-default.
In this case logistic regression models the probability of default using a sig-
moid transform of linear function f features. Letting y = 1 denote default and
y = 0 denote non-default, our assumption can be written:

Pr(yi = 1) = σ
(
wtxi

)
, (1)

where σ denotes the sigmoid (or logistic) function:

σ(z) =
1

1 + e−z
, (2)

and w are parameters of the model.
If we predict that yi = 1 with probability pi, it follow that the likelihood of
observing yi is p

yi(1 − p)1−y1 . This means that the likelihood of a dataset
{xi, yi}ni=1 is:

L(w) =

n∏
i=1

σ
(
wTxi

)yi
(1− σ

(
wTxi

)
)1−yi , (3)

and the log-likelihood is given by:

ℓ(w) =

n∑
i=1

(
yi log σ

(
wTxi

)
+ (1− yi) log(1− σ

(
wTxi

)
)
)
. (4)

It can be shown that ℓ is actually a concave function, meaning that any local
maxima are also global maxima. Convex minimization problems (or equiv-
alently, concave maximization) are well-studied and there are many highly
effective approaches to solving them; Boyd, Vandenberghe (2009)

It is often desirable to add l2 regularization to regression problems like this.
This is used to reduce overfitting and to somewhat increase the stability of
the problem. With the l2 term, the function becomes strictly concave, guaran-
teeing a unique global maximum. The form of the regularized objective func-
tion is:

ℓreg(w) = ℓ(w)− 1

c
∥w∥2, (5)
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where c is a hyper-parameter determining the strength of the regularization
and can be fit using for instance cross-validation.

3.2 Support Vector Machines

SVMs are supervised Machine Learning algorithms which are capable of per-
forming both linear and non-linear classification. The objective of the algo-
rithm is to find an optimal hyperplane that separates the data. The optimal
hyperplane is the one which has the biggest margin between the data points,
where the margin is defined as the smallest distance between the hyperplanes
that bound each class. Each point lying on these hyperplanes are called sup-
port vectors since they support the position of the hyperplanes and due to be-
ing vectors in an n-dimensional space. Data points that are not lying on the
hyperplanes are called non-support vectors since they will not affect the posi-
tion of our separating hyperplane. Figure 5 shows two cases whereas the first
shows data that is linearly separable while the other is linearly non-separable,
i.e., some points are on the wrong side of the margin.

Figure 5: Linearly separable vs. linearly non-separable. The color of the data
points shows which class they belong to. The left figure depicts the case of the
data being linearly separable. None of the observations are on the wrong side
of the margin, i.e., there is no misclassification. The right figure shows the
case of linearly non-separable data and thus allowing some of the observations
to be misclassified.

3.2.1 Linearly Separable Data

The linearly separable dataset D is composed of n vectors x i, where X is
called the input space. x i is the ith input vector, or observation, in that input
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space. Each input vector x i is paired with an output value yi which indicates
if the element belongs to the class or not. The dataset can be defined as:

D = {(x i, yi)|x i ∈ Rp, yi ∈ {−1, 1}}ni=1. (6)

As mentioned above, the objective is to find a seperating hyperplane that
maximizes the margin between the classes in the dataset. From figure 5, the
separating hyperplane is defined as:

f(x ) = wTx + b, (7)

where w is the normal to the hyperplane and b is the bias. The equations (6)
and (7) yields that the hyperplane will have the following properties:

wTx + b > 0,when yi = 1, (8)

and

wTx + b < 0,when yi = −1. (9)

Since yi ∈ {−1, 1}, the lower and upper bound of the support vectors are
defined as:

wTx l + b = −1, (10)

and

wTxu + b = 1, (11)

where x l and xu are the input vectors yielding the lower and upper bound.
These two equations together with (6) can be combined into one single con-
straint:

yi(w
Tx i + b) ≥ 1, for 1 ≤ i ≤ n. (12)

The margin, M , that bound each class, is obtained by taking the projection
of the vector (xu − x l) onto the normal vector to the separating hyperplane.
This yields the following equation:

M =
2

∥w∥2
(13)

The equations (12) and (13) result in the following maximization problem to
solve:

maximize
w,b

2

∥w∥2
subject to yi(w

Tx i + b) ≥ 1, for 1 ≤ i ≤ n.

(14)
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The maximization problem above can instead be turned into a minimization
problem (by the simple fact that maximization of M in (13) is the same as
minimization of ∥w∥):

minimize
w,b

∥w∥2

subject to yi(w
Tx i + b) ≥ 1, for all 1 ≤ i ≤ n,

(15)

which is a quadratic minimization problem with linear inequality constraints.
Finally, (15) is equivalent to the following problem:

minimize
w,b

1

2
∥w∥22

subject to yi(w
Tx i + b) ≥ 1, for all 1 ≤ i ≤ n.

(16)

(16) can be solved through convex optimization, more specifically, by forming
the Lagrangian L of the problem:

L(w, b, α) =
1

2
∥w∥2 −

n∑
i=1

αi(yi(w
Tx i + b)− 1),

αi ≥ 0,∀i,
(17)

where αi are Lagrangian multipliers that are necessary for solving these kind
of optimization problems. Moving on, minimization of ∥w∥2 and b requires
partial differentiation of the Lagrangian primal problem (17) and putting
them equal to zero:

∇wL(w, b, α) = w−
n∑

i=1

αiyix i = 0, (18)

∇bL(w, b, α) =

n∑
i=1

αiyi = 0. (19)

The two partial derivatives above in combination with equation (17) results
in:

L(α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i x j , (20)

which is the Lagrangian dual problem. Maximization of the dual together
with the Karush-Kuhn Tucker conditions gives the following:

maximize
α

L(α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i x j , (21)

αi ≥ 0,∀i, (22)
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w =

n∑
i=1

αiyix i, (23)

n∑
i=1

αiyi = 0, (24)

.

αi(yi(w
Tx i + b)− 1) = 0,∀i, (25)

yi(w
Tx i + b)− 1 ≥ 0,∀i. (26)

Equations (22)-(26) results in the solution to both the primal and dual prob-
lem. The observations, x i, where the Lagrangian multipliers, αi, are nonzero
are called support vectors since, due to (23), w is characterized by αi only.
These support vectors determine the normal to the optimal separating hyper-
plane:

ŵ =

n∑
i=1

α̂iyix i. (27)

These results builds on the assumption that the data is linearly separable,
which is often not the case in more realistic data sets. Instead, a more realis-
tic scenario is that the data is not linearly separable, leading to some of the
observations being wrongly classified.

3.2.2 Linearly Non-Separable Data

By introducing slack variables, ξi, for 1 ≤ i ≤ n, some of the data points are
allowed to be on the other side of the margin, i.e., allowing misclassification.
The second case in figure 5 shows the principle of having some observations
on the wrong side of the margin.

Adding the slack variables to equation (12) yields:

yi(w
Tx i + b) ≥ 1− ξi, for 1 ≤ i ≤ n. (28)

The slack variables are also used as penalty variables for the optimization
problem. That is, adding the sum of slack variables multiplied with a cost
parameter, C, to (16) gives:

minimize
w,b,ξ

1

2
∥w∥2 + C

n∑
i=1

ξi

subject to yi(w
Tx i + b) ≥ 1− ξi,∀i

ξi ≥ 0.

(29)

The Lagrangian primal for the optimization problem above becomes:
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L(w, b, α, β) =

1

2
∥w∥2 + C

n∑
i=1

ξi −
n∑

i=1

αi(yi(w
Tx i + b)− (1− ξi))−

n∑
i=1

βiξi,

αi ≥ 0, βi ≥ 0,∀i,

(30)

where αi and βi are Lagrangian multipliers. As for the linearly separable
data, setting the partial derivatives of the Lagrangian equal to zero results
in:

∇wL(w, b, α, β) = w−
n∑

i=1

αiyix i = 0, (31)

∇bL(w, b, α, β) =

n∑
i=1

αiyi = 0, (32)

∇ξL(w, b, α, β) = C − αi − βi = 0. (33)

The Lagrangian dual is obtained by inserting the equations (31)-(33) into
(30):

L(α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i x j . (34)

Maximization of (34) together with the Karush-Kuhn Tucker conditions yields
the following optimization problem:

maximize
α

L(α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i x j , (35)

w =

n∑
i=1

αiyix i, (36)

n∑
i=1

αiyi = 0, (37)

βiξi = 0,∀i, (38)

C − αi − βi = 0 ⇔ ξi(C − αi) = 0,∀i, (39)

αi(yi(w
Tx i + b)− (1− ξi)) = 0,∀i, (40)

yi(w
Tx i + b)− (1− ξi) ≥ 0,∀i, (41)
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αi ≥ 0, βi ≥ 0,∀i. (42)

Equations (35)-(42) results in the solution to both the primal and dual. The
same way as in the case of linearly separable data, the observations where the
coefficients αi are nonzero are called support vectors since, due to (36), w is
characterized by αi alone. The normal to the optimal separating hyperplane
for non-linearly separable data is:

ŵ =

n∑
i=1

α̂iyix i. (43)

Both these methods are not always applicable, it all depends on the data.
Some datasets are not as easily separable and requires other representation
before classification can be made properly, thus introducing the Kernel Trick.

3.2.3 The Kernel Trick

To get round the problem with the data being non-separable, i.e., it is not
possible to divide the data with a hyperplane, the data is mapped non-linearly
into a feature space xi → φ(xi), which is a higher dimensional space. The
mapping of the data will result in the data being separable by a hyperplane.

The feature space, φ(xi), is defined as:

φ(xi) = (φ1(xi), . . . , φm(xi), . . . , φN (xi)), for 1 ≤ i ≤ n, 1 ≤ m ≤ N. (44)

There will be a reduction in the dimensionality if N < n. By mapping the
observations from (35) into feature space and using the kernel function where
K(xi,xj) = φ(xi)

Tφ(xj), the following Lagrangian is obtained:

L(α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(x i,x j). (45)

The solution to the Lagrangian above is given from equation (36) and results
in:

f(x) = φ(x)Tw+ b =

n∑
i=1

αiyiK(x,xi) + b, (46)

In (45), αi and b can be computed by solving yif(xi) = 1 for all xi where
0 < αi < C. C, as before, is the cost parameter.
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As can be seen, K(xi,xj) is the inner product for the mapped pairs of points
in feature space. Both (44) and (45) contains φ(x) through inner products.
The reason for it being called a ”trick” is that it is only required to know
the Kernel function K(xi,xj) and not the transformation φ(x), thus, saving
computational memory. However, a problem when working with kernels is not
knowing the validity of a certain kernel. By use of Mercer’s Theorem, the le-
gitimacy of the mapping into feature space of a kernel is given, Minh, Partha
and Yuan (2006). The theorem says that the function K(xi,xj) is a kernel if
and only if it is a symmetric positive semi-definite function. A few common
kernels are polynomial kernel, Radial basis function (RBF) kernel and neural
network kernel, Abello, Pardalos, Resende (2002). Usually the choice of kernel
depends on the problem at hand. This thesis will use RBF while it can handle
situations when there is non-linear relationships between the class labels and
attributes. In addition, contrast to polynomial kernel, the number of hyperpa-
rameters in RBF kernel is easier to control which reduces the model complex-
ity. An interesting point with polynomial kernel is that it can combine two or
more features together up to the order of the polynomial.

The value of the cost parameter C depends on how much of the maximiza-
tion of the margin can be given up to minimize the misclassification, i.e., a
trade-off between the both. A smaller value of C encourages a greater mar-
gin and thus allowing more misclassification, which in turn makes the surface
smoother. For a larger value of C the opposite holds; optimization will choose
a hyperplane with a narrower margin, resulting in fewer points on the wrong
side of the classification.

3.2.4 The Radial Basis Function Kernel

As mentioned previously, a common kernel to use for Support Vector Machine
classification problems is the Radial Basis Function (RBF) kernel. A general
radial basis function is defined by:

K(x,x′) = g(∥x− x′∥), (47)

for some function g. Going forward, we will only consider the Gaussain RBF,
which is one of the most widely used radial basis functions. This is given by
the kernel:

K(x,x′) = exp

(
−∥x− x′∥2

2σ2

)
, (48)

where we define γ = 1
2σ2 as the spread of the RBF, i.e., a low value on γ can

be interpreted as the reach of the influence of a single training point is far and
a high value on γ means that the reach of the influence of a single point is
close. In other words, a small γ yields a model that might be too constrained
and thus the ability to explain the complexity of the data will be affected neg-
atively.
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Figure 6: An illustration of how the kernel trick manipulates the data and
brings it to a higher dimension. The data points marked with a circle belongs
to a class and the data points marked with a triangle belongs to another class.
The observations in the left figure can not be separated with a hyperplane due
to its shape. However, the kernel trick maps the data into a feature space,
making it easier to separate, which can be seen in the right figure.

Source: https://www.eric-kim.net/eric-kim-net/posts/1/kernel trick.html

To find the most suitable model for the data, the two parameters for the RBF
kernel, C and γ, must be chosen wisely. Unfortunately, the procedure of find-
ing the optimal parameters is both time-consuming and computationally costly
(especially for large datasets). An approache of optimizing C and γ is through
Cross-Validation and Grid-Search.

3.2.5 Cross-Validation

A common problem when trying to fit training data is overfitting, which can
occur by having too many explanatory variables. Tendencies of overfitting
can also arise when tweaking the cost parameter C, since information about
the test set may be exposed into the model. A way of overcoming the issue is
by splitting the dataset into another set, a so called validation set, Arlot and
Celisse (2016). The procedure of the machine learning algorithm will begin
with training on the training set. Afterwards, evaluation is performed on the
validation until the analysis is successful. Lastly, final evaluation is performed
on the test set.

A typical way of cross-validating data is by using the k-fold cross-validation
method. The method is initiated by dividing the data into k equally large
data sets. k − 1 of the subsets are used as the training data, which will yield
a model that can be tested against the last subset. The procedure is repeated
so that each of the k subsets are used as test data. The performance of the
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cross-validation is measured by the percentage of the data that is predicted
correctly.

3.2.6 Grid-Search

The method of cross-validation can be used to conduct a so called grid-search.
The search will be used to find the pair of parameters (C, γ) that yields the
highest cross-validation score. The method is computationally costly due to
many different pairs of (C, γ) that are cross-validated Sayrif, Prugel-Bennett,
Wills (2016). At first it can be performed on a smaller grid, to avoid a time-
consuming search. The first search on the coarser grid can be used as an in-
dication of which region of the grid that results in a high cross-validation ac-
curacy. Afterwards, a second search on the region which gave a high score can
be performed to find an even better pair of parameters. For Logistic Regres-
sion there is only one parameter, C, regularization parameter, which needs to
be optimized.

3.3 Scoring

Scoring functions keeps track of the performance of a certain model. More ex-
plicitly, they indicate how well a model predicts new data points. After the
training of the dataset the different scoring methods will be used as a compar-
ison of the performance.

There are different cases of classification, which, can be used for different scor-
ing methods. The labels that will be used are:

• True Positive (TP): a positive prediction, true label is positive.

• False Positive (FP): a negative prediction, true label is positive.

• True Negative (TN): a negative prediction, true label is negative.

• False Negative (FN): a positive prediction, true label is negative.

3.3.1 Accuracy Classification Score

The Classification Accuracy is defined as the number of correct predictions
made of the whole set of predictions. The scoring method is straightforward
and is calculated as the following ratio:

Accuracy =
TP + TN

TP + TN + FP + FN
, (49)

which, obviously, gives a number between 0 and 1, where the performance of
the model improves as the score gets closer to 1.
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3.3.2 Precision, Recall and Fall-Out Score

The Precision Score, also known as Positive Predictive Value, is the number
of True Positives divided with the number of examples with the true value
positive:

Precision =
# of TP

# of TP + # of FP
. (50)

The Precision Score measures a classifiers ability to label data points that
are positive as positive. If the Precision Score value is low it implies that the
number of False Positives is high.

The Recall Score is defined as the number of True Positives divided with the
number of True Positives and False Negatives:

Recall =
# of TP

# of TP + # of FN
. (51)

The Recall Score measures a classifiers ability to find all the predictions that
are labeled as positive. A low value implies that the number of False Nega-
tives is high.

The Fall-Out Score, or False Positive Rate, is the number of False Positives
divided with the number of False Positives and True Negatives:

Fall-Out =
# of FP

# of FP + # of TN
. (52)

The Fall-Out Score measures the probability of labeling data points as posi-
tive when the true value is negative.

3.3.3 F1-Score

In the F1-Score method both the Precision Score and Recall Score are taken
into consideration. It is a weighted average between those two scores, thus
creating a balance between them. The value is calculated as:

F1-Score = 2 ∗ Precision ∗Recall

Precision+Recall
. (53)

Equation (53) shows that both the Precision and Recall contribute to the
score with the same amount, which is useful when there is an uneven class
distribution between False Positives and False Negatives.

3.3.4 Receiver Operating Characteristic - ROC

The ROC curve, Receiver Operating Characteristic, plots the two parameters:
Recall and Fall-Out at different classification thresholds between 0 and 1. Fig-
ure 7 shows a typical ROC curve.

22



The ROC curve will show how good a classification model’s performance is,
i.e., how well the model is at labeling a data point correctly. To measure the
performance of a model, the Area Under the Curve, AUC, of the ROC curve
is used. The AUC will range between 0 and 1, where a model that is able
to perfectly distinguish between classes has an AUC of 1. A model with an
AUC of 0.5 has no ability to distinguish between classes and will always la-
bel a data point with a random class. In the case of the AUC being 0, the
classification model will always incorrectly predict positives as negatives and
negatives as positives.

However, when dataset is imbalanced where majority one of the two classes is
very few as in the case of the Fannie Mae dataset, > 5 % defaulted. Clearly
the dataset is skewed and ROC will not be able alone to present if the model
is predicting well. Therefore, it is good to calculate additional measures that
collect more specific aspects of the evaluation which takes us to Precision re-
call curve.

Figure 7: Figure showing an ROC curve at different classification thresh-
olds. The plot shows Recall on the y-axis versus the Fall-Out on the x-axis.
A higher value on the y-axis means more True Positives and fewer False Neg-
atives, while a lower value on the x-axis implicates fewer False Positives and
more True Negatives.

23



3.3.5 Precision-Recall Curve - PRC

Using equation (50) and (51), both precision and recall is useful where there
is imbalance in the dataset and massive skew in the observations. What typi-
cally happens is a high number of true negatives. A precision-recall curve is a
plotted below Figure 8, precision (y-axis) and the recall (x-axis) for different
thresholds, similar to the ROC curve. The precision recall does not take into
account the true negatives and only concerned with the correct prediction of
the minority class, in this case defaults.

The no-skilled model would not be able to separate between the defaults and
non-defaults, it would be a random classifier.

Figure 8: Precision Recall Curve - The more skilled a model is the closer to
the (1, 1) point the curve is, further away from the horizontal line of the no-
skilled model.

3.3.6 Bootstrapping for confidence intervals

To get confidence intervals for the resulting AUC scores, we use bootstrap-
ping. This means that we resample (with replacement) our training data sev-
eral times and, for each sampled dataset, we fit a model and calculate the re-
sulting scores on the test data. This gives us a distribution of estimates of the
AUC score which we can use to calculate various statistics and confidence in-
tervals.
One can get a 95%-confidence interval from the distribution of scores by look-
ing at the 2.5% quantile and 97.5%-quantile of the distribution. A different
alternative is to estimate the standard deviation of the distribution and use a
Gaussian approximation.
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4 Results

This section gives account of the results obtained from the experiments. That
is, the results from the pre-processed Fannie Mae mortgage loan data using
Support Vector Machine Algorithm and Logistic Regression. The first set,
pre-financial crisis, data consists of mortgage loans undertaken during 2000
and processed the performance up to 2005, whether a default incurred. Sim-
ilarly, the second set is made up of house loans undertaken 2005 and perfor-
mance investigated up to 2010, and the third set loans undertaken 2010 and
performance investigated up to 2015, crisis and post crises sets respectively.

The whole first set consists of 1 264 975 samples, where each sample is made
up of 5 variables. In other words, the first set is a matrix with the dimension
1 264 975×5. However, since the set is too large we chose only a fraction of
the set for our results. The same was done for the crisis and post crisis sets.
Due to computational constrains only 400 000 data points were randomly se-
lected for each time period. Furthermore, the data was normalized for each
column, [0,1], as the attributes varies substantially. Borrower credit score
(FICO) spans between 300-800 while interests rates are in single digit range.

Further, the whole set is divided into 3 subsets:

• Training data: 50% of the whole subset.

• Validation data: 25% of the whole subset.

• Test data: 25% of the whole subset.

4.1 Models

Running the entire algorithm with all its different stages on a quad-core PC
12 GB RAM was very time-consuming, including test feedback cycle taking
several hours. The procedure includes cleaning of the data, picking out frag-
ments and shuffling random observations from the whole data set. For logistic
regression a grid search is used to cross-validate the data to find the correct
regularization strength, C (the inverse of regularization strength). Same pro-
cess for the SVM algorithm is used to optimize C and γ. As mentioned above,
400 000 out of 1.4-1.7 million data points were used for the whole process,
training, testing and validation. The Logistic regression has only one param-
eter, C, the regularization to be optimized. However, for SVM there is the
RBF kernel parameters C, regularization parameter, and γ, how much influ-
ence a training point has. To find the optimized parameters for C and γ was
very time consuming.

The following results were obtained by randomly selecting a subset of the
data, where the ratio between observations with delinquency status 0 or 1
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were around 1:5. Due to the limited time the various ways of approaching im-
balanced data set was not investigated and SMOTE was used, shortly men-
tioned in the data section.

To put in perspective, the analyses was carried out with the full dataset, 1.3
million data points, modelling SVM and finding the optimal C and γ, the
code was running for over 9 hours using COLAB PRO+, 40 CPUs and 52Gb
RAM memory.

Looking at Figure 9, borrower credit score (FICO) is clearly negatively corre-
lated to the rest of the variables which is not a surprise. To measure forecast
accuracy, the Receiver Operating (ROC) and Precision Recall Curve (PRC) is
investigated. Due to the unbalanced data F1 score was optimized, finding the
highest F1 score.

ROC-AUC for Logistic Regression result are 0.72 , 0.72 and 0.69, 2000-2005,
2005-2010, 2010-2015. Although, the more interesting score is the PRC-AUC
and the highest value was found for the 2005 time period, 0.389, while 2010
had the worse 0.129. Each of the periods a C value was found using grid-
search algorithm, this was not much time consuming for logistic regression
and took minimal computational time.

SVM results, as mentioned, took more computational resources and as seen
the results were only marginally better. 0.72, 0.72 and 0.70 for the periods
2000-2005, 2005-2010 and 2010-2015 respectively. Similar to Logistic regres-
sion, highest PRC-AUC for SVM was 2005 time period while lowest was for
2010 data, observed in table 2. Worth mentioning to the reader, the data set
for 2010-2015 was very large and computational error was encountered mul-
tiple times due to not enough RAM memory. A larger number of data points
was selected for the time period 2010-2015 due to larger skewness in the data
set.

The confidence interval is tighter for logistic regression models in contrast to
SVM models, although all is within 95% significance for both models.
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Table 2: ROC- and PRC-AUC values including 95% confidence interval. The
confidence interval is tighter for logistic regression compared to SVM models.

Model and Year ROC-AUC Conf.I Precision-Recall AUC Conf.I

LogReg 2000 0.719524 ± 0.000054 0.316956 ± 0.000028
LogReg 2005 0.718352 ± 0.000143 0.388074 ± 0.000256
LogReg 2010 0.697259 ± 0.000276 0.132291 ± 0.000229
SVM 2000 0.722620 ± 0.000159 0.317464 ± 0.000359
SVM 2005 0.723311 ± 0.000400 0.389054 ± 0.000757
SVM 2010 0.701747 ± 0.000856 0.137313 ± 0.000609

Figure 9: Variable correlation matrix heatmap were identical for all time peri-
ods 2000-2005, 2005-2010-and 2010-2015. Borrower credit score have a nega-
tive correlation. A lower DTI, LTV and interest rate translates into a higher
borrower credit score, i.e. better financial health.
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Figure 10: Results for Logistic Regression year 2000 acquired data with Per-
formance Metrics (Accuracy, Sensitivity vs Specificity, Precision vs Recall,
and F1 Score), ROC curve and Precision-Recall Curve.
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Figure 11: Results for Logistic Regression year 2005 acquired data with Per-
formance Metrics (Accuracy, Sensitivity vs Specificity, Precision vs Recall,
and F1 Score), ROC curve and Precision-Recall Curve.
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Figure 12: Results for Logistic Regression year 2010 acquired data with Per-
formance Metrics (Accuracy, Sensitivity vs Specificity, Precision vs Recall,
and F1 Score), ROC curve and Precision-Recall Curve. Precision score for
defaults is much lower than other data sets.
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Figure 13: Results for SVM year 2000 acquired data with Performance Met-
rics (Accuracy, Sensitivity vs Specificity, Precision vs Recall, and F1 Score),
ROC curve and Precision-Recall Curve.
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Figure 14: Results for SVM year 2005 acquired data with Performance Met-
rics (Accuracy, Sensitivity vs Specificity, Precision vs Recall, and F1 Score),
ROC curve and Precision-Recall Curve.

32



Figure 15: Results for SVM year 2010 acquired data with Performance Met-
rics (Accuracy, Sensitivity vs Specificity, Precision vs Recall, and F1 Score),
ROC curve and Precision-Recall Curve. Here too similar to logistic regression
the precision for defaults is significantly lower than for the other period.

33



5 Discussion

The results show that the predictors seem to predict the responder reasonably
well. While SVM seems to be a somewhat better performer, the improvement
over logistic regression is quite small. Two strengths of SVMs are being able
to handle high-dimensional feature spaces well and being able to create non-
linear decision boundaries using the kernel trick, neither of which is leveraged
much in this problem. On the contrary, the predictors are few and seem to
have fairly straight-forward linear relationships to the responder, indicating
that a logistic regression might be sufficient.

Another advantage of logistic regression is that the output of the model can
be interpreted as a probability (and the coefficients as change in log-odds per
change in predictor), making ROC and precision/recall curves easy to calcu-
late. For a SVM, on the other hand, some calibration is needed to turn the
model outputs into probabilities.

This difference might partly explain the narrower confidence intervals for
logistic regression. The calibration for SVM (in sklearn) uses a split of the
training data, where the model is trained on one of the splits and then cal-
ibrated to output probability estimates by looking at the other split. This
step both reduces the amount of data used to train the model, and introduces
some random noise in the choice of splits. Both of these effects could make
the confidence intervals larger.

In general, the confidence intervals are quite narrow. This is likely due to the
large sizes of the dataset compared to the complexity of the models (which
basically fit 4 parameters). It would be interesting to also investigate how
the SMOTE oversampling interacts with bootstrapping. As done now, the
bootstrapped samples are drawn from the dataset after SMOTE. This might
cause odd effects where some samples in the original datasets are basically
duplicated in the over-sampled dataset, leading to lower variance in the boot-
strapped estimates. One might want to try using SMOTE after bootstrapping
instead.

A clear benefit of logistic regression is the fast computational time while it
obtains results very close compared to SVM, due to the kernel computation
of the SVM model. If more variables were chosen, the results of SVM could
likely yield a slightly better model but at a cost of even longer computational
time. The results appeared to be same for all time periods investigated. An-
other way of overcoming the lengthy execution time is to use approximation
methods to find the optimal pairs of C and γ, which was not considered due
to time constraints.

A further research could have been done by using other methods to balance
the unbalanced data. Since the data set is skewed towards non-defaulted mort-
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gages, this has the implication that one class (default) will be under repre-
sented compared to the other by the model. Arguably, it does not come with-
out problematic consequences, such as losing valuable information from the
removed subset Haibo He(2009)

There is three additional ways to investigate the models by looking at the
time-variable parameters 1) interaction variables, 2) more attributes included
and lastly 3) categorize variables. Due to time constrains a thorough analysis
was not carried out.

The emphasis for future work would be to add more variables such as: unem-
ployment by zip code, FED rate, US Treasury, DTI change during the mort-
gage life time, and more models such as Random Forest and Neural Network.
Lastly, as mentioned above to investigate the different ways to process unbal-
anced data.
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