
KEYSTROKE CLASSIFICATION

OF MOTION SENSOR DATA

AN LSTM APPROACH

MARCUS PATRICKS

Master’s thesis
2021:E68

Faculty of Engineering
Centre for Mathematical Sciences
Mathematical Statistics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M



Abstract
With mobile phones often being used to type sensitive information, it is impor-
tant that they remain secure and leak no information. One conceivable channel
for information leakage, though, is the motion sensors accelerometer and gyro-
scope, sensors that require no permission to be used by an app. Do the data
they produce contain information about the keys being typed?

To answer this question, this thesis investigates whether, using LSTM networks,
keystrokes can be classified as (1) either backspace or not backspace, and (2)
any key on the keyboard, using only motion sensor data collected around the
keystroke. Furthermore, the problems are investigated in three different cases,
one where the models are built on a user-basis, one where they are built on a
mobile phone brand-basis, and the last where they are built on a general basis,
using data pertaining to all users and brands.

The thesis finds that the motion sensor data do indeed contain information
about the keys being typed. The different cases yield similar results for the
backspace problem (1), while models built on a user-basis performs best in the
more general problem (2). Training on a user-basis yields an EER of 0.11 and
an F1-score of 0.61 for the backspace problem, and an Accuracy of 51 % and
a macro-averaged F1-score of 0.32 for the more general problem, much better
than naïve model performance.
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1 Introduction

1.1 Background
With the number of sensors in a normal mobile phone growing over the past
decades, so does the diversity of the information they gather. Whereas early mo-
bile phones only could receive and transmit phone calls, the modern smartphone
lets its user capture videos and navigate using maps, giving it its ubiquitous
role. With all this data being collected by sensors, some of it could certainly be
misused, especially if collected without authorization. To deal with this, apps
often need to request explicit permission to use many of the sensors, lest, for
example, an app use the smartphone’s camera without one’s knowledge. Not all
sensors need permission to be used by an app though, among these are motion
sensors like the accelerometer and the gyroscope. Most smartphones use the
accelerometer to count the number of steps the user takes, and the same could
thus theoretically be done by any app installed. This information is perhaps
unintrusive enough that even if it were to fall into nefarious hands it would pose
no real threat to a user’s privacy. Is it possible then to extract more private
information from the accelerometer and gyroscope, or is the data they collect
correctly deemed less private?

To investigate this, this thesis will explore the possibility of extracting keystroke
data, what key is being struck on the smartphone’s soft keyboard, given a stream
of accelerometer and gyroscope measurements. For example, one could imagine
typing a key on the left side of the keyboard, e.g. "a", would cause the user to
slightly tilt the phone to the left, thus perturbing the gyroscope measurements.
If possible, such a stream would be highly private, as it could reveal for example
the log-in credentials and private text messages of a user.

The thesis has been done in collaboration with Callsign, a company specializing
in online security and authorization.

1.2 Aim
The general aim of extracting keystroke data is divided into two more specific
problems:

Given the accelerometer and gyroscope measurements in close temporal prox-
imity to a keystroke, classify it as

• either Backspace (1) or not Backspace (0) (henceforth known as the backspace
problem).

• any standard character on the keyboard (the general problem).

Whereas the second problem is certainly a more interesting problem at first
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glance, the first problem is easier (and thus interesting as a step towards solving
the second problem) and a concrete problem at Callsign.

While there surely are many different types of models suitable to solving the
problems presented above, this thesis will focus on investigating Artificial Neural
Networks’ (ANNs) ability to solve them. Furthermore, both main problems will
be tackled in three different cases each, namely:

• The General case (not to be confused with the general problem), where
one large model is trained non-discriminatorily on data belonging to many
users using different phone models.

• The Brand-specific case, where one model is trained for each mobile
phone brand, with many users per brand.

• The User-specific case, where one model is trained for each user.

To investigate these cases and build the models we need a data-set that contains
many examples done by many users on more than one phone model. Luckily,
such a data-set exists and will be presented in the next section.

1.3 The Dataset
The BB-MAS data set [1] (Behavioral Biometrics Multi-device and multi-Activity
data from Same users) is an open data set collected in 2017. It includes, among
much else, accelerometer and gyroscope measurements collected while a user
is writing text on the smartphone’s soft keyboard, as well as information per-
taining to the keystrokes themselves. The data was collected on two different
smartphones, the Samsung Galaxy S6 and the HTC-One, the physical measure-
ments of which one can find in Table 1. In total, 116 participants were tasked
with writing both fixed sentences and free form answers to questions, with the
phone in the upright portrait mode. The participants only used one of the
phones each, no one used both the HTC and the Samsung models. In total
this resulted in 544 935 keystrokes, or roughly 4700 keystrokes per participant.
More information about and analysis of the data set can be found at [2].

Table 1: The physical measurements of the two phones used in the BB-MAS
dataset. The dimensions are listed as Length x Width x Height [2].

Samsung HTC
Screen size (mm) 129.5 127
Resolution (pixels) 1440 x 2560 1080 x 1920
Weight (g) 138 160
Dimensions (mm) 143.4 x 70.5 x 6.8 146.4 x 70.6 x 9.4

The accelerometer data is structured in such a way that each sample contains
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the time of sample, along with the acceleration in all three device axes, see Fig-
ure 1. The gyroscope data, similarly, contains the time of sample and the rate
of rotation around each axis. The sampling rate for the sensors was roughly
100 Hz, though at times the sampling is irregular and some timestamps con-
tains multiple measurements. The keystroke data contains both the key-down
and the key-up timestamps, describing when a key being pressed and released,
respectively, and which key is pressed. The first four samples of the first partici-
pant’s accelerometer and keystroke measurements can be seen in Tables 2 and 3.
Gyroscope measurements are qualitatively similar to those of the accelerometer.

Figure 1: The axes of a smartphone [3].
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Table 2: The first four accelerometer measurements for the first participant.
Note how the magnitude of the acceleration is roughly equal to that which is
exerted by gravity. EID stands for Event ID. Xvalue is the acceleration force
along the x-axis, measured by the accelerometer, Yvalue and Zvalue are defined
analogously.

EID Xvalue Yvalue Zvalue time
0 1.043872 3.245340 9.087193 2017-04-14 18:56:40.215
1 0.995988 3.303998 8.936357 2017-04-14 18:56:40.216
2 0.988805 3.355474 8.880095 2017-04-14 18:56:40.234
3 1.031901 3.456030 8.804677 2017-04-14 18:56:40.234

Table 3: The first four keystroke measurements for the first participant. A
direction of 0 reflects a key being pressed, 1 a key being released.

EID key direction time
0 t 0 2017-04-14 18:57:12.176
1 t 1 2017-04-14 18:57:12.352
2 h 0 2017-04-14 18:57:12.399
3 h 1 2017-04-14 18:57:12.517

1.4 Previous Work
A concise summary of somewhat recent research on the topic of side-channel
(as opposed to direct, like an ordinary keylogger) attacks on mobile devices can
be found at [4], with Section III being most relevant to the topics in this thesis.
TouchLogger [5] and Taplogger [6] use hand-extracted features to infer PIN-
codes from motion sensors. ACCessory [7] use other features to infer passwords
on the QWERTY-keyboard, using Random Forests. Cai et al [8] investigated
how the inference accuracy is affected by different devices, users and setting,
finding that accuracy is lower if a user has not been seen by the model, but
still substantially larger than that of randomly guessing. Wang [9] used ANNs
on accelerometer, gyroscope and light sensor data to infer keystrokes with an
accuracy of 48 % (over most letters of the alphabet).

2 Theory
Here follows a section describing the theory needed to understand the methods
used in this thesis. The bulk of this section will revolve around intermediate
topics regarding Artificial Neural Networks, ANNs, the basics of which will not
be presented here.
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2.1 RNN
While it is possible to use ordinary ANNs on sequential data, where one sim-
ply model each time-step (or equivalent) as an independent input node, it is
possible to take advantage of the fact that the value at different time-steps are
correlated with each other. One architecture that does this is the Recurrent
Neural Network (RNN), the simplest of which can be seen in Figure 2.

Figure 2: A simple RNN. W , V and U are weights and yt, ht and xt are the
output, hidden and input nodes, respectively, at time-step t.

The network is defined by the following equations:

{
yt = φy(W · ht)
ht = φh(U · xt + V · ht−1),

(1)

whereW , V and U are weight matrices (scalars in this case), φk activation func-
tions and yt, ht and xt are the output, hidden and input nodes, respectively, at
time-step t.

The hidden layer does not just depend on the previous layer (in this case the
input layer x), but also on the hidden layer in the previous state (where different
subscripts symbolise different states). Some of the information stored in the
last state can therefore travel to the next. To further understand the RNN, it
is shown "unfolded" in Figure 3.
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Figure 3: The RNN in Figure 2 unfolded.

While they may look different, the figures both describe the same network.
Looking at Figure 3 one realises it is, in a sense, an ordinary ANN, though with
many nodes and edges missing, and the weights between the hidden layers being
equal by design. Also of note is that even the simple network in Figure 2 can
be arbitrarily deep as the number of time-steps increases.

Back Propogation Through Time (BPTT) is probably the most used algorithm
to train an RNN. It simply unfolds the network (transforms it from the repre-
sentation in Figure 2 to the one in Figure 3), and then performs the same back
propogation as in ordinary ANNs. Given the potentially immense depth of an
RNN, though, the gradients used for the gradient descent have a tendency to
either "explode" or vanish. This is due to the gradients being a product of T
factors, where T is the number of time-steps in the input, and thus exponentially
dependent on the size of the input [10].

2.1.1 LSTM

To solve the issue of vanishing and exploding gradients, Long Short Term Mem-
ory networks (LSTMs) were introduced in 1997 [11]. They share the "macro-
structure" with ordinary RNNs, but the hidden nodes in the RNN are replaced
with a more complex unit. A sketch of such a unit can be seen in Figure 4.
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Figure 4: An LSTM Unit. Original by [12], edited by author.

The first thing to notice is that the LSTM unit has three inputs and two out-
puts, in contrast to a RNN unit which only has two inputs and one output.
The new addition in the LSTM is the hidden "cell state" which is only passed
to the temporally next LSTM unit (that is, the next state e.g. t + 1), not to
the next layer, like ht is in both LSTMs and regular RNNs. This lets a unit
communicate with the next, without also communicating the same information
to the next layer.

The LSTM unit consists of three "gates", in Figure 4 symbolized by an orange
rectangle reading σ and the following pointwise multiplication. These regulate
the "flow" of the signals ct−1, ct and c̃t, determining how much should be let
through. To understand the signals and gates, let’s look at the functions defining
the LSTM unit:



ft = φg(Wfxt + Ufht−1)

it = φg(Wixt + Uiht−1)

ot = φg(Woxt + Uoht−1)

c̃t = φc(Wcxt + Ucht−1)

ct = ft ∗ ct−1 + it ∗ c̃t
ht = φh(ct) ∗ ot

(2)

7



where Wk and Uk are weight matrices, φk are activation functions and ∗ sym-
bolizes pointwise multiplication. The first three equations correspond to the
three gates: the Forget, Input (or update) and Output gates. They each have
independent weight matrices with biases (the biases being incorporated into the
matrices to avoid cluttering). As suggested by Figure 4, the activation function
φg is often sigmoidal. Next is the equation for the "candidate cell state" c̃t,
usually with the activation function φc = tanh. Then, the cell state, ct and the
output vector ht.

The cell state of each cell is the weighted sum of the cell state of the previous
cell state and the current candidate cell state, where the weights, not necessar-
ily adding up to one, are the forget and the update gates, respectively. The
candidate cell state c̃t can be seen as what the cell state should be, had the cell
no memory of earlier states. The names of the two gates are aptly chosen, as
the first one regulates how much should be remembered (or inversely, forgot-
ten) from the previous cell, and the second how much should the cell state be
updated with the new candidate cell state. The output gate in turn regulates
how the output ht depends on the cell state.

The LSTM unit presented above is only one of many possible variations, though
probably the most common one, and a good starting point when dealing with
sequential data. Greff et al. [13] tried nine different versions on three different
problems and found that they all performed reasonably similarly on all problems.

2.1.2 Bidirectional LSTM

The reason for introducing the RNN was, as seen above, to preserve information
from past time-steps, and one of the major reasons for introducing LSTMs was
because they are simply better than regular RNNs at this. In many cases it
may prove worthwhile to also use future information in a similar fashion. For
this reason Bidirectional LSTMs (BLSTMs) were introduced. A BLSTM layer
is constructed from two regular LSTM layers, where one processes data in the
original, positive, direction, and the other in the negative direction. A sketch
of a simple BLSTM network can be seen in Figure 5.
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Figure 5: BLSTM network with inputs xk, forward and backward LSTM layers
and outputs yk.

Bidirectional RNNs of any type was first shown to be effective when dealing
with phoneme (unit of spoken sound) classification [14], as were BLSTMs [15].
Speech is often not understood "online", in the same instant as it is spoken;
sounds are often understood only after a whole word is spoken, words after a
whole sentence. The context of a word does not only depend on previous words,
but also of the words coming next. It is difficult to say which types of data
the context is only understood in conjunction with both the previous and the
following data, where the use of BLSTMs is motivated. Other than phoneme
classifications and other natural language processing problems [16][17], though,
BLSTMs have been used with success in predicting wastewater flow rate [18],
detection of kidney disease [19] and a number of other univariate time series
classifications [20].

2.2 Transfer learning
Training large models can require a huge amount of data, and an equally large
amounts of computational hours, making it unfeasible to create models from
scratch for many problems. Many large models have already been trained,
though, and perhaps it’s possible to generalize some of their "intelligence"? This
is indeed possible through a method known as Transfer Learning. The general
idea is best exemplified by image classification using Convolutional Neural Net-
works (CNNs).

In deep CNNs the first couple of layers are often used to find general, low level
structures, for example circle segments and edges. The latter layers then use
this information to build higher level structures, used by the final layer to clas-
sify the image. Simply put, the latter layers ask "Are the circle segments and
edges found by the previous layers located in such a way that implies that this
image is of a car?" If instead of classifying images as "car/not car" one wants
to classify different images as "firetruck/not firetruck", or indeed "dog/cat",
the layers finding the low level structures could be reused, only specializing the
latter layers for the task at hand.
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Such methods have been used extensively, classifying widely different types of
images. For example, VGGNet, introduced by K. Simonyan et al. [21], has
been used for facial expression recognition [22], smoke detection [23], palmprint
identification [24] and even epileptic EEG identification [25].

While Transfer Learning certainly seems to be effective when used in tandem
with CNNs, the literature is less clear on whether it works well for LSTM
networks. For example [26] shows that transfer learning can both improve or
degrade model performance, depending on which data set is used in the base
training and which is used in the fine tuning. One problem is that while it
is fairly easy to see and understand what each layer of a CNN looks for and
produces, it is much less obvious what an LSTM layer produces. Another is
that most serial data lack a common "vocabulary", set of almost atomic units
that build up the series, while most images have roughly the same vocabulary,
like corners and edges. For transfer learning within corpora of similar vocab-
ularies, like books in the English canon and Beatles lyrics, or gyroscope data
collected from different users, the magnitude of this problem could reasonably
be expected to lessen. Unsurprisingly, [26] indeed shows that transfer learning
using two sets with a higher inter-data-set similarity performs better than two
with low similarity.

2.3 Practical considerations
2.3.1 Batch training and padding

When training an ANN of any type, it is much more computationally efficient
to train on many samples at the same time, in batches. This is done, in the
case of sequential data, by constructing a 3D-tensor of size (BS, T,D), where
BS is the batch size, T is the number of time-steps (or equivalent), and D is the
dimensionality of the input data at a single time step. Thus, all samples need
to be of the same length T , which is rarely the case. This can be remedied by
organizing the data such that samples of the same length are placed in the same
batch, or padding sequences with dummy values, often 0, until all sequences are
of some chosen length T . All samples originally longer than T need to either be
truncated or, more often, simply removed. When training, the model ignores
the dummy values by not updating weights for time steps where the value is 0
for all dimensions. This is most easily done in TensorFlow using Masking layers,
for more technical details see [27].

2.3.2 Class imbalance

A binary classification model classifying samples of a data-set in which the car-
dinality of the majority class is much higher than the minority, say 9:1, can
easily reach an impressive accuracy of 90 % by always classifying as the major-
ity class. This naive model is obviously useless, and the phenomena is known as
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the Accuracy paradox [28]. If the class imbalance is severe enough, an ANN will
typically simply learn to neglect the minority class. Usually the resulting model
is not as extreme as the naive model above, fully neglecting the minority class,
but it often tends to such a behaviour. The problem is further exacerbated
by the fact that the minority class is often of higher interest, and one would
often be more tolerant of many false alarms than of a single missed positive.
When building a model one thus needs to take class imbalance into account.
As it may be difficult to improve the accuracy score, the first thing one needs
to do is redefine what the goal of the model is, what metric to use as mea-
surement of model performance. Precision, recall and their weighted harmonic
mean, F-scores, may be suitable substitutions (the naive model above would
have the worst F-score possible, 0). More information about precision, recall
and F-scores will be presented in Section 4.1.1.

Equipped with a proper metric, now the model needs to train in a fashion
that incentivizes classifying as the minority class. This is often done by either
changing the loss function or the training data. In the first case, weights are
assigned to each class, with high weights for uncommon classes. The loss of every
single sample is then multiplied with the weight of the sample’s class. If the
model is far from correct on a minority sample, the loss thus increases more than
if it was a majority one. The derivative of the loss function is changed similarly,
and therefore the size of the step taken in the gradient descent. The second case
usually implies oversampling (duplicating) the small classes or undersampling
(removing some samples of) the larger classes. The two methods approximately
do the same thing, as training on two equal samples in a row is very similar
(only slightly more granular) to training on one but updating the weights twice
as much.

2.3.3 Batch Normalization

During training of an ANN, all weights are typically updated simultaneously,
after each batch. This means that the input to any non-input layer can have
wildly different distributions after each weight update (if the distribution of the
input of the new batch is not such that it counters this, but let us assume that
all batches have the same input distribution). This slows the training process,
especially for deep networks. The phenomena was referred to as "internal co-
variate shift" by Ioffe et. al. in their 2015 paper offering a solution to the
problem [29]. They solve it by normalizing each batch to zero-mean and unit
variance, then scaling and translating by trainable parameters, as following:

x̂(k) =
x(k)−µ(k)

B

σ
(k)
B

(Normalization)

y(k) = γ(k)x̂(k) + β(k) (Scaling and translating),
(3)

where k can be any of the dimensions of the input, x(k) are the inputs of the
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(so called, colloquially) BatchNorm layer, µ(k)
B the batch mean, σ(k)

B the batch
standard deviation, y(k) the output, and γ(k) and β(k) the trainable scaling
and translation parameters, respectively. During inference, instead of using the
batch mean and standard deviation, the mean and standard deviation of the
entire training set (roughly, the interested reader is referred to TensorFlow’s
web page on the topic [30]) is used.

Some [31] argue that the reason that batch normalization works is not because
it reduces internal covariate shift, but rather because it "makes the optimiza-
tion landscape significantly smoother", thereby inducing "a more predictive and
stable behavior of the gradients, allowing for faster training". Why batch nor-
malization works is neither within the scope of this thesis, nor relevant to its
findings, so this debate will remain uncommented on. What needs to be under-
stood is that it works.

3 Method
This part of the thesis describes how the theories introduced in the last chapter
are implemented to solve the problems stated in the introduction.

3.1 Data preparation
3.1.1 Cleaning

The first task in many machine learning projects is to clean the data to suit the
problem one wishes to solve. So too, begun this project.

The goal here was to transform data described in Section 1.3 to data sets where
each keystroke correspond to a 6-dimensional (3 dimensions each for both the
accelerometer and the gyroscope) time series (input) and a label representing
the key pressed (output). The exact details of this process are not of interest,
but due to reasons of reproducibility and transparency, the data removed for
practical reasons will be presented here.
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Figure 6: Two different keys being depressed at different times, with relevant
keystroke dynamics nomenclature.

When typing quickly, the key-down event of a keystroke can sometimes occur
before the key-up event of the previous keystroke, that is, one starts pressing
one button before releasing the previous one (in Figure 6 seen as a negative
RP-latency, and the keystrokes intersecting). In such a scenario, the keystrokes
may interfere with each other, potentially tainting them both. To not make the
problem unnecessarily difficult, keystrokes of both types were removed.

Another problem that arises in the BB-MAS data set is when the hold time for
a keystroke is too long, the key-down event is registered multiple times. For the
same reason as above, keystrokes with this behaviour were simply removed.

Non-standard characters were also removed, the characters kept for the
backspace problem were all lower-case letters, all numbers, period (’.’), space
(’ ’), new line/enter, and backspace. For the general problem, keys consid-
ered too rare (with less than 500 instances in the the remaining data set) were
also removed due to fears of the class imbalance becoming too extreme. The
remaining characters are period (’.’), space (’ ’), new line/enter, backspace and
all lower-case letters except ’z’.

The last class of keystrokes removed were those with hold times larger than
170 ms, to deal with the problem with samples of varying length, described in
Section 2.3.1.

To deal with the irregular sampling discussed in Section 1.3, accelerometer and
gyroscope measurements of the same timestamps were averaged to get the final
value, and to get a time series with equally distanced data points, they were
linearly interpolated to get one data point for each millisecond.

Next, for each keystroke, the accelerometer and gyroscope measurements from
15 ms before the key-down event to 15 ms the after key-up event was chosen
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as the feature for that keystroke. Thus, as the hold times of all samples were
smaller than 170 ms, each keystroke corresponds to a time-series of 200 time
steps or less.

The label of each sample was encoded to 1 (Backspace) or 0 (Not backspace) in
the backspace problem. In the general problem, keys were encoded to any
non-negative number up to 28, then One-Hot-Encoded [32], yielding a 28-
dimensional vector with 1, in one spot and 0 in all the rest for all samples.
A sketch of the input and output of a model can be seen below in Figure 7.

Figure 7: Sketch of the output/ input of the models created in this thesis. The
input is a matrix of 6 · N elements, where N is the length of the input and
N = Thold + 2 · 15. g refers to gyroscope, a to accelerometer data. a0x refers
to the accelerometer measurement in the x-axis at 15 ms before the key-down
event, aNx refers to the same 15 ms after the key-up event. The output is either
0 or 1 (as in the figure) in the backspace problem or any non-negative integer
up to 28 in the general problem.

3.1.2 Data split and general process

The two problems, backspace and general, were solved in the same three cases,
introduced in Section 1.2. Before going into the details of exactly how these
were applied in practice, they are presented summarized below:

• General case: Divide the users into training and testing users. Divide
the training users’ data into a training and a test set. Train a model on
the training set. Test the model on both the training users’ test set and
on the test users.

• Brand-specific case: Divide the users into the HTC and Samsung sets,
depending on the phone model they used. For each brand, do as in the
general case.

• User-specific case: Divide the users into training and testing users, then
divide both training and testing users’ data into a training and a test set.
Use most of the training users’ training set to build a "base" model. For
each user, both training and testing, fine tune this base model using (in
the case of the training users, the rest of) that user’s training set, using
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transfer learning. This yields one model per user. Test the models on each
user’s test set.

Now, for the more detailed description of and motivation for the cases.

In the User-specific case, we wish to build one model for each of the 116 users of
the training set. For reasons described in Section 2.2, instead of simply training
these models from the ground up, a base model was first trained on data coming
from most users, and then fine tuned individually for each user, by means of
transfer learning. This results in one model for each user, with a "base" trained
on most users, and fine tuned using only that user’s data. To accommodate
this, and make sure not to reuse data or mix training and test data, a data split
scheme was devised, seen in Figure 8.

Figure 8: The data split scheme used in this thesis. The numbers represent
fractions used in the different sets. User A is an example of a training user,
User B of a test user.

The first thing to note is that the users are divided in training and testing users,
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with 75 % of users going into the training set and the remaining to testing. The
training user set was then divided further into training (50 %), validation (30
%) and testing (20 %). Using the validation set to optimize, a base model to be
used in the transfer learning was trained on the training set. The validation set
was later used as the training set for each training user (in Figure 8 exemplified
by User A) in the user-specific case. An equal fraction, 30 %, was used as the
training set for the test users (exemplified by User B). After the final training
is done, this leaves the training users with 20 % left to test on (since we do not
want to test on data used for training, even of the base model), the testing users,
for whom no data has been used to train the base model, 70 %. This creates
two distinct groups of users, for which one would expect different results. Both
are fine tuned in the same way, but only one group is represented in the base
model. More on how the transfer learning was performed will be presented later
on, in Section 3.2.2

In total, the users in the training set had 80 % of the their data used for training,
while the test users only had 30 %. This is motivated by the wish for the ratio
of data used in the transfer learning to be equal for both groups, but there is
also an argument to be made for both groups having equal ratios of data used
for training in total. Therefore, another experiment was set up where the test
users used 80 % of their data for the transfer learning.

Going back to the general case, after determining the best base model, the vali-
dation set was merged into the training set, then the model was retrained on this
larger training set. This maximizes the amount of data used for training. Here
too two distinct groups of users can be found, one represented in the model, one
not. Note though that none of the data is used for both training and testing,
but some users are. All users were tested separately, so the results can easily
be split up into users that the model has seen, and those that the model has
not seen.

In the brand-specific case, the users were first divided into HTC and Samsung
sets, then each of those into training and testing users. The optimal model
structure found in the general case was chosen as the structure in this case as
well. As the only use of the validation set was to infer optimal model structure,
there was no need for it. Instead, the validation set was directly merged into
the training set. Thus, for each brand the data was divided as what can be seen
in the lower part of Figure 8.

For each of the problems, general and backspace, we now have four different
cases, each yielding a result. These are the general and the brand-specific
cases, and the two user-specific cases, one having the testing users train on
30 % and one on 80 % of their available data. For each of the cases, the results
can be further divided into those coming from users the model has trained on
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(seen users), and those it has not (unseen users).

3.1.3 Further preparations

In agreement with the discussion in Section 2.3, time series shorter than 200
steps were zero-padded to 200 steps to let the models train efficiently.

To deal with the issues of imbalance discussed in the same section, different mea-
sures was taken in the two different problems. In the backspace problem, the
positive samples, which were much fewer than negative, were upsampled (dupli-
cated) until the training set contained half negative and half positive samples.
Note that no upsampling was done on the test sets.

In the general problem, the remaining classes after removing the rarest ones
were still vastly different in size. Upsampling all the small classes would thus
artificially increase the size of the training set too much, thereby increasing
the training time beyond what can be considered acceptable. Therefore, class
weights were used instead.

3.2 Backspace problem
The backspace problem, where gyroscope and accelerometer streams are to be
classified as either not backspace (0) or backspace (1), is in its nature a binary
classification problem. The different models built to solve the problem in the
three different cases are presented below.

3.2.1 General and Brand-specific cases

After experimenting with many different structures, details can be found in
Appendix B, the best performing model had four bidirectional LSTM layers,
followed by an output node, with a batch normalization layer between each
layer. The LSTM layers had 25 · 2 (due to bidirectionalality) units each, with
activation functions as implied by Figure 4. The output activation function was
the sigmoidal function. The loss function used to train the model was binary
cross-entropy. A small set of the training data was used to validate the model
during training, after each epoch. From this validation result the optimal num-
ber of epochs could be inferred.

Note that a masking layer, or anything replicating its behaviour, is not included
in the model. Including such a layer was tested, but performed worse (and
caused the model to take substantially more time to train). Why it performed
worse is unknown.

In the brand-specific case, the same model structure was used, the difference
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being the number of epochs the model trained for, inferred like in the general
case.

3.2.2 User-specific case

To do the transfer learning, all layers down to the last LSTM layer were frozen,
leaving the dense layers (and their accompanying BatchNorm layers) to be re-
trained. These layers were randomly initialized, rather than reusing the weights
from the base model as the starting point. Note that the structure of the mod-
els were remained equal to that of the base-model. The "optimal" number of
epochs was inferred independently for each user, in the same manner as in the
broad case.

3.3 General problem
For the general problem, the multiclass classification problem where the sam-
ples are to be classified as (almost) any standard character on the keyboard, the
final model was similar to that of the backspace problem. It had four BLSTM
layers, followed by two dense layers, with a batch normalization layer between
each layer. The BLSTM layers had 25 · 2 units each, and the two dense layers
had 100 and 29 (the number of possible keys) nodes. The LSTM layers had
activation functions as implied by Figure 4, the first dense layer ReLU, and the
output had softmax as activation. The loss function used to train the model
was categorical cross-entropy.

Class weights are usually calculated as [33]

wi =
N

Nc · ni
, (4)

where wi is the class weight of class i, N the total number of samples, Nc the
total number of classes, and ni the number of samples of class i. Training with
this definition of class weights yielded worse results on all aggregate metrics
(but better on metrics pertaining to some rare characters) when compared to
training without class weights. Training without class weights made the models
too biased though, so as a compromise the class weights were calculated as

ŵi =
√
wi =

√
N

Nc · ni
. (5)

The resulting models are still biased towards common classes, but less so than
those that train without class weights. To what degree this is a problem depends
on the use of the model.
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How the number of optimal epochs was inferred and how the brand- and user-
specific cases were implemented, was the same as for the backspace problem,
see Section 3.2.1.

4 Results

4.1 Backspace problem
The results of the backspace problem will be presented with tables of summary
statistics, confusion matrices [34] and a score-histogram describing the distri-
bution of the model output scores for both positive and negative samples. In
general, only results relevant to the analysis will be presented in the main part
of the thesis, full results can be found in Appendix A.

4.1.1 Metrics

In Tables 4 and 5, the abbreviated metrics are, with links to further reading:

• Acc: Accuracy, ratio of correctly classified samples. When classifying
between imbalanced classes, accuracy may be misleading, as the majority
class is in total given undue weight when each sample is given equal weight.
The accuracy should thus not be the only metric on which to judge the
models. More discussion on the problem with accuracy can be found in
Section 2.3.2.

• Prec: Precision [35], ratio between true positives and all predicted posi-
tives. Using Figure 9, Prec = TP

TP+FP . A perfect score near 1 can often
be achieved by only classifying the most likely sample as positive, why
precision should not be used alone.

• Rec: Recall [35], ratio between true positives and all actual positives.
Using Figure 9, Rec = TP

TP+FN . A perfect score of 1 can be achieved by
classifying all samples as true, recall should thus also not be used alone.
There is often a trade-off between precision and recall, regulated by for
example the classification threshold. Suppose for simplicity that the true
classes are balanced. Decreasing the threshold would then increase both
TP and FP, with FP growing faster relative to its size if the model has
any classifying power. This leads to the recall increasing and the precision
decreasing. Increasing the threshold would similarly decrease the recall
and increase the precision. Precision and recall used together can thus be
much more useful than either of them on their own.

• F1: F1-score [36], the harmonic mean of the precision and the recall.
Summarizes precision and recall in one metric, where a value of 1 means
that both precision and recall are 1, and 0 that either (or both) of them
are 0.
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• EER: Equal Error Rate, the rate at which the False Positive Rate (FPR =
FP

FP+TN ) and False Negative Rate (FNR = FN
FN+TP ) are equal. Increasing

the classification threshold increases the FNR, as more samples are con-
sidered negative, and decreases the FPR. Imagine sliding the threshold
until FPR = FNR, then EER = FPR = FNR. The EER is unbiased
regarding class imbalance, and gives the negative and positive class equal
importance. It obviously does not take the model’s classification threshold
into account, but rather describes the rest of the model.

• AUC: Area Under the ROC Curve [37]. The ROC curve plots the true
positive rate against the false positive rate for different thresholds. A value
of 1 is perfect, 0.5 indicative that the model is just guessing at random,
and 0 that it classifies wrong in every case, regardless of threshold. The
AUC is equal to the probability that the model scores a randomly chosen
positive sample higher than a randomly chosen negative one, and is thus
not overly biased towards either positive or negative samples. The AUC,
too, does not take the classification threshold into account.

Note that all metrics can take values between 0 and 1, and for all except the
EER, a high value is good. Depending on the purpose of the model, different
metrics should take center stage. The F1-score and EER are good metrics for
when the positive and negative classes are of equal importance. Precision is
a good metric if the cost of incorrectly classifying negative samples is much
higher than the cost of classifying positive ones, recall if the opposite is true. In
general, the F1-score and EER is probably best indicators of a good model in
this case.
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Figure 9: Anatomy of a confusion matrix, not normalized. TN: True Negatives,
FP: False Positives, FN: False Negatives, TP: True Positives.

4.1.2 Results

The difference in results between the users whose data the models had partly
seen and those the models had not seen was qualitatively similar in all cases,
with the models always performing slightly worse on unseen users for all met-
rics. Below, in Table 4, the results for the general case, where one model trained
on many users, are presented for both types of users. For the results from the
other cases, see Appendix A.

The results may be difficult to interpret on their own, with nothing to compare
them to. One can note though that they are better than randomly guessing,
which means that the models have some classifying power. Also of interest is
the difference between the different types of users (and cases, see Table 5), which
certainly can be seen in the tables. More discussion on the results can be found
in Section 5.
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Table 4: Model results for users whose data the model has both trained on
(Seen) and not (Unseen) in the backspace problem, in the general case. Other
methods had qualitatively similar results.

Seen Unseen
Acc 0.89 0.87
F1 0.64 0.56

EER 0.10 0.16
AUC 0.96 0.91
Prec 0.49 0.44
Rec 0.91 0.77

The table below presents the total results, on both seen and unseen users, in
all the different cases. In the user-specific case, where one model was built for
each user, unseen only refers to the base-model not having trained on that user’s
data, transfer learning was performed on all users. The results of the different
brands in the brand-specific case, where one model was built for each of the
two brands, were similar (details in Appendix A), and are merged for all results
below.

Table 5: Results of the backspace problem, in each of the three cases, for seen
and unseen users combined. The best result of each metric is in bold. As there
were two different ways to divide the test user data in the user-specific case, the
results is divided as well. User 30 refers to the results where the test (unseen)
users trained on 30 % of their data, in the User 80 column the test users had
trained on 80 %. Note that the only difference between the two columns are
due to the unseen users, the seen users are unaffected by this.

General Brand User 30 User 80
Acc 0.88 0.88 0.87 0.88
F1 0.59 0.60 0.59 0.61
EER 0.14 0.14 0.12 0.11
AUC 0.93 0.93 0.94 0.95
Prec 0.46 0.48 0.44 0.46
Rec 0.82 0.81 0.89 0.90

The figure below show confusion matrices in all different case. Note that the
cells are normalized as ratios of the size of the actual (true) classes.
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(a) General case (b) Brand-specific case

(c) User-specific case, with the test users’
models training on 30 % of their data.

(d) User-specific case, with the test users’
models training on 80 % of their data.

Figure 10: Confusion matrices for the different backspace problem cases, with
ratios normalized within each true label (each row sums up to one).

The backspace problem models all output a number between 0 and 1, where
if the model was perfect all non-backspace samples would receive a score close
to 0 and all backspace samples a score close to 1. Below are the output score
distributions for both positive and negative samples from the general case for the
backspace problem. The other models had qualitatively similar distributions.
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Figure 11: Distribution of output scores of the backspace problem general model.
If the model were perfect, the figure would just show a blue bar to the furthest
left and an orange bar to the furthest right. Note that the distributions are
normalized independently (for example, roughly 40 % of the positive samples
receive a score between 0.95 and 1.0).

4.2 General problem
In contrast to the backspace problem, the general problem is a multiclass classi-
fication problem. This calls for different metrics when evaluating model results.
The result will be presented using tables of metrics (the interpretation of which
will be explained in the following section) and a heatmap describing the multi-
variate confusion matrix. Here too, only results relevant to the analysis will be
presented, for more results, see Appendix A.

4.2.1 Metrics

The metrics used in Tables 6 and 7 are:

• Acc: Accuracy, ratio of correctly classified samples over all classes. Note
that the problem of imbalance encountered in the backspace problem is
only exacerbated by the number larger number of classes and disparity
between sizes of the classes.

• F1: Macro averaged F1-score [36] (in [38] called Averaged F1), calculated
by taking the arithmetic average of the F1-scores of all classes. The F1-
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score of a class is calculated by considering that class as positive, and
all other classes as negative, thereby "collapsing" the multiclass confusion
matrix to the binary one found in Figure 9, then calculating F1 as one
would in the binary case, see Section 4.1.1. The macro averaged F1-score
is not biased towards larger classes since it is the unweighted average of
class F1 scores, it thus considers small classes to be of equal importance
as large ones.

• MR: Mean Rank of all test samples. For each test sample, sort the outputs
from most likely to least likely (according to the model), then find what
"rank" the true class placed as. For example, if the model considers the
true class of the sample to be second most likely, the rank of this sample
is 2 (the rank is thus not the index of the true class in the sorted output
(1), but rather what is usually considered the rank) The mean rank is the
arithmetic mean of all test samples’ rank. It ranges from the best possible
outcome, 1, where all samples are correctly classified, to 29, where the true
label is considered least likely for all samples (incidentally, such a model
would be equally useful as the best possible one, as one could simply revert
its result, yielding perfection). The mean rank is biased towards models
biased towards larger classes, as biasedly classifying as a large class can
artificially drive the mean rank down. Imagine trying to infer a single key
using the method presented in this thesis. The mean rank is roughly how
many times one would have to try to get the correct character (given that
the characters in the password are distributed similarly to the characters
in the test set).

• Acc3: Accuracy if the true class being in the "top three" is considered to
be correct, using the same ranked list of outputs as inMR. Imagine a pass-
word of length N . Trying three times per character, the model correctly
guesses this password in 3N guesses with a probability of p = (Acc3)N

(once again, given that the characters in the password are distributed
similarly to the characters in the test set).

• κ: Cohen’s Kappa [39], a metric comparing the agreement between pre-
dictions and actual classes and the agreement that would arise by pure
chance. It is calculated as

κ =
po − pe
1− pe

,

where po is the observed agreement (the accuracy of the model), and pe
is the agreement that would occur "by chance". pe is calculated as

pe =
∑
k

̂pk,pred · ̂pk,true =
1

N2

∑
k

nk,pred · nk,true,

where ̂pk,pred is the probability that a given predicted label is k, ̂pk,true
is the probability that a given actual label is k, with the probabilities
coming from the distributions of the actual and predicted labels, N is the
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total number of observations, nk,pred the number of predictions of class
k, nk,true the number of samples that are actually of class k. Imagine,
already given the distribution of the predicted and true labels, assigning
a true and predicted label independently randomly, with probability dis-
tributions from the given distributions. The expected agreement between
the true and predicted labels (accuracy of this "naive model") is then pe.
The fraction defining κ is the ratio between the difference between the ac-
curacy and the accuracy "expected by chance" and the difference between
the best possible accuracy (1) and the same. The best value arises when
the accuracy is 1, κmax = 1, if the predictions is equal to what would
occur by "chance" (given the prediction distribution) κ = 0. If the model
performs worse than chance, the value may be negative, with the worst
case scenario being κmin = −1. Since κ takes the expected chance agree-
ment into account it is robust to class imbalance, and thus more useful for
our case than for example accuracy.

• AUC: Macro average of the Area Under the ROC curve of all pairwise
combinations of classes. For each combination (where {a, b} 6= {b, a}),
consider one of them as positive and the other as negative, calculate the
AUC as in the binary case (see Section 4.1.1), then take the average for all
pairs of classes. This way of calculating the AUC is "insensitive to class
imbalance" [40], and therefore useful for our problem. More information
can be found at [41] and [42].

Here too, different metrics are better for different purposes of the model. The
F1-score and κ are best if all classes are of equal importance, accuracy and mean
rank if the importance of a class is proportional to its frequency in the test data.

4.2.2 Results

Below are the results for the seen and unseen users in the general case of the
general problem, using the metrics explained above. The other methods had
qualitatively similar results. The results here are also difficult to interpret on
their own, but they are certainly better than randomly guessing. More analysis
of the results can be found in Section 5.

Table 6: Model results for users whose data the model has both trained on
(Seen) and not (Unseen) in the general problem, in the general case. Other
cases had qualitatively similar results.

Seen Unseen
Acc 0.49 0.39
F1 0.32 0.23
MR 2.73 3.46
Acc3 0.78 0.68
κ 0.45 0.34
AUC 0.92 0.88

26



Below are the total results for all different cases for the general problem.

Table 7: Results of the general problem, in each of the case, for seen and unseen
users combined. The best result of each metric is in bold. As there were two
different ways to divide the test user data in the user-specific case, the results
is divided as well. User 30 refers to the results where the test (unseen) users
trained on 30 % of their data, in the User 80 column the test users had trained
on 80 %. Note that the only difference between the two columns are due to the
unseen users, the seen users are unaffected by this.

Broad Brand User 30 User 80
Acc 0.43 0.43 0.49 0.51
F1 0.26 0.27 0.30 0.32
MR 3.19 3.37 2.93 2.80
Acc3 0.72 0.71 0.78 0.79
κ 0.38 0.38 0.45 0.47
AUC 0.90 0.89 0.88 0.89

The heatmap below describes the confusion matrix for all labels examined in the
general problem, solved in the general case. The colormap is truncated (some
of the cells that seem to be of value 0.30 are rather larger than 0.30) to make
the low values easier to distinguish from each other, the "true" heatmap with
the full colormap range can be found in Appendix A. Also note that the values
are normalized by true label, each cell pk,j describes the ratio nk,j

nj
, where nk,j

is the number of samples where the predicted label is k and the true label is j,
and nj is the number of samples where the true label is j. Each row then sums
up to 1.
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Figure 12: Heatmap describing the distribution of predicted labels for each true
label in the general problem, in the general case. The cells are normalized by
each true label, and the colormap is truncated (for a heatmap with an untrun-
cated colormap, see Appendix A), some cells labeled as 0.30 are rather larger
than this. The last characters in the list are ’B’: Backspace, ’S’: Space, ’.’:
Period, and ’N’: New line/Enter.

5 Analysis

5.1 Naïve model results
To interpret the model performance, it helps to compare it to some baseline
performance. For this purpose, three naïve models have been created for each
of the two problems. They behave as follows for both problems:

• Model 1: Always classify as the largest class.

• Model 2: Classify samples randomly, with probability distributions equal
to that of the training data.

• Model 3: Classify samples randomly, with uniform distribution.

Obviously, these models should all have atrocious performance, but are useful
to confirm that our models are at least better than the least laborious models
possible. Note that metrics taking the output score of a model into account,
rather than the output of the classification thresholding, will not make any sense
for the naïve models. They will thus not be presented.
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5.1.1 Backspace problem

Below are the results for the three naïve classifiers for the backspace problem.

Table 8: Naïve model results for the backspace problem. The numbers at the
head of the table refer to the models described above. Precision for Model 1 is
undefined, as there are no true or false positives.

1 2 3
Acc 0.89 0.81 0.50
F1 0.00 0.11 0.17

Prec - 0.11 0.10
Rec 0.00 0.11 0.50

Comparing to Table 5, we see that our models indeed perform better than all
naïve models, with a notable exception in the accuracy metric. This, performing
worse on the accuracy metric, may seem disappointing but does not necessarily
mean that the models are worthless (though it may be considered a symbolic
defeat). The question becomes, inspired by the discussion in Section 2.3.2, how
many false positives are we willing to tolerate for each false negative? Depend-
ing on what the use of the models is, the answer will vary. The models may
be changed by adjusting the classification threshold according to one’s need
(the best possible accuracy score attainable by this method is roughly 92 %,
with a threshold of 0.92). One could also have adjusted the cardinality ratio
of the training data, by up-/down-sampling, to suit the relevant problem. If
the training was done on a training set with the "natural" ratio (roughly 11 %
backspace) the accuracy would certainly improve, though to the detriment of
the EER and recall.

In the end, a classification threshold of 0.5 was chosen since there are argu-
ments both for decreasing and increasing it from this "neutral" state. Looking
at Figure 11, we see that changing the threshold slightly (between 0.3 and 0.65)
would not affect the model performance too much, as the distributions are sep-
arated enough. Changing the threshold dramatically (such as to 0.92 as in the
example above) would not make much sense either, at least if all backspace
samples together are given roughly as much importance as all non-backspace
samples together. If such is the case, Figure 11 is reasonable to study, as op-
posed to a similar one where the distributions are not normalized independently.

5.1.2 General problem

Below are the results for the naïve models in the general problem.
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Table 9: Results of naïve models in the general problem. The numbers at the
head of the table refer to the models described above.

1 2 3
Acc 0.16 0.07 0.03
F1 0.01 0.03 0.03
κ 0.00 -0.00 0.00

Comparing to Table 7, we see that the naïve models are vastly outperformed
by our models.

5.2 Seen versus Unseen
Looking at both Tables 4 and 6 we see, unsurprisingly, that models perform
better on seen users than unseen ones. This implies that there is some dis-
similarities between users. Notably though, the difference in performance is
somewhat small, indicating that the users are not completely dissimilar. One
can conclude that it is possible to train a model on many users and use it for
other users, but the results are slightly worse for the unseen users.

5.3 The different cases
Before analysing the results yielded in the different cases, let us quickly state
how one would expect them to compare.

In the User- and Brand-specific cases, more focus is put on what is believed to
be more relevant data, and irrelevant data is not allowed to dilute the data as
much. On the other hand, the models do not get to train on as much data.
This leads to a trade-off between how large and how specific the training set
should be. The question becomes "how similar are the samples coming from dif-
ferent users/brands, especially compared to those from the same user/brand"?
Enough that different users/brands can be used for the same model? Or dis-
similar enough that they are best left divided? The results could go either way.

5.3.1 Backspace problem

Looking at Table 5 we see that the results do not differ much at all between the
different cases. While the user-specific (80) models slightly outperform the rest
on most metrics, the differences might be due to the stochastic nature of the
training of ANNs. We see that between the user- and the brand-specific models,
the user models seem to be more balanced, less prone to blindly favor one class
over the other. The brand models favored the majority class (not backspace),
why their accuracy score was better, at the cost of their recall score. This issue
of balance is most easily seen in the confusion matrices 10b and 10d, where
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the absolute difference between the FPR and the FNR (on the anti-diagonal)
is larger for the brand models than for the user ones. A completely balanced
model has equal FPR and FNR. Note that this difference probably is due to
random coincidence, rather than some inherent characteristic in the data or the
way the models were set up. Since all models were trained on balanced data,
one would expect the models to all be somewhat balanced, which is true enough.

5.3.2 General problem

In the general problem, the difference between the different cases is much larger.
While the general and the brand-specific results are similar, the user-specific
models are substantially better. It is difficult to ascertain why this is, one
theory is that as the general problem is much more difficult, using specific data
for training is necessary. A counter-argument could be made, though, that as
it is much more difficult, using more data for training is necessary. Perhaps the
method in the user case is "better" for both problems, but the models reach
an impasse in the backspace problem, where further improvements are much
harder to reach. The user models are better across the board, except notably
for the AUC, where the general model slightly outperforms all other models.
Why this is, is also a mystery.

This is not to say that the user-specific case always yields better results in the
general problem. With less data per user it is certainly possible that the general
model passes the user-specific ones in performance. Similarly, if more data was
available per user/brand, one would expect the user/brand-specific models to
outperform the general one even more. Even more so, in the case of the brand
models, if the phone models are less similar (looking back at Table 1 we are
reminded that the Samsung and the HTC phones used in this data-set are quite
similar). This would be especially true if the phones were of different operating
systems. When investigating swipes on the touch screen of Android and iOS
cell phones, Cervin [43] found that they exhibit wildly different behaviours, and
the same could certainly be true for keystrokes.

One could also have incorporated user and brand specificness by training a
model for each category (user or brand) using data from all categories, but with
higher sample weights for samples of the same category. This has scalability is-
sues though, and would become unfeasible as the number of categories increase.
One of the beauties of transfer learning, as done in the user-specific case, is that
it vastly decreases the training time per category.

5.4 Heatmap
Figure 15, describing the predicted label distribution for each true label, shows
that the model follows an intuitive behaviour. The most probable prediction for
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nearly all labels is the actual label (not for for example q though, this may be
due to the model favoring large classes, like a, see next section), as shown by the
lit up main diagonal. The cells on the super- and subdiagonal are also brighter
than most, indicating that the model is prone to classify keystrokes as the key’s
horizontal neighbours. Note that this is not true for p and a, for example,
who are only neighbours in the list of keys, but not actually on the keyboard.
Similarly, looking some steps above/below the main diagonal we find that the
model is also prone to classify keystrokes as their vertical neighbours, but since
the keyboard is not completely rectangular these "diagonals" are somewhat
wobbly. Note for example how the true label f is often classified as r, t and c.

5.5 General model performance on different characters
Tables 6 and 7 tell nothing about how models perform on different characters,
only what the aggregate results are over all characters. Since the models used
class weights calculated as in Equation (5), as the square root of the "conven-
tional" class weights, one would expect the models to be biased towards the
larger classes. Is this the case? Below, the worst, median, and best performing
characters, F1-wise, are presented.

Table 10: General model performance on the characters’ that got the best
(Space), median (r) and worst (x) F1-results, in the general case.

x r Space
F1 0.049 0.26 0.71

AUC 0.88 0.89 0.95
Prec 0.035 0.25 0.72
Rec 0.082 0.27 0.70

We see that they differ quite substantially on all metrics (save perhaps the
AUC). To see whether this is due to x and r being less prevalent than Space,
Figure 13, below, plots the F1 score of each character against the number of
instances of that character in the training set for the broad model.
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Figure 13: F1 score for each character plotted against the number of instances of
said character in the training set for the general model, in the general problem.

We see that model performance on a character is indeed heavily correlated with
its prevalence in the training set. The correlation coefficient is ρ = 0.91. The
results would be more equally distributed for each letter if conventional class
weights had been used, but as hinted in Section 3.3, this is not only due to
the performance on rare characters increasing. The bulk of the decrease in
performance variance between characters, when changing to conventional class
weights, is explained by the performance on common characters deteriorating.

5.6 Future Work
While the results of this thesis are somewhat pleasing, this is certainly not the
definitive paper on keystroke inference using accelerometer and gyroscope data.
More work could be done, for example:

• The model hyperparameters used to build the models were chosen through
somewhat haphazard experimenting. A more structured optimizing could
have been done using for example Bayesian Optimization [44]. This would
not necessarily yield the optimal hyperparameters (almost certainly not),
but there is a large possibility that it would improve the models moder-
ately.

• Most of the papers described in Section 1.4 use hand picked features from
the motion sensors as input to their (comparatively smaller) models, in-
stead of letting LSTM layers extract features directly from the motion
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measurements. Perhaps the results could have been improved if the meth-
ods were combined, for example by letting the dense layers at the end of
the models take both the output of the LSTM layers and the handpicked
features used in the papers as input. This was done with the features hold
time and RP-latency (both from the previous keystroke to the current one
and from the current to the next, see Figure 6 and Appendix B), but this
yielded worse results.

• A keylogger worth its name should certainly be able to infer all types of
keys, but some keys were omitted from the general problem due to their
infrequency in the data-set. If one were to find a larger and more diverse
data-set, or handcraft one for this specific purpose, the general models
could improve.

• The models in this thesis are not asked to detect when a keystroke occurs,
only what key it is. In most real world settings (though not the one of
interest to Callsign) one would also need to detect a keystroke occurring,
then classify it.

• Instead of considering each keystroke in a vacuum, one could consider
whole words or sentences, using words or legible sentences as a prior for
the general model. For example, if model was highly certain that the last
two keystrokes were "c" and "a", the following keystroke is probably more
likely to be "r" than "Space", regardless of what the model in its current
form says. This requires the corpus used for the prior distribution to be
similar to that of the target purpose, so it needs to be chosen with care.

• It is difficult to compare the results of the general problem to that of other
papers, as not only do they investigate other sets of characters (for example
only numbers (PIN-codes) or the whole keyboard, without removing ’z’
for instance), but also use other data-sets to train and test. To be able
to compare the ability of LSTMs to classify keystrokes to other methods,
one would need to both train and test on the same data-set.

5.7 Conclusions
The most important insight from this thesis is that it is undeniably possible for
private information to leak through the motion sensors of an ordinary mobile
phone. The quality of this information is not good enough for the LSTM models
built in this thesis to perfectly infer text, but resoundingly better than guessing
randomly. Furthermore, while knowing a specific person’s typing pattern helps,
it is possible to train a model on one population, then apply the model to an-
other population, with only slightly worse results. This is obviously the most
feasible way to build a model, as it may be difficult to get a potential user or
target to agree to having their typing behaviour studied in detail.

In the backspace problem, where keystrokes are classified as either backspace
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or not backspace, the results are all very similar, regardless if the models are
trained on many users and more than one phone model, on many users using
the same phone model, or on a specific user. For the general problem though,
where keystrokes are classified almost any general key on the keyboard, train-
ing one model specifically for each user is substantially better than the other
methods. This can be done with transfer learning, which reduces the training
time considerably. Note though that other methods can be better for other
data-sets, depending on, among other things, the size of each user’s data-set.
The general models all suffer from being highly imbalanced, a consequence of
the pronounced imbalance in the data-set used for training.
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Appendices

A Full results
Only results relevant to the analysis was included in Section 4. This appendix
includes more detailed results for the interested reader.

A.1 Backspace Problem

Table 11: Full results of the backspace brand-specific case, for both phone mod-
els and both seen and unseen users. HTC refers to the HTC-One, Samsung
the Samsung Galaxy S6. The last column describes the results of all samples,
both Samsung and HTC.

HTC Samsung Both
Seen Unseen Total Seen Unseen Total Total

Acc 0.90 0.86 0.88 0.92 0.87 0.89 0.88
F1 0.61 0.57 0.59 0.71 0.56 0.62 0.60
EER 0.11 0.17 0.15 0.09 0.17 0.14 0.14
AUC 0.95 0.91 0.92 0.97 0.91 0.94 0.93
Prec 0.47 0.46 0.46 0.59 0.44 0.50 0.48
Rec 0.86 0.76 0.80 0.89 0.76 0.81 0.81

Table 12: Results of the backspace user-specific case. As there were two different
ways to divide the test user data, the unseen user’s results is divided as well.
Unseen (30) refers to the results where the test users trained on 30 % of their
data, Unseen (80) to 80 %. Under the Total (30) column we find the results
when Seen and Unseen (30) is combined, and similarily for Total (80). Note
that the Seen column is unaffected by this division.

Seen Unseen (30) Total (30) Unseen (80) Total (80)
Acc 0.88 0.86 0.87 0.86 0.88
F1 0.62 0.56 0.59 0.58 0.61

EER 0.11 0.13 0.12 0.13 0.11
AUC 0.95 0.93 0.94 0.94 0.95
Prec 0.47 0.41 0.44 0.43 0.46
Rec 0.90 0.88 0.89 0.89 0.90
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(a) Broad case, seen users. (b) Broad case, unseen users.

(c) Brand-specific case, HTC users. (d) Brand-specific case, Samsung users.

Figure 14: Confusion matrices for the backspace problem, for different cases and
types of users, with ratios normalized within each true label (each row sums up
to one).
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A.2 General problem

Table 13: Full results of the general brand-specific case, for both phone models
and both seen and unseen users. HTC refers to the HTC-One, Samsung the
Samsung Galaxy S6. The last column describes the results of all samples, both
Samsung and HTC.

HTC Samsung Both
Seen Unseen Total Seen Unseen Total Total

Acc 0.44 0.35 0.39 0.53 0.41 0.46 0.43
F1 0.27 0.19 0.22 0.37 0.27 0.30 0.27
MR 3.05 3.93 3.58 2.39 3.74 3.21 3.37
Acc3 0.73 0.63 0.67 0.82 0.70 0.75 0.71
κ 0.40 0.30 0.34 0.50 0.37 0.42 0.38
AUC 0.90 0.85 0.87 0.94 0.88 0.91 0.90

Table 14: Results of the general user-specific case. As there were two different
ways to divide the test user data, the unseen user’s results is divided as well.
Unseen (30) refers to the results where the test users trained on 30 % of their
data, Unseen (80) to 80 %. Under the Total (30) column we find the results
when Seen and Unseen (30) is combined, and similarily for Total (80). Note
that the Seen column is unaffected by this division.

Seen Unseen 30 Total 30 Unseen 80 Total 80
Acc 0.51 0.48 0.49 0.50 0.51
F1 0.31 0.29 0.30 0.32 0.32

MR 2.82 3.02 2.93 2.72 2.80
Acc3 0.79 0.76 0.78 0.79 0.79

κ 0.47 0.44 0.45 0.46 0.47
AUC 0.89 0.87 0.88 0.91 0.89
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Figure 15: Heatmap describing the distribution of predicted labels for each true
label in the general problem, in the general case. The cells are normalized by
each true label, and the colormap is not truncated. The last characters in the
list are ’B’: Backspace, ’S’: Space, ’.’: Period, and ’N’: New line/Enter.
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B Subpar model structures
Before deciding on using the models described in Sections 3.2 and 3.3, many
other model details were tried but were ultimately abandoned, as they performed
worse than the alternative. These include, but are not limited to:

• Using a masking [27] layer at the beginning of the model, letting the model
know not to update the weights for time-steps where all values of the input
are 0.

• Using the motion sensor data from ∆t ms before to ∆t ms after the key
down event as input to the models, instead of using ∆t ms before the key
down event to ∆t ms after the key up event. This removed the problem
of samples being of differing length. Different values of ∆t were tried.

• Using the hold times and the two RP-latencies (see Figure 6) surrounding
a keystroke as additional features. These were concatenated to the output
of the LSTM layers, as input to the dense layers.

• Normalising the inputs to unit variance and zero mean. This is probably
best practice, and did only perform slightly worse than not doing it, but
as the all inputs were of similar magnitude it was not necessary. When
using the additional features described above, which could be of one or
two orders of magnitude larger than the motion sensor measurements,
normalising helped.

• Grouping inputs by length, creating batches where all samples are of the
same length, to remove the need for padding the inputs. This did not
notably affect model performance, but increased the training time some-
what.

• Not using Batch Normalization layers.

• Many different versions of different number of layers, nodes in each layer,
activation functions and loss function.

• In the general problem, using different class weights.
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