L
L]

» BACHELOR’S THESIS 2021 ‘

L Access Management
in Cloud Networks

Hannes Larsson

|
o e ISSN 1651-2197‘| \ I ; ‘
"y,
' LU-CS/HBG-EX: 2021-03 =
DEPARTMENT OF COMPUTER SCiNCE
! LTH | LUND UNIVERSITY

Access Management in Cloud Networks

Comparing OAuth 2.0-Based Services On Securing Serverless Applications

LUND UNIVERSITY
Campus Helsingborg

LTH School of Engineering at Campus Helsingborg
Department of Computer Science

Bachelor thesis:
Hannes Larsson

Copyright Hannes Larsson
LTH School of Engineering
Lund University

Box 882

SE-251 08 Helsingborg
Sweden

LTH Ingenjoérshogskolan vid Campus Helsingborg
Lunds universitet

Box 882

251 08 Helsingborg
Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet

Lund 2021

Abstract

OAuth 2.0 is an open standard proposed by the IETF in 2012 to securely handle delegation of
access, and it has since been integrated into a majority of systems worldwide to provide users
with the ability to manage data access across platforms. One such platform that has been on the
rise in recent years is the cloud infrastructure AWS and the deployment of serverless
applications. However, due to cloud and serverless being young concepts and also very different
from standard server infrastructure, security has to be reviewed more frequently so that unknown
risks don’t arise.

This thesis work aims to compare the cloud-native OAuth implementation Cognito with Curity,
an OAuth implementation that was originally built as a standard server application. In order to
make this comparison this thesis investigates notable differences between Cognito and Curity,
shows examples of how to compare OAuth implementations in different scenarios and results in
a presentation of situations where Curity is advantageous to Cognito.

While Cognito may be the native application for OAuth operations in AWS and a powerful tool
for its simplicity, it is somewhat lacking compared to Curity as a standalone security service and
quickly becomes pricey. This is partly due to OAuth features that haven’t been developed in
Cognito, and partly due to Cognito relying on other security services in AWS for certain features.
Overall, Curity is worth the effort of deploying on the cloud in systems where Cognito is lacking
in flexibility, lacking in features, handling a large amount of users or traffic, and when handling
sensitive data.

This thesis contributes to research on the topic of access management in cloud environments, a
field that has not been investigated much.

Keywords: Cloud, OAuth, AWS, Cognito, Curity

Sammanfattning

OAuth 2.0 dr en 6ppen standard foreslagen av IETF under 2012 f6r att sdkert hantera delegering
av atkomst, och den har sedan dess blivit integrerad 1 en stor mingd system over hela vérlden {for
att ge anvandare mojlighet att hantera datadtkomst mellan olika plattformar. En sadan plattform
som har stigit i populéritet under senare ar dr den molnbaserade infrastrukturen AWS och
anvandningen av serverless applikationer. Men, eftersom att moln och serverless ar relativt nya
koncept och dessutom dven véldigt annorlunda frén standard serverstrukturer sa behover
sdkerhet undersokas mer frekvent s att okénda sékerhetsrisker forhindras att uppsta.

Det hiar examensarbetet jamfor den cloud-baserade OAuth implementationen Cognito med
Curity, en OAuth-implementation som forst utvecklades som en standard serverapplikation. For
att gora denna jamforelse s undersoks mérkbara skillnader mellan Curity och Cognito, exempel
ges pd hur OAuth-implementationer kan jimforas i olika scenarion. Detta resulterar i en
presentation av situationer déar Curity kan vara fordelaktig for Cognito.

Medan Cognito mé vara standardapplikationen for OAuth-baserad aktivitet i AWS och ett
kraftfullt verktyg trots dess enkelhet, s& har den svagheter som Curity tdcker och blir sirskilt
kostsamt i storre system. Detta ér delvis for att en del viktig OAuth-funktionalitet ej har
implementerats 1 Cognito, men dven for att Cognito forlitar sig mycket pa andra sdkerhetssystem
i AWS for annan funktionalitet. Overlag sé #r Curity vird anstringningen att distribuera i molnet
nér systemet behover funktionalitet eller flexibilitet som Cognito saknar, ndr systemet hanterar
stora méangder trafik och nér systemet har handa om kénslig data.

Det hir examensarbetet ger ett bidrag till kunskapen om dtkomsthantering i molnmiljoer, ett
omrdde som ej har utforskats mycket.

Nyckelord: Moln, OAuth, AWS, Cognito, Curity

Foreword

I would like to thank Per-Gustaf Stenberg, Viraj Padte and Christian Nyberg for their
contribution and support over the duration of this thesis, without their help I would not have been
able to finish.

I would also like to thank Data Ductus for their financial and moral support in supplying
licenses, a place to work, a supervisor to guide me and colleagues with an interest on the topic.

Finally I would like to thank Per-Gustaf again for all the pushes and help he has given me while
I’ve been stressed with all there is to learn.

Table of contents

N 01 1 e 3
SamMMANTATINING ...vviiiniiiiiiiiiiiiiiiiiiiiiiitiiiiietittesstesenstessesssosssnssssssssssssssssssnssssns 4
10 Q1) 5
Table 0f COMEENES...uuiiiiieiiiiiiniiiiiiiiiietiiiintietesetesessreosssstossssssssssssossssscsssssssssnssssns 6
1 INtroducCtion . ..ueiiiiieeiiiieiiiiineiirietiotesstesessreosesssosssnssosssssossssssssssssssssssssssnssossnas 8
1.1 Backgroundooiiiii 8

L o U o0] P 9

L3 G0l . e 9

1.4 Problem Definitionsoouuiiiii i e e 10

T 1Y/ 10} 3 2213) o 10

1.6 DEIIMITATIONS . ..ottt ettt et et et e e et e et e et e e et et et e et e e e et e e eaneeaas 10

L7 RESOUICES .. eeetetttee et et et ettt et e ettt et et e et et e e e e e e e eeas 11

2 Technical Back@roundcccovuiiiiiiiniiiiiiiiniiiiiiiieiiieiiiieieistciesssesscsnscsessssnscnses 12
2.0 QAU 2.0 e e 12
2.1.10penID CONNECT ...ttt et ee e 14

2.1 2 P CE .o, 14

2.2 AMAzon WD SeIVICEuiiii ittt et et et et e e e 15
2.2.1 AWS Identity ACCESS Managerovuiieniiiieett e eie e e eeeeeaeanaas 15

222 AWS Fargate ..ottt e e 15

2.2.3 AWS Elastic Container SEIVICEoueiuuiirieniittateteate et eieeieeaneaneennn, 15

2.2.4 AWS Elastic Container Registryoouiiiiiiiiiiiiiiiiiiiei e, 16

2.2.5 AWS APT GateWaY ...voniitiiitit et et et 16

226 AWS Lambda.....c.oiuiiiiii e 16

22T AWS COZNILO .. .eetetet et 17

2.2.8 AWS CloudwWatCh.....ouii e 18

2.2.9 AWS S3 BUCKEES .. .vieiitiit e 18

0 0 1 1372 19
2.4 JSON WED TOKEIueettitt ettt et e et et e e et et e et e et et e e e e e 20

2.5 DIOCKET . ..ttt 20

3.1 Phase One - Information Gatheringccooiiiiiiiiii e, 22

3.2 Phase TWO - ANaly SIS .o.uuiiiiiiii e e e e e e 26

3.3 Post-Analysis - Development 0f USe Cases.........ovviiriiiiiriiiiiiiiiiieiieieeiienaanan, 32
3.3.1 Use Case 1: Grant Access TOKENo.oiuiiiiitii i 33

3.3.2 Use Case 2: Authorizing a standard client..................cooiiiiiiiiiiiii i, 35

3.3.3 Use Case 3: Authorizing a public clientccoooiiiiiiiiiiiiiiii e, 37

3.3.4 Use Case 4: Authorizing an [oT devicecoiviiiiiiiiiiiiiiiiii e, 39

3.3.5 Use Case 5: Dynamic Client Registrationccoviiiiiiiiiiiiiiiieie e, 41
2] | L 43
4.1 Implemented OAuth and OIDC FIOWSc.ciiiiiiiiii e, 43
4.2 Implemented Security FEaturesc.oviiiiiiiiiiii i 45

4.3 Implemented Customization Featuresooiiiiiiiiiiiiiiiiiii e, 47
oo 1o 1 P 48

4.5 Results 0f the USE CaseSuuuiuunitiititet et 49
4.5.1 UC 1 Grant access tOKEMuuuiuiitiitit it 49

4.5.2 UC 2 Authorizing a standard client ... 49

4.5.3 UC 3 Authorizing a public clientcoiiiiiiiii e 49

4.5.4 UC 4 Authorizing an IoT deviCec.ovviiiiiiiiiii e 50

4.5.5 UC 5 Dynamic Client Registration.............covviiiiiiiiiiiiii i ieeee e, 50

4.6 SuMmMAry Of TESULLSt e 51

B 1) 1 10 L1] 1) e 52
R B 1) 0 Ted 15T) P 52
5.2 BHhiCaAl @SP@CTS . . u ettt ettt et e eaaea 54
S3FUtUre WOtk ... 54

6 Information Evaluation.........cccoieiicicneinecnnn 56
T SOUICES «euueinniiniiniiieiiiiieiitiiieiietieteieeistestesssscessessssscssssssssssessssssssscsssssssnssnssn 57
7.1 DAGItAL SOUICES ..ttt ettt et ettt et et et e et et et et et et e et et e aeeeennenneaans 57

8 TermMiNOIOZY c.uvvnniiiniiiiniiiiiiiniiiniiieieeatoseeesstsssssssssssssssssssssssssssssssssnsssnssssnsans 59
O APPENAIX cuviinniiiiniiineiinetiiaieseesssetosssessssossssssssssssossssssssosssssssssssssssssssssssassssssses 60
0.1 TAM Role EXampPle ..o e e e e e, 60

9.2 Lambda EXampPleuiiniiiiii i e 61

9.3 OAuth Token EXampleoouiiiiiiiiii e e 62

1 Introduction
1.1 Background

This thesis will be carried out in collaboration with Data Ductus. Data Ductus is a swedish
consulting company based in Skellefted, with several offices located both in and outside of
Sweden. They provide several services, e.g. [oT services and management, as well as specially
tailored solutions for high-security customers such as banks. The thesis will build upon their
SaaS in AWS.

AWS (Amazon Web Services) is an [aaS Cloud Management System provided by Amazon that
gives its customers the option of deploying their services on a serverless solution. This thesis
work is focused on AWS Lambda, a service where customers deploy code for their serverless
applications. AWS has a cloud-native [AM-service (identity access management) called Cognito
which manages different aspects of security, such as authorization flows.

Cognito is based on the standard OAuth 2.0, a protocol for authorization, as well as OpenID
Connect, an extension of OAuth 2.0 which handles authentication. These two protocols let users
authenticate themselves in a large variety of ways, such as username/password or federated
identities.

Although Cognito is a powerful tool, it was built to handle security in a large cloud network with
a large amount of different services. According to Data Ductus Cognito is not flexible enough in
handling security for serverless applications, and therefore wishes to explore the use of a
different OAuth-based service, specifically Curity. Curity is a non-cloud hybrid TAM and API
management service, also based on the OAuth 2.0 standard.

In order to compare Cognito and Curity, they wish to deploy Curity on the AWS network by
developing an API that can be integrated into the API Gateway, and handle authorization of

serverless applications with lambda’s support for custom authorizers.

See figure 1.0.1 for the proposed system.

AWS SDK

BLUE API

AWS Curity
Lambda /

EC2/..

I =

Private Container
Registry

API Ghteway

APIGW /IoT
Core Cognito
Authorizer

i Management &
& Govemance

O Q .
Oo0 0ol @

CloudWatch Events Alarms CloudTrail XRay

Figure 1.0.1 - Proposed system to handle authenticationflow via Curity.
1.2 Purpose

The purpose of this thesis is to determine whether Curity could be used as a suitable replacement
for Cognito in order to handle security for serverless applications in an AWS cloud network.

1.3 Goal

This thesis will deploy a configuration of Curity on the AWS network in order to compare
Cognito and Curity regarding maintaining security in serverless applications. The end goal of the
thesis is to detail differences between Cognito and Curity, compare them and give answers as to
when Curity might be advantageous over Cognito.

10

1.4 Problem Definitions

The thesis will answer the following questions:

1. What are key differences between Cognito and Curity?

2. How should Cognito and Curity be evaluated when deciding which is better at securing
serverless applications?

3. In what situations would Curity be advantageous to Cognito?

1.5 Motivation

Using Curity instead of Cognito allows the architecture to be more cloud agnostic, allowing Data
Ductus to use other or private cloud infrastructures if the need arises. Additionally, if the
company becomes more efficient and flexible it can adhere to more of their customers' needs.
Finally, as this thesis regards applications who’s purpose is to maintain security, the company has
a moral obligation to strive to maintain the highest standard. This thesis is motivated by an
interest in security, and the lack of research on the topic.

1.6 Delimitations

The thesis is delimited to comparing the two services Cognito and Curity. The primary area of
concern will be OAuth 2.0 authorization code flow.

11

1.7 Resources

To complete the thesis, the following resources will be used, either as research material or for
practical use:

Computer

GitHub

AWS SDK

AWS reinvent

AWS Documentation
Curity Documentation
OAuth Documentation
JWT Documentation
Supervisor at Data Ductus

Supervisor at LTH

12

2 Technical Background

Before Cognito and Curity can be explored and compared, several services will have to be
detailed as to what they are, what they do and why they are relevant. Due to both the complexity
and size of OAuth and AWS, a brief overview of relevant services will be provided in this
segment.

2.1 OAuth 2.0

OAuth 2.0 is an internationally standardized protocol based on its predecessor OAuth 1.0, and it
was created in order to handle access to resources without having to pass credentials between
systems. Understanding the intent behind OAuth is best done by describing a scenario of
traditional client-server based authorization from before OAuth. See figure 2.1.1.

System S System E

Sign up

A4

User Registered

A

User A
Provide credentials to E

Y

Use A's credentials
to access E

L

P Pass contactinformation

«

%%i P Send email to colleagues
-

Colleagues

Figure 2.1.1 - Traditional client-server authorization.

13

Scenario: User A has just signed up to Social Network S. S asks A if he would like to send an
email to invite his colleagues to join his group in S, which A does. S prompts A to supply
credentials to A's account on Email Service E, then proceeds to use A's credentials to access the
account, fetch contactinformation and email an invitation to A’s colleagues.

This dated authorization-model is very insecure and inefficient for all parties involved. Examples
of issues that this model brings are, as listed in the OAuth Authorization Framework RFC 6749,
the following: [1]

1. Third-party applications are required to store the resource owner’s credentials for future
use, typically a password in clear-text.

2. Servers are required to support password authentication, despite the security weaknesses
inherent in passwords.

3. Third-party applications gain overly broad access to the resource owner’s protected
resources without the resource owner being able to regulate it to a set duration or limited
subset of resources.

4. Resource owners cannot revoke access to an individual third party without revoking
access to all third parties, and must do so by changing the third party’s password.

5. Compromise of any third-party application results in compromise of the end-user’s
password and all of the data protected by that password.

OAuth 2.0 solves these problems by instead of passing credentials to gain access to a resource,
the client is granted access with a token. What kind of token, how to get one and how it is used
depends on the grant type and the OAuth flow, however for this thesis the “authorization code
flow” will be the one used. The authorization code flow uses the following steps to provide an
access token, and to make it easier to understand, the same scenario as before will be described:

[1]

1. Client S asks Resource Owner A, usually with a pop-up, if they wish to invite their
colleagues to S.

2. Resource owner A clicks ‘yes’, and the client proceeds to make an authorization request
to resource server E.

3. Resource server E returns an authorization page to client S.

4. Client S displays the authorization page to resource owner A.

5. The authorization page shows resource owner A what resource client S is trying to
access, in this case the contactbook, and resource owner A provides credentials and
approves the authorization request. Key difference here is that the credentials are not
passed from Resource Owner A to Client S to Resource Server E, but instead supplied
directly from A to E.

14

6. A short-lived authorization code is passed from resource server E to client S via resource
owner A’s browser.

7. Client S uses a predefined back-channel communication to trade the authorization code
for an access token, which contains information on what resources client S is allowed to
access.

8. Client S provides the token to resource server E to gain access to resource owner A’s
contactbook.

2.1.1 OpenID Connect

OpenID Connect is an open standard published in 2014, and an extension of the OAuth 2.0
protocol, which is designed to also include the use of the protocol for authentication. [12]
OpenlD Connect was developed because people were using OAuth for authentication despite
that the access tokens on which the protocol is built contain no information on who the user is,
and therefore aren't suited for it.

The extension provided by OpenID Connect comes in the form of an additional token sent in the
process, the ID token, which contains information about the user. It also adds a UserInfo
endpoint as an additional option, where one could store/fetch additional non-vital information
about the user. Due to OpenID Connect being built on top of OAuth 2.0 it is commonly
supported in OAuth 2.0 based systems. Both Cognito and Curity support OpenID Connect. [2][3]

2.1.2 PKCE

PKCE, or “Proof Key for Code Exchange” is an extension on top of the OAuth protocol that was
introduced as an additional security layer in the code grant flow in order to prevent malicious
activity originating from an intercepted authorization code. [13]

15

2.2 Amazon Web Service

Amazon Web Service, or AWS, is a cloud IAAS (Infrastructure as a service) which allows
customers to host serverless digital solutions. Serverless here means that the customers do not
need to maintain their own data centers but instead host their applications on Amazon's servers,
with the advantage of only having to pay for the traffic they consume.

AWS is a large platform with more than 170 subservices, ranging from data storage to hosting

websites, security maintenance, physical data transfer and more. The key services that will need
to be understood will be listed here. [2]

2.2.1 AWS Identity Access Manager

The AWS IAM is a service that handles access to the AWS account, both authentication to access
the account and the authorization to access its resources. Primary functions it serves are: [2]

1. The ability to add / remove users from an AWS account.
2. Create roles, groups and policies, in order to manage large user pools.
3. Support MFA (Multi-Factor Authentication) on the account.
4. Deploying resources onto the account.
2.2.2 AWS Fargate

Fargate is a scalable, pay-as-you-go service which deploys and runs cluster applications. The
cluster applications consist of tasks, which are Docker containers with a configured amount of
computational resources. Fargate can be configured to scale up or down these clusters according
to demand, while only billing for the amount of computational resources used. [2]

2.2.3 AWS Elastic Container Service

AWS Elastic Container Service, or ECS, is a service which allows users to set up and deploy
applications on the AWS cloud using containers. Containers allow us to package all parts of an
application and deploy it as a single entity. ECS is similar to EC2 in that it handles instances of
virtual machines, however ECS instead deploys a cluster of machines which serves as the
deployment ground of your apps. [2]

16

2.2.4 AWS Elastic Container Registry

AWS ECR is Amazon’s equivalent of the Docker Hub, a service that lets developers upload and
manage Docker images. ECR is primarily used as the origin from which ECS instances are
launched. [2]

2.2.5 AWS API Gateway

AWS API Gateway is, put simply, an API Gateway. An API Gateway is by definition an API
management tool located inbetween a client and a collection of backend services. By using this
service a developer can create, publish, maintain, monitor and secure APIs on any scale. The
types of APIs that it supports are REST, HTTP and Websocket APIs. The APIs can in turn be
used to access AWS resources/services and other web services, as well as data stored in the
cloud. The API Gateway also lets developers create APIs that can be used in client applications,
or alternatively make the APIs available to third-party app developers. [2]

2.2.6 AWS Lambda

AWS Lambda is AWS’s primary serverless computing service. Serverless in this context means
that the users do not need to provision or manage servers, instead all that is automatically
handled serverside by Amazon. AWS Lambda is eventdriven, meaning that the code is run only
on demand and it also scales automatically. The primary reasoning behind this is to only bill
users for the amount of computing required, thus not paying for unnecessary uptime for servers.
This type of service also has drawbacks, such as being prone to “cold starts" (increased
computing time caused by initialization of an inactive function). [2]

This is the primary service where Curity’s and Cognito’s efficiency to secure serverless
applications will be compared.

17

2.2.7 AWS Cognito

AWS Cognito is an access management service that handles access to individual applications or
websites that are available on the AWS account. As has been mentioned in the introduction,
Cognito is based on OAuth 2.0 and additionally supports OpenID Connect as well as SAML.
SAML is basically a standard in exchanging authentication and authorization data between a
service provider and an identity provider. Cognito supports these features with two different
services, which are User Pools and Identity Pools. For a typical scenario of how these are used,
see figure 2.2.1. [2]

4 N

1. Authenticate and gst
tokens.

™ 2. Exchange tokens for
AWS Credentials.

App

Cognito Identity Pool

3. Access AWS services
with credentials.

| Z)
Lambda

o /

Figure 2.2.1 - Standard scenario of a user accessing an application hosted on AWS.

In the scenario above, a user authenticates through a Cognito user pool, receives a JWT,
exchanges the token for temporary AWS credentials, then uses those credentials to access
services within AWS.

18

The user pool is a user directory in Cognito. It allows users to sign in to an application through
Cognito, either with a username/password combination or through a third party, such as
Facebook, Google and SAML identity providers. The primary features of user pools are sign-up
and sign-in services, a default but customizable web UI to sign in users, support for federated
identities, user directory management and user profiles, customized workflows and user
migration through lambda triggers. After authentication, the user is provided with a JWT (JSON
Web Token) which can either be used to give secure access to applications and APIs, or be
exchanged for temporary AWS credentials to access the account. If the token is traded for AWS
Credentials, it is done so with the use of an identity pool.

Cognito identity pools, or federated identities, are used to create unique identities and fedeare
users with identity providers. What this means is that you can grant users limited access to
services on the AWS account. The access can be configured in a large number of ways, and the
identity providers that can be supported are SAML and OpenID Connect providers, Google,
Apple, Amazon, Facebook, Cognito User Pools and developer authenticated identities.

2.2.8 AWS Cloudwatch

AWS Cloudwatch is a log-service that is used to monitor applications and infrastructure in the
cloud. This service will likely be used in logging data processing in order to compare Cognito
and Curity, and also in troubleshooting errors. [2]

2.2.9 AWS S3 Buckets

Amazon simple storage, or Amazon S3, is a storage service. A very simplified description would
be that it is effectively a very large Key-Value structure, with the key referencing the file name
and the value referencing the contents of the file. S3 buckets might be used to host data for the
lambda applications, logs from cloudwatch etc. [2]

19

2.3 Curity

Curity Identity Server, or just Curity, is an OAuth-based service that was developed to allow
companies to secure their applications using configuration instead of code, thus effectively
reducing complexity and maintenance. In addition to OAuth 2.0, it was also built with OpenID
Connect and SCIM (System for Cross-Domain Identity Management) in mind, SCIM being a
standard for automating the exchange of user identity information between identity domains. [3]

Curity is divided into three major modules, namely the authentication service, the token service
and the user management service. The Authentication Service is a flexible framework handling
multiple means of MFA, SSO and process workflows. The token service provides the foundation
of the security aspects, such as highly customizable token management, token scope, claims and
policies. In his review API Management and Security Alexei Balaganski highlights four
strengths of Curity, and they are as follows: [10]

Comprehensive support for OAuth & OIDC open standards.
Combines flexible authentication with token-based API security-controls.
Reference “Phantom Token™ architecture for privacy protection.

P dh =

Modular API-driven architecture.

Since the initial release of the OAuth 2.0 framework it has been updated on a regular basis,
examples being OAuth 2.0 Token Introspection from 2015 which is a standardized way to define
a method for a protected resource to query an OAuth 2.0 authorization server to determine the
active state of a token, and OAuth 2.0 Token Revocation from 2013 which proposes an
additional endpoint for authorization servers which clients can use to notify the server when a
token is no longer needed. What point 1 above refers to is the expansive support for updated
features in the OAuth and OIDC open standards.

20

2.4 JSON Web Token

JSON Web Token, or JWT as it will be referred to from now on, is a standard format and is
defined as “a string representing a set of claims encoded in a JWS or JWE, enabling the claims to
be digitally signed or MACed and/or encrypted”. The claims in this context can be of different
types however, they are always a pair representing a name/value combination, where the name is
always a string and the value can be any JSON value. [11] A claim is an assertion that one
subject, for example a user or a server, makes about itself or another subject. An example of this
would be the “name” claim in an ID token that contains the name of a user. Claims are not to be
confused with OAuth’s “scope”, which is effectively a group of claims.

The claims themselves can be grouped into two types, namely reserved and custom. Reserved are
claims defined by the JWT-documentation, used to ensure interoperability with third-party, or
external, applications, and custom are claims defined and used in an internal system. Custom
claims need to be carefully named in order not to collide with reserved claims.

JWTs are most commonly used as a means of, but not limited to, authenticating or authorizing an
entity, and are divided into two types as well, namely signed and encrypted tokens. JWTs that use
JWS are signed tokens, and JWTs that use JWE are encrypted tokens. When authenticating a
user the ID token is used, and while authorizing an entity the Access token is used.

The relevance JWTs hold in this thesis is that both OAuth 2.0 and OIDC are heavily dependent
on this standard.

2.5 Docker

Docker is a platform used to develop, ship and run isolated applications, in the shape of
containers. The containers are built from images, which in turn are a read-only template that
contains a set of instructions to launch a system that can run the application. [14]

21

3 Method

This section will describe how the thesis was concluded. The thesis was divided into three
phases; information gathering, analysis and results. Figure 3.0.1 provides an overview of the
workflow for the thesis. The thesis work followed the phases Information Gathering, Analysis
and Results as outlined in figure 3.0.1, and due to the nature of the thesis being a comparison
between services, the first phase at times overlapped with the second and third phase. The phases
underwent iterations where a singular piece of information was studied, for example a specific
flow or security feature.

Information
Gathering

Analyze

Documentation i
Documentation

Analysis

Study Features Build Use Cases

Results

Compare Features
and Use Cases

Analyze Use Cases

Figure 3.0.1 - Project Workflow

22

Here’s a brief description of the phases:

e Information Gathering - The majority of the services were initially identified, then the
services were studied and summarized, so that it could be used as a reference to fall back
on. In later iterations specific features were identified and studied, giving a basis for
analysis.

e Analysis - Features and services gathered during the first phase were studied. Common
use cases and security concerns regarding serverless and OAuth applications were
identified, giving a basis for comparison between Cognito and Curity. Additionally areas
of interest for comparison were identified. Development of use cases will be presented as
a post-analysis in chapter 3.3, functioning as a bridge between analysis and results.

e Results - The use cases built and the features gathered during the second phase were
analyzed resulting in a comparison between Curity and Cognito.

3.1 Phase One - Information Gathering

During phase one, or the information gathering phase, most of the work was done from home
(due to Covid-19) and the time was spent identifying and learning about the primary services that
will come into play when comparing Cognito and Curity. In order to maintain communication
with the supervisors at Data Ductus, a slack group was created. Additionally, an account was
configured on AWS, with unique users for the examinee and each of the supervisors at Data
Ductus.

Due to the lack of research on the topics of OAuth-implementations in the cloud, Curity,
serverless and AWS, information was primarily collected from raw documentation and articles
on security. The documentation was summarized and used in the thesis document (such as
technical background & tables of features) if considered important to understand the thesis,
otherwise it was kept in local documents or memorized.

The first two months, the examinee spent the majority of the time learning about OAuth, Curity
and AWS, partly by reading the documentation, partly by trying them out in practice. Below is
shown flowcharts for two sample applications of the ‘Code Grant Flow’ in Cognito and Curity
respectively. Since both systems were developed with the intent to learn, only a brief explanation
of how they work will be provided. See figure 3.1.1.

23

Actor Iﬁ Flask App Il‘} Curity Il‘} Sample AP Il‘}

.) Authorization /
Resource Chwner] Client] Authentication Seruer] Fesource Server]

s

o o

Fetch Resource

Authorization
Fequest

B R ——

Display Authentication
- . page
Authenticate and consent
to client access

Return Authorization Code E

Ll
-
'

Redeem Authorization Cndef

]

:
© Provide Access Token
E=:
H Access Resource
' Token introspection '
< ;
: Token Valid
»
Consume token & return .
resource :
o

Figure 3.1.1 - Code Grant Flow (Curity), basic implementation on localhost

The system consists of a Flask application (hosted on localhost) as the client, Curity as the
authorization server (also hosted on localhost) and a Python API combined with a SQLite
database as the resource server. The resource owner (the examinee) starts the flow from the flask
app, which in turn sends a request to the authorization endpoint in Curity with the parameters
client ID, client secret, state, scope and redirect URI. Curity redirects to the authentication
endpoint (in this implementation Curity’s default authentication was used) and displays it to the
user, which promptly logs in and consents to the client accessing resources. Curity then redirects
to the previously provided redirect URI, where the client retrieves the authorization code from
the URL and passes it to the token endpoint on Curity. Curity returns an access token, which the
client passes to the API. The API verifies the token lifetime, scopes and access code, then
consumes the token and returns the requested resources.

24

Lambda

Actor B} Flask App Iﬁ Cognito Iﬁ API Gateway Iﬁ Il]
Resource Server Backend

Authorization /
Authentication Server

Resource Owner ‘ Client |

Fetch AWS Resource

Authorization
Request

[
:

Display Authentication
P H page
Authenticate and consent
to client access

¢ Return Authorization Code

o
x

éRedeem Authorization Code

N
“y

Provide Access Token

Access Resource

Validate Token

Return Status Message

Get Resource

-‘r-----

Consume token & return
resgurce

AT

Return Resource

F Y

Figure 3.1.2 - Code Grant Flow (Cognito), basic implementation

The system in AWS using Cognito was similarly implemented to Curity. The flask application
was edited to instead communicate with the Cognito endpoint, and the resource server was
exchanged with an API deployed on the API Gateway fetching resources with lambdas. Token
validation was processed in a triggered lambda to compensate for the lack of introspection. For
an overview of the system, see figure 3.1.2.

After having gathered enough information to understand the concepts, the examinee and
supervisors at Dataductus started discussing how to best compare Curity and Cognito. Due to
time and budget constraints, large scale case studies were excluded from consideration. Basing
the comparison on existing research and studies was considered, however due to OAuth and
Serverless being relatively new concepts, the number of published studies in these fields is small,
and therefore this approach was also excluded. Finally, it was decided that common use cases
would be studied and the comparison would be based on these, as well as security and business
concerns regarding deployment.

25

After the approach had been decided, the next step was to deploy Curity on AWS. Two
alternatives were considered:

1. Deploying Curity as an application on a cluster of EC2 (virtual machines).
2. Deploying Curity as a cluster of ECS (docker) containers.

Due to the high price of virtual machines and the low system requirements of running docker
containers, it was decided to deploy Curity on an ECS cluster managed by Fargate. For a
simplified overview of the system, see figure 3.1.3.

. Maintain Containers /
Incoming Regquests @ Delegate Traffic

T

AWS Fargate

ECS Nodes

\ Curity /

Figure 3.1.3 - ECS Cluster hosting Curity

After having deployed Curity and documented key features and services, it was time to move on
to the next phase, and start analyzing Curity and Cognito.

The direct result of this phase in the thesis documentation is primarily the technical background.

26

3.2 Phase Two - Analysis

During the analysis stage the information gathered and learned during the information gathering
phase was analyzed in order to map out differences between Curity and Cognito. The use cases
are derived from the results of the analysis, and will, in union with the information analyzed, be
the basis for the conclusion of the thesis.

Initially, the OAuth and OIDC capabilities Curity and Cognito support respectively were
identified in order to compare how much of the OAuth protocol they’ve implemented each.
Table 3.2.1 shows what flows are supported:

Supported Flows Curity Cognito
Code Grant Flow Yes Yes
Implicit Flow Yes Yes
Introspection Flow Yes No
Hybrid Flow Yes No
Client Credentials Flow Yes Yes
Refresh Token Flow Yes Yes

Token Revocation Flow Yes *
Resource Owner Password Yes No
Flow

On-Behalf-Of Flow Yes No

Table 3.2.1 - OAuth & OIDC capabilities

* Token revocation flow for Cognito can not be summarized as a yes or no, and the presence of
the feature will therefore have to be explained. The token revocation flow is primarily used as a
means to revoke access and refresh tokens, and Cognito does not have a flow which does that.
However, the AWS SDK has a method which logs out the user from all devices and invalidates
all of the user’s tokens. This feature is limited to User Pool users, and is therefore not available
for federated identity solutions. In short, the use of token revocation is dependent on the
scenario.

27

Next, security concerns regarding OAuth and Serverless were considered in order to list relevant
security features. The listed features are primarily derived from expansions to the OAuth
protocol and protection against common serverless and OAuth attack patterns, and are present in
at least either Curity or Cognito. For a brief overview of some common security risks in
serverless and OAuth applications, refer to ‘OWASP top ten serverless’ and ‘ Attacking and
Defending OAuth 2.0’ in references. [4] [5] Presence of features is listed in table 3.2.2.

Another important reason why some of these features were considered is human error being a
large factor in the occurrence of security breaches. This is stated in a large number of articles on
the topic of security, such as “Three common mistakes that lead to a security breach”. [7].

Security Features Curity Cognito
CSREF Protection Yes Yes
PKCE Yes Yes
Federated Identities Yes Yes
Geolocation Tables Yes *
Redirect URI Validation Yes Yes
Origin URI Validation Yes No
Token Validation Yes** No**

Table 3.2.2 - Security features

* Geolocation tables are used to implement specific behaviour depending on the location of the
user, such as deny requests from a specific country or similar actions. Cognito does not have this
feature, however it is possible to implement a similar solution in union with AWS route53 and
AWS WAF.

** Token validation is the act of validating scopes, expiration etc of tokens procured from client
applications. Curity simplifies this via token introspection, which is a flow that returns a
phantom token if the token is active and status if it’s invalid. Even if it’s simplified though,
developers are still required to verify scope against resources.

Cognito on the other hand relies entirely on self-validation, which means that developers have to
manually implement the entirety of the token-validation process.

The reason for each of the features being selected for comparison is listed below:

28

O

CSRF-Protection: CSRF attacks are a major threat if not protected against in OAuth
clients, and therefore are considered a MUST in the RFC documentation of OAuth. This
is especially true in serverless applications where scalability is a major feature, and with
open APIs catering to large audiences. In order to ensure this feature exists, it had to be
confirmed that both Cognito and Curity have implemented it. For information on how
CSREF attacks work and how to protect against them, read 10.12 in the RFC document.
PKCE: Proof Key for Code Exchange is an extension of the OAuth protocol. It is an
important feature used to prevent injection attacks in the code grant flow, and the
presence of this feature is therefore being compared partly to ensure it is implemented,
and partly to discover potential discrepancies in following updates in the OAuth protocol.
Federated Identities: Federated identities are a direct result of the OIDC protocol, and
one of the primary ways to reduce price in applications handled by Cognito. The
prevalence of this feature should therefore be considered in Curity.

Geolocation Tables: Geolocation tables are not only used to tailor UX to regions, but can
also be used as an additional security layer, especially in device flows. An example
would be having devices located in Malmd, using geolocation tables it can be ensured
that only IP-addresses based in Malmo are allowed to call a specific endpoint. This is
especially true in the cloud, where applications can easily be migrated to servers in
different regions.

Redirect URI validation: Validating the redirect URI is another MUST in the RFC
documentation. What’s being considered here however is whether Curity and Cognito
handles that automatically or whether it has to be implemented.

Origin URI validation: Origin URI validation is not listed in the OAuth specification
but it is a feature that can add additional security layers to OAuth flows. It is basically a
whitelist of origins that can initiate flows to an endpoint. It’s prevalence was known in
Curity, and it was therefore investigated whether Cognito had this feature as well.
Token validation: Validating tokens is one of the most important parts of the OAuth
flow, and the lack of assistance in this endeavour could increase the risk of human error.

29

Next up, some customization options were considered. While developing the test applications in
the information gathering phase, features that made Curity and Cognito easier to manage were
identified. It was then investigated whether both services had these features implemented. See
table 3.2.3.

Customization Curity Cognito
Endpoint Customization Yes No
Custom Identity Providers Yes Yes*

Flow Customization Yes Yes
UI customization Yes Yes
Template Client Registration Yes No

Table 3.2.3 - Customization & Management features in Cognito and Curity.

* Custom identity providers are featured in Curity as a redirection to an implemented OIDC
authentication endpoint, while in Cognito it is featured by fetching identity from an existing User
Pool.

What beneficial effect these features had is listed below:

o Endpoint Customization: This feature makes it easier to test out endpoints,
micromanage clients and separate client access.

o Custom Identity Providers: Should be implemented in OIDC solutions as it could
potentially negate the need to migrate or create new users when registering a new client
with a large existing user base.

o Flow Customization: Useful feature in micromanaging steps during the OAuth flow,
such as storing tokens and validating scopes.

o UI Customization: Not necessarily related to the security of the system, however
customizing the Ul does separate the app from other apps.

o Template Client Registration: A very useful feature in handling registration of new
clients, especially when attempting to automate it.

30

Another important factor when deciding what OAuth service should be used is the price,
however estimating price is quite difficult and has to weigh in a lot of factors. To simplify, the
act of performing the ‘Code Grant Flow’ was isolated, however it will be noted where cost can
vary significantly.

Since Curity is being deployed on an ECS cluster, the price paid is dependent on the amount of
computing power reserved for it. Table 3.2.4 shows data gathered from Data Ductus about the
computing power necessary for Curity to support the specified amount of grants per day.

Token Grants / Day Computing Power Reserved
Less than 100 000 Three nodes with 4 GB ram & 1 vcore reserved each.
Less than 1 000 000 Three nodes with 8 GB ram & 2 vcores reserved each.
More than 1 000 000 Four nodes with 16 GB ram & 4 vcores reserved each.

Table 3.2.4 - Computing Power required for Curity

It should be noted that these numbers were gathered when Data Ductus hosted Curity on virtual
machines, and these were directly translated into nodes on the ECS cluster. It is highly likely that
the price can be optimized by temporarily launching new nodes when traffic is high instead of
increasing reserved computing power. However, in this study, the supplied data will be used and
it is assumed that these nodes are kept running 24 hours a day.

Following this format, and using the price documented on AWS ECS listed pricings, Curity’s
price was calculated based on the following equation:

(VCpuPrice + GBPrice) * nbrOflInstances * 730hrs

Meanwhile, Cognito’s price is difficult to estimate because it is based on several assumptions.
First, it is assumed in the price that no MAU’s (monthly active users) are paid for, which is
calculated on the number of users registered in Cognito User Pools. Note, the user pools in
Cognito is one of its primary features, and a mere 50 000 active users registered would increase
the monthly price by around 270 dollars. Secondly, actions customizing the OAuth flow such as
pre-authentication, are performed using lambda triggers, and the price per token grant is entirely
based on the number of lambdas triggered. The number of triggers performed can vary a lot
depending on factors such as the level of security necessary for the client initiating the flow and
the amount of UX customization done in the flow. It should be noted that there are up to twelve
lambda triggers in common use.

31

It should also be noted that the price for other services in AWS to which access is protected via

Curity or Cognito can not feasibly be calculated into the price, and therefore is excluded.

As such, five lambda triggers are used in order to estimate the average price for Cognito. At least

the following triggers are used:

O O O O O

A trigger to initiate auth challenge.
A trigger to validate the user.

A trigger to validate the scope.

A trigger to grant the access token.

A trigger to validate the access token.

With these assumptions made, Cognito’s price is calculated from the following equation:

LambdaPrice * 5 * nbrOfTokenGrants

While Cuity has a fixed price for uptime, and Cognito has a scaling price by number of grants, a

middleground based on the number of daily grants Curity can serve is assumed. This results in

table 3.2.5:
Token Grants / day Curity Cognito
50 000 1275 % 10.8 §
500 000 255.18 § 108.9 §
5000 000 680.476 $ 1087.8 §

Table 3.2.5 - Estimated Price for Curity and Cognito

With the analysis of factors completed, the final comparison between Curity and Cognito will be

discussed under results, but first the development of use cases is discussed.

32

3.3 Post-Analysis - Development of Use Cases

With the analysis of features completed, the final step before comparison was the development of
use cases. Two use cases were identified early on, one being the code grant flow providing an
access token to a client, the second being the completion of the authorization flow to consume
the access token and retrieve a protected resource via an API. The use cases are of obvious
importance due to it being the basis upon which OAuth was implemented. In order to find more
use cases, advantages of deploying serverless applications were considered so that common
scenarios could be identified. Serverless has the potential to scale “indefinitely” if price is not an
issue, keeps the price down for small scale applications and function-as-a-service systems, has a
global availability zone and handles traffic load balancing excellently. To narrow down the
scenarios the use cases were additionally limited to OAuth applications. From this process, three
additional use cases were identified:

o Authorizing a public client - When authorizing an application, the client commonly
provides credentials to authenticate towards the authorization server, however in the case
of public clients (clients who are incapable of maintaining confidentiality of their
credentials) the authorization must proceed differently. An example of a public client
would be a SPA (single page application). SPAs are quite popular to host on AWS at the
moment due to the ease of updating content on the page using lambdas instead of relying
entirely on Javascript. This makes the authorization of a public client important when
comparing Cognito and Curity.

o Authorizing an IoT device - The OAuth authorization code is commonly granted via the
URL from the response of the authorization server, however for devices that don’t have a
browser or where input from the user is difficult, the flow has to be modified. IoT
devices, such as smart TVs or smart locks could have this issue, but would otherwise be
easy to manage in a cloud environment. Therefore, this use case should be investigated.

o Dynamic Client Registration - DCR, or dynamic client registration, is an extension on
the OAuth protocol that provides a way to programmatically register clients. This could
be useful in two common use cases for serverless - when scaling an application that needs
to support managing an increasing number of clients, and providing installationspecific
credentials to instances of mobile applications.

The first use case will grant an access token, and when applicable will be used as a basis to build
the remaining use cases. Additionally, the first use case will be heavily detailed with example
links in order to make it easier to understand, while later use cases will refer to the names of the
endpoints.

33

3.3.1 Use Case 1: Grant Access Token

First, let's start by explaining why this was separated from the second use case. From the
experience gathered while implementing the test applications it was assumed that the code grant
flow up to the point of providing an access token would be very similar, so in order to simplify
later comparison the overall scenario was split into two use cases.

Before mapping out how Cognito and Curity implement this, it is stated what attributes they both
share and require in table 3.3.1. Note, the values used in table 3.3.1 are examples and therefore
do not represent a real implementation.

Key Value Exchanged via
Client ID App URI
Redirect URI https://app.com/callback URI
Response Type code URI
Scope db read URI
State hash(redirect ur1) URI
Client Secret test1234! 7= HTML Body (Post)

Table 3.3.1 - Shared attributes required for Code Grant Flow.

The first step that differs between Cognito and Curity is the endpoint that is called to initialize
the flow. The authorization endpoints have these URLs:

Curity - https://(Fargate 1P):8443/oauth2/oauth _authorize

Cognito - https://mydomain.auth.region.amazoncognito.com/oauth2/authorize

The full URL to start the Code Grant Flow will look like this:

endpoint?response type=code&redirect uri=https://app.com/callback&scope=db read&state=state&clien
t=app

Note, “endpoint” in the link above is exchanged for Curity’s & Cognito’s endpoints. Next, the
use cases for Cognito and Curity will be described.

https://mydomain.auth.region.amazoncognito.com/oauth2/authorize
https://app.com/callback&scope=db_read&state=state
https://app.com/callback&scope=db_read&state=state

34

UC 1 Grant access token - Client initiates code grant flow.

For Curity:

Client sends a GET request to
https://(Fargate I1P):8443/0auth2/oauth_authorize?response_type=code&redirect_uri=http

s://app.com/callback&scope=db_read&state=state&client=app

2. Curity verifies that the client is registered.

3. Curity verifies that origin is whitelisted (optional).

4. Curity verifies that the redirect URI is whitelisted.

5. Curity verifies that the scope is whitelisted for the client.

6. Curity redirects back to https://app.com/callback?code=authorizationcode&state=state,
authorization code being passed in the URI.

7. Client sends a POST request to https://(Fargate IP):8443/oauth2/oauth_token, with body
containing client_id, client secret, grant type, state, scope, redirect uri and authorization
code.

8. Curity verifies client secret with client id.

9. Curity verifies that the authorization code is valid and not expired.

10. Curity responds with POST request to https://app.com/callback, body containing access
token and refresh token.

For Cognito:

1. Client sends a GET request to
https://mydomain.auth.region.amazoncognito.com/oauth2/authorize?response_type=code&
redirect_uri=https://app.com/callback&scope=db_read&state=state&client_id=app

2. Cognito verifies the client is registered.

3. Cognito verifies redirect URI is whitelisted.

4. Cognito redirects back to https://app.com/callback?code=authorizationcode&state=state,
authorization code being passed in the URI.

5. Client sends a POST request to
https://mydomain.auth.region.amazoncognito.com/oauth2/token, with body containing
grant_type, state, scope, redirect uri and authorization code. Client id and secret are
passed via headers.

6. Cognito verifies client secret with client id.

7. Cognito verifies authorization code is valid and not expired.

8. Cognito responds with POST request to https://app.com/callback, body containing access

token and refresh token.

https://app.com/callback&scope=db_read&state=state
https://app.com/callback&scope=db_read&state=state
https://app.com/callback?code=examplecode
https://app.com/callback
https://mydomain.auth.region.amazoncognito.com/oauth2/authorize
https://app.com/callback&scope=db_read&state=state
https://app.com/callback&scope=db_read&state=state
https://app.com/callback?code=examplecode
https://mydomain.auth.region.amazoncognito.com/oauth2/token
https://app.com/callback

35

3.3.2 Use Case 2: Authorizing a standard client

For this use case, the access token procured in the previous use case will be used to make an
authorized request to access a protected resource. Both Cognito and Curity will keep the values
from the previous configuration. For the overall system, see figure 3.3.1.

Lambda

Amazon
Cognito

1=

Amazon APl Lambda Amazon
DynamoDB

{ Client

Curity

Figure 3.3.1 - Overview of Code Grant Flow for a standard client.

Let’s first examine the scenario. A standard client means that the client is registered, performs
the code grant flow via the browser and it has the capability to hold a secret. Because of this, the
authorization flow from use case 1 does not have to be modified. After having received the
access token, the client will attempt to call an API method that in this case returns a value from a
database. The client will pass the access token along with the request, and the API will have to
validate the token. After the token has been validated, the API will execute a lambda function
that retrieves the requested entry in the database, and will finally return it to the client.

With the scenario examined, it can be concluded that differences may apply in how the token is
validated. As such, the second use case will be isolated to validating the access token.

36

UC 2 Authorizing a standard client - Validating an access token received from a client.

For Curity:

A o

Client makes a POST request to the API, passing access token, secret and client id in
body.
API Gateway passes the body to https:/(fargate ip):8443/oauth2/introspection.

Curity verifies the access token is active.

Curity returns a JWT copy of the token to API Gateway.

API Gateway verifies scope from the JWT.

API Gateway proceeds to execute lambda that fetches database entry.
API Gateway passes the resource to the client.

For Cognito:

AER S IS

Client makes a POST request to the API, passing access token, secret and client id in
body.
API Gateway executes lambda authorizer to validate token.
Lambda authorizer verifies JWT structure.
a. Verifying that there are three segments.
b. Parse JWT to extract components.
c. Decode body and header.
Lambda authorizer verifies signature on access token.
a. Retrieve and verify the algorithm.
b. Verify signature on token with public key from Cognito.
Lambda authorizer verifies standard claims.
a. Verify token is not expired.
b. Verify token issuer.
Lambda authorizer verifies scope of the token.
Lambda authorizer returns success code.
API Gateway proceeds to execute lambda that fetches database entry.
Api Gateway passes the resource to the client.

37

3.3.3 Use Case 3: Authorizing a public client

As mentioned before, public clients are incapable of maintaining confidentiality of credentials,

however that is not the only issue that can arise from this scenario. In addition to not being able

to keep secrets, the following practices should be followed as well:

1.

Tokens available in the browser - Due to a public client not using a backend, it does not
have a safe place to store tokens, and thus stores them in the browser. This leaves the
client vulnerable to OWASP-defined attacks such as XSS (cross-site scripting attacks)
and CSRF (cross site request forgery attacks). It has already been ensured that both
Cognito and Curity have implemented protection against CSRF attacks, and XSS attacks
can be protected against using AWS WAF (web application firewall). Additionally, both
Cognito and Curity can configure the behaviour of the authorization flow to scan input
from the client.

Token lifetime needs to be short - Since public clients cannot safely store tokens, the
lifetime of tokens should be as short as possible, to reduce the risk of a token being stolen
by a malicious party.

CORS and PKCE must be enabled - CORS, or cross-origin resource sharing, is a
security measure that acts as a whitelist for origins that are allowed to call upon a
resource. This, and PKCE, must be enabled while authorizing a public client, in order to
reduce the risk of impersonation attacks.

Client Authentication must be toggled off - Since clients will not be able to hold
confidential information, they will not be able to authenticate themselves, and therefore
must not be required to authenticate.

It should be noted that Cognito has not implemented CORS, however API Gateway has. Due to
limited time and resources, the effects this may have on security, price and efficiency has not

been tested in an implementation, but possible implications will be discussed in results.

For this use case, a SPA is used as an example of a public client. Implicit flow was originally

intended as a solution to public clients, however current best practices according to the IETF

suggest Code Grant Flow with PKCE as the best solution, and as such that pattern will be

followed. For more information on the topic, read OAuth for Browser-Based Apps in references.

[8].

38

UC 3 Authorizing a public client - Authorizing a Single Page Application.

For Curity:

9.

Client generates PKCE challenge and hashes it.
Client makes a GET request to API Gateway with the PKCE challenge code as value to
the parameter code challenge along with the hashing method used. Additional
parameters are state, client id, redirect uri, scope and response type.
API Gateway redirects the request to Curity.
Curity validates client id.
Curity validates origin.
a. CORS is enabled here for Curity.
Curity validates redirect uri.
Curity returns authorization code in header.
Client makes a POST request to Curity with the body containing plaintext of secret,
authorization code, state, client id and redirect uri.
Curity verifies plaintext with the hash.

10. Curity returns an access token.

For Cognito:

A

o o0

Client generates PKCE challenge and hashes it.
Client makes a GET request to API Gateway with the PKCE challenge code as value to
the parameter code challenge along with the hashing method used. Additional
parameters are state, client id, redirect uri, scope and response type.
API Gateway validates origin, then redirects to Cognito.
a. CORS is enabled here for Cognito.
Cognito validates client id.
Cognito validates redirect uri.
Cognito returns authorization code in header.
Client makes a POST request to Cognito with the body containing plaintext of secret,
authorization code, state, client id and redirect uri.
Cognito verifies plaintext with the hash.
Cognito returns an access token.

39

3.3.4 Use Case 4: Authorizing an IoT device

The popularity of [oT devices has been rising vastly over the past few years, and in an
infrastructure like AWS they can easily be managed. The issue with IoT devices when it comes
to OAuth is that [oT devices usually do not have access to a browser, either because input from
users would be too clunky or because the specifications don’t leave room for it. Examples of IoT
devices would be printers, smartTVs and smart appliances. To allow for secure communication
with IoT devices, OAuth suggested the device flow, which is an extension to the standard
protocol. The device flow is not implemented by Cognito as seen in table 3.2.1, and as such
Cognito cannot participate in this use case. See figure 3.3.2 for an overview of device flow in
Curity.

Curity
&
o
7
Actor
2
1 5 8
3
v
4 O
1 0
11
|—_|—|—| 10
loT device Amazon APl Lambda

Gateway

Figure 3.3.2 - Device Flow in Curity.

First, let’s explain how the device flow differs from the Code Grant Flow. Instead of supplying
the client with an authorization code, the authorization server (in this case Curity) supplies the
client with a device code and a user code. The user is asked to supply the user code when
consenting to the client accessing resources on the resource server, and the device code is
supplied when fetching the access token. Next up, defining the use case.

40

UC 4 Authorizing an IoT device - Client initiates device flow.

For Curity:

Client sends an authorization request to the device code endpoint on Curity.
Curity validates redirect URI and client ID.

Curity responds with device code and user code.

Client attempts to poll Curity for an access token with a regular interval.
User redirects to the link supplied with the response and enters the user code.
User consents to the client accessing scoped resources.

Curity returns an access token after being polled by the client.

Curity marks the device as authorized.

00NNk W=

Client sends access token along with request for resource to API Gateway.
10. API Gateway calls on Curity’s introspection endpoint to validate the token.
11. Curity validates the token.

12. API Gateway proceeds to return the requested resource to the client.

For Cognito:

A solution could not be found for Cognito since it has not implemented device flow.

41

3.3.5 Use Case 5: Dynamic Client Registration

As mentioned in the motivation, DCR is an extension to OAuth which allows developers to
register clients via code. The suggested protocol was developed in order to provide a
standardized and secure method for the client to obtain necessary metadata from the
authorization server. While gathering information on the topic, it became apparent that Cognito
has not implemented the protocol, therefore the focus will be on Curity’s implementation.

There are four ways to configure DCR in Curity:

1. Open Registration - DCR can be enabled and any client can register without
authenticating.

2. Client Authenticated Registration - Only a client with an initial access token obtained
from client credential flow is allowed to register a client. In this case, only the identity of
the client is verified.

3. User Authenticated Registration - Client registration is limited to clients with an access
token obtained from an authenticated user. In this case, the client is identified but only the
identity of the user is verified.

4. No Registration - DCR can be completely denied. This is the default configuration.

For this use case, the focus will be on the scaling potential of serverless applications and
therefore use DCR for automating client registration. This use case can easily be implemented in
Curity using the templates feature, and a workaround solution is possible for Cognito.

42

UC 5 Dynamic Client Registration - Automated client registration.
For Curity:

1. Client fills in a form with specifications about the type of client it needs to register.

2. Resource server returns a template id.

3. Client initiates client credential flow.

a. Client makes a POST request to Curity, passing client ID, client secret, grant type
and scope. Grant type has to be client credentials and scope has to be DCR.

4. Curity verifies client id, client secret, redirect uri and origin.

5. Curity returns a single-use access token.

6. Client makes POST request to Curity’s DCR endpoint, header containing access token
and client id, body containing template id.

7. Curity verifies token, client id and template id.

8. Curity registers the new client.

9. Curity returns a JSON object containing metadata for the client, such as client id and
client secret.

10. A server side script adds allowed redirect uri to the client.

For Cognito:

Cognito has not implemented DCR, however it would be possible to solve this particular use
case anyways using the AWS SDK. The metadata from the form would instead have to be passed
through a serverside shellscript that would execute the necessary commands to register a new
client in Cognito. This would be quite complex, and would most likely be approached differently
depending on the developer, and as such will not be further investigated. The possible
implications this would have on security will be discussed in results.

43

4 Results

The results from gathering information, analyzing the features and developing the use cases will
be discussed in this chapter, resulting in a comparison between Cognito and Curity and
concluding phase three. This chapter will start with comparing the features presented in analysis,
and then move on to a more detailed analysis of the use cases. In the final part, advantages and
disadvantages of using Cognito and Curity are presented and in what scenarios one would be
advantageous to the other.

4.1 Implemented OAuth and OIDC Flows

As seen in table 3.2.1, it was investigated which flows presented in the OAuth and OIDC
specifications that had been implemented. This is useful, partly because it tells us how diligent
Cognito and Curity are in implementing and updating software according to the protocol, but
also because it tells us some of the weak points they might have. Let us first list off the most
important flows, which would be Code Grant Flow, Client Credentials Flow and Refresh Token
Flow. Both Cognito and Curity have implemented these flows, and they account for the majority
of OAuth scenarios. While these flows can be used to implement most solutions, there are other
flows that can provide better security, easier implementation and additional possible solutions.
Curity has implemented these flows while Cognito hasn’t:

Introspection Flow

Hybrid Flow

Token Revocation Flow
Resource Owner Password Flow
On-Behalf-Of Flow

o O O O O

Let us start with the Hybrid, Resource Owner Password and On-Behalf-Of flows. These flows
are either rarely used or were implemented for highly specific use cases, or both, and therefore
will only be briefly mentioned.

44

The Hybrid Flow is a mix between Code Grant and Implicit Flow, which allows us to get
information about a user from the authorization endpoint while the access token is procured via a
back channel. This could be used to prevent IdP mix-up attacks, which is a risk in OIDC
solutions when a client has registered multiple identity providers. It should be noted that this
attack is very unlikely to occur due to a large number of assumptions that has to be made, of
which several are the misconfiguration of OAuth and OIDC due to human error. For further
understanding of the attack, read IdP mix-up attack on OAuth in references. [16].

The Resource Owner Password flow is a grant that allows the client to impersonate the resource
owner, and could be used to integrate legacy applications with OAuth solutions. This flow can be
misused and should if possible be avoided, as it leaves the user with no control over the
authorization process and it leaves much room for human error, and because of this it will not be
further discussed.

The On-Behalf-Of flow is a grant that allows a user to impersonate another. This can be used in,
for example, IT solutions where an admin is required to help an end-user with solving a problem.
An admin being forced to receive authorization to impersonate an end-users account would
provide an additional layer of security to ensure admins do not misuse administrative privileges,
however with proper policy use and access tracking similar solutions can be implemented in
AWS.

While it is good that Curity has implemented these flows, they do not provide a notable
advantage to Cognito in most applications. However, the introspection flow and token revocation
flow, which will be discussed, do.

The introspection flow is a grant that takes an access token as input, verifies its existence and
lifetime, then returns a phantom token. Both the input and output can be either opaque tokens or
JWTs, the difference being that opaque tokens do not contain information about the claims and
the user, while the JWT contains information about user identity and can be customized to return
additional information. First, this leaves much room for customization, such as returning specific
user information depending on the client and the type of access token. Second, this flow can
easily be used to validate access tokens, which is of primary concern in OAuth applications. The
issue with Cognito not implementing introspection is that, as mentioned in analysis, the
developer has to perform the entire validation process manually. Because of this, third party
libraries are commonly used to perform the validation process, and the use of external sources
increase the attack surface of an application. If developers instead stick to implementing the
validation process manually, it leaves a large margin for human error when attempting to manage
multiple user pools with different signatures and verifying scopes from multiple clients. As such,
this could be of major concern when using Cognito in large scale applications.

45

The lack of the token revocation flow is another grant that could potentially harm use of Cognito.
The token revocation flow is not only the revocation of an access token, it can be used to revoke
the entirety of the token hierarchy. Use cases for this would be when a user has logged out or
disconnected from an application, or uninstalled it entirely, and therefore there shouldn’t be any
authorization left active that the user is unaware of. As mentioned in the notes to table 3.2.1,
depending on the scenario, it is possible to invalidate the tokens of User Pool users via the AWS
SDK. However, there are use cases where this is not enough. One possibility would be a client
retrieving sensitive userinformation hosted on AWS over a federated identity. When that client
has performed the necessary operations, in Cognito, the token will stay alive until expired. The
token revocation flow allows for proper consumption in Curity, invalidating the token after use.
Additionally it could be used to ensure a single use of access tokens in public applications, and
while it may primarily be used in edge cases, it is still an important feature in systems with
GDPR information and other sensitive data.

While Cognito may have implemented the most commonly used flows, Curity has the advantage
of a more complete implementation in this area, and the lack of these OAuth flows cannot be
complemented with other AWS security services. From the implementation of flows alone,
Cognito is good enough for a majority of OAuth applications, however Curity could be a more
suitable replacement for higher security and more flexibility in authorization and authentication.
Next the security features from which can be seen in table 3.2.2 will be discussed.

4.2 Implemented Security Features

The motivation for the features in table 3.2.2 was discussed under 3.2 Analysis, and will not be
covered in this section. For this part, the most important features are CSRF protection, PKCE,
redirect URI validation and token validation. Both Cognito and Curity have implemented CSRF,
PKCE and redirect URI validation. The features that differed were the following:

Geolocation Tables

Origin URI Validation

Token Validation

*Dynamic Client Registration
*CORS

o O O O O

While DCR and CORS were not brought up in the initial part of the analysis, they were
identified as important security features later on during the development of the use cases, and as
such they will be discussed briefly. Token validation has already been covered in the previous
discussion about introspection and will therefore not be mentioned here.

46

Let us start with the geolocation tables. While they are most commonly used for customization of
UX and splitting up the application into country specific modules, they also provide a layer of
security. A quick example would be forcing attackers from another country, region or even city

to use proxies or vpn services to attack an application, thereby reducing attack surface. Curity
has implemented this feature, and the feature can be implemented in AWS WAF combined with
route53 for Cognito. While the desired effect can be reached in both services, it is easier to
isolate geolocation tables in Curity to specific clients.

Next up is origin URI validation. While it is not a necessary feature in most use cases, it can be
very useful to provide additional security where it is otherwise lacking, and Curity relies on it to
implement CORS. Due to Cognito relying on API Gateway for CORS, the lack of this feature is
not of a major concern, however it might make it more difficult to separate client access to APIs
as CORS is validated in the API call instead of the OAuth flow.

Last is DCR, which is an important feature to securely handle programmed registration of
clients. While it is possible to register clients via the AWS SDK, it does not implement the
transmission of metadata between client and authorization server, which would have to be done
in another way. As such, and for security reasons that will be discussed in the results of use case
five, the lack of DCR in Cognito should be considered a major flaw.

Overall, Cognito does have a few shortcomings, of which most can be made up for with the use
of other security services in AWS. Curity does however cover security better, and leaves more
room for micromanagement and customization.

47

4.3 Implemented Customization Features

Next some of the customization features listed in table 3.2.3 will be discussed. The differences in
implementation gathered from the table are the following:

o Endpoint Customization
o Custom Identity Providers
o Template Client Registration

While these features don’t act as major keystones in security, they still contribute to ease of use
and flexibility in the application.

First, endpoint customization. In Cognito, you are limited to a single domain for an entire User
Pool, and all clients registered in that pool call upon the same endpoint. This makes it more
difficult to track traffic, test implementations of individual clients and so on. In Curity, you can
create custom endpoints and limit clients to access specific ones, thus simplifying an otherwise
complex networkhierarchy. Additionally, this could make it easier to separate client data and
access, potentially adding additional security layers.

Second is the Custom Identity Providers. While Cognito technically supports this feature, it is
limited to federating custom identities listed in Cognito User Pools. In Curity, the Custom
Identity Providers can be integrated to point to existing OIDC authentication server
implementations, leaving more room for flexibility in OIDC solutions.

Last is Template Client Registration. Templates are part of the DCR implementation in Curity,
and are primarily used to simplify registration of clients. The lack of this feature in Cognito is
only natural since DCR is not implemented. As such, Curity gains some extra advantage in
flexibility.

Overall, Curity does have many advantages in flexibility, partly from the extensive OAuth
implementation as seen in Implemented OAuth and OIDC flows and Implemented security
features, but also because of the additional customization options available.

48

4.4 Pricing

As mentioned during the analysis, the pricing for Cognito is very hard to predict, however with
the assumptions made costs are estimated in table 3.2.5. If the values from the table are plotted in
a graph, the average monthly price for Curity and Cognito will resemble figure 4.4.1.

Price

-1200

P

—800

R et 4

—600

—400

—200

Tokens / Day
0 1x108 2x10° 3x10° 4x10° 5x10° h

= Cognito
== = Curity

Figure 4.4.1 - Average Monthly Price for Curity (green) and Cognito (blue).

As can be seen from the table and the graph, Curity’s price scales better despite several price
reductions on Cognito, such as minimal flow customization and not including the cost of
monthly active users. Cognito is, however, superior in price by a far margin when it comes to
handling small scale applications.

49

4.5 Results of the Use Cases

This section will compare the results of the use cases for Curity and Cognito one by one. First
out is the Code Grant Flow which was split into two use cases.

4.5.1 UC 1 Grant access token

For this use case there will not be much to discuss. As mentioned in the background to the use
case, the flow is performed with almost no differences. There is the case of CORS being an
alternative in Curity’s flow, while Cognito would have to rely on API Gateway, and Curity
allowing for endpoint customization, however these have already been discussed. The final
difference that was identified is that Cognito accepts the secret via the header of the authorization
request, while Curity accepts the secret via the body of the authorization request. This should
however not have any implications on security for the system.

4.5.2 UC 2 Authorizing a standard client

For the second use case, the token validation process of the Code Grant Flow was isolated for
comparison, however the implications of the lack of introspection in Cognito has already been
discussed. In short, self validation leaves room for human error or, if relying on a third party
library, increases the attack surface of the system. For more details, refer to the discussion about
the introspection flow under Implementation of OAuth and OIDC flows.

4.5.3 UC 3 Authorizing a public client

This use case, like the first two, is handled very similarly for Cognito and Curity; however, as
mentioned before, they integrate CORS differently. In short, Cognito relies on API Gateway to
perform CORS while Curity has it implemented in the OAuth flow. This allows for Curity to
more easily separate access and data between clients. For more details, refer to the discussion
about CORS under Implementation of Security Features.

50

4.5.4 UC 4 Authorizing an IoT device

For this use case, one can see the benefit Curity has over Cognito in certain scenarios due to
Curity’s wider implementation of the OAuth protocol. As explained in the introduction to the use
case, some devices might not have a browser available or input from the user might be awkward,
and as such authorization requests would require the device flow. Curity can securely delegate
access with browserless clients via the device flow, while Cognito has not implemented the flow
and therefore cannot fulfill the use case. On this point, Curity’s wider implementation gives it a
clear advantage over Cognito.

4.5.5 UC 5 Dynamic Client Registration

Like the previous use case, DCR is another example where Curity gains an advantage over
Cognito due to more implemented features. The lack of DCR in Cognito has already been
discussed under implemented security features and will therefore not be covered here. Refer to
results of implemented security features for more details on the topic.

51

4.6 Summary of results

Cognito and Curity are both powerful tools, as is the OAuth protocol overall. Comparing the two
services is difficult and complex at best, mostly due to the final decision coming down to the fine
details of the role the authorization server would play and the level of security it would have to
implement, however there are a few points where a comparison for certain can be done.

1. Price - While Cognito is much cheaper to use in small scale applications with either a
small userbase or an OIDC federated identities solution, in larger applications Curity is
much more price efficient.

2. OAuth implementation - Curity has overall done a better job at adhering to the OAuth
protocol that the IETF designed, and as such can cover a wider range of applications.
This does however also make it more difficult to learn, with the addition of having to
manage deployment on the cloud. Cognito has implemented the base features of the
OAuth protocol and can as such be used for many standard implementations.

3. Security - While Curity has implemented many more security features, several of these
can be covered with other security services in AWS. There are however a couple of
security features, such as DCR and token validation, that can not be covered up by the
use of other AWS services, and there are also more levels of customization that add
additional layers of security in Curity that gives it a competitive edge over Cognito.

4. Customization - The final point would be customization. In customizing UX Cognito and
Curity are quite equal, they have both implemented ways to customize all pages that are
displayed to end-users, however Curity has more features that customize flows,
flexibility, data storage, user migration, client management and so on. Overall, Curity is
more flexible to manage than Cognito.

With this in mind, the final results of when Curity or Cognito would be best to use can be
formulated. Cognito is good enough to use when managing applications without a lot of traffic,
with small userbases and standard scenarios. Additionally, Cognito does not require alot of
knowledge about the OAuth protocol and is suitable as an introductory authorization service.
Curity on the other hand is advantageous when used in large scale applications, applications with
edge cases or where more flexibility is needed, and when handling sensitive data such as
GDPR-protected user information. Curity also gives more freedom to developers but requires
some prior knowledge about the OAuth protocol, otherwise the large amount of features can be
overwhelming.

52

5 Conclusion

In this final part of the thesis, ethical aspects and future research on the topic will be discussed.
However first a conclusion summarizing the thesis with answers to the defined problems in the
introduction will be covered.

5.1 Conclusion

While Cognito and Curity are both powerful OAuth implementations, there are scenarios where
one could be advantageous to the other. In order to determine if and when Curity would be worth
deploying on AWS as a replacement for Cognito, information was gathered on what
differentiated the two services so that they could be compared. One important observation is that
Curity has a wider range of capabilities and features than Cognito, of which some, but not all,
could be covered by other AWS security services. The key differences between Cognito and
Curity primarily comes from implementing the OAuth and OIDC protocol, where Curity has an
advantage over Cognito in OAuth capabilities and security features. Curity also allows for more
flexibility in OAuth related aspects, such as flow behavior and client management. Security
features that aren’t covered by the OAuth specification which Curity had implemented and
Cognito had not could often be covered by other security services in AWS. This concludes in the
following notable differences:

1. What are key differences between Curity and Cognito?

Dynamic Client Registration is implemented in Curity.
Curity has a larger variety in OAuth capabilities such as device flow and
introspection flow.
Curity is more flexible in micromanaging behaviour.
The cost of Curity is lower in larger applications, while the cost of Cognito is
lower in smaller applications.

o Cognito relies on self-validation of tokens, while Curity has implemented support
for token validation.

o Curity has implemented many security features not related to OAuth that Cognito
relies on other security services in AWS to cover.

53

With the information gathered from analyzing OAuth, AWS, Cognito and Curity it was possible
to proceed with comparing Cognito and Curity. The lack of research on serverless applications
and comparing OAuth implementations resulted in comparing Curity and Cognito on how they
handled scenarios that might appear in securing serverless applications. OAuth was developed to
securely delegate access, and serverless applications give the benefits of availability, “limitless”
scaling, flexibility, and cost efficiency. Analysis suggested the following areas for comparison:

2. How should Cognito and Curity be evaluated when deciding which is better at securing
serverless applications?

OAuth capabilities and features.
Security.
Scalability and price.

o O O O

Flexibility and customization.

From this, five use cases were used along with the differences in OAuth and security features to
compare Curity and Cognito in different OAuth scenarios. Of these use cases, Curity allowed for
implementing all five while Cognito’s lack of key OAuth features only allowed for the
completion of three use cases. This leads to the final conclusion of the thesis, which answers
what situations Curity would be advantageous to Cognito. The results of the use cases and the
analyzed features leads to Curity being advantageous in the following scenarios:

3. In what situations would Curity be advantageous to Cognito?

Applications with large amounts of token grants per day.

Applications handling GDPR sensitive data.

Applications requiring support for OAuth flows or features not present in
Cognito.

Applications where high levels of micromanagement is beneficial.
Applications requiring external federated identities not present in Cognito.
Applications requiring flexibility in modifying user attributes.

o O O O

Applications requiring flexibility in management of OAuth related aspects, such
as clients, endpoints and flow behaviour.

Overall, Cognito is a useful security service in AWS however it was primarily implemented to
allow for easy user integration in applications, and as such lacks certain OAuth features. Due to
this, there are scenarios where Curity should be used as either a complement or a replacement of
Cognito.

54

5.2 Ethical aspects

While working on the thesis, no sensitive data was used except for licenses in AWS and Curity,
which were managed properly. For AWS, extra precautions were taken when managing
credentials, such as generating a long string of random characters and forcing the use of MFA. In
the case of Curity, extra steps were taken to keep the license out of the Docker build process to
ensure that the container would not contain the license JSON file if it were to become publicly
available.

As for the overall ethical aspects of the thesis, it is obviously important with security, especially
in cloud infrastructure where access can spread more easily than on isolated domestic servers.
While one should always maintain the highest level of security possible, one must also account
for costs and knowledge that these systems require. Curity may be advantageous in many
situations, but faulty configuration due to lack of experience could leave more holes open than
covered, and the additional cost for small applications may not be worth the extra security.

Overall, security should only come second to maintaining the life of the application, except in
the case of handling GDPR-classified data where a breach can lead to long-term complications
not only for the company, but their user base as well. In these systems security must be
considered of the highest priority at all times.

5.3 Future Work

As there is not much research material available on the topic, there are several points that should
be considered for future research.

AWS and Curity, and OAuth overall, are complex systems that more often than not have full

time specialists with years of experience managing these, and the lack of material on prior
research leaves this thesis with a margin of error. Therefore, it is highly possible that the writer of
this thesis has either misunderstood or completely missed documentation of certain features,

risks and implementations, and selected sub optimal use cases to compare Curity and Cognito on.
As such, one possible and recommended topic of future research would be verifying the contents
of this thesis. Additionally, if that is not enough, one could add other OAuth implementations to
compare and use the process of this thesis as a guideline.

55

Second, while working on this thesis the lack of research on serverless applications was a major
inhibiting factor. Research that would assist this topic would be common uses, benefits and risks
of using serverless applications.

Third, a topic of interest would be comparing integration of Curity and Cognito with IAM to
achieve ABAC (Attribute Based Access Control) via resource policy lists. Using OIDC claims to
provide additional security layers to access would differ between Curity and Cognito and would
also be an interesting topic.

The last suggestion for future research would be to implement and compare the use cases
presented in this thesis in deployment. While the overall process has been described in this
thesis, due to a lack of time and resources they were implemented with minimal configuration
and lacking features, and as such comparison has been done on the use cases in theory rather
than in practice. This comparison therefore lacks insight on potential issues such as bottlenecking
and IAM role delegation.

56

6 Information Evaluation

Due to the lack of research on this specific topic, information was primarily gathered from
documentation. These sources are AWS developer guide, Curity developer guide, OpenlD
Connect specification and Docker developer guide. [2, 3, 12, 14] These sources should be
considered reliable as it is documentation for their own service. All sources published or
approved by IETF should also be considered reliable, as this is a highly trusted and reputable
organisation. [1, 8, 11, 13] Finally, OWASP is a non-profit organisation dedicated to security
with a high trust factor, and should be considered a reliable source as well. [4]

The source reference to Okta should be considered reliable as it is a company with a focus on
security services, however as the article is not documentation of their own service it could be
biased information. [7]

The source reference to Colby Morgan'’s article should be considered reliable, as he is an
experienced data security engineer and the article has clear references to the RFC documentation,
however it should also be considered that he is an independent entity with potential for bias. [5,6]

The source reference to Nat Sakimura’s article should be considered reliable, [9] as he is an
experienced engineer and has published multiple articles on the topic of OAuth, some of which
have been published by IETF. [11] Howerver, the article is a translation of a japanese blog post
on the topic, which leaves room for translation errors and misunderstandings. [15]

Finally, source reference to Alexei Balaganski’s article should be considered reliable as he is
being published by Kuppingercole, and he has written multiple articles on API management and
security. [10]

57

7 Sources
7.1 Digital Sources

[1] https://tools.ietf.org/html/rfc6749 (November 2020)
RFC 6749 - The OAuth 2.0 Authorization Framework authored by D. Hardt, approved by IETF,
ISSN 2070-1721 October 2012.

[2] https://docs.aws.amazon.com/ (November 2020)
AWS Developer Guide published by Amazon.

[3] https://curity.io/docs/idsvr/latest/developer-guide/index.html (December 2020)
Curity Developer Guide published by Curity.

[4] https://owasp.org/www-project-serverless-top-10/ (February 2021
OWASP top 10 serverless interpretation published by OWASP.

(February 2021)
Attacking and defending OAuth 2.0 part I published by Colby Morgan, August 2020.

[6] https://www.praetorian.com/blog/attacking-and-defending-oauth-2/ (February 2021)
Attacking and defending OAuth 2.0 part 2 published by Colby Morgan, August 2020.

[7] https://www.okta.com/identity-101/mistakes-that-lead-to-security-breach/ (March 2021)
Three common mistakes that lead to a security breach published by Okta, (date missing).

[8] https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps-06 (March 2021)
OAuth for Browser-Based Apps published by IETF, April 2020.

[9] https://nat.sakimura.org/2016/01/15/idp-mix-up-attack-on-oauth-rfc6749/ (March 2021)
1dP Mix-Up Attack on OAuth published by Nat Sakimura, January 2016.

https://tools.ietf.org/html/rfc6749
https://docs.aws.amazon.com/cognito/index.html
https://curity.io/docs/idsvr/latest/developer-guide/index.html
https://owasp.org/www-project-serverless-top-10/
https://www.praetorian.com/blog/attacking-and-defending-oauth-2-0-part-1/
https://www.praetorian.com/blog/attacking-and-defending-oauth-2/
https://www.okta.com/identity-101/mistakes-that-lead-to-security-breach/
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps-06
https://nat.sakimura.org/2016/01/15/idp-mix-up-attack-on-oauth-rfc6749/

58

[10] https://plus.kuppingercole.com/reprints/40682b01cadfb22¢6303a6¢517d104¢eb
(November 2020)

API Management and Security by Alexei Balaganski, KuppingerCole, December 2019.

[11] https://tools.ietf.org/html/rfc7519 (December 2020)
RFC 7519 - JSON Web Token (JWT) authored by M. Jones, J. Bradley, N. Sakimura, approved by

IETF, ISSN 2070-1721 May 2015.

[12] https://openid.net/connect/ (November 2020)
OpenID Connect specification published by OpenID Foundation.

[13] https://tools.ietf.org/html/rfc7636 (April 2021)
Proof Key for Code Exchange by OAuth Public Clients published by IETF, september 2015.

[14] https://docs.docker.com/ (January 2020)
Docker Developer Guide published by Docker.

[15] https://oauth.jp/blog/2016/01/12/0auth-idp-mix-up-attack/ (April 2021)
OAuth IDP Mix-Up Attack published by Nov Matake, January 2016.

https://plus.kuppingercole.com/reprints/40682b01cadfb22c6303a6c517d104eb
https://tools.ietf.org/html/rfc7519
https://openid.net/connect/
https://tools.ietf.org/html/rfc7636
https://docs.docker.com/
https://oauth.jp/blog/2016/01/12/oauth-idp-mix-up-attack/

59

8 Terminology

Authentication - The act of verifying an identity.

Authorization - The act of verifying permissions of an identity.

Resource Owner - An entity capable of granting access to a protected resource.
Resource Server - The server hosting the protected resource, capable of accepting and
responding to resource requests using access tokens.

Client - An application making requests to access the protected resource on behalf of the
resource owner and with its authorization.

Authorization Server - The server issuing access tokens to the client after successfully
authenticating the resource owner and obtaining authorization.

Access Token - Token containing key information to gain access to a resource.

Refresh Token - Token which can be used to update the lifetime for an accesstoken.
Multi-Tenancy - Support for several tenants using the same service from different clients.
Virtual Machine - OS run on virtualized hardware.

JSON Web Encryption (JWE) - JSON data structures representing encrypted content.
JSON Web Signature (JWS) - JSON data structures representing MAC / Digital Signature.
Standardized Format - Description of how data is structured.

Standardized Protocol - Description of how structured data is procedurally handled.
Docker Image - A template with a set of instructions to launch a Docker container.
Docker Container - Isolated application executed from a Docker image.

CSRF - Cross-Site Request Forgery.

DCR - Dynamic Client Registration.

SPA - Single Page Application.

JWT - JSON Web Token.

60

9 Appendix

9.1 IAM Role Example

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",

"Action": [
"logs:PutLogEvents"”,
"logs:CreatelLogGroup",
"logs:CreateLogStream"

1,

"Resource": "arn:aws:logs:*:*:*"

"Effect": "Allow",
"Action": [

"s3:GetObject"
1,

"Resource”: "arn:aws:s3:::my-bucket-name-region/*"

"Effect": "Allow",
"Action": [

"s3:PutObject”
]J

"Resource": "arn:aws:s3:::my-bucket-name-region/*"

61

9.2 Lambda Example

import boto3
import json
print('loading function')
def respond(err, res=None):
return {
'statusCode': '400' if err else '200' ,
'body': err.message if err else json.dumps(res),
"headers': {
'Content-Type': 'application/json',
s

}
def hello(event, context):

body = {
"message": "Executed Successfully",
"input": event
}
response = {
"statusCode": 200,
"body": json.dumps(body)
}
string =
for x in "abcdefghijklmnopgrstuvwxyz":
string += X
encoded_string = string.encode("utf-8")
file_name = "Test.txt"
bucket_name = "my-bucket-name"
lambda_path = "/tmp/" + file_name
s3_path = "s3-bucket/" + file_name
s3 = boto3.resource("s3")
s3.Bucket(bucket_name).put_object(Key=s3 path,
Body=encoded_string)

return response

62

9.3 OAuth Token Example

"Id_token":
"eyJraWQiOiItMzgwNzQ4MTIiLCJ4NXQi0iINUi1lwR1RhODY2UmRaTGpON1Z3cmZheTkwN2cilLCIhbG
€i0iJSUzIAINiJ9.eyJhdF90oYXNOIjoiNEt1SXFOUmMFsWWF1ZUFYZn1SM21TdyIsImFjciI6InVybjpz
ZTpjdXJpdHk6YXVOaGVudGljYXRpb246aHRtbC1lmb3ItOmhObWwxIiwiYXpwIjoid3d3IiwiYXVOaF9
@aW11IjoxNTIwMzIXOTEyLCI1eHAiOjEIMjAZMiYZNZzQsIm5iZiI6MTUyMDMyM]c3NCwianRpIjoizm
I2MGZiNDYtNGYwZSOONmI2LTkyNzQtYzJ1ZDBhMzEOMDU2IiwiaXNzIjoiaHROcHM6LY9zcHI1Y2U60
DQOMy9-IiwiYXVkIjoid3d3Iiwic3ViIjoiam9obmRvZSIsImlhdCI6MTUyMDMyMjc3NCwicHVycG9z
ZS16ImlkIn®.D_VvHKt1rRwqIXX5VumzFkwei TKWykx7X6Wv7LLYSgAgNoq67ews6PoL1WTnviMNSYXh
PV4xpsEqt4b-1MdG53I8g_tslrxVOI3FOy5mysZIub74wkkE@I6Qgba3s8D1bWhjoh4zI03MNkhfdUR
J2PJ6GY6kwc_8Eril@ilNzZ8TU_puT8bQHI_QWxghY3XpeQHtCyzuVDgVv6q7gfcGoylIxZalLoXNShe2
ZIpp7thVrgEAWAiWo7v46HIFiBNpyPnJfzDRwWbTIAPFMEKOHOLjUCczsii 4akCb97IVPz5I3bRWAST
yig7P_Q@646cNHSHZM-pan7c15bYb423I0ykCw",

"token_type": "bearer",

"access_token": "858a3746-ebbd-473c-9af7-f74bedd114c5",

"refresh_token": "3aba4d9b-6339-442e-9c05-126d9cce29da",

"scope": "openid",

"expires_in": 299

	Tom sida
	Framsida Hbg-2021.pdf
	Introduction
	Problem
	Research question
	Outline
	Contributions

	Technical Background
	Related Work
	Baseline model
	Logistic Regression
	k-Nearest Neighbors
	Artificial Neural Network
	Forward propagation
	Backpropagation

	Convolutional Neural Network
	Long Short-Term Memory (LSTM)
	LSTM Cell

	Evaluation metrics

	Data
	Datasets
	Data retrieval
	Features
	Construction of training and test sets
	Defining reversal events
	Data characteristics
	Data imbalance

	Methods
	Data processing
	Sliding windows
	Normalization
	BatchNormalization

	Baseline model
	revLR
	revKNN
	revDNN
	revCNN
	revLSTM
	Evaluation

	Results
	Overview
	revLR
	revKNN
	revDNN
	revCNN
	revLSTM

	Predicting past reversals

	Discussion
	Definition of reversal
	Models
	Importance of distance to price level of previous reversals
	Window sizes and reversal sizes
	Predicting past reversals
	Strengths and limits

	Conclusion
	Future work
	Better dependent value
	Indicators
	Concatenating multiple stocks

	References
	Abbreviations
	The profile of this thesis

