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Abstract

Managing business documents can be a daunting task, especially when this is
done manually and the volume is high. These documents, insurance documents
in our case, hold critical business information that needs to be extracted, in this
thesis we are going to research how it can be done automatically with deep learn-
ing techniques. We are using a multinomial logistic regression classifier as our
baseline model and experimenting with di�erent BiLSTM architectures for our
neural models. We train the di�erent classifiers on data we gathered from the
databases of Söderberg & Partners AB. The highest score in Accuracy of the files,
which is our strictest evaluation method, on previously seen templates is 0.728
± 0.007. On unseen templates, the score was 0.0. The results show that simple
models can be e�ective at extracting information from di�erent templates of
documents that they have been trained on but that it needs more fine-tuning to
improve generalization.

Keywords: Information Extraction, Deep Learning, Natural Language Processing, Rule-
and pattern based systems, Neural Networks
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Chapter 1

Introduction

Business documents are important artifacts that enable trade between two or several parties.
These business documents are for instance invoices, insurance documents, etc. that contain
information about payment amount, dates, signatures, and so on. The documents are usually
in paper form or in a digital format such as Portable Document Format (PDF). Companies
extract information from these documents and store them within IT systems to keep track
of their business agreements. The extraction is performed by the employees manually and
entered into the IT system. As the volume of documents increases over time the traditional
method of manual processing becomes outdated, it is a highly mundane and labour-intensive
task that is also prone to human error. By letting machines take care of this process the
employees can focus more on other tasks that could help the company grow. However, it is
still a challenge to achieve full automation of information extraction from documents and is
still an open problem.

The automation process can be described in the following way: Convert the document in
Figure 1.1, which can be in an image format by scanning the physical copy or as a PDF, to a
structured output seen in Figure 1.2.
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1. Introduction

Figure 1.1: Insurance policy letter in a PDF
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1.1 Motivation

{
“InsuranceNumber": 03-6602795-06,

"BusinessId": {
"raw": 559128-9896,
"normalized": 5591289896

},
"BusinessName": "Inte ett riktigt bolag AB",
"InsurancePeriodStart": {

"raw": 2020 04 23,
"normalized": {
"year": 2020,
"month": 4
"day": 23
}

"InsurancePeriodEnd": {
"raw": 2021 04 30,
"normalized": {
"year": 2021,
"month": 4
"day": 30

},
"YearlyPremium": {
"raw": 22 714,
"normalized": 22714

},
"YearlyComission": {

"raw": 1 283
"normalized": 1238

}
}

Figure 1.2: The PDF documents structured counterpart

The reason why it has to be in such a format is that the IT systems require a specific struc-
ture, it is now machine-readable by arranging the fields to a certain standard and structuring
them in key-value format. There are arguments for PDF documents being digital already,
sometimes referred to as semi-structured documents, this is not necessarily wrong but to a
computer, it is still unstructured text and images. The structured counterpart seen in Figure
1.2 can now be further processed within IT systems without requiring any manual input from
any human operator.

What we mean by semi-structured data in this context is that it does not conform with
formal structures of a data model that is associated with relational databases for instance,
but that it contains tags or markers that separate semantic elements and have fields of data
[Sukanya and Biruntha, 2012]. The term unstructured data is a reference to data that doesn’t
have a predefined data model or fit relational database tables, it usually is text-heavy but
may contain data such as dates and numbers that we are interested in. [Sint et al., 2009]. In
contrast to these two data forms is the structured data counterpart, these have predefined
data models and fit in database tables.

1.1 Motivation
Söderberg & Partners AB (S&P) has recently bought the software service "ABBYY FlexiCap-
ture" which is a platform with the ability to classify and extract information from documents
with a rule and pattern-based approach combined with Machine Learning. There are several
services like this on the market that provide a solution for automatic extraction of informa-
tion from documents, but most of these come with some form of limitation. These services
work solely on previously observed templates of documents [Palm et al., 2017], a template is
a distinct layout for certain documents that often are unique for each sender. The techniques
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1. Introduction

that are used in these solutions consider keywords and the layouts of the templates, mean-
ing the system relies on first being able to classify and divide the documents into di�erent
templates.

A human operator for this process is required to create complex rules that stem from the log-
ical structures for each distinct template that arrives, this does require some specific domain
knowledge. Ideally, the skills needed to create the rules for such templates should be kept low,
especially when the occurrence of new documents may be a frequent event or the sample of
documents of a certain type may be small. When extracting information from documents
you focus on the fields that are important for the specific task. Let us take an invoice as an
example, the most important information in such a document may be the premium, the due
date, and the reference number to name a few. The rest of the text in the document does
not add any value and therefore does not require any extraction as we can see in the example
above.

Figure 1.3: Rule and pattern-based system

These solutions that require such manual configuration of complex rules are built on con-
ventional Machine Learning techniques that are not able to simply process the data in its
raw form. In recent years another area in Machine Learning has been making major advances
in fields like image recognition, speech recognition and has also shown extremely promising
results in solving Natural Language Processing (NLP) problems [LeCun et al., 2015], namely
Deep Learning. One of the advantages of Deep Learning techniques is that the input data is
in its raw form and the representations needed for detection and classification can be found
automatically, with this in mind I will now present the goal of this thesis.

1.2 Goal
The goal of this study is to build a system that can learn the patterns and extract information
from both previously seen and unseen templates of documents given minimal data. This case
is also more practical since the business documents that the companies manage may change
over time due to new customers or current ones changing their layouts.

10



1.3 Research questions

1.2.1 Scope
The data is collected from S&P’s databases of insurance documents. The data is stored with
its corresponding document and has been manually annotated by the employees over the
years. We will focus on insurance policy letters that S&P receives from di�erent senders to
study how well the extraction of data works on these types of documents, this same approach
can be applied to other form of documents as well, such as invoices, contracts and so on.

In regards to scrambled data, there is a major area of study that we will disregard from this re-
search, namely Optical Character Recognition (OCR), which is the task of translating hand-
written or printed text characters to machine-encoded text [Chaudhuri et al., 2017]. In some
cases, even well functioning engines will fail to translate the text properly due to the poor
quality of images. We are are going to assume that an OCR engine is used to prepare the
documents that are to be extracted, well functioning OCR engines that are open-sourced
like Google’s Tesseract is one example1.

1.2.2 Contribution
The rule and pattern-based systems that were previously addressed allow users to define any
number of fields that they wish to extract from a given template, in our system we assume
instead that there are a fixed number of specific fields that should be extracted from any
document if they are present. With this approach, the system should be less dependent on
specific layouts of documents but will be limited to a specific task.

1.3 Research questions
1. Which deep learning techniques have performed well in the area of document infor-

mation extraction?

2. How does the quantity of our annotated data a�ect the performance of the system?

3. How well does our deep learning system generalize to unseen templates?

1.4 Outline
In this report, we will start with presenting the necessary background theory that the reader
needs to have a grasp of to follow the methodology of this study. The data collection and
choice of models will be addressed in the following chapters. Lastly, the results will be pre-
sented and discussed followed by a conclusion where we reflect on what we can take away
from this research.

1https://tesseract-ocr.github.io/
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Chapter 2

Background

2.1 Information extraction
Information Extraction (IE) is the process of extracting structured data from unstructured
or semi-structured documents used for communication between humans [Sarawagi, 2008],
e.g. transforming a PDF document (figure 1.1) to mapped fields (figure 1.2).

Portable document format
In this section we will give the reader a brief overview of the portable document format
and address the parts that are relevant for this thesis. PDFs are based on PostScript page
description language [Adobe Systems Inc, 1999]. PDFs often seem to contain structured text
and data, this is however not the case. There are no paragraphs, sentences or even words
defined, only the characters and their placements. In other words, unlike other document
formats a PDF does not contain a stream of text.

A PDF document consists of a collection of objects that together describe the appearance of
one or more pages. A PDF file contains the objects making up a PDF document along with
associated structural information, all represented as a single self-contained sequence of bytes
[van der Knij�, 2009].

Since there are no structures such as sentences or words in PDFs, these need to be constructed
before extracting the information. The construction of such structures are made based on
heuristics and the positioning of the characters. One approach taken in PDFMiner, a tool
for extracting information from PDFs, to construct the text is broken down in three steps :
1) group characters into words and lines 2) group the lines into boxes and 3) group the text
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2. Background

boxes in a hierarchical order.

Grouping characters into words and lines
Each character has an x-coordinate and a y-coordinate for its bottom-left corner and
upper-right corner that together form a bounding box. These bounding boxes deter-
mine the characters that belong together, the characters that are both horizontally and
vertically close are grouped onto one line. The distance between how far away charac-
ters can be from each other are determined by heuristics e.g the distance between two
characters "s" and "t" has to be smaller than a set margin M, see figure 2.1, to be grouped
together. Characters that are further away from each other than the distance M but in
a proximity smaller than W belong on the same line. There are other heuristics that
are considered when calculating what characters belong on the same line as well, such
as vertical alignment of the bounding boxes and insertion of spaces between charac-
ters since PDFs are not aware of the space character. We will not dive into specifics
about the calculations, but the reader is recommended to read the documentation for
PDFMiner if it is of interest1. The result of this step produces a list of lines, where each
line consists a list of characters.

Figure 2.1: Example of grouping characters to words.

Grouping lines into boxes
Each line has a bounding box that is determined by the bounding boxes of the charac-
ters that it contains. The bounding boxes are then used to group the lines, similarly to
the previous step. If lines are both horizontally overlapping and vertically close they
will be grouped together. Lines that are grouped together have a distance, calculated
from the tops and bottoms (L1 and L2 in figure 2.2), that is smaller than a defined
margin. The result of this stage is a list of text boxes, where each box consists of a list
of lines.

Figure 2.2: Example of grouping lines.

1https://github.com/pdfminer/pdfminer.six
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2.1 Information extraction

Example of grouping text boxes
In this step, two text boxes that are closest to each other are merged continuously. The
proximity is calculated as the area that is between the two text boxes, see the gray area
in figure 2.3. It is the area of the bounding box that surrounds both lines, minus the
area of the bounding boxes of the individual lines.

Figure 2.3: Example of grouping text boxes.

E-mail, text messages and more are examples of other forms of communication. We will refer
to all such artifacts as unstructured since all of them contain data described in the human
language that do not conform with formal data structures that are associated with relational
databases.

The motivations for extracting such data into a structured machine-readable format:

1. The communication is often done through artifacts such as documents and emails writ-
ten in the human language.

2. Managements and storage of such artifacts are maintained with computers.

3. The computers do not understand the communication.

4. Computers

Imagine a scenario where you are exchanging a lot of e-mails with job recruiters and trying to
arrange a meeting for an interview. You agree on a date, time, receive a link to the video chat,
etc. and so you create an event in your calendar, even though all the information is conveyed
in the e-mail the application can not create the event for you automatically without human
verification.

Understanding unstructured communication would require strong Artificial Intelligence (AI)
that is completely on the same level as human intelligence in all aspects [Yang et al., 2017]. If
such a system would exist today there would be no necessity of having IE systems or many
other Machine Learning systems for that matter, as we could simply instruct the AI to do any
number of tasks such as booking a conference room for a meeting at a given time simply by
reading an e-mail conversation between colleagues. There are systems that have been making
strides in this direction today but for this thesis we will focus on task-specific systems.

Two examples of broad approaches taken for these systems fall into the categories:

1. Rule- and pattern based systems.

2. Token classification.
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2. Background

2.1.1 Rules and patterns
Rule and pattern-based IE is a well-researched area that is continuously expanding to this day.
A survey by [Chiticariu et al., 2013] found that these systems still dominate the commercial
world even though it is considered obsolete by the academia. The common theme for this
solution is that you look for patterns in the unstructured data and make use of these to
extract the data you are interested in. Some examples of patterns in data that we would like
to extract may be a company’s organization number or the due date in an invoice. If we
are assuming that there is a certain standard that an organization number must follow, for
instance, ”0123−45678” where it has four digits at the beginning followed by a dash sign and
6 digits at the end, then it would be possible to capture this with a regular expression (regex)
[Thompson, 1968]. Dates might be more complex since there can be various formats such
as "2020-02-23" or "23rd Feb 2020". In this case, we would have to expand a simple pattern
like the one above and create more to try to match the various ways of writing dates. The
problem with this approach is that regex might match to other fields in the document also,
the regex will also match to other strings with the same format like 2546 − 32 − 46 which
may be a variant on an insurance number for a given template.

To account for this problem rules are created to decide which string should be chosen, for
example, choosing the candidate that has the closest relative position to the keyword Or-
ganization number. These rules and patterns will vary between templates and needs to be
evaluated per template, in 1.1 specifying that it should be at the top of the page would be
an additional rule for choosing the organization number given that template will remain the
same [Chiticariu et al., 2013]. This is a simple example of how one would approach extracting
information from documents, but it is also one of the main advantages of rule and pattern-
based IE systems. They can be simple to understand and modify, the error can be traced back
to the rules where the rules can be modified by the users. However, therein lies one of the
drawbacks of this method, which is the need for operators to manually create and adjust the
rules and patterns [Chiticariu et al., 2013].

2.1.2 Token classification
There is another major approach in Information Extraction, namely token classification. The
main idea is to classify a symbol, which can either be on word-level or character level, to
a label determining if it should be extracted or not. A labeling scheme can be of such as
Beginning-Inside-Out (BIO) [Ramshaw and Marcus, 1995] scheme used in The Air Travel
Information Services (ATIS) data set. One of the advantages of such a scheme is that it
enables the extraction of fields that stretch over multiple words, meaning fields can contain
delimiter characters. See table 2.1 for an example of the ATIS data set, in the table we see
that labels most of the time are split into two parts, it contains a prefix label followed by the
label for a named entity e.g city. The prefix label "B-" indicates the beginning of a field and
subsequently, the "I" label indicates the continuation of that label. The last label in the data
set "O" indicates that the word is not a key token to be extracted, hence not a part of the
labels.

Another variation of BIO labeling scheme is Beginning-Inside-Out-End-Single (BIOES). The
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2.2 Machine Learning

Word Label

Show O

flights O

from O

Boston B-city

to O

New B-city

York I-city

today O

. O

Table 2.1: ATIS data set example.

three first labels in BIOES are the same as the former, the extended labels "E" and "S" refer
to the end of a field and a single-word entity respectively [Liu et al., 2018]. One of the pri-
mary advantages of token classification addresses the problem we mentioned with the rules
and pattern-based approach, supervised learning enables the discovery of complex patterns
in the data that the human operator might not be able to find which may prove to be opti-
mal. Since these patterns are learned from the labeled training data, they have shown to be
more resistant to common noise in the training data such as misspellings, formatting di�er-
ences like in the case with dates and so on. This move of giving the learning algorithm the
responsibility of creating the complex patterns does not come without some costs, which are
the drawbacks of this method. The labeling of the training data is usually done by humans
[Chollet et al., 2018] and requires quite extensive work. The system is also often more di�-
cult to understand compared to a rule and pattern-based approach which makes it more dif-
ficult to improve [Chiticariu et al., 2013]. These are the reasons why rule and pattern-based
approaches are still dominating the industry today, the e�ort required to label the training
data makes this approach not as feasible for many practical IE tasks.

2.2 Machine Learning

This section addresses the theory and methods applied in this thesis, everything falling un-
der the Machine learning paradigm. Some brief knowledge about simpler machine learning
methods will first be addressed and then proceed to dive deeper into deep learning. Mostly
focusing on Artificial Neural Networks (ANN’s) that are relevant for this thesis, related work
is also presented for readers that need to freshen up their memory or are new to the area.
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2. Background

2.2.1 General concepts
The common approach to work with a data set with the given structure described in section
2.1.2 is to use supervised learning, which maps input data to the annotations. There are many
supervised classifiers to choose from such as logistic regression, neural networks, decision
trees and so on. Let us discuss some general ML concepts before we dive deeper into di�erent
kinds of classifiers and our choice of models in this thesis.

Training, validation and test
An important concept we would like to address is the importance of training-, validation-
and test set. The training set contains a sample of data that we use to build the model along
with its parameters. The trained model is then challenged with another sample of data, the
validation set, this set is used to assess the model’s accuracy. Based on the errors from the val-
idation set, the optimal parameters for the model are selected by using the lowest validation
error. This procedure is called model selection [Hastie and Tibshirani, 2009]. The test set is
a sample of data that is not used during the model selection process, it acts as a blind test in
the end to observe how well the model performs on data it has not seen before.

Overfitting
A problem that occurs in every machine learning problem during training is overfitting
[Chollet et al., 2018], this is related to the tension of optimization and generalization. Op-
timization is the process of adjustments made during training to achieve the best results
possible on the training data, generalization is how well the model performs on a sample of
data that it has never seen before. These two are very much correlated at the early stages of
training, as the model performs better on the training data the performance on the test data
will improve as well. The generalization will stop to improve after a certain amount of steps
however, validation metrics will stagnate and degrade. The model starts to learn patterns
that are specific for the training data, this leads to worse performance on the test data. The
best way of preventing this, which is called regularization, is to get more training data when
possible. There is another e�ective method of achieving regularization but more on that in
the section 2.2.2 where we address Artificial Neural Networks.

Logistic regression
In this thesis, we are going to use a variant of the logistic regression classifier as our baseline
model. Logistic regression can be defined with the following equation :

P(Y = 1|X) =
1

1 + exp(ω0 +
∑n

i=1 ωiXi)
,

where Y is a discrete value and X = x1, ..., xn is a vector containing discrete or continuous
values, ω is chosen by maximizing the conditional data likelihood, which is the probability
of the observed Y values in the training data [Arabnia and Tran, 2016]. Advantages of using
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2.2 Machine Learning

models like Logistic Regression are that the computations can be quickly calculated by com-
puters and the results are easy to interpret, this model in particular only works on binary
data. An extension of this simple model, Multinomial Logistic Regression (MLM), can clas-
sify data into several categories that have no natural ordering. It is a maximum likelihood
estimator that has shown great results when solving classification problems with numerous
categorical values [Chanyeong and Alan, 2002]. For more complex models we will now start
diving into deep learning.

2.2.2 Deep Learning
Deep learning is defined by oxford languages as : "a type of machine learning based on ar-
tificial neural networks in which multiple layers of processing are used to extract progres-
sively higher level features from data". The concept of deep learning was already well un-
derstood back in the 1990s and some areas have not changed much since then, the reason
for deep learning making strides in recent years lies in three factors. 1) Hardware improve-
ments 2) Datasets and benchmarks created and 3) algorithmic advances since then. Deep
Learning is part of the machine learning family and takes on a new way of learning repre-
sentations of data by using successive layers. In other words, deep learning is not meant to
describe any deeper understanding of the data but how many levels of layers contribute to
the model. This is in contrast to shallow machine learning methods, which only use one or
two layers for the representation and rely on feature engineering of the data from humans
to be e�ective [Goodfellow et al., 2016]. These layers in Deep Learning are learned through
artificial neural networks, which have the structure of layers stacked on top of each other
[Chollet et al., 2018].

Artificial Neural Networks
The term neural networks is a reference to the study of the nervous system - Neurobiology.
Central concepts of deep learning were inspired from our understanding of the human brain
but it should not be interpreted as ANN’s are models of the brain. However, similarly to the
human brain ANN’s makes decisions based on collective input from all of its’ neurons. The
basic structure of ANN’s is built of three types of layers: input, hidden and output layers, see
figure 2.4 for a graphical representation. The layers are responsible for the data transforma-
tions of the input which are determined by its’ weight parameters. Fine-tuning the weight
parameters is essentially the iterative process of learning, to find the correct set of values for
the weights of each layer such that the inputs transform to their corresponding output during
training.

Previously when we addressed overfitting we mentioned that there is another e�ective way
to achieve regularization, this is by incorporating a method called dropout. Dropout is a
reference to dropping out both hidden and visible neurons along with their paths in the net-
work temporarily [Srivastava et al., 2014], see figure 2.4. These paths get randomly disabled
by being multiplied with 0 with a certain probability. When the sets of paths and neurons
are disabled, the process now becomes equivalent to training di�erent neural networks. The
di�erent networks will overfit in various ways and so averaging the e�ects of the di�erent
networks will lead to reduced overfitting. Dropout helps to deal with issues such as collecting
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2. Background

Figure 2.4: Basic architecture of an ANN.

more training data and finding optimal hyper-parameters for large complex networks which
can be a daunting task.

Embeddings
At this point, we need to address how words and characters are represented mathematically.
The most usual approach of doing it is through dense high-dimensional vectors called em-
beddings. These vectors can either be trained manually or one can make use of ones that
have been pre-trained on large unannotated corpora. Similar words are made to have simi-
lar values in these embedding spaces, one of the most popular approaches for this is called
Skip-gram methods [Mikolov et al., 2013].

The challenge with embeddings is that there is no uniform way that words relate to each
other, a lot of words have di�erent meanings depending on the language and culture. This
entails that the choice of embedding space depends on what kind of task one wants to solve.
In this thesis, we are only going to focus on character embeddings, which are trained at the
same time as our classification task.

Character embeddings have shown to be one of the fundamental inputs for neural networks
when researching NLP tasks [Chen et al., 2015]. The characters are usually extracted from
the training set unless otherwise specified and composed to a character dictionary C with
the size |C|. Unknown characters are mapped to a special symbol that is not used elsewhere.
Each of the characters are represented as a real-valued vector (character embedding) vc ∈ Rd

where d is the dimension of the vector space. The character embeddings are at last stacked
into an embedding matrix M ∈ Rd×|C|.

This is done by incorporating an embedding layer [Chollet et al., 2018] into our model, the
weights of this layer are initially random and adjusted during training with backpropagation
as with other layers.
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2.2 Machine Learning

Backpropagation
The central algorithm in deep learning that enables optimization is called backpropagation.
Backpropagation is a highly computational operation that is more often than not improved
by components called optimizers, common ones are for instance Adam and Stochastic gra-
dient descent (SGD) [Kingma and Ba, 2014]. We will refrain from explaining the theory
[Hecht-Nielsen, 1992] behind the algorithm in depth since it is quite complex and imple-
mentation is not required for working with deep learning tasks. The optimizer determines
how the partial results from backpropagation should be applied, the goal is to produce bet-
ter models with either fewer steps or in general. In ANN’s the training is achieved through a
feedback loop, see figure 2.5.

Figure 2.5: Feedback loop in Recurrent neural networks.

During training, each time the data is processed in the network the error is calculated by
comparing the predicted output to the expected output. The error found in the comparison,
the loss score, is calculated in the loss function which is then used by the backpropagation
algorithm to calculate how each layer from top to bottom contributed to the loss score, thus
calculating the weight modification needed in each layer. Once the calculation is done it
recursively modifies the weights of each layer until it reaches the input layer.

Some other concepts that we would like to cover in this thesis to give the reader deeper
insight to understand the methodology are feedback loops implemented in Recurrent Neural
Networks (RNN’s) to achieve optimization, as well as embeddings- and CRF layers.

Reccurent Neural Networks
RNN’s are part of the neural network family that works with sequential data, the input is a
sequence of vectors (x1, x2, ..., xn) and returns another sequence (h1, h2, ..., hn) that in a way
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represents some information about the sequence at every step in the input. What makes
sequential data distinguishable from single data points is that the order of the data points
matters. These networks have shown improvements in the state-of-the-art of many NLP
areas, for instance in speech recognition [Graves and Schmidhuber, 2005].

Recurrent neural networks do in theory have the capability to learn and remember long de-
pendencies but it is shown that they more often than not tend to be biased towards their most
recent inputs [Bengio et al., 1994]. In the approach of alleviating this problem, a new form of
RNN’s was developed back in 1997, called LSTMs, that would be able to capture long term de-
pendencies with the help of an integrated memory-cell [Hochreiter and Schmidhuber, 1997].

Long short-term memory
As previously mentioned LSTMs are a type of RNN, thus it also works with sequential data
and is also able to remember long-term dependencies. There are few variations of LSTMs and
few iterations on the LSTM neural network will result in what we today know as bidirectional
LSTM.

A forget gate was proposed in 1999 and added to the network which gave it the ability to for-
get earlier activation at certain steps and reset the hidden state of the node [Gers et al., 2000],
this was important since the networks could still not accurately learn from certain very long
or continual time series that did not have an explicitly defined start and end. The issue lied
in the internal values of the cells growing without bound because of the continual output
stream, even though it should have been reset at times.

The steps which allow the model to remember the long-term dependencies whilst also enable
short-term predictions can be represented mathematically as:

it = σ(Wiixt + bii +Whihht−1 + bhi) (2.1)

ft = σ(Wi f xt + bi f +Wh f ht−1 + bh f ) (2.2)

gt = tanh (Wigxt + big +Whght−1 + bhg) (2.3)

ot = σ(Wioxt + bio +Whoht−1 + bho) (2.4)

ct = ft × ct−1 + it × gt (2.5)

ht = ot × tanh ct (2.6)

where it , ft , tt , ot are the input, forget, memory cell, and output gate, ht is the hidden state
and the output in each step, and ct is the cell state. σ and tanh are the sigmoid function and
hyperbolic tangent functions respectively.
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The things we have mentioned about LSTMs so far are mostly about their ability to remember
both short and long-term dependencies, it is also assumed that the relation of the sequential
data is only in the forward direction. Graves and Schmidhuber (2005) proved however that
the same procedure can be applied with the sequence fed in the backward direction also,
resulting in the Bidrectional LSTM (Bi-LSTM) network.

In this thesis, we are going to use a BiLSTM-CRF architecture which is a BiLSTM model
stacked together with a Conditional Random Fields layer (CRF) [La�erty et al., 2001]. CRFs
assign a well-defined probability distribution over possible labels, trained by maximum like-
lihood. The loss function in CRFs guarantees convergence to the global optimum. Further-
more, the reason for choosing to experiment with this additional layer in this thesis is because
they have been shown to produce higher performance when combined with LSTM networks.
For a graphical representation of the BiLSTM-CRF model see figure 2.6.

Figure 2.6: BiLSTM-CRF

2.3 Evaluation metrics
One of the most popular metrics with researchers today is Accuracy. The definition of Accu-
racy is the ratio between the number of correctly classified samples and the overall number
of samples [Chicco and Jurman, 2020]. This metric works well with multi-class cases such
as this problem in the study but it is however important to deal with imbalanced data sets
when using this metric to evaluate the performance. This is because it will produce an over-
optimistic estimation of the majority class when classifying, which is the "O" label described
in section 2.1.2.

There are other methods that deal with overcoming imbalanced data like Matthews corre-
lation coe�cient (MCC) but has not gained popularity within classification problems yet.
It may be because there are certain situations where MCC cannot be defined or it displays
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2. Background

large fluctuations, there are although workarounds that are available for those cases. The
F1-measure is going to be one the evaluation metrics used to evaluate the token classifica-
tion in this study. It consist of the metrics precision and recall that are combined into one
score. F1 is one of the most popular evaluation metrics in machine learning research, not
only in binary classification scenarios but also in multi-class cases such as this one. To read
more about these metrics, the reader is highly recommended to read the report written by
[Chicco and Jurman, 2020]. The results of the extracted information from the documents
can be divided into four classes. For a visual presentation of the classes, see Figure 2.7

True positive (tp) Actual positives that are correctly classified by the system.

False positive (fp) Actual negatives that are incorrectly classified by the system.

True negative (tn) Actual negatives that are that are correctly classified by the system.

False negative (fn) Actual negatives that are incorrectly classified by the system.

Recall is the fraction of correctly extracted samples that are relevant:

R =
t p

tp + f n
(2.7)

Precision is the fraction of extracted samples that are relevant:

R =
t p

tp + f p
(2.8)

F1-measure is the combination of R and P using the harmonic mean:

F1 = 2 ×
P × R
P + R

(2.9)

Optimizing the performance of a system on Precision and Recall tends to be a di�cult task.
This is because they tend to work against each other. For instance, let us imagine that there
is a threshold for determining if a document is correctly classified. If the system is to be
optimized for recall the threshold for the classification could be decreased, the consequence
would be that the number of false positives would increase leading to worse performance
on precision. Vice versa, if the system is to be optimized for precision, we would reduce the
number of false positives by increasing the threshold for classification, the consequence of
this is the increased number of false negatives resulting in worse performance on recall. The
harmonic mean in the F1-measure is used to reduce the score when recall and precision are
not in balance.
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Figure 2.7: The search space for documents

2.4 Related Work
A fundamental aspect that is needed for our system is annotated data for the set of spe-
cific fields we are going to extract from the insurance policy letters. Some systems require
such preparation made by ITESOFT and DocuWare, databases of templates are created be-
forehand where fields, keywords and positions for each field are stored [Schuster et al., 2013,
Rusinol et al., 2013]. ABBY FlexiCapture works in a similar fashion, when the template has
been classified the keywords and positions for each field are considered when suggesting field
candidates. Each candidate has a score using heuristics such as proximity and uniqueness of
the keywords, so the candidates with the best scores are chosen. Alternative ways of ap-
proaching this problem can be found in a study made by [Medvet et al., 2011], where they
use a probabilistic model for finding the most similar pattern in a template and extract the
fields with an associated parser. Unfortunately, the aforementioned studies and systems can-
not be directly compared with our approach since the data sets and evaluation process are not
publicly available. Although what we do have in common is that annotated data from each
template is required to accurately extract the information from the documents correctly.

The task we are trying to solve in this thesis is closely related to Named Entity Recogni-
tion (NER), thus it is relevant to address this area as well. NER plays a key role in Natural
Language Processing tasks. It is a form of information extraction, NER is mainly used to lo-
cate the named entities in unstructured text such as name, date, location, organization, etc.
[Fu et al., 2021]. For years, ML problems were constrained to solving problems such as clas-
sification and pattern recognition with hand-crafted feature engineering, it was not possible
to learn from the data in its raw form. This limitation often required attentive engineering
and domain expertise to transform the raw data to a suitable format such as feature vectors
from which the learning system could recognize patterns and output some form of classifi-
cation. This was the case for traditional named entity recognition methods, for example the
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study [Yang et al., 2017] where they presented a few shallow machine learning studies that
produced F1 scores at 70% for biomedical named entity recognition.

Neural architectures for NER were experimented with here the approach was to only use
supervised training data and unlabeled corpora by [Lample et al., 2016]. With this approach,
they previously obtained state-of-the-art performances in 3 out of 4 languages and were very
near with the fourth one. This study, where word and character level embeddings RNN’s
with CRFs was used, inspired the neural architectures we are going use due to their simpler
nature. Similar studies like ours, where LSTM models have been used to achieve information
extraction [Palm et al., 2017] have been researched. The research made by (Palm et al. 2017)
experiments with LSTM models on both previously seen and unseen templates of invoices,
the models performed well on both types and showed signs of generalization.

There are also other neural architectures that have achieved impressive results in recent years.
This is an article about a great library for NLP, FLAIR, which has been used to achieve state-
of-the-art performance today [Akbik et al., 2019]. BERT is a classifier that was introduced
in 2018 [Devlin et al., 2018], the goal is to create a general model that can be fine-tuned for
many NLP tasks. The results showed that rich unsupervised pre-training is an essential step
in many NLP systems.

26



Chapter 3

Method

The first three sections in this chapter are going to be focused around the data set, the chal-
lenge of collecting a su�cient amount of data for the study. The following sections will
address the pipeline and models that we have considered during the thesis. Some technical
information about the models will be presented to give the reader an overview of how they
work.

3.1 Data collection
Initially, our plan was to collect the insurance documents and corresponding fields of interest
from the database. The idea was to gather lots of data that has been stored in the database
over the years which would result in at least some 10.000 documents, the documents have
also been annotated and maintained by the employees which would hopefully mean that there
were relatively small inconsistencies with the data. Unfortunately, some obstacles were met
during this approach that required some big adjustments, customers updated their insurance
policies and newer versions of the documents were revised regularly. The consequences of this
meant that sometimes the newer documents no longer matched with the older annotated
data. This certainly was the case for older insurances dating back 8-10 years which made
them not useful at all, since it would not be worthwhile to check if all fields were correct in
respective documents. A large number of documents were also stored as images with di�erent
scan quality that created garbled output from the OCR-engine used at S&P, meaning that a
portion of documents that may have had correct annotated fields will still need to be excluded
from the data set due to poor text quality. Since OCR-related problems are a whole research
area on their own this made us more discouraged to further pursue this way of collecting
data.
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One of the ways to work around this problem is to only use digital documents that were sent
from specific insurance companies, the focus would now shift to manually annotating the
documents. This would obviously mean that the data set will be smaller than what we had
hoped and countless hours of the research going to collecting the data set. The strategy is
to produce a data set consisting of 2100 insurance policy documents from di�erent insur-
ance companies resulting in 8 di�erent templates. The models will be trained on 5 distinct
templates and be evaluated on how well they perform on these templates initially and then
evaluated on how well they perform on 200 documents consisting of 3 other templates they
have never seen before.

Due to confidentiality the di�erent senders of the templates cannot be disclosed, we will give
each template a unique id for reference in table 3.1 instead. Table 3.1 displays the distribution
of the seen templates we train our model on, the amount of each template in each set. The
data set was split in a 60/20/20% ratio for training, validation and test respectively for the
previously seen templates. Table 3.2 displays the distribution of documents from the unseen
templates we have in our data set.

Template id Train Validation Test Total amount

1 324 108 108 540

2 306 102 102 510

3 252 84v 84 420

4 138 46 46 230

5 120 40 40 200

Table 3.1: Distribution of previously seen templates in our data set.

Template id Total amount

6 84

7 62

8 54

Table 3.2: Distribution of unseen templates in our data set.

Since manually annotating the documents was a mundane and labour-intensive task, the
focus lied on annotating 7 fields per document that were considered to be the most important
judging by what was stored in the databases. The fields are the ones that were referenced early
in the study, see image 1.2. The naming convention of these fields is in CamelCase, the same
format S&P uses for fields in their databases.

InsuranceNumber is the unique id for a client’s insurance case, the same client can have
several insurances within the same company and thus the id will be di�erent depending on
the insurance.
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BusinessId is in reference to the client’s organisation number, some clients may not have an
insurance via their company and this field may not be present in all documents.

BusinessName is the client’s company name.

InsurancePeriodStart and InsurancePeriodEnd are the dates for which the insurance is active
under.

YearlyPremium and YearlyComission are premiums the client is paying for the service.

Our hypothesis about these specific fields is that there will be a lot of uniqueness i.e. infor-
mation entropy among each field on a word level. Since insurance numbers are supposed to
be unique, there will not be many fields that are identical except with documents that are
about the same insurance. This is more or less the case for the rest of the fields also. In the
next section, we will address our assumptions and motivate our choices for the embeddings.

3.2 Data Analysis

For our neural models, we are going to focus on character embeddings due to this task being
very much a pattern matching problem. The fields we want to extract do have a lot of dis-
parity among each class, the fields do not have a lot of similarities except for their pattern.
For instance, an insurance number in figure 1.1 has the format xx − xxxx − xx where x is a
digit and does not necessarily have an explicit list of values it can contain since the number
of combination is high.

The character vocabulary of the data set will be around 100 tokens in total when using single
character embeddings. We would also like to experiment with bi-character embeddings to
create a larger embeddings space to see if the models can make use of these to learn and find
more optimal patterns for classification. Bi-character embeddings are essentially produced
in the same manner we have described character embeddings back in section 2.2.2. The dif-
ference between single character embeddings (Char) and bi-character embeddings (Bi-char)
is that the latter has an embedding space composed of combination of characters i.e. tuples
of characters {(a, b), (b, a)}. The embedding space with bi-characters would be a bit large if
we did not filter out combination of characters that are not prevalent as much in the data
set, so we filter out combinations that occur less than three times in total in the training set
which result in an embedding space of 998 tokens.

The large embedding space is one of the advantages of using large pre-trained word embed-
dings in NLP tasks, but the problem is that those instances they’re trained on won’t be appli-
cable to this specific task. Not to mention that there are not a lot of pre-trained embeddings
to choose from in the Swedish language.

This is not to say to word embeddings have no value in this context, more about this will be
reflected upon in chapter 5 section.
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3.3 Annotation Guidelines
The annotation starts with extracting the fields manually from the documents into a struc-
tured machine-readable format, in our case the JSON format was chosen [JSO, ]. Each doc-
ument that was annotated was assigned a unique filename in the JSON file, this was im-
portant when working with this scale since filenames could easily overlap and we needed a
way of distinguishing them for evaluation. The filename would then be set as a key for each
corresponding JSON object.

To annotate the documents we opted for an automated solution, the algorithm for the auto-
mated solution is shown in the figure below. The content of the PDF files would be extracted
and segmented into bounding boxes, GetTextSegments in the figure, with PDFMiner. Each
segmentation in the PDF will be considered and checked if it matches an annotated value in
the JSON object counterpart, if it does then that segment will be annotated with the field.
In such cases where a segment contains multiple fields, the corresponding segment will be
labeled with all matching fields. In the case where the segmentation did contain any of the
fields, which was most of the time, it was labeled as "None".

Algorithm 1: Automatic training data extraction

result ← {}
foreach document ∈ documents do

textSegments← GetTextSegments(document)
foreach textSegment ∈ textSegments do

foreach field ∈ JSON(document, f ield) do
if textSegment = f ield then

labels← GetLabels(textSegment)
Add(result, textSegments, labels)

This would produce a little bit of noisy data since segments could be mislabeled at times,
depending on text quality and other factors, which would require manual correction but it
would allow for easily expanding the available data. As long as there are signs of the models
learning and performing well overtime on the data sets it is a reasonable trade-o� in our
opinion.

3.4 Pipeline and overview

Figure 3.1: Pipeline

A general pipeline for our neural models can be seen in Figure 3.1.
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Text extractor
We start with extracting the text from the PDFs according to their bounding boxes in
hierarchical ordering. The text is in other words extracted and segmented according
to their enclosed coordinates in the document. The argument for doing so is because
the PDFs have semantic separations of the data fields we are interested in, like we
discussed back in section 2. Usually, text enclosed within the same bounding box in
unstructured documents such as insurance policy letters, invoices, etc. provides good
information for the models to find patterns in. For example, the keyword "Date" may
be in the same bounding box as the fields InsurancePeriodStart and InsurancePeriodEnd.
Hence, the models will learn that the text following respective keyword may be one of
the candidates for the corresponding field.

Pre-Processor
In our baseline model we experimented with pre-processing steps such like stemming
the text and removing stop words. Stemming is a normalization method, reducing
words to their word stem, and has shown to improve performance in information ex-
traction of documents [Korenius et al., 2004]. The stop words are removed since it is
most commonly used words in human language and do not add additional information
of text. We also hypothesized that creating more features by replacing the numbered
fields like the dates and insurance number with tokens would improve the performance
with the model. However, this did not seem to improve the performance by much and
in some cases, the results were less impressive so we decided to discard the last step.
Before feeding the input to the classifier a CountVectorizer from Keras was applied to
the text segments to transform each token to a corresponding index.

There were no particular pre-processing steps taken in our neural models, the data was
transformed using the embeddings and fed into the classifier afterwards.

Classifier
We chose to work with the Multinomial Logistic Regression (MLM) we addressed back
in chapter 2 for our baseline model. Three advantages of using this model is that it is
widely available, the computations can be quickly calculated by computers even with
a vast amount of categories, and the results are simple to interpret. This makes it
desirable choice for a baseline model [Chanyeong and Alan, 2002].

We chose to work on four variations on LSTM models for our neural networks, we will
dive deeper into the architecture of the neural models in the following sections.

Post-Procesing
Once the classification was finished in our neural models, the characters got assigned
with BIO-label which had the highest probability. Before chunking, the characters
and their corresponding labels were post-processed. Characters with labels that started
with the prefix "I" but were preceded with a character that had an "O" label was changed
to the prefix "B". A character that was labeled with the prefix "I" but followed with a
character that had the label "O" was changed to the prefix "E". This step was crucial to
improving the performance of the system. See figure 3.3 for an example of a classified
date field in our neural models.
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Character Label

2 B-InsurancePeriodStart

0 I-InsurancePeriodStart

1 I-InsurancePeriodStart

9 I-InsurancePeriodStart

I-InsurancePeriodStart

1 I-InsurancePeriodStart

1 I-InsurancePeriodStart

I-InsurancePeriodStart

0 I-InsurancePeriodStart

1 E-InsurancePeriodStart

Table 3.3: BIOES-labeling scheme example on a field

The last step in the post-processing was normalizing the classified fields to a preferred
format. The fields were lastly written in to a JSON object before the evaluation.

3.5 LSTM models
LSTM’s are a form of Recurrent Neural Network, we addressed the theory of LSTM’s back
in section 2.2.2. RNN’s have the ability to model the entire insurance document in a prin-
cipled manner and our hypothesis is that this attribute will yield good performance in our
task. The argument for experimenting with neural networks is also that it does not require
feature engineering for the models to be e�ective. The architecture of the neural models and
the hyper-parameters were fixed to all four variations of our LSTM models. These hyper-
parameters were chosen based on the overall performance of the models during testing. We
experimented with random intializers for the embedding-layer, however, this produced vary-
ing results so we opted for using a fixed initializer moving forward. Di�erent fractions in the
drop-out layers where also considered, between the span of 20% and 50% in both layers. See
figure 3.2 for graphical representation of our neural architecture for the LSTM models.

The first layer in the model is an embedding layer, initialized with Glorot uniform. The
reason for using Glorot uniform as our initialization method is due to better performance
in our experiment and in a study where they compared several activation functions against
each other [Pedamonti, 2018]. The following layer is a drop-out layer with the drop-out rate
of 30 % [Gal and Ghahramani, 2015]. The drop-out layers and their parameters were added
to the model to avoid overfitting.The following layers are the LSTM layers, the forward and
backward layer that we discussed back in section 2.2.2. The last layer in the architecture is
one last drop-out layer with a drop-out rate of 20 % and the dense layer. The dense layer is
replaced with the CRF layer on the BiLSTM-CRF models, see Figure 3.2 for an overview of

32



3.6 Evaluation

the model architecture.

Figure 3.2: The LSTM model

Each model was trained and retrained and evaluated 10 times to get an overall view of how
well it performs on this task. We chose to take this approach since the models’ parameters
are random at the start, in other words, the models have di�erent initial conditions. These
initial conditions may lead to better performance in some models than others.

3.6 Evaluation
The evaluation of the models is measured on three performance metrics :

1. The overall accuracy of JSON objects.

2. The accuracy of the extracted fields per JSON object.

3. Their F1 scores on the seven fields.

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for
humans to read and write, it is also easy for machines to parse and generate. The fields in our
JSON objects is referenced earlier in the thesis, see figure 1.2 for a visual representation.

The overall accuracy of JSON objects
The purpose of this evaluation is to measure the total accuracy of all extracted files. A
file is classified as correct if all fields in the file are correct.

The accuracy of the extracted fields per JSON object
This evaluation focuses on each field per document. We use this to measure the per-
formance of extraction on each individual field per document.

Their F1 scores on the seven fields
We addressed this metric back in section 2.3, we use it to evaluate how well the models
classify each field in the whole data set.
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Chapter 4

Results

In this chapter, we will present the results of our research. The first section presents the
overview of the results, the model which had the overall best result for the experiments is
briefly addressed. Tables relating to the neural models’ training and improvement with access
to more data are shown. The following sections will dive deeper into each experiment and
present each score for respective models.

4.1 Overview

The neural model that had the best performance in our experiment was the BiLSTM-CRF
model with single character embeddings. To see how well the accuracy of the model is on
extracting correctly per JSON object based on the amount of training data see figure 4.1.
Each step is incremental of 10% of the total training data available. We can see that the
accuracy plateaus moderately at 80%, it does however increase slightly afterward which is an
indication that more training data still would increase the accuracy.

To ensure that overfitting is not occurring we plotted the training losses and validation losses
in 4.2 where the orange and blue curves represent the training loss and validation losses re-
spectively. This plot represents the training for the BiLSTM-CRF model and as we can ob-
serve the curves are not showing signs of diverging, all models had a similar plot.
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Figure 4.1: Increasing accuracy of BiLSTM-CRF with more training
data.

Figure 4.2: Plot displaying training loss and validation loss of our
models.

4.2 Seen Templates
The first three tables presented in this section refer to the results achieved on the previously
seen templates. The best score for each field is written in bold. The model which has the
highest overall performance will be the one we choose to test on the unseen templates. Each
model has been trained and tested 10 times so that we could get an estimate on how well this
kind of model would perform in practice, creating a confidence interval at 95%. In table 4.3
the F1 scores achieved for the fields are presented.

Accuracy of the JSON objects

In Table 4.1 we see that the BiLSTM-CRF model with the character embeddings performed
slightly better than the model without the CRF layer, it also a less variant in its accuracy.
This is because this evaluation is the strictest in our approach, the whole file is regarded as
wrong if one field is not correctly predicted. We will dive deeper into the performance on
the specific fields now.
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Model Accuracy

Baseline (MLM) 0.285

BiLSTM (Char) 0.716 ± 0.011

BiLSTM (Bi-char) 0.517 ± 0.015

BiLSTM-CRF (Char) 0.728 ± 0.007

BiLSTM-CRF (Bi-char) 0.548 ± 0.002

Table 4.1: Accuracy of the JSON objects.

Accuracy of the field per JSON object
In Table 4.2 the accuracy of each field per file is presented. One field that was expected to
have a worse performance is YearlyComission. It performs well on this data set at first glance,
however, since it is the least frequent field in the data set the results may be misleading. If the
field is not present in the file then that field should be left empty per our implementation. It
is also possible that the model may still have found some patterns in this field as we can see
that it does with YearlyPremium.

Field Baseline (MLM) Bi-LSTM (Char) BiLSTM (Bi-char) BiLSTM-CRF (Char) BiLSTM-CRF (Bi-char)

InsuranceNumber 0.724 0.983 ± 0.005 0.985 ± 0.011 0.993 ± 0.002 0.987 ± 0.001

BusinessId 0.413 0.979 ± 0.006 0.974 ± 0.003 0.989 ± 0.009 0.968 ± 0.001

BusinessName 0.809 0.880 ± 0.013 0.692 ± 0.015 0.873 ± 0.004 0.696 ± 0.001

InsurancePeriodStart 0.786 0.936 ± 0.011 0.931 ± 0.005 0.937 ± 0.004 0.926 ± 0.002

InsurancePeriodEnd 0.775 0.921 ± 0.008 0.984 ± 0.001 0.985 ± 0.001 0.983 ± 0.001

YearlyPremium 0.933 0.908 ± 0.010 0.897 ± 0.008 0.916 ± 0.007 0.911 ± 0.002

YearlyComission 0.902 0.977 ± 0.004 0.915 ± 0.007 0.911 ± 0.008 0.932 ± 0.001

Table 4.2: Accuracy of the fields per JSON object.

F1-measure
The baseline model with minimal feature engineering gives us an estimate of what is possible
to achieve with simpler models, the model does perform well on some fields but not as much
with others. We see that BusinessName is the hardest field to classify in all cases, which may
not be so surprising due to its high variability. It does have a higher score on the LSTM mod-
els, indicating that it learned to find patterns on the field better. Company names in Sweden
do usually contain the prefix or su�x ’AB’ which may have helped the models with the pre-
dictions. Overall, it seems that the Bi-LSTM models trained on single character embeddings
performed better, the additional CRF layer seems to have less variation.

In this task, we see that character embeddings worked better than bi-character embeddings.
The additional CRF layer to the models improved consistency which led to fewer variations
in the results. Because of this, we chose to test the BiLSTM-CRF model with single character
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Field Baseline (MLM) Bi-LSTM (Char) BiLSTM (Bi-char) BiLSTM-CRF (Char) BiLSTM-CRF (Bi-char)

InsuranceNumber 0.732 0.988 ± 0.002 0.987 ± 0.003 0.989 ± 0.003 0.988 ± 0.002

BusinessId 0.458 0.982 ± 0.007 0.989 ± 0.009 0.992 ± 0.002 0.983 ± 0.004

BusinessName 0.779 0.934 ± 0.002 0.809 ± 0.011 0.876 ± 0.003 0.796 ± 0.017

InsurancePeriodStart 0.864 0.914 ± 0.010 0.915 ± 0.007 0.917 ± 0.005 0.913 ± 0.010

InsurancePeriodEnd 0.887 0.989 ± 0.008 0.978 ± 0.002 0.978 ± 0.002 0.977 ± 0.003

YearlyPremium 0.948 0.948 ± 0.005 0.936 ± 0.006 0.938 ± 0.004 0.937 ± 0.003

YearlyComission 0.794 0.911 ± 0.005 0.913 ± 0.566 0.914 ± 0.004 0.908 ± 0.010

Table 4.3: F1 on the fields from previously seen templates

embeddings on the previously unseen templates that the model has not been trained on.

4.3 Unseen templates
The following tables show the performance of the baseline and BiLSTM-CRF (char) models,
the rest of the models were not evaluated on this set due to time constraints. We chose
to work with the BiLSTM-CRF model with single character embeddings since it was the
highest performing model in the previous experiment. The F1-score score on the fields on
these documents are shown in Table 4.6. All of the fields scores were quite lower than in the
previous experiment which is quite expected since the patterns vary between the templates.
However, it was not expected for YearlyPremium to have a score of 0.0 since the keywords
corresponding to the values would help with the classification of the field. YearlyCommision
is not included in this experiment since this field was not present in the set, therefore it has
the score of 1.0 in tables 4.5 and 4.6.

The accuracy of the fields per JSON object had quite the drop in performance also where
YearlyPremium, like with the F1-score, had the worst performance. This is shown in 4.5. Since
the accuracy of the fields per file is fairly low it results in an accuracy of 0.0 in total files that
are classified as correct.

Model Accuracy

Baseline (MLM) 0.0

BiLSTM-CRF (Char) 0.0

Table 4.4: Accuracy of the JSON objects from previously unseen
templates
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4.3 Unseen templates

Field Baseline (MLM) BiLSTM-CRF (Char)

InsuranceNumber 0.108 0.486 ± 0.009

BusinessId 0.090 0.552 ± 0.310

BusinessName 0.114 0.651 ± 0.036

InsurancePeriodStart 0.000 0.128 ± 0.028

InsurancePeriodEnd 0.000 0.206 ± 0.011

YearlyPremium 0.000 0.000

YearlyComission 1.000 1.000

Table 4.5: Accuracy of the fields per JSON object from previously
unseen templates

Field Baseline (MLM) BiLSTM-CRF (Char)

InsuranceNumber 0.110 0.568 ± 0.046

BusinessId 0.000 0.552 ± 0.340

BusinessName 0.116 0.501 ± 0.052

InsurancePeriodStart 0.000 0.122 ± 0.008

InsurancePeriodEnd 0.000 0.208 ± 0.009

YearlyPremium 0.000 0.000

YearlyComission 1.000 1.000

Table 4.6: F1 on the fields from previously unseen templates
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4. Results
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Chapter 5

Discussion

Evaluation

The models with the simple character embeddings showed better results overall and the CRF-
layer did indeed improve consistency and reduced variability. To make sure we got the per-
formance of how the models would be in practice we trained and evaluated the models 10
times on the previously seen templates. One inconvenient part of our evaluation is that it
is quite the strict evaluation because it penalizes the field completely if one character in the
field is incorrectly classified. The models might be better at finding the patterns of the fields
than what the results show, just that it might need more fine-tuning with regex substitution
of characters that are incorrectly classified i.e. the field "10 0O0". This problem is most likely
due to our approach of automatic data extraction discussed in 3.3.

An additional evaluation method could have been added to gain more of a balanced eval-
uation into how the models perform, one such method would be to look at the classified
field and calculate the edit distance to the correct field based on a heuristic. The accuracy
of the whole document is the strictest evaluation, if one field is incorrectly classified in the
document then that document is in turn classified as incorrect. The fields with the worst
performance will significantly lower this part of the evaluation. This is a valuable aspect to
evaluate still, as one would need to check the field in each JSON object with the correspond-
ing machine-readable file that has been incorrectly classified. If the amount of files that have
been incorrectly classified is relatively large in relation to the set then this task of correcting
each file could become tedious and time-consuming as well. Fortunately, information extrac-
tion tasks do not usually have tasks that require the extraction of far too many fields as we
can see with the examples addressed in chapter 2.
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5. Discussion

One reason for the bi-char embeddings not performing well compared to it’s simpler coun-
terpart might be because it adds more specific detail to fields which may inhibit the models
from generalizing better, the risk for overfitting in the models increases. Since embedding
space is larger it also puts more strain on the hyper-parameters, the models’ parameters have
to be tuned di�erently compared to the single character embeddings counterpart.

Generalization
The results show that the system performs well on the templates that it had previously been
trained on. We see in our current implementation that some fields still have patterns that
are recognized in the unseen documents, but as we see with YearlyPremium it is not. We
believe the reason for the date fields not performing so well in the general case is due to
di�erent formatting in the templates. Even if the system does not generalize I still think this
solution is feasible for this task due to its simplicity and good performance on previously seen
templates. In section 3.1 we showed the tables that displayed the distribution of templates in
our data set, we think one of the reason for our models not generalizing is due to lack of data.
The data set is relatively small and not as diverse as one would have preferred. Annotating
each document took quite some time and producing a larger amount of data manually would
have taken a lot of time away from developing our models. It is not simple to compare the
generalization of our models with other studies either as data sets that go into researches like
these are not made publicly available.

Approach
In figure 4.1 we see that the BiLSTM-CRF model still shows signs of improvement when more
training data was added. We mentioned that our belief behind the lack of generalization in
our models was due to sparse data. One might question the experiment with deep learning
in this research because of this. However, we still find some value in this research. Rule and
pattern-based approaches only work on previously seen templates and might achieve good
performance despite having a small amount of data available. In our research, we have studied
the performance of simple neural network architectures with relatively sparse data and found
that it is e�ective on previously seen templates as well. Deep learning alleviates the problem
of requiring human operators for creating complex rules, this was one of the main reasons
for choosing to experiment with deep learning. Perhaps a combination of deep learning and
a rule and pattern-based approach would have yielded a greater performance in general.
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Chapter 6

Conclusion

We presented our goals for this project in the form of research questions. Each question was
addressed in the project and gave us some insight into the area of Information Extraction with
Deep Learning. We chose to work with variants of Recurrent Neural Networks and found
that the BiLSTM-CRF model gave us an Accuracy of 0.728 ± 0.007 on previously trained
templates. We also saw that we still could have needed more data to make the model even
more e�ective but that our approach did not work as well on previously unseen templates,
meaning that it did not generalize. I believe that better results could have been achieved
given more time to collect quality data and fine-tune the system. For simpler tasks like this,
I would argue that neural networks like we experimented with in this thesis are a viable
option. A previous study with a similar approach achieved greater results performance-wise
[Palm et al., 2017], one of the reasons for this might be because they had access to a larger
amount of data.

There are more advanced networks that have shown promising results in recent years but
are less available and harder to configure due to higher costs. However, as di�erent methods
become more accessible and cheaper it is likely that our approach may become obsolete.

6.1 Future work
This system is only focused on seven fields but it could be extended to any number of fields
given that they are annotated. That is the reason why I chose to see how well it performed
on a field like BusinessName, where the field is mostly characters and not numbers. S&P does
not necessarily use fields like this in their Customer Relationship Management platform but
it was an interesting experiment that showed good results.
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6. Conclusion

One immediate approach to improve the models is to experiment further with the hyper-
parameters and the overall architecture, which could improve the results in both previously
seen and unseen documents. Some suggestions would be to experiment with the batch sizes,
learning rate and the number of epochs. This is a very time-consuming and naive approach
to improve the performance and may only improve the results by a bit.

To improve the generalization of the models one could create features, add lists of values for
the di�erent fields such that it could find the fields better. An example is adding a list of
di�erent organization names in Sweden or adding names of the months such that the model
can find the dates which have a format such as 21-April-2020. To increase the performance in
extracting the fields one could incorporate rules for which candidate should be chosen like in
the traditional approach, fields can be assigned di�erent probability scores and the one with
the highest score is then chosen. For example, if there are several YearlyPremium candidates
then there could be a rule that chooses the one candidate that adds to a total sum given that
several premium fields are present like with YearlyCommision.

With companies like S&P, it is not unusual for companies to e-mail insurance documents and
their respective machine-readable format, if such e-mail is accessible and usable then it could
alleviate a lot of the annotation time for the data sets with increased quality. This was not
possible in our case but might be good to consider for future cases.

As mentioned in the introduction, Information Extraction is an open problem. We did not
achieve as great results in regards to our third research question since the performance on the
unseen templates was low. However, we believe this task can be solved e�ciently with our
chosen architecture and even more advanced ones that are state-of-the-art today. One hope
is especially that more data becomes publicly available such that more direct comparison in
Information Extraction with Deep Learning can be made.

44



References

[JSO, ] Introducing json. https://www.json.org/json-en.html. Accessed: 2010-09-
30.

[Adobe Systems Inc, 1999] Adobe Systems Inc, C. (1999). PostScript language reference.
Addison-Wesley Longman Publishing Co., Inc.

[Akbik et al., 2019] Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., and Voll-
graf, R. (2019). Flair: An easy-to-use framework for state-of-the-art nlp. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computational Linguis-
tics (Demonstrations), pages 54–59.

[Arabnia and Tran, 2016] Arabnia, H. R. and Tran, Q. N. (2016). Emerging trends in applica-
tions and infrastructures for computational biology, bioinformatics, and systems biology: systems
and applications. Morgan Kaufmann.

[Bengio et al., 1994] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term de-
pendencies with gradient descent is di�cult. IEEE Transactions on Neural Networks, Neural
Networks, IEEE Transactions on, IEEE Trans. Neural Netw, 5(2):157 – 166.

[Chanyeong and Alan, 2002] Chanyeong, K. and Alan, C.-M. (2002). Multinomial logistic
regression. Nursing Research, 51(6):404.

[Chaudhuri et al., 2017] Chaudhuri, A., K Ghosh, S., SpringerLink (Online, s., Mandaviya,
K., and Badelia, P. (2017). Optical Character Recognition Systems for Di�erent Languages with
Soft Computing. Studies in Fuzziness and Soft Computing: 352. Springer International
Publishing.

[Chen et al., 2015] Chen, X., Qiu, X., Zhu, C., Liu, P., and Huang, X.-J. (2015). Long short-
term memory neural networks for chinese word segmentation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pages 1197–1206.

45

https://www.json.org/json-en.html


REFERENCES

[Chicco and Jurman, 2020] Chicco, D. and Jurman, G. (2020). The advantages of the
matthews correlation coe�cient (mcc) over f1 score and accuracy in binary classification
evaluation. BMC genomics, 21(1):6.

[Chiticariu et al., 2013] Chiticariu, L., Li, Y., and Reiss, F. (2013). Rule-based information
extraction is dead! long live rule-based information extraction systems! In Proceedings of
the 2013 conference on empirical methods in natural language processing, pages 827–832.

[Chollet et al., 2018] Chollet, F. et al. (2018). Deep learning with Python, volume 361. Manning
New York.

[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

[Fu et al., 2021] Fu, J., Liu, J., and Shi, W. (2021). Exploiting named entity recognition via
pre-trained language model and adversarial training. 2021 IEEE International Conference on
Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI),
Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI),
2021 IEEE International Conference on, pages 665 – 669.

[Gal and Ghahramani, 2015] Gal, Y. and Ghahramani, Z. (2015). A theoretically grounded
application of dropout in recurrent neural networks.

[Gers et al., 2000] Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning to forget:
Continual prediction with lstm. Neural Computation, 12(10):2451 – 2471.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning.
Adaptive computation and machine learning. MIT Press.

[Graves and Schmidhuber, 2005] Graves, A. and Schmidhuber, J. (2005). Framewise
phoneme classification with bidirectional lstm and other neural network architectures.
Neural Networks, 18(5):602 – 610.

[Hastie and Tibshirani, 2009] Hastie, T. and Tibshirani, R. (2009). & friedman, j.(2008). the
elements of statistical learning; data mining, inference and prediction.

[Hecht-Nielsen, 1992] Hecht-Nielsen, R. (1992). Theory of the backpropagation neural net-
work. In Neural networks for perception, pages 65–93. Elsevier.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural Computation, 9(8):1735 – 1780.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

[Korenius et al., 2004] Korenius, T., Laurikkala, J., Järvelin, K., and Juhola, M. (2004). Stem-
ming and lemmatization in the clustering of finnish text documents. In Proceedings of the
Thirteenth ACM International Conference on Information and Knowledge Management, CIKM

46



REFERENCES

’04, page 625–633, New York, NY, USA. Association for Computing Machinery.

[La�erty et al., 2001] La�erty, J., McCallum, A., and Pereira, F. C. (2001). Conditional ran-
dom fields: Probabilistic models for segmenting and labeling sequence data.

[Lample et al., 2016] Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and
Dyer, C. (2016). Neural architectures for named entity recognition. arXiv preprint
arXiv:1603.01360.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature,
521(7553):436–444.

[Liu et al., 2018] Liu, L., Shang, J., Ren, X., Xu, F., Gui, H., Peng, J., and Han, J. (2018).
Empower sequence labeling with task-aware neural language model. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32.

[Medvet et al., 2011] Medvet, E., Bartoli, A., and Davanzo, G. (2011). A probabilistic ap-
proach to printed document understanding. International Journal on Document Analysis &
Recognition, 14(4):335 – 347.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). E�cient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

[Palm et al., 2017] Palm, R. B., Winther, O., and Laws, F. (2017). Cloudscan-a configuration-
free invoice analysis system using recurrent neural networks. In 2017 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR), volume 1, pages 406–413. IEEE.

[Pedamonti, 2018] Pedamonti, D. (2018). Comparison of non-linear activation functions for
deep neural networks on mnist classification task. arXiv preprint arXiv:1804.02763.

[Ramshaw and Marcus, 1995] Ramshaw, L. A. and Marcus, M. P. (1995). Text chunking using
transformation-based learning.

[Rusinol et al., 2013] Rusinol, M., Benkhelfallah, T., and d’Andecy, V. (2013). Field extrac-
tion from administrative documents by incremental structural templates. 2013 12th Inter-
national Conference on Document Analysis and Recognition, Document Analysis and Recognition
(ICDAR), 2013 12th International Conference on, Document Analysis and Recognition, Interna-
tional Conference on, pages 1100 – 1104.

[Schuster et al., 2013] Schuster, D., Muthmann, K., Esser, D., Schill, A., Berger, M., Weidling,
C., Aliyev, K., and Hofmeier, A. (2013). Intellix – end-user trained information extrac-
tion for document archiving. 2013 12th International Conference on Document Analysis and
Recognition, Document Analysis and Recognition (ICDAR), 2013 12th International Conference
on, Document Analysis and Recognition, International Conference on, pages 101 – 105.

[Sint et al., 2009] Sint, R., Scha�ert, S., Stroka, S., and Ferstl, R. (2009). Combining un-
structured, fully structured and semi-structured information in semantic wikis. In CEUR
Workshop Proceedings, volume 464, pages 73–87.

47



REFERENCES

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from over-
fitting. The journal of machine learning research, 15(1):1929–1958.

[Sukanya and Biruntha, 2012] Sukanya, M. and Biruntha, S. (2012). Techniques on text min-
ing. In 2012 IEEE International Conference on Advanced Communication Control and Computing
Technologies (ICACCCT), pages 269–271. IEEE.

[Thompson, 1968] Thompson, K. (1968). Programming techniques: Regular expression
search algorithm. Communications of the ACM, 11(6):419–422.

[van der Knij�, 2009] van der Knij�, J. (2009). Adobe portable document format. Inventory
of long-term preservation risks, v0, 2:20–56.

[Yang et al., 2017] Yang, X., Yumer, E., Asente, P., Kraley, M., Kifer, D., and Lee Giles, C.
(2017). Learning to extract semantic structure from documents using multimodal fully
convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5315–5324.

48





INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2021-11-10

EXAMENSARBETE Information Extraction on Insurance Policy Letters using deep learning
STUDENT Anujan Balasingam
HANDLEDARE Marcus Klang (LTH)
EXAMINATOR Elin-Anna Topp (LTH)

Informationsutvinning på
försäkringsbrev med hjälp av
djupinlärning

POPULÄRVETENSKAPLIG SAMMANFATTNING Anujan Balasingam

Hantering av affärsdokument så som försäkringsbrev kan vara en avskräckande uppgift,
särskilt när detta görs manuellt och volymen är hög. Detta arbete utforskar hur
processen kan skötas automatiskt med hjälp av djupinlärnings-tekniker.

Företag extraherar information (data) från affärs-
dokument och lagrar dem i IT -system för att
hålla reda på sina affärsavtal. Extraheringen av
data utförs, i traditionnellt avseende, manuellt av
de anställda. I takt med att dokumentmängden
ökar blir manuell extrahering till slut en ohåll-
bar process. Det är en ineffektiv och arbetskrä-
vande uppgift med risk för mänskliga misstag.
Datat som lagras i dessa IT-system är i struktur-
erad form, detta betyder att formatet på datat
överenstämmer med format som används i re-
lationsdatabaser, datat som finns i affärsdoku-
menten behöver omvandlas då det inte ärav denna
typ. Genom att låta maskiner sköta denna pro-
cess av informationsutvinning och omvandling kan
de anställda fokusera mer på andra uppgifter som
kan hjälpa företaget att växa.

I mitt examensarbete har jag utforskat hur
djupinlärnings-modeller kan användas för infor-
mationsutvinning från försäkringsbrev som är i
PDF-format. Experimentet är uppdelat i två de-
lar. Det första experimentet går ut på att utvinna
information från försärkringsbrev med samma ut-
seende som mina modeller har tränats på, s.k.
sedda mallar, och det andra går ut att utvinna

information från försäkringsbrev med annorlunda
utseende, s.k. osedda mallar, gentemot vad den
har tränats på. Jag har experimenterat med en
enkel maskininlärnings-modell, Logistic Regres-
sion, för att få en uppfattning om utmanningarna
i studien samt utforskat varianter av det neurala
nätverket LSTM.
En allmän pipeline för båda modeller kan ses i

figuren nedan.

Modellernas prestation utvärderas på tre olika
sätt, en av utvärderingsmetoderna som ger oss
en inblick på en högre nivå över hur modellerna
presterar är de extraherade filernas noggranhet.
Den högsta poängen i filernas noggrannhet, som är
vår striktaste utvärderingsmetod, på sedda mallar
är 0,728. På osedda mallar var poängen 0,0. Re-
sultaten visar att enkla metoder kan vara effektiva
för att extrahera information från olika mallar för
dokument som den har tränats på men att den
behöver mer finjustering för att förbättra gener-
aliseringen.
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