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Abstract 

 

Fallow, understood as a period where no crop is cultivated during a growing season, is an 

important crop management practice. Fallow plays an important role in pest and disease 

management, and monitoring the presence and duration of fallow can have implications for 

understanding the extent and effectiveness of this agricultural practice. Therefore, fallow 

period mapping using remotely sensed data is a widely researched topic. However, its 

identification using remotely sensed data is often problematic due to the fallow backscatter 

values being similar to other land cover classes. SAR data tends to be applied to crop 

identification, paying little to no attention to fallow. This thesis investigated fallow backscatter 

characteristics and detection methods that could be used for identification of fallow periods 

between rice crops. Timeseries of backscatter from Sentinel-1A data were plotted for 83 fields 

in two areas in the Philippines. Rice crop and fallow temporal characteristics were derived from 

field data and correlated with the plotted backscatter.  

The start and end of fallow showed significant differences that could be used for detecting 

fallow periods. However, the detection gave acceptable results only using VH polarisation and 

the VV/VH ratio, while VV polarisation resulted in the lowest accuracy. A backward fallow 

detection method was also employed, where the end of the rice season indicated the fallow 

start, and the start of the rice season marked the fallow end. This method proved more 

successful in determining fallow duration than using the fallow itself. Fallow duration was also 

categorised according to its length into short and long fallow. In short fallow periods, 

backscatter was mainly decreasing during the whole fallow period, while in long fallow 

periods, some variation was observed approximately halfway through the fallow duration, 

which were attributed to short-term drought tolerant crops. Fallow backscatter values for 

irrigated and rainfed fields were also compared. Ecosystem type was found to have a significant 

effect on fallow backscatter only in one of the two study areas, indicating that water availability 

may affect fallow duration. The study found that SAR backscatter can be used to map fallow 

by detecting rice seasons, although the detected fallow duration was slightly overestimated. 

The study lacked information about the conditions of the fields during the fallow periods; 

therefore, future studies could benefit from more information about weed prevalence, planting 

of non-rice crops, water or rainfall deficit, and flooding/tillage activities during or after fallow. 

 

 

Keywords: Geography, Geographical Information System, GIS, Remote Sensing, Fallow, 

Detection, Sentinel-1A, Synthetic-aperture radar, SAR 
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1 Introduction 

Rice is one of the most important staple crops in the world and is the biggest “single source of 

calories for more than 3.7 billion people” (Nelson et al., 2014, p. 10775), which accounts for 

approximately 50% of the global population. Over 90% of the global rice production is based 

in Asia (Clauss et al., 2018a), and projections suggest that the overall agricultural production 

will have to increase by 70% by 2050 to satisfy the global demand for food (Carvajal-Yepes et 

al., 2019), putting more pressure on improving rice yields. 

Rice is an annual crop that is adapted to grow in wetland environments (paddy fields). 

Therefore, in tropical areas of the South-East Asia rice is typically grown during the wet season. 

However, places with good irrigation management, e.g., areas with dams or other man-made 

water retaining structures, can grow rice during the dry seasons (Litsinger et al., 2009).  

In areas with relatively stable temperatures during the whole year, high levels of rainfall and 

good irrigation systems, such as in the Philippines, up to three rice crops can be planted and 

harvested during a year (Bégué et al., 2018). However, constant presence of rice crops 

throughout the year, together with other habitats in the neighbouring fields, create favourable 

conditions for pest and rice disease development and allows pests to carry over from crop to 

crop, which can lead to yield losses (Rola and Pingali, 1993; Litsinger et al., 2009). Savary et 

al. (2019) estimate the average global loss of rice yields due to pest and crop disease to be 

approximately 30%. Application of pesticides is one of the solutions to reduce pest or disease 

outbreaks and increase rice yields (Rola and Pingali, 1993). However, persistent use of 

pesticides has been linked to negative effects upon the health of farmers and consumers; 

contamination of ground and surface water that leads to reduction of inland fishing resources 

(Parveen and Nakagoshi, 2001); secondary pest outbreaks due to removal of their natural 

enemies by the pesticides (Litsinger et al., 2009); and/or to disproportionally higher energy and 

pesticide use in relation to much lower increase of rice yields over time (Rola and Pingali, 

1993, Chapter 3). Due to this, more recognition is given to more natural crop management 

methods, such as fallowing (Schoenly et al., 2010). 

Fallow period is part of crop rotation or succession practice that takes place after crop harvest 

and is a non-productive period of varying duration when no crop is purposely cultivated during 

a growing season (Wojtkowski, 2008).  

The primary purposes of fallow periods are to restore soil and ecosystem fertility, conserve soil 

moisture, and remove toxic substances from pesticides and pathogens. Fallow is also used as 

a natural way of pest management that disrupts the pest or disease growth conditions and 

habitats by the absence of crops/habitat (Mertz, 2002; Litsinger et al., 2009; Schoenly et al., 

2010; Bégué et al., 2018; Minh et al., 2019). However, in the eyes of farmers, fallow can be 

seen as the least favourable option, as it removes potential income that planting other crops, 

for example drought tolerant plants such as garlic, could bring (FAO, 2013). Therefore, fallow 

is often not a deliberate choice, but rather a result of limited waster availability, especially in 

areas with lack of irrigation systems (Nguyen et al., 2015), such as hilly terrains where rice 

fields are in the form of terraces. However, Mertz (2002) and Wojtkowski (2008) argued that 
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well cultivated post-fallowed fields are overall cost-effective by bringing higher yields and 

requiring lower amounts of pesticides and insecticides. 

Successful insect pest management requires the fallowing practice to last long enough, usually 

more than one pest generation, and to be spread over multiple neighbouring fields in order to 

be effective (Schoenly et al., 2010). This is due to the fact that habitats which neighbour the 

rice fields provide refuge for certain rice pests and their natural enemies throughout the year. 

Therefore, there is an organisational problem where farmers and local governments have to 

synchronise the fallowing period to start at the same time (Schoenly et al., 2010). Yet, most of 

the rice fields in the world are smallholders that are smaller than two hectares (Nelson et al., 

2014), which increases the problem for synchronising and monitoring fallow periods over large 

areas. However, spatial image analysis could help with this issue.  

Remote sensing (RS) is effective in observing temporal and spatial changes in cropping 

practices over a wide variety of crops (Bégué et al., 2018). In tropical regions, where the cloud 

coverage is high, optical sensors have limited application (Clauss et al., 2018a). Alternatively, 

active microwave sensors, also known as a synthetic-aperture radar (SAR), are able to penetrate 

clouds and collect the data during day and night. Moreover, SAR has been proven to be very 

good at detecting changes in the lowland rice growth stages, and with the right understanding 

of backscatter values (dB) it can act as a cheaper alternative to time consuming land surveys 

(Nelson et al., 2014). However, most RS studies have focused on crop mapping, paying little 

attention to the fallow periods. 

Moreover, Bégué et al. (2018) observed that in mapping applications fallow periods are often 

classified as cropped land instead of as a separate class. They concluded that this may be due 

to the difficulties in differentiating short fallow fields from cropped fields that may be due to 

“climatic and soil conditions, cropping techniques, crop failure, or may be confused with 

surrounding ecosystems due to its natural regeneration” (p. 103). 

1.1 Problem statement 

In the tropical regions of Asia, synchronous rice cultivation creates fallow periods of about 1 

to 3 months, mostly between the dry and wet seasons, due to the need to limit water usage in 

the dry season (Schoenly et al., 2010). Those instances create a possibility for natural 

management of insect pests, diseases, and weeds. The present research focuses on fallow 

practices in the Philippines, and the detailed description of the study areas, along with the 

justification for their choice, can be found in Chapter 3. 

Timely mapping of the rice fields in the Philippines can be challenging due to high cloud 

coverage, especially during the wet season. However, SAR images, thanks to their cloud 

penetration capabilities, have been successfully employed in various rice observations studies 

(Nelson et al., 2014). Additionally, improved spatial and temporal resolution, as well as the 

dual polarisation capabilities of the Sentinel-1A satellite open new prospects for more detailed 

exploration of temporal changes in the rice field monitoring (Minh et al., 2019). Hence, 

Sentinel-1A’s SAR data, together with ancillary information, could be used to improve the 

understanding of the fallow backscatter characteristics, duration, and to indicate the occurrence 
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factors, e.g., due to type or lack of irrigation system, and help monitor potential pest outbreaks 

over large areas, all of which would be beneficial to improving food security.  

Many studies that utilised SAR images for application in rice crop analysis usually 

concentrated on detecting or monitoring rice types and rice growth stages, or predicting rice 

yields, whereas fallow analysis received very little attention by either classifying it as part of 

the early rice growth stage or not considering it at all (for example Asilo et al., 2014; Nelson 

et al., 2014; Nguyen et al., 2015; Mansaray et al., 2017; Nguyen and Wagner, 2017; Clauss et 

al., 2018a), leaving a knowledge gap, which the present research aims to address, with the aims 

and objectives described below. 

1.2 Research aim and objectives 

The overall aim of this study is to detect fallow periods using Sentinel-1A and field data in the 

Philippines.  

The specific objectives of this study are to: 

1. Describe the SAR C-band temporal backscatter behaviour over fallow periods; 

2. Measure the differences in multi-temporal SAR backscatter values between fallow in 

irrigated and rainfed fields;  

3. Derive backscatter values over rice seasons and fallow periods that can be used for 

fallow identification; 

4. Determine which polarisation in multi-temporal SAR images is best at discriminating 

between fallow and rice. 

1.3 Research questions 

The above objectives will be achieved by answering the following research questions: 

1. What are the characteristics of SAR backscatter during fallow period? 

2. Are fallow backscatter values different for irrigated and rainfed fields? 

3. Can fallow be detected using SAR time-series? 

4. Which polarisation (VV, VH or VV/VH polarisation ratio) is best at detecting 

fallowing?  
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2 Background 

2.1 Fallow duration 

The duration of a fallow period can vary from a few weeks to a few years and usually depends 

on crop type and reason for entering fallow practice. For example, in dry areas of bush/fallow 

swidden landscapes that are cultivated for a few years and later cleared by fire (where fallow 

is classed as an unmanaged land), fallow can last from a few to approximately ten years, during 

which natural shrub vegetation has enough time to develop (Leisz and Rasmussen, 2012). 

However, in tropical Asia, fallow within rice fields typically lasts from several days to three 

months between dry and wet seasons (Schoenly et al., 2010; Sander et al., 2018) usually during 

the dry season when farmers with limited water availability (e.g., with no access to irrigation) 

are no longer able to grow rice or have no access to other drought-tolerant crops (Schoenly et 

al., 2010), such as garlic (FAO, 2013). Another common reason for fallow, typically of 

a shorter duration, is the period between crops during which some type of land preparation can 

take place, such as tillage or irrigation (Sander et al., 2018). There are therefore many 

definitions of fallow, but for the purpose of this research fallow will be classed as any period 

after harvest where no crop was being grown nor land preparation was taking place, but could 

have had some vegetation coverage (e.g., weeds or naturally ratooned crop, which is where 

crop grows again from stubble left in the field after harvest [Boschetti et al., 2017]) that was 

not purposely planted for harvest, as previously mentioned in the Introduction. 

In tropical Asia, where up to three rice harvests can be achieved throughout the year, the fallow 

length is becoming shorter (Litsinger et al., 2009). Therefore, it is important to understand how 

this shortening period of shifting cropping type can be identified with remote sensing. Similar 

trends of shortening fallow periods were observed in other crop types and across various 

locations (e.g., Dalle and de Blois, 2006; Delang et al., 2016). Shortening fallow periods pose 

potential problems for enhancing environmental management efforts. The management of 

paddy rice fields affect various environmental aspects, which are characterised by an increased 

water usage due to the need for a profuse amount of water during growing stages (when 

compared to other staple crops), increased greenhouse gases emissions through significant 

release of methane (CH4) and CO2 gases, as well as being a key location of transmission for 

some diseases, for example avian influenza A (H5N1) disease (Dong and Xiao, 2016). 

Therefore, mapping and monitoring of rice at local and intra-national scales could aid wide-

scale decision making, improve environmental management practices (Dong and Xiao, 2016) 

and can lead to better use of pesticides and fertilisers (Vreugdenhil et al., 2018). 

2.2 Remote sensing 

Remotely sensed data has been widely used for mapping and monitoring agricultural 

environments with various types of sensors (Kuenzer and Knauer, 2013; Bégué et al., 2018; 

Tong et al., 2020). However, mapping of fallow has been given much less consideration. 

Fallow classification and mapping is often omitted from the agricultural classification as a 

separate land cover type. Tong et al. (2020) went as far as to call fallow the “forgotten land use 

class” in mapping agricultural lands of some parts of the world, especially the grass fallow 

systems in semi-arid regions.  
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The limited use of remote sensing to detect fallow is not without good reason. One of the main 

challenges in mapping rice fields stems from the fact that most of them are smallholders of a 

size smaller than two hectares (Nelson et al., 2014). Therefore, mapping with coarser resolution 

sensors can be limited in application for fallow observation where not every field or the entirety 

of a field may be fallowed.  

During the 80’s and early 90’s Landsat MSS/TM was the main image type utilised for mapping 

paddy rice (Kuenzer and Knauer, 2013; Dong and Xiao, 2016). This, however, has changed 

with the launch of the SAR-C radar in the mid-90s, when mapping of rice fields from SAR 

derived images was gaining in popularity, for example ERS-1 and RADARSAT-1 C-band, and 

JERS L-band data (Liew et al., 1997; Le Toan et al., 1997; McNairn and Brisco, 2004; Clauss 

et al., 2018b). However, due to restricted accessibility, the coarseness of early SAR images, 

the complexity of SAR scattering applicability, and small paddy rice field sizes, which were 

limited by the requirement for good drainage and irrigation conditions, SAR data for paddy 

rice mapping was not as prevalent as was the case with multispectral images (Inoue and 

Sakaiya, 2013; Dong and Xiao, 2016; Steele-Dunne et al., 2017). Additionally, early SAR 

sensors recorded information about a target in a single polarisation and frequency that 

hampered the interpretation of SAR data. To alleviate this problem and achieve similar 

classification results to multichannel optical sensors, acquisition of multitemporal SAR data 

was required (McNairn and Brisco, 2004). Enhanced application of SAR for rice field mapping 

increased between 2000 and 2020, which was correlated with wider availability of SAR 

satellites, improved image resolution and application of various SAR bands and polarisations 

(e.g., ENVISAT ASAR, RADARSAT-2, ALOS, COSMO-SkyMed or TerraSAR-X; Chen et 

al., 2007; Bouvet et al., 2009; Zhang et al., 2009; Lopez-Sanchez et al., 2011; Torbick et al., 

2011a; Li et al., 2012; Lopez-Sanchez et al., 2012; Inoue and Sakaiya, 2013; Inoue et al., 2014; 

Nelson et al., 2014). 

Even then, some of the main limitations that potentially reduced classification accuracy were 

poor image acquisition frequency, reliance on temporal averaging and incidence angle 

normalisation algorithms to make the data usable in the temporal cropping classification or 

crop identification (Inoue et al., 2014; Bégué et al., 2018). All of those aspects potentially 

reduce classification accuracy. However, since the launch of ESA’s Sentinel-1A satellite those 

problems have mostly been eliminated or at least reduced because the Sentinel-1A satellite 

offers a regular temporal revisit frequency, acquires images at a constant incidence angle and 

has improved spatial resolution (Geudtner et al., 2013; Veloso et al., 2017; Bégué et al., 2018; 

Vreugdenhil et al., 2018) 

Despite the recent improvements of radar sensors and increased availability of SAR data, the 

use of SAR data for agricultural applications is still lagging behind when compared with optical 

data. Reasons for this include a higher level of complexity involved in interpretation of such 

data, but also a diversity of SAR frequencies/polarisations that have various canopy penetration 

capabilities (Veloso et al., 2017). Additionally, intense rainfalls and high winds negatively 

impact SAR data by generating random scatterings that are characterised by strong backscatter 

increases during such events (Lopez-Sanchez et al., 2012; Holecz et al., 2013; Nelson et al., 

2014). Nelson et al. (2014) noted that those effects can be corrected for but require knowledge 

of the weather conditions at the time of image acquisition. Another aspect that could have 
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hampered the spread of SAR for crop mapping is a greater requirement for field visits and/or 

farmer interviews than in the case of optical data, to help interpret what is being observed by 

SAR backscatter at given date (Asilo et al., 2014; Clauss et al., 2018a; Onojeghuo et al., 2018). 

To eliminate this problem some studies correlated SAR data with optical images to visually 

identify or validate which fields were fallowed and planted with what type of crop, and as a 

result reduced the need for field visits (Gumma et al., 2011; Torbick et al., 2011a; Nguyen and 

Wagner, 2017; Das and Pandey, 2019; Dirgahayu et al., 2019; Minh et al., 2019; 

Muthukumarasamy et al., 2019; Rudiyanto et al., 2019; Chandna and Mondal, 2020; 

Mohammed et al., 2020; Pasha et al., 2020). This approach showed good results, but its 

application required a level of priori knowledge about the studied area and does not always 

eliminate the need for a field visit. Laborte et al. (2010) trialled a signature generalisation 

technique where agricultural signatures derived from multiple images within one season were 

applied for classifying historical LANDSAT images for which there was no field data 

available. Their study gave promising results but based on the reviewed literature this approach 

was not expanded to SAR data classification. In the past few years many studies have utilised 

machine and deep learning for mapping and monitoring rice fields where multitemporal data 

from multiple sensors can be combined for improved rice classification accuracy (Onojeghuo 

et al., 2018; Setiyono et al., 2018; Tian et al., 2018; Bazzi et al., 2019; Cai et al., 2019; 

Mansaray et al., 2019; Zhou et al., 2019). However, this approach did not fully remove the 

requirement for some level of a priori knowledge about the studied areas and often involved 

large input datasets (Bazzi et al., 2019; Weiss et al., 2020). Despite many limitations, SAR 

remains one of the most favourable options for mapping cropping activities, as will be 

described below. 

2.3 SAR 

In the past decade, SAR has become a popular method for crop mapping and detection in the 

tropical regions, such as Philippines, because of its cloud penetration capabilities (Le Toan et 

al., 1997; Nelson et al., 2014). SAR is able to observe crop development stages, from planting 

to harvest, thanks to the interaction of radar backscatter with vegetation that is determined by 

dielectric properties (affected by water content), size/height, shape, orientation and roughness 

of foliage, stems and grains that change at each crop development stage (Oh et al., 2009; Asilo 

et al., 2014; Inoue et al., 2014; Nelson et al., 2014). Moreover, SAR is also useful for detecting 

fallow because of SAR behaviour that is affected by soil roughness and moisture (dielectric 

properties; Steele-Dunne et al., 2017). Therefore, wet rough/tilled soil reflects or diffuses more 

microwave signal (appearing lighter in the SAR images) than dry tilled ground (appearing 

slightly darker than wet soil), and even more than settled/unploughed dry or wet soil because 

in the latter cases more signal is specularly reflected. Similarly, with flooded soils, water 

exposed during early rice development, where specular reflection is the highest, most signal is 

reflected away from the SAR sensor (Brogioni et al., 2010). See Figure 1 for illustration of the 

backscattering mechanisms. 

Additionally, SAR sensors provide unique capabilities for observing cropping events because 

different bands have various vegetation penetration capabilities. Radar frequency results in 

different soil or crop canopy penetration capabilities of the microwave wavelengths. Shorter 

wavelengths, such as C- and X-band sensors, are most widely used in agricultural applications 
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(Lopez-Sanchez et al., 2011; Inoue et al., 2014) because they are better at detecting crop types 

and discriminating between vegetated and bare soils thanks to a good balance of canopy 

penetration abilities and also because they can detect residue cover after harvest (McNairn et 

al., 1998). However, X-band is limited to detecting only vegetation canopy making it difficult 

to use for distinguishing between plants and other objects (Suga and Konishi, 2008; Minh et 

al., 2019). In contrast, C- and L-bands are sensitive to water and crop geometry, making them 

better suited for differentiating between vegetated and non-vegetated fields, than shorter 

wavelengths (e.g., X-band), which are more suited for detecting smaller or younger vegetation 

(McNairn et al., 2002; Suga and Konishi, 2008; Inoue et al., 2014; Dong and Xiao, 2016; Minh 

et al., 2019). Moreover, L-band proved to be better at detecting variations in bare soils and 

observing soil-conditions in vegetated areas (McNairn and Brisco, 2004), but have more 

limited application in detecting vegetated and non-vegetated fields than C-band sensors.  

 

Figure 1. SAR backscattering mechanisms in a) flooded fields; b) paddy rice; c) dry 

smooth soil; d) wet smooth soil; e) dry rough soil; and f) wet rough soil. 
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2.4 Polarisation 

Polarisation is an indication of transmitted and received electromagnetic wave geometrical 

travel direction (horizontal, vertical or circular) which is perpendicular to the magnetic field 

(NASA, 2020). Polarisations are represented by signatures or backscatter values which are a 

sum of multiple individual scatterers within a pixel (McNairn et al., 2002). Various 

polarisations reveal different details about the observed surface that depend on the land cover 

type properties (e.g., surface roughness or volume scattering) that result in different scattering 

mechanisms. Cross-polarisations detect the repolarisation (orthogonal H or V) – change in the 

degree of polarisation vector after interaction with a target – from the transmitted linear wave 

(V or H). Whereas co-polarisations detect the intensity between identical transmitted (V or H) 

and received (V or H) polarisations (McNairn et al., 2002). 

In SAR’s C-band spectrum, the VV polarisation has been shown to be better at detecting small 

grain crops, such as rice, than larger crops, because the VV polarisation is less susceptible to 

volume scattering than the VH polarisation as more signal can penetrate through the canopy 

(Oh et al., 2009; Gherboudj et al., 2011; Nelson et al., 2014; Xu et al., 2019). On the other 

hand, cross-polarised SAR signal, such as VH, is more receptive to the canopy overall structure 

and provide different information of the canopy or surface area than the co-polarised VV 

measurements (McNairn and Brisco, 2004). Therefore, VH polarisation increases faster during 

crop hight increases than the VV polarisation (Gherboudj et al., 2011). Reasons for this can be 

accredited to the lower attenuation by leaves and stems at the VH polarisation (Oh et al., 2009; 

Mansaray et al., 2017). The VV polarisation, on the other hand, could be a better indicator of 

fallow because of low depolarising properties of bare ground (NASA, 2020).  

In terms of moisture content, both C-band polarisations (VV and VH) provide more 

information about soil moisture content during crop season than after harvest or in the exposed 

soil because of multiple/increased volume scattering mechanisms that occur in vegetation 

canopy (Khabbazan et al., 2019), as opposed to only volume scattering present in bare soils. 

Whereas the co-polarised (VV) L-band wavelengths are most sensitive to soil moisture content. 

This property is slightly less prominent in the C-band wavelength due to a higher sensitivity to 

small vegetation that can grow within bare fields, especially at the VV polarisation (Brogioni 

et al., 2010). However, a higher sensitivity to even minimal vegetation coverage makes the C-

band better suited for application in crop monitoring. 

Additionally, a polarimetric channel ratio of the C-band backscatter, such as VH/VV or 

VV/VH, has been found to be a good indicator for vegetation densities and their structure, 

monitoring crop growth stages (Vreugdenhil et al., 2018) and vegetation water content (Kim 

et al., 2012) of various crop types. Gherboudj et al. (2011) observed that the VH/VV 

depolarisation ratio tends to increase with crop height, which they accredited to higher 

sensitivity of the VH polarisation to vegetation height than the VV polarisation. 

Furthermore, soil roughness differs based on the type of tillage method used (McNairn and 

Brisco, 2004), which can be helpful for observing the start of land preparation after harvest or 

fallow. For example, the VH polarisation has been shown to have clearest separation of 

backscatter values between bare soils and grounds with residue standing after harvest at various 

incidence angles when compared to the VV polarisation, which experiences a lot of backscatter 
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value mixing (McNairn and Brisco, 2004). Those findings suggest that tilled fields could be 

distinguished from the fallowed lands that are left untouched for prolonged periods. Moreover, 

polarisation ratios, such as VV/VH, VV/HH and VH/VV, have been suggested to be better 

indicators for measuring soil roughness, because smooth surfaces differed significantly 

between each polarisation, whereas very rough surfaces did not show any distinction (McNairn 

and Brisco, 2004). In bare soils depolarised VH/VV ratio decreases with increasing soil 

roughness, as opposed to VH/VV increases observed in vegetation growth stages (Gherboudj 

et al., 2011). In the VV/VH polarisation ratio the trend is expected to resemble this but in the 

reverse direction. Additionally, water alters the dielectric properties of soil backscatter 

(McNairn and Brisco, 2004) by decreasing soil roughness sensitivity in the VH polarisation in 

very moist soils (Oh, 2004).  

As mentioned above, the cross-polarisations (e.g., VH) have been shown to be better at 

distinguishing bare fields from vegetated fields (Steele-Dunne et al., 2017); however, Baronti 

et al. (1995) reported good discrimination results between bare surfaces and vegetated fields 

by using linear HV polarisation together with circular RL polarisation. In this case, bare 

surfaces were represented by significantly higher RL backscatter values than the cross-

polarised HV backscatters. Comparable results were also achieved by Ferrazzoli et al. (1997) 

where circular RL, RR, HV-HH and HV-VV C-band polarisations were applied to distinguish 

cropped areas from bare soils, which also resulted in bare fields having higher backscatter 

values than the vegetated areas. 

To summarise, discrimination between canopy cover and fallow fields can be distinguished in 

SAR backscatter data thanks to the sensitivity of spatial radar signal to the variations in soil 

roughness, soil and vegetation water content as well as vegetation structure and height 

(Vreugdenhil et al., 2018). 

2.5 Rice recognition 

“Paddy rice is the only staple grain that needs to be transplanted” (Dong and Xiao, 2016, p. 

216), and the beginning of the rice crop season can vary by a few weeks across fields located 

within the same region (Le Toan et al., 1997), even if planting was done by direct seeding 

(Boschetti et al., 2017). For this reason, mapping and monitoring of paddy rice has always had 

to be done with the use of multitemporal images (Kuenzer and Knauer, 2013). Early paddy rice 

mapping and monitoring relied on spectral bands from optical imagery, such as SPOT, MODIS 

or Landsat, that were sensitive to water bodies, soil and vegetation (Dong and Xiao, 2016). 

Common classification approaches included on-screen digitization, supervised and 

unsupervised classifiers, knowledge-based and phenology-based approaches, and maximum 

likelihood classifier (MLC), as well as vegetation indices (VI), such as normalised vegetation 

index (NDVI; Kuenzer and Knauer, 2013; Mosleh et al., 2015; Dong and Xiao, 2016). Since 

the 2000s paddy rice mapping improved, thanks to the advances in the optical satellite imagery, 

increased revisit times, a better spatial resolution, the involvement of more images and the 

development of new classifiers, such as neutral network (NN), change detection (CD), and 

object-based image analysis (Dong and Xiao, 2016). Additionally, technological advances in 

the optical sensors also improved rice mapping with vegetation indices, out of which the 

normalised difference vegetation index (NDVI), enhanced vegetation index (EVI) and land 
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surface water index (LSWI) have been one of the most commonly used VI for rice crop 

mapping (Chen et al., 2004; Torbick et al., 2011b; Torbick and Salas, 2014; Bégué et al., 2018; 

Mansaray et al., 2019). However, as previously noted, the use of optical data is limited in 

tropical areas where cloud cover might continue for more than 70% of the rice growing season 

(Le Toan et al., 1997; Kuenzer and Knauer, 2013; Bazzi et al., 2019). Le Toan et al. (1997) 

observed that thanks to cloud penetration capabilities SAR satellites are the only system that 

can be used for regular rice mapping and monitoring. Rice mapping and monitoring has been 

done with various SAR frequencies (C-, L-, and X-band) (Inoue et al., 2002; Suga and Konishi, 

2008; Kim et al., 2009; Oh et al., 2009; Inoue and Sakaiya, 2013; Nelson et al., 2014; Mansaray 

et al., 2017; Son et al., 2021), each of which have different canopy penetration capabilities. The 

most common bands for mapping paddy rice are the C- and L-band (lower frequency) because 

they penetrate deeper into canopy, making them more sensitive to the changes in canopy 

structure and differences detected between exposed soil and vegetation development (Suga and 

Konishi, 2008), while X-band (higher frequency) was successfully used for rice monitoring, 

however, their application was more limited due to lower temporal changes observed in the X-

band backscatter that reach saturation at rice heading stage, plateau and increase slightly more 

near the harvest season (Inoue et al., 2002; Suga and Konishi, 2008; Kim et al., 2009). 

However, the rice growth cycle in X- and L-band is not as well defined as in C-band 

backscatter, which from the reviewed literature, recently was the most widely used frequency 

for paddy rice mapping and monitoring (Le Toan et al., 1997; Mansaray et al., 2017; Torbick 

et al., 2017; Veloso et al., 2017; Clauss et al., 2018b; Tian et al., 2018; Bazzi et al., 2019; 

Dirgahayu et al., 2019; Minh et al., 2019; Xu et al., 2019; Son et al., 2021). One of the main 

obstacles that has been mentioned in SAR mapping is the spatial resolution of SAR images and 

revisit time, but those limitations have been improving in recent years, especially since the 

launch of the Sentinel-1A satellite.  

Moreover, early studies of Rosenthal and Blanchard (1984) and Brisco et al. (1989) indicated 

that agricultural type detection can be enhanced by combining SAR and visible or infrared data, 

which improved the classification by 20% to 25% when compared to SAR alone. Since then 

this approach has been adopted by many other studies, especially those employing machine 

learning (Torbick et al., 2011a; Asilo et al., 2014; Karila et al., 2014; Torbick et al., 2017; 

Veloso et al., 2017; Setiyono et al., 2018; Cai et al., 2019; Muthukumarasamy et al., 2019; 

Zhou et al., 2019).   

Identification and mapping of paddy rice fields with SAR data is based on strong temporal 

changes of the rice growth stages in the composition of water content, canopy height and 

structure, and soil exposure observed in remotely sensed images (Torbick et al., 2011b; Inoue 

et al., 2014; Dong and Xiao, 2016; Chandna and Mondal, 2020). Backscatter behaviour at each 

rice growth stage has been extensively studied (see Le Toan et al., 1997; Inoue et al., 2002; Oh 

et al., 2009; Lopez-Sanchez et al., 2011; Lopez-Sanchez et al., 2012; Inoue and Sakaiya, 2013; 

Inoue et al., 2014; Nelson et al., 2014; Nguyen and Wagner, 2017; Steele-Dunne et al., 2017 

for an extensive review of rice crop behaviour) and enables phenology-based classification of 

rice from non-rice. Based on known temporal changes in the SAR backscatter during the 

vegetative stage (after sowing or transplanting), when the rice canopy increases, the SAR 

backscatter also increases gradually because the microwave signal becomes more affected by 
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vegetation and less by exposed ground. During the reproduction and ripening stages, when the 

rice canopy is significant, more SAR signal is reflected back by the rice tillage than the soil. 

At those stages backscatter reaches its peak and some signal fluctuations are observed that are 

captured differently by the VV and VH polarisations (Inoue et al., 2002; Oh et al., 2009; Lopez-

Sanchez et al., 2011). In general, the VV polarisation reaches saturation at the reproductive 

stage (around the flowering), which is followed by a decrease at the ripening stage due to 

canopy attenuation (Le Toan et al., 1997; Oh et al., 2009; Nelson et al., 2014). In terms of the 

VH polarisation, the signal reaches saturation at the ripening stage (between the flowering and 

harvest; Oh et al., 2009; Nguyen and Wagner, 2017)  After harvest there is a significant 

decrease of backscatter value that is once more affected by increased reflection of soil (Asilo 

et al., 2014). This change could potentially be used as a marker for the start of a fallow period.  

Fallow recognition would be based on a similar principle as it is done for crops, where temporal 

changes in the SAR backscatter after harvest would differ from that of rice or other crops. 

However, from the reviewed literature the fallow backscatter behaviour has not been very well 

researched, and this study will provide some analysis to fill in this knowledge gap. 

2.6 Fallow recognition 

Fallow mapping with remotely sensed data is a widely researched topic, often included in crop 

observation research. The majority of analysed studies used normalised difference vegetation 

index (NDVI) to map and monitor fallow periods obtained from optical (visible and infrared) 

bands of multispectral satellite imagery (Girard et al., 1994; Folving and Christensen, 2007; 

Yamamoto et al., 2009; Leisz and Rasmussen, 2012; Wu et al., 2014; Bandyopadhyay et al., 

2015; Gumma et al., 2016; Ghosh et al., 2017; Wallace et al., 2017; Chandna and Mondal, 

2020; Pasha et al., 2020; Tong et al., 2020), and a few utilised panchromatic bands from 

multispectral sensors (for example, Elmqvist and Khatir, 2007). Other research utilising radar 

signals that concentrated on non-vegetated areas has been based on sensors with coarse single 

frequency and polarisations (McNairn et al., 2002).  

NDVI is a good indicator of vegetation coverage because it measures photosynthetic activity 

in a form of reflectance profile where more vegetated areas are represented by increased 

absorption of red wavelengths and higher reflection of near-infrared wavelengths (Yamamoto 

et al., 2009). For instance, it has been used to map agricultural crop types and fallow occurrence 

and duration in India (Ghosh et al., 2017) or to identify fallow practices in Laos (Yamamoto et 

al., 2009). However, using NDVI for fallow detection can prove problematic in vegetated (e.g. 

weeded) fallow where marking the distinction between cropped field and vegetated fallow 

fields can create confusion and give less accurate classification (Wu et al., 2014; Wallace et 

al., 2017). Additionally, NDVI is also affected by cloud coverage which obstructs view, 

limiting regular observation capabilities, especially in high cloud coverage areas. This is where 

SAR sensors could be more useful for observing fallow periods thanks to the collection of 

information with different wavelengths and its cloud penetration capabilities.  

Torbick and Salas (2014) found fallow classification within paddy rice environments to be the 

most problematic land cover type to classify due to temporal fluctuations or mixing of the 

fallow backscatter values that was similar to other land cover classes. Similar conclusions were 

also drawn by other studies (Bégué et al., 2018). Despite previous research, backscatter 
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behaviour and mixing of fallowed fields with other cropping types in SAR imagery is not well 

understood (Yesou et al., 1996; Schieche et al., 1999). From the majority of the analysed 

literature, fallow was briefly mentioned in crop mapping studies without any detailed analysis 

of SAR signal behaviour (Brisco et al., 1989; Asilo et al., 2014; Nelson et al., 2014; Stefanski 

et al., 2014; Torbick and Salas, 2014; Uppala et al., 2015; Boschetti et al., 2017; Torbick et al., 

2017; Minh et al., 2019) even though it could be detected with a single-date hybrid polarimetric 

SAR data (Uppala et al., 2015). Banqué et al. (2015) observed that bare soils stay relatively 

low in co- and cross-polarised SAR signal; however, in unmanaged fallow fields variations of 

backscatter can be observed from developing vegetation or weeds (Wallace et al., 2017). 

Additionally, there can be other variation of the SAR signal affected by soil moisture 

(Gherboudj et al., 2011) and soil roughness (Oh, 2004). 

This lack of understanding of backscatter characteristics poses a challenge for developing 

automated fallow classification method in a similar way as was attempted for rice (Nelson et 

al., 2014). Therefore, this research aims to identify fallow periods using SAR backscatter 

behaviour from Sentinel-1A data. Backscatter variations observed during the rice growth stages 

and fallow periods have been used. The detection of rice cropping seasons has been 

successfully applied by identifying local maxima and local minima (Boschetti et al., 2017; 

Zhang et al., 2019; Zhou et al., 2019). This study will apply a similar approach to fallow 

backscatter to assess if detection using local minima and maxima can be applied to fallow 

periods. Additionally, as rice has more consistent temporal backscatter behaviour than fallow, 

this study will compare if detection of rice seasons results in higher accuracy than detection of 

fallow periods.  
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3 Study areas and data 

This chapter will first explain site selection, then will briefly describe study areas and will 

provide a brief description of the types of data used in the analysis. 

3.1 Study area selection 

The choice of the study areas was made according to criteria specified by regional officers of 

the Pest Risk Identification and Management (PRIME) project in the Philippines. The selection 

criteria considered factors such as individual field size, accessibility, distance from buildings 

and other roads (see Appendix A for a reproduced Fields Survey Protocol). Out of those 

criteria, eight municipalities in Pangasinan and Iloilo provinces were selected. 

3.2 Study areas 

The Philippines is an archipelago of approximately 7100 islands located in south-east Asia. 

The climate in the Philippines is tropical marine with two prominent seasons, dry and wet; 

however, due to complex topography and rainfall distribution the Philippine Atmospheric, 

Geophysical and Astronomical Services Administration (PAGASA) categorised it into four 

climatic types (Maclean et al., 2013; PAGASA, 2021). Type I is characterised by a distinctive 

summer monsoonal wet season from April to October and a dry season for the rest of the year, 

and it covers most western regions of the Philippines (Central Luzon, western Visayas). Type 

II has no dry season with highest rainfall occurring between November-February. It covers 

most of the eastern regions. Type III has no apparent maximum rainfall period with a short dry 

season from November to February, and it covers central Visayas, western Bicol and northern 

Mindanao. Type IV covers central and south Mindanao where rainfall is evenly distributed 

throughout the year and has no dry season. 

The Philippines is the eighth top rice producing country, with approximately 4.4 million ha of 

land occupied by rice fields in 2010, of which 69% are equipped for irrigation (majority located 

in the central plain of Luzon). The remaining rice fields are rainfed and upland (Maclean et al., 

2013), which are prone to water availability shortages, especially in the dry season. This 

provides the opportunity for detection of fallow behaviour over larger areas.  

The two research areas are located in the rolling terrain of Pangasinan province (Ilocos Region) 

in the centre-west part of the Luzon Island and sloping Iloilo province (Western Visayas 

region) in the centre-west part of the Philippines (see Figure 2). Both areas are located in the 

same climatic type I – dry from November to April and wet in the rest of the year (Maclean et 

al., 2013; PAGASA, 2021). They also lie in some of the major rice-producing regions of the 

Philippines, of which Western Visayas region ranks second (Maclean et al., 2013) and 

Pangasinan province third (Asilo et al., 2014). Additionally, the areas provide a good 

comparison of fallow behaviour in rainfed and irrigated rice areas, as both provinces have 

mixed water sources (Philippine Statistics Authority (PSA), 2019). 

 

 



16 

 

 

Figure 2. Map of the selected fields in Pangasinan and Iloilo provinces. 
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3.3 Data  

This study utilised secondary data from farmer questionnaires collected in Pangasinan and 

Iloilo provinces in the Philippines and SAR backscatter data from time-series of Sentinel-1A 

satellite images over the same areas. The following sections provide a brief description of each 

dataset and step taken in field data collection and pre-processing of the secondary data. 

3.3.1 Field data  

The field survey data was collected by the Pest Risk Identification and Management (PRIME) 

project staff between February and March 2019 (see Appendix A for dates based on visited 

municipality). In Pangasinan and Iloilo provinces, 72 and 75 fields, respectively, were visited 

for which GPS coordinates of each field extent were recorded and farmers interviewed. The 

farmer questionnaires contained information about the farmer recalled dates of the land, water 

and crop management activities covering dry and wet seasons between late 2017 and early 

2019. However, the reported fallow and rice cropping dates, and rice ecosystem types were of 

interest for this study, which were used in relation to interpretation of the multi-temporal 

backscatter values in each field. Additionally, the field extents were used as areas of interest 

(AOI) for extracting data from spatial imagery used in this study.  

3.3.2 Sentinel-1A data and pre-processing  

The multi-temporal SAR image backscatter values that were used in this study were 

downloaded, processed and SAR values extracted by the IRRI (PRIME project) team – a brief 

description of the pre-processing steps (adapted from Nelson et al., 2014) is provided in 

Appendix B. The remaining manipulation, backscatter calculation and plotting of the data was 

completed by the author.  

The Sentinel-1A images (distributed as a single-look complex [SLC] product) from 

Interferometric Wide (IW) swath mode and descending orbit were used to generate time-series 

data over the study sites – see Table 1 for specifications of the Sentinel-1A data. However, 

unprocessed time-series SAR data is not instantly usable, as various geometric and radiometric 

corrections datasets captured over time are required for analysis of the temporal data. Only then 

the produced terrain geocoded backscatter coefficients (σ°) data can be used for analysis. 

Pre-processing of the SAR image sets were completed separately for three seasons or stacks of 

images (2018 season one [dry season], 2018 season two [wet season] and 2019 season one [dry 

season] – see Table 1 for the acquisition periods of the Sentinel-1A images, where two 

acquisitions in Iloilo and one in Pangasinan were missing). Pre-processing was done using an 

automated processing routine set within the MAPscape-RICE software (Holecz et al., 2013; 

Nelson et al., 2014) that involved separate processing for VH and VV polarisations. 
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Table 1. The specifications of the Sentinel-1A data and acquisition periods.  

Parameter Specification 

Satellite Sentinel-1A 

Wavelength / frequency SAR-C (3.75 - 7.5 cm) / 5.405 GHz 

Orbit  Sun-synchronous (descending pass) 

Level data Level-1 Ground Range Detected (GRD) 

Image mode Interferometric Wide swath (IW – 250 km) 

Spatial resolution 20 m 

Incidence angle 29.1° - 46.0° 

Polarisation Dual polarisation (VV and VH) 

Revisit cycle 12 days 

Acquisition periods 
Iloilo 16 Sep 2017 - 22 Mar 2019 (46 images) 

Pangasinan 26 Sep 2017 - 20 Mar 2019 (45 images) 

Missing acquisitions 
Iloilo 15 Mar 2018 and 14 Feb 2019 

Pangasinan 28 Aug 2018 

 

3.3.3 Rainfall data 

Rainfall data was used to help interpret changes observed in the backscatter values over the fallow 

periods.  

Rainfall data could be obtained from NOAA (National Oceanic and Atmospheric Administration) 

that provides freely available daily rainfall amounts. However, because of the large distances 

between the weather observation stations and studied fields (45km in the closest example), the 

actual rainfall volume and occurrence at the studied locations may have been misrepresented. 

Therefore, a decision has been made to obtain rainfall data from high special and temporal weather 

observation satellites, such as TRMM (Tropical Rainfall Mapping Mission) and CHIRPS (Climate 

Hazards Group Infrared Precipitation with Stations), which are one of the most popular and 

globally accepted satellite-based daily precipitation datasets (Gupta et al., 2019). Their spatial 

(grid) resolution ranges from approx. 0.05° for CHIRPS and 0.25° for TRMM, and both have daily 

coverage (Sun et al., 2018; Gupta et al., 2019).  

Both systems have been shown to provide fairly reliable rainfall estimates in various regions, for 

instance, in Brazil (Nogueira et al., 2018), Burkina Faso (Dembélé and Zwart, 2016) and India 

(Gupta et al., 2019). In the Philippines, Jamandre and Narisma (2013) validated two satellite 

derived datasets, one of which was TRMM. They suggested that in general TRMM did not perform 

well in the country. Although they acknowledged that performance is slightly better in the northern 

regions, a decision was made to choose CHIRPS satellite rainfall data given the evidence against 

TRMM. Nevertheless, it is acknowledged that all satellite weather observation systems have their 

own limitations in predicting rainfall amounts over various regions (Sun et al., 2018). 

For this study, daily CHIRPS rainfall estimation was collected for all the dekads from June 2018 

to March 2019 (covering the farmer reported rice cropping dates) and rainfall data exported over 

the studied fields. CHIRPS was accessed from the Climate Hazards Center at the University of 

California, Santa Barbara’s repository under the following URL: 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0.   

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0
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4 Methodology 

This section will describe steps undertaken to answer the research questions listed in Chapter 

1.3. 

4.1 Sentinel-1A mean backscatter value extraction 

Sentinel-1A images were pre-processed separately for each season/stack of the images. The 

three stacks of the Sentinel-1A images had two overlapping images covering the same dates 

between each stack (season) that, due to radiometric temporal filters applied to each stack, there 

were slightly different backscatter values. To create one continuous time-series that covered 

all three seasons an average (of the linear scaling) of each overlapping image was taken. After 

this, the Sentinel-1A values for VH and VV polarisations were calibrated from linear scaling 

(DN) to sigma naught (σ0) backscatter coefficient (dB) for use in the analysis using the 

following equation (Mansaray et al., 2019):  

𝜎0(𝑑𝐵) = 10 × log10(𝐷𝑁)  

Figure 3 presents examples of the Sentinel-1A pixels (DN) for selected cropping stages and 

activities in field 106 in Pangasinan.  

 

VH polarisation: 

     
a)        b)   c)        d)   e) 

VV polarisation: 

     
 a)        b)   c)        d)   e) 

Figure 3. Examples of the Sentinel-1A image pixels (DN) in VH polarisation (upper) and 

VV polarisation (lower) within field 106 at a) crop establishment, b) flowering, c) 

harvest, d) fallow start and e) fallow end. Size of each pixel is 20x20m. 
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Backscatter value extraction was performed for each field using GPS field boundary extents 

recorded during field surveys. Each field was assigned a unique ID number that also 

corresponded to the farmer questionnaires. 

Temporal backscatter value (dB) extraction was done for each pixel within the field polygons 

in R software for VV and VH polarisations separately. During this process each pixel was 

assigned its position within the field boundary (either field or boundary), which allowed for 

exclusion of the pixels at the field borders. This was to eliminate potential edge effect that can 

affect the accuracy of the extracted data due to signature/backscatter value mixing at edges of 

the fields (Zhou et al., 2019; Son et al., 2021). 

From the extracted data, the mean backscatter of each field was calculated by first converting 

the backscatter (dB) values to linear scaling (DN), then computing the average of individual 

fields and then converting the mean DN back to dB values.  

The mean backscatters covered time period from mid-September 2017 through to the end of 

March 2019 using a 12-day interval, which is the revisit time of the Sentinel-1A satellite. 

However, the analysis was based on two seasons (2018 wet and 2019 dry seasons – April 2018 

to March 2019), due to low number of fields (only eight fields in Iloilo) for which cropping 

activities were reported for the 2018 dry season. 

4.2 Computation of VV/VH polarisation ratio 

Polarimetric channel mixing (also known as depolarisation ratio), such as VV/VH polarisation 

ratio, can provide additional insight into the standard cross-polarised (VH) and co-polarised 

(VV) backscatter (Bégué et al., 2018). Additionally, the depolarisation ratio was shown to 

improve the identification accuracy of paddy rice crops (Lasko et al., 2018). Therefore, the 

VV/VH ratio was examined to assess if it provided additional information for distinguishing 

between rice crops and fallow periods. 

The VV/VH polarisation ratio was derived from the VV and VH polarisation backscatter values 

before the mean values for each polarisation were calculated. The formula for ratio 

computation is modelled on the linear domain cross ratio calculation (Vreugdenhil et al., 2018), 

but because the exported backscatter coefficients were in a 10xlog10 (dB) form, the ratio was 

calculated according to the following formula: 

𝑉𝑉/𝑉𝐻 𝑟𝑎𝑡𝑖𝑜 =  𝑉𝑉 𝑑𝐵 − 𝑉𝐻 𝑑𝐵 

where VV dB is the backscatter coefficient (σ0) at VV polarisation and VH the backscatter 

coefficient (σ0) at VH polarisation.  

In the end, mean VV/VH ratio for each set of study fields was computed in the same way as 

for the linear polarisations. 

4.3 Savitzky-Golay smoothing filter 

After extracting the temporal mean backscatter values (σ0) for each field from the post-

processed SAR data, some noise was still observed in the plotted time-series. The noise was 

characterised by variations in the backscatter values throughout the time-series (see the grey 

line in Figure 4), which could be due to the interference of the waves from various scatterers 
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that affect the SAR backscatter/signal (Son et al., 2021) and atmospheric attenuation (Nelson 

et al., 2014). Similar SAR signal interference was observed in previous studies (Li et al., 2018; 

Son et al., 2021) that dealt with the issue by applying a filter to the original SAR data.  

A popular filter used to reduce remaining noise in temporal SAR backscatter is the Savitzky-

Golay (SG) filter (Son et al., 2021). SG is a least-squares polynomial approximation that 

smooths temporal signal while preserving shape and height of waveform peaks (Schafer, 2011; 

Gir et al., 2015). One of the most important aspects/factors of the SG filter is the half-width of 

the smoothing window – setting it too high can remove variations in the data, whereas setting 

it too low can over fit the filtered data (Chen et al., 2004). 

The SG filter was applied to the original mean SAR backscatter in all polarisations (VH, VV 

and VV/VH ratio) for each field separately. To prevent any over and undersmoothing of the 

temporal backscatter, the filter order was set to four and length was set to nine SAR images. 

The SG filter produced smooth temporal backscatters (see the orange line in Figure 4) that 

made evaluating the reliability of the farmer reported cropping dates easier. The SG filtered 

temporal backscatter values were used in the final analysis.  

 

 

Figure 4. Example of the original unsmoothed temporal backscatter data (grey) overlayed 

with the Savitzky-Golay filtered/smoothed data (orange). 

 

4.4 Phenological/cropping features estimation 

Analysis of the phenological/cropping features was based on temporal changes observed in the 

extracted backscatter data over rice crops and fallow periods. The classification was based on 

IRRI’s main rice crop growth and planting stages (IRRI, 2015) that start from land preparation 

(LP), followed by crop establishment (CE), flowering (FLW) and harvest (H). Out of the listed 

cropping stages and activities, crop establishment and harvest were used in this study, as they 
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indicated the start and end of the rice growth season. Fallow (F) was one class, which had no 

subdivisions, and was assigned to the first Sentinel-1A acquisition date after harvest. 

Additionally, two main ecosystem types (irrigated and rainfed; IRRI, 2007) for each field were 

used for observation of differences between fallow coming from irrigated and rainfed fields.   

The timings of the main cropping features (rice crop establishment, flowering, harvest, and 

fallow) were obtained from the farmer questionnaires, which contained mid-week dates of 

cropping stages and activities. In order to obtain backscatter profile for each phenological stage 

and activity the reported mid-week dates were converted to the nearest SAR image acquisition 

dates that were captured after the reported cropping stage or activity took place. This was to 

avoid situations where Sentinel-1A data preceded the reported cropping activity even by a short 

amount of time, such as one day. Otherwise, the SAR backscatter would not have had the 

opportunity to record any cropping activity yet to take place. 

Moreover, based on the rice cropping calendar, the flowering stage occurs approximately 30 

days before harvest (IRRI, 2015; Liu et al., 2016). However, in the farmer questionnaires some 

flowering stages were reported to last more than four weeks, which may be due to 

misremembering of the start of rice flowering by the farmers. This could be due to the fact that 

flowering is not as significant an event to the farmers as crop establishment or harvest is, or 

because flowering is classified by some farmers at different (earlier or later) rice growth stage 

than the classification used in this research, where flowering takes place 30 days before harvest. 

Therefore, the flowering dates for all the rice crops were adjusted to occur 30 days before 

harvest and matched to the nearest SAR acquisition day after the new date. 

Additionally, due to the 12-day revisit period of the Sentinel-1A satellite, there were cases 

where multiple cropping activities, such as harvest and land preparation or crop establishment, 

occurred within the 12-day window and were recorded within the same SAR image. In those 

instances, the same backscatter values were used for both of the affected cropping stages or 

activities. A similar approach was employed for times where there was a missing SAR image 

acquisition date (28 August 2018 in Pangasinan; and 14 February 2019 in Iloilo). In such cases, 

the backscatter value from the next available SAR date was assigned for the affected cropping 

activities.  

4.5 Backscatter plotting (exploratory analysis)  

Time-series plots of backscatter values correlated with selected cropping practices were created 

for exploration of the backscatter behaviour during selected rice-development phases and 

fallow periods. Produced plots were also employed in defining the accuracy of the farmer 

reported activities and phenological dates, and determining types of statistical tests needed for 

answering the research questions.  

Additionally, time-series plots showed different temporal behaviour of fallow backscatter that 

varied depending on fallow duration. A distinction was observed between fallow periods that 

lasted up to 84 days – defined as short fallow – and over 84 days – defined as long fallow. The 

decision to distinguish the two types of fallows along the axis of 84 days was based on the 

analysis of fallow plots, which showed clear backscatter differentiation at this point of time. 

Short fallow periods had mostly a descending backscatter pattern, whereas many of the long 
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fallow periods experienced varying temporal behaviour after approximately 60 days since 

harvest, which could have been affected by unreported crops being planted at that time. To 

examine those variations in fallow’s backscatter additional time-series plots were produced 

separated by long and short fallow duration. 

4.6 Estimation of additional fallow periods 

During the field visits farmers reported 101 rice crops and 37 fallow periods in Pangasinan, 

and 149 rice crops and 21 fallow periods in Iloilo, with the shortest lasting 48 days (equivalent 

to the period of collection of 4 SAR images) in Pangasinan and Iloilo. All the reported fallow 

periods were for the most recent dates after the last harvest, which could be due to the farmers’ 

not remembering any previous fallows between earlier planted crops. However, in the extracted 

SAR time-series there were periods between crops or after the last harvest that were not 

assigned to any cropping activity but were meeting the fallow criteria – any period where no 

crop was being planted. In those cases, additional fallow practices were identified for periods 

of at least 48 days where no cropping activity was being reported. To keep in line with the 

shortest reported fallow periods, any periods shorter than 48 days were not included. 

Additionally, several of those shorter fallows experienced some variations/increases in the 

backscatter behaviour that could suggest that some unreported cropping activity, such as land 

preparation for the next crop, was taking place, which was another reason for not including 

them in the analysis. Longer additional fallow periods (the longest lasting 72 days), on the other 

hand, were deemed to be better suited for the fallow temporal analysis and had higher chances 

of fields being left fallowed. The additional fallow periods, included as the result of the SAR 

time-series analysis, accounted for another twelve fallow data points in Pangasinan and eight 

in Iloilo and were included in the further analysis together with the farmer reported fallow.  

4.7 Estimation of reliability of the farmer reported dates 

The phenological stages of crop development and fallow occurrence were obtained from the 

farmer questionnaires, which relied on the farmer recollection of dates of each cropping stage 

and activity. However, as the field data was collected at the beginning of 2019, but the cropping 

dates went as far back as April 2018, there was a possibility of recall bias (Wollburg et al., 

2020) that may have resulted in cropping activities being assigned to the wrong dates and hence 

the wrong backscatter values. This can in fact be observed in some timeseries graphs. For 

instance, Figure 5 shows that the crop establishment reported by the farmer in the last rice crop 

(Rice1) falls at a stage where the signal is well past the lowest point and heads towards the 

peak. Rice signal is well researched and has a clear growth profile, especially in the C-band 

SAR data (Le Toan et al., 1997; Inoue et al., 2002; Suga and Konishi, 2008; Bouvet et al., 

2009; Kim et al., 2009; Oh et al., 2009; Nelson et al., 2014; Nguyen et al., 2016; Mansaray et 

al., 2017; Nguyen and Wagner, 2017; Lasko et al., 2018; Bazzi et al., 2019; Dirgahayu et al., 

2019; Minh et al., 2019; Xu et al., 2019). Therefore, it is unlikely that the reported date was 

accurate, as crop establishment is expected to correspond to the signal minima, and the reported 

crop establishment date (CE1) falls at the rice tillering stage. 
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Figure 5. Example of potential recall bias in the timeseries data in last rice crop 

establishment (CE1) date. 

 

To reduce recall bias, the following steps were taken to identify and filter out potential 

misreported cropping dates. SAR backscatter is sensitive to rice crop phenological stages and 

the VH polarisation was selected for establishing the recall bias because it was characterised 

by the most sustained increase in rice growth backscatter out of the three polarisations used in 

this research (Liu et al., 2016; Mansaray et al., 2017; Chandna and Mondal, 2020). The 

temporal rice profile in the VV polarisation was also expected to follow a similar behaviour to 

the one observed in VH; however, in the analysed data some inconsistencies in rice temporal 

SAR behaviour were observed, especially in Iloilo province, which is shown in Figure 8, and 

were attributed to stronger attenuation by leaves and stems in the VV polarisation (Mansaray 

et al., 2017). Therefore, the rejection was based solely on the VH polarisation in both provinces.   

During rice planting, the SAR signal at the VH polarisation is at or near minima because fields 

are flooded with water, which is due to specular reflection of water bodies. Whereas, during 

rice heading the stems and canopy increases causing higher backscattering of the VH 

polarisation reaching maxima values near the rice harvest (Asilo et al., 2014; Nelson et al., 

2014; Lasko et al., 2018; Onojeghuo et al., 2018; Bazzi et al., 2019; Mansaray et al., 2019). 

Based on this backscatter behaviour an estimate of the reliability of the farmer recollected dates 

for each reported rice season was made. The dates and backscatter values that did not align 

with the above criteria were deemed unreliable and rejected from further analysis.  

Moreover, after rejecting rice crops where the reported dates were deemed inaccurate, fallow 

that followed or preceded the rejected rice crop was also removed from the analysis, as the date 

of fallow occurrence (normally after harvest) was deemed inaccurate. Therefore, the final 
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analysis included only fallow from fields with accepted crop start and end dates. The selected 

rice crops and fallow periods are listed in the section below.  

4.8 Selected rice crops and fallow periods 

Based on the rice backscatter analysis mentioned in section 4.7, only the rice crops that were 

deemed as accurate were accepted for further analysis. In addition, some of the fallow periods 

that preceded or followed the rejected rice crops had to be discarded. This was due to an 

inability to determine the start or finish of the fallow period, and due to uncertainty whether 

such fallow seasons were genuinely fallow. Based on this, the number of the accepted rice and 

fallowed fields in each province is listed in Table 2 and presented in Figure 6. 

 

Table 2. Number of accepted samples based on the cropping type. 

Province Cropping Type Number of selected fields 

Pangasinan 
Rice 44 

Fallow 20 

Iloilo 
Rice 57 

Fallow 21 
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Figure 6. Distribution of the accepted fields in Pangasinan (top) and Iloilo (bottom). 
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4.9 Fallow duration 

In the selected/filtered fields fallow was reported by the farmers to last at least 48 days (as a 

minimum established for inclusion in the study) in Pangasinan and at least 60 days in Iloilo, 

out of which 60- and 84-day fallow were the most prevailing durations in Iloilo and 144-day 

fallow was most prevailing in Pangasinan. The longest fallow periods in the analysed fields 

lasted for 156 days in Pangasinan and 168 days in Iloilo; however, the number of fields which 

were kept fallowed for such long periods was very low – two fields in Pangasinan and three 

fields in Iloilo (see Table 3). 

Table 3. Fallow duration per number of fields in Pangasinan and Iloilo. 

Fallow duration 

(days) 

Number of fields 

Pangasinan Iloilo 

48 3 - 

60 2 6 

72 3 4 

84 - 7 

96 2 - 

108 1 - 

120 1 1 

132 1 - 

144 5 - 

156 2 - 

168 - 3 

 

4.10 Statistical tests 

To determine statistical differences between the backscatter from various rice and fallow stages 

or activities, non-parametric tests were performed, as they do not need the assumption of a 

normal distribution of the data (Ebdon, 1985). The tests were applied to differences in 

backscatter values between rice crops and fallow, as well as between fallow occurring in 

irrigated and rainfed fields. The type of non-parametric tests employed was governed by the 

number of independent samples of equal or different sample sizes involved in the test. The 

Mann-Whitney U test was selected to compare two sets of samples, whereas the Kruskal- 

Wallis H test was selected for testing more than two independent samples (Ebdon, 1985).  

The Kruskal-Wallis H test was selected to compare backscatter values that occurred during the 

selected cropping stages/activities – rice establishment (start of season) and rice harvest (end 

of season) and fallow start and end. From the rice development phases, the crop establishment 

and harvest were selected because produced boxplots indicated that those phases could be good 

indicators of the rice-growing season. This test was then followed by a post hoc pairwise 

comparison to try to determine which of the selected cropping types between rice and fallow 

were significantly different. 
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On the other hand, the Mann-Whitney U test was employed in two scenarios. Firstly, it was 

used to determine statistical differences between the start and end of fallow periods separated 

by fallow duration (short and long). The test was performed separately for each polarisation 

(VH, VV and VV/VH ratio). Secondly, the Mann-Whitney U test was also applied to mean 

fallow backscatter values from each field based on the ecosystem types (irrigated and rainfed). 

This was in order to determine whether the overall fallow behaviour changes in fields with 

access to irrigation compared to rainfed ones. For this test the assumption was that in the 

irrigated ecosystems fields would have access to water, especially during the dry season, if the 

neighbouring fields were planted/flooded for rice cropping. However, it is not known from the 

farmers questionnaires if this was the case. All tests were performed in SPSS software and 

were ran separately for VH, VV and VV/VH polarisations.  

4.11 Fallow detection 

Following the analysis mentioned in the above subsections, fallow detection was based on a 

backward approach of the rice season identification, where periods that occurred between rice 

crops were classified as fallow. For this step, dates that corresponded to rice local minima and 

maxima backscatter were obtained (Nelson et al., 2014; Chang et al., 2020). This approach 

relies on the high backscatter variations that result in temporal differences at the start and end 

of rice-growth cycles (Holecz et al., 2013; Nelson et al., 2014; Chang et al., 2020), which are 

characterised by rice establishment being at or near minima backscatter value and rice harvest 

occurring at or near maxima backscatter in VH polarisation. The behaviour of rice-

development phases change in VV polarisation, and is near minima around rice establishment, 

but reaches saturation near tillering (Mansaray et al., 2019), making this polarisation less 

suitable for fallow detection. In the case of VV/VH ratio the pattern is expected to resemble 

the inverted VH polarisation (Veloso et al., 2017), where minima and maxima would reflect 

the start and end of the rice season, respectively.  

To evaluate the accuracy of the start and end of the rice season a root mean square error 

(RMSE) was calculated between the observed (the farmer reported) dates and estimated dates 

from rice’s local maximum and minimum backscatter (Asilo et al., 2014). The lower the 

RMSE, the closer the estimated dates were to the reported ones. In this step separate estimates 

and calculations were performed for the three polarisations in R v3.6.3 statistical software. 

4.12 Extraction of rainfall data 

Rainfall data covering the dates of SAR images were used to detect whether the changes in the 

fallow backscatter corresponded to rainfall presence. Dekadal rainfall was extracted for each 

fallowed field from the CHIRPS images. Rainfall analysis was performed by plotting the 

dekadal rainfall on bar plots and correlating them with the fallow SAR time-series. In the end 

combined bar plots were created for all the fallowed fields in each studied location that showed 

average rainfall per dekad in each studied location. To achieve this, dekadal rainfalls that were 

nearest to/covering the start and end of each fallow were used and assigned consecutive 

numbers, where Dekad1 was the first dekad of rainfall that corresponded to the start of each 

fallow period. From that, average dekadal rainfall was calculated for each consecutive dekad.  

The dekadal rainfall extraction for each field was done in R and graphs were produced in Excel.  
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5 Results 

This section contains the main findings from the research, including temporal backscatter plots 

correlated with the cropping types; boxplots of the backscatter values for selected cropping 

types, results of statistical significance tests, and outcomes and accuracy of detecting fallow 

periods based on the start and end of fallow and rice crop season. 

5.1 Temporal backscatter characteristics of rice and fallow  

Extracted SAR backscatter data for selected rice development phases and fallow periods are 

illustrated in boxplots presented in Figure 7 and Figure 8. Fallow was split into short and long 

duration fallow periods and is presented in Figure 9 and Figure 10. The trend used for the 

analysis was selected from the median of each boxplot and range/magnitude was based on the 

lowest and highest values of the boxplot whiskers.  

The selected rice development stages and activities consisted of land preparation, crop 

establishment, the 12th, 24th, 36th and 48th day after crop establishment, flowering, and harvest. 

Fallow stages were based on the length of fallow that started from the first SAR image 

acquisition date after the crop harvest. At land preparation, the backscatter values cover the 

widest range of all the rice development phases in VH polarisation in Pangasinan and VV in 

Iloilo. At the crop establishment some of the fields reported the lowest VH backscatter values 

of all rice development phases in both provinces, however, they did not reach the lowest median 

value. The overall lowest VH median was observed 12 days after the crop establishment 

(CE12). After that the VH backscatter gradually increased, reaching the highest median value 

at the flowering stage in Pangasinan and at harvest in Iloilo. 

In VV polarisation the differences between Pangasinan and Iloilo provinces were greater than 

in VH polarisation. In Pangasinan the VV backscatter curve resembles the behaviour of VH 

polarisation which achieved the lowest median value at the crop establishment and the highest 

median value at the flowering stage, which corresponds to the peak of the vegetation cover. At 

harvest, when the vegetation coverage started to reduce, the median value was lower than at 

the flowering stage and continued to steadily decrease with the development of the fallow 

periods. In Iloilo at VV polarisation the rice growth backscatter curve was less pronounced and 

whiskers at each rice-growth stage had a wide range of backscatter values at most phenological 

stages. The crop establishment had the greatest magnitude between the maximum and 

minimum VV backscatter values. Also, the median peaked 24 days after crop establishment 

(CE24) and from that point started to decrease. Additionally, the flowering stage had the lowest 

VV median and lowest overall backscatter values out of all rice cropping phases in Iloilo. 

Harvest also had a lower median, but the VV backscatter extrema (minimum and maximum) 

were not as extreme as at the flowering stage. The overall VV behaviour of the rice season in 

Iloilo differed to the one recorded at VH polarisation and in Pangasinan in both, VV and VH 

polarisations. 

Fallow, on the other hand, began after harvest and was marked by a gradual drop in the median 

backscatter in both polarisations in both provinces due to increased surface scattering owing to 

the lack of vegetation coverage and decaying vegetation residue (e.g., rice stalks; McNairn et 
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al., 2002). The decrease of the medians lasted for approximately 60 days in both locations after 

which some changes were observed. In Pangasinan after approximately 72 days of fallow (F6), 

the median started to fluctuate gently, whereas in Iloilo the backscatter increased sharply and 

was substantially greater than the backscatter soon after harvest. This unusual behaviour could 

imply a quick increase in vegetation coverage (Bégué et al., 2018) followed by a decline. 

However, those changes appeared at a point where a number of fields with fallow of over 60 

days started to reduce, especially in Iloilo, which could also explain why the change in the 

boxplots was more pronounced in Iloilo.  

Figure 9 and Figure 10 confirmed that the decrease and fluctuations in both polarisations varied 

with fallow duration where longer fallow periods (over 72 days in Pangasinan and 84 days in 

Iloilo) had a more gradual decrease than short fallow periods. This decrease during fallow in 

VV and VH polarisations was followed for the first 60 days (five SAR images) since harvest 

in Pangasinan and 48 days (four SAR images) in Iloilo, after which some fluctuations were 

observed in the median dB values in both provinces (characterised by overall decreasing trend). 

Additionally, Pangasinan was represented by a more pronounced overall decreasing trend, 

especially after harvest, in which the maximum value during fallow was lower than the 

maximum backscatter value during harvest. In Iloilo the situation was markedly different, in 

that most fallow median values were lower than the accompanying harvest median, but the 

maximum values were much higher than maximum backscatter values during all rice 

development points. Additionally, over the progression of the fallow periods, the minimum 

values were also lower than any of the rice-development phases in both provinces. Moreover, 

in Pangasinan, the fallow’s median backscatters were also lower than medians at any rice 

cropping stage or activity. This, however, was not the case in Iloilo, where the lowest fallow 

median never surpassed the lowest rice median on the 12th day after the crop establishment 

(CE12). Slight increases were observed at the end of many fallow periods, which were more 

evident in Iloilo. In Pangasinan, on the other hand, the increase was milder and followed a 

downward trend.  

Additionally, fallow duration lasted longer in Pangasinan than in Iloilo (up to 156 and 168 

days, respectively). Those differences, together with backscatter behaviour, are likely affected 

by differences in farming practices in both provinces, with Iloilo being renowned for having 

one of the most intense farming regions in the Philippines, where up to three rice crops are 

commonly planted in one year (Villano et al., 2019). 

In addition to the analysis of the VH and VV polarisations, the polarisation ratio was also used 

in the analysis. Polarisation ratio is not a new polarisation per se, as it is derived from 

mathematical calculations and not obtained in situ. Nevertheless, the polarisation ratio can 

better distinguish between various crop cycles (Vreugdenhil et al., 2018; Khabbazan et al., 

2019) as it combines cross- and co-polarised polarisations together. In this research the VV/VH 

ratio was used to determine whether there were any significant differences between VV/VH 

with respect to the VH and VV polarisations, which would identify fallow periods with better 

accuracy. 

The plotted VV/VH ratio curve appeared inverted in both provinces, with positive backscatter 

values due to the VV/VH ratio calculation, which reversed the shape and sign of the curve. In 
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Pangasinan and Iloilo magnitude of the ratio at short n=8 and long n=12 at the crop 

establishment was lower than in the individual polarisations. The VV/VH rice trend in 

Pangasinan (Figure 7) was gentler than in Iloilo (Figure 8), but in both instances, saturation 

was attained on the 12th day after the crop establishment (CE12). After that, the backscatter 

began to decline until the end of the reproductive stage (flowering), when the SAR signal 

reached its lowest point and was followed by a slight signal increase at harvest. However, it 

should be noted that some longer fallows have a very small number of observations, with as 

few samples as two in one instance. Additionally, the rice-growth trend of VV/VH ratio in 

Iloilo was better defined compared to what was obtained in VV co-polarisation.  

During the first 60 days of fallow in Pangasinan, there was a continuous increase in backscatter, 

possibly due to increasing soil exposure as any remaining crop residue continued to decay. 

After 72 days (F6) in both locations, the ratio began to fluctuate slightly, but the overall pattern 

remained constant, with the most substantial change occurring on the 96th day of fallow (F8). 

These oscillations were only seen in longer fallows (see Figure 9) and could relate to 

developments of vegetation. In Iloilo after harvest the backscatter values also were increasing 

for the first 60 days, but the change was greater during the first 36 days of fallow, especially 

during shorter fallows (see Figure 10), after which the dB ratio began to stabilise. On 72nd and 

84th day of fallow (F6 and F7) there was a steep decline of the ratio, after which the values 

began to increase once again after the 96th day (F8). This drop happened when the shorter 

fallow periods ended, which were characterised by significantly higher backscatter than the 

longer fallows. Therefore, this change may not necessarily indicate significant changes taking 

place in the fields, but could be due to the differences observed between shorter and longer 

fallow durations.  
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Figure 7. Boxplots of the backscatter coefficient derived from Sentinel-1A for rice 

planting activities, cropping stages and fallow in Pangasinan for VH (top), VV 

(middle) and VV/VH polarisation ratio (bottom). Fallow number relates to Sentinel-

1A revisit time since the start of fallow. Shades of green indicate rice cropping phases 

and shades of grey are fallow durations (at 12-day intervals) from harvest. 
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Figure 8. Boxplots of the backscatter coefficient derived from Sentinel-1A for rice 

planting activities, cropping stages and fallow in Iloilo for VH (top), VV (middle) 

and VV/VH polarisation ratio (bottom). Fallow number relates to Sentinel-1A revisit 

time since the start of fallow. Shades of orange indicate rice cropping phases and 

shades of grey are fallow durations (at 12-day intervals) from harvest. 
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Figure 9. Boxplots of the backscatter coefficients for fallow separated by fallow duration 

(short and long) in Pangasinan for VH (top), VV (middle) and VV/VH ratio 

(bottom). Fallow number relates to Sentinel-1A revisit time since start of fallow. 
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Figure 10. Boxplots of the backscatter coefficients for fallow separated by fallow duration 

(short and long) in Iloilo for VH (top), VV (middle) and VV/VH ratio (bottom). 

Fallow number relates to Sentinel-1A revisit time since the start of fallow. 
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5.2 Polarisation significance tests 

Nonparametric tests were applied to the backscatter data to determine distinctions between 

various rice and fallow stages using the VH, VV polarisations and the VV/VH ratio. The 

boxplots covered in section 5.1 showed that there were temporal differences between the start 

and end of the rice season and fallow periods. The Kruskal-Wallis H test was performed to 

assess whether there were significant differences between backscatter values at the rice crop 

establishment, harvest, fallow start and fallow end. Table 4 shows the p-values from the 

Kruskal-Wallis test, which indicated that there were significant differences (p<0.05) between 

the means of the selected cropping types at each polarisation in data from Pangasinan and 

Iloilo.  

Table 4. p-values for Kruskal-Wallis test between crop establishment, harvest and fallow 

start and end at VH, VV and VV/VH polarisation ratio. Pangasinan n=128; Iloilo 

n=157. 

Province 
p-value 

VH VV VV/VH 

Pangasinan 0.000* 0.000* 0.000* 

Iloilo 0.000* 0.000* 0.000* 

(* statistically significant at 0.001 level) 

 

To indicate which cropping types were significantly different, a post hoc pairwise comparison 

was done, with results shown in Table 5. The results showed that in Pangasinan significant 

differences were between crop establishment-harvest, fallow start-fallow end and fallow end-

harvest in the three polarisations. Additionally, fallow start-crop establishment was 

significantly different using the VH polarisation and the VV/VH ratio. Whereas in Iloilo, 

significant differences were observed between crop establishment-harvest, fallow start-fallow 

end, fallow start-crop establishment and fallow end-harvest using the VH polarisation and the 

VV/VH ratio. Fallow end-crop establishment differed when using the VV polarisation and the 

VV/VH ratio. Moreover, fallow end-harvest were the only cropping types that were 

significantly different in the three polarisations in Iloilo.  

Therefore, the results showed that, as observed in the boxplots, among the three polarisations 

there were statistical differences between the start and end of the rice season and fallow periods 

only in Pangasinan. In Iloilo the differences between the start/end of fallow and the rice season 

are not as robust and more mixing of the backscatter values occurred. 
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Table 5. p-values for post hoc pairwise comparison from Kruskal-Wallis test between 

crop establishment, harvest, fallow start and fallow end at VH, VV and VV/VH 

polarisation ratio. Pangasinan n=128; Iloilo n=157. 

Province Cropping stage/activity 
p-value 

VH VV VH/VV 

Pangasinan 

CE-H 0.000 0.001 0.000 

FS-FE 0.000 0.034 0.000 

FS-CE 0.002 1.000 0.000 

FS-H 0.121 0.305 0.766 

FE-CE 0.301 0.156 1.000 

FE-H 0.000 0.000 0.000 

Iloilo 

CE-H 0.000 0.134 0.000 

FS-FE 0.000 0.064 0.001 

FS-CE 0.000 0.244 0.000 

FS-H 1.000 1.000 0.613 

FE-CE 1.000 0.000 0.000 

FE-H 0.000 0.003 0.001 

Highlighted cells correspond to polarisations with sig. difference 

(p<0.05, α=95%) 

 

In the post hoc pairwise comparison, the start and end of fallow showed good separability in at 

least two polarisations that could be used for detecting fallow. An additional test, the Mann-

Whitney U test, was performed to assess whether there were significant differences between 

backscatter of the fallow start and end separated by the fallow duration (short and long fallows).  

The results in Table 6 showed that in Pangasinan there were no significant differences (p<0.05) 

between fallow stages in the short and long fallow periods. In Iloilo, backscatter difference was 

significant between fallow durations at the fallow start in VH and VV polarisations and at the 

fallow end in VV polarisation. This was also supported by boxplots presented in Appendix C. 

Table 6. p-values between fallow start and end separated by the fallow duration (short 

and long) from Mann-Whitney U test. Pangasinan n=20; Iloilo n=21. 

Province Fallow stage & duration 
p-value 

VH VV VH/VV 

Pangasinan 
Start Short - Start Long  0.305 0.238 0.624 

End Short - End Long  0.910 0.624 0.521 

Iloilo 
Start Short - Start Long  0.024 0.040 1.000 

End Short - End Long  0.081 0.024 0.698 

Highlighted cells correspond to polarisations with sig. difference (p<0.05, α=95%) 
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Another Mann-Whitney U test was conducted to determine whether there were differences in 

the fallow backscatter characteristics based on the ecosystem type (irrigated and rainfed). Table 

7 presents the p-values from Man-Whitney U test, which indicated that in Pangasinan there 

were significant differences in the fallow backscatter values among the three polarisation 

channels, whereas in Iloilo there were no significant differences. 

Table 7. p-values of Mann-Whitney U test between fallow occurring in the irrigated and 

rainfed fields. Pangasinan n=172; Iloilo n=134. 

Province 
Fallow separated 

by ecosystem type 

p-value 

VH VV VV/VH 

Pangasinan Irrigated - Rainfed 0.001 0.002 0.015 

Iloilo Irrigated - Rainfed 0.590 0.459 0.644 

(Highlighted cells correspond to polarisations with sig. difference (p<0.05, 

α=95%)) 

 

5.3 Fallow and rice detection 

5.3.1 Fallow periods detection 

The backscatter behaviour and statistical tests indicated differences between the start and end 

of rice and fallow periods. These differences were used to detect fallow by finding local minima 

and maxima of rice and fallow backscatter.  

The accuracy assessment of the start and end of fallow periods was performed for each 

polarisation separately between the observed and detected highest and lowest point in the 

backscatter. At the fallow start (FS), maximum backscatter was detected in VV and VH 

polarisations and the minimum value in VV/VH ratio. Whereas at the fallow end (FE), 

minimum backscatter was detected in VH and VV polarisations and maximum in VV/VH ratio. 

The accuracy of this model was assessed by root mean square error (RMSE), which is widely 

used for evaluating time-series forecasting (Schlund and Erasmi, 2020). The RMSE results are 

shown in Table 8 and differences between the detected and observed FS and FE dates are 

displayed in Figure 11 and Figure 12.  

VH had the highest overall detection accuracy, but the detection varied between the FS and the 

FE. Identification of the FS was most accurate in VH and VV/VH ratio in both locations 

(RMSE between 22.4 and 39.3 days); however, in Iloilo, the VV/VH ratio was most accurate 

(RMSE of 22.4 days or 1.9 Sentinel-1A revisit time) out of both locations. The VV polarisation 

resulted in the lowest detection accuracy (RMSE between 52.6 and 58.8 days). Whereas 

detection of the FE was most accurate in the three polarisations in both locations (RMSE 

between 9.7 and 11.4 days) that resulted in accuracy of less than one Sentinel-1A revisit time.  
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Table 8. Root mean square error (RMSE) result for the start and end of fallow. The 

RMSE was performed for derived minima and maxima dates from fallow 

backscatter and the farmer reported fallow periods. Pangasinan n=20; Iloilo n=21. 

Province 
SAR 

channel 

RMSE - Fallow  

Start of fallow End of fallow 

RMSE 

(days) 
Sentinel-1A revisits 

RMSE 

(days) 

Sentinel-1A 

revisits 

Pangasinan 

VH 36.9** 3.1 9.7* 0.8 

VV 58.8** 4.9 9.7* 0.8 

VV/VH 39.3* 3.3 11.4** 0.9 

Iloilo 

VH 33.3** 2.8 9.4* 0.8 

VV 52.6** 4.4 10.5* 0.9 

VV/VH 22.4* 1.9 10.5** 0.9 

(RMSE based on reported FS/FE and derived date from backscatter: * local minima; and ** local 

maxima) 

 

 

 
a)       b) 

Figure 11. Boxplots of the temporal differences between the observed fallow start (FS) 

date and the obtained VH and VV local maxima, and VV/VH ratio minima in a) 

Pangasinan and b) Iloilo. RMSE is expressed in days. 
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a)      b) 

Figure 12. Boxplots of the temporal differences between the observed fallow end date 

(FE) and the obtained VH and VV local maxima, and VV/VH ratio minima in a) 

Pangasinan and b) Iloilo. RMSE is expressed in days. 

 

5.3.2 Rice season detection 

In the case of the rice season detection, minima values were used for detecting the crop 

establishment in VH and VV polarisations, whereas for the VV/VH ratio, the maxima 

backscatter was identified. At harvest, the order was reversed, and maxima VH backscatter was 

used and the minima for the VV/VH ratio. Table 9 lists the RMSE results, with disparities 

between the detected and observed crop establishment and harvest dates plotted in Figure 13 

and Figure 14. 

The root mean squared difference between the crop establishment and local minima (maxima 

for VV/VH ratio) was lowest in Pangasinan (12 days in VH and 42.7 days in VV polarisations), 

whereas in Iloilo the RMSE difference was lowest in VV/VH ratio (16.4 days). At the end of 

the season, the RMSE difference between the reported harvest and local minima was lowest in 

Iloilo (20.2 days in VH and 21.5 days in VV/VH ratio), whereas in Pangasinan the difference 

was lowest in VV polarisation (45.6 days). 

Based on the fact that Sentinel-1A’s revisit time was 12 days, overall, the lowest RMSE 

differences at the start and end of the rice season were recorded in VH polarisation in both 

study locations. It is worth noting that the ratio resulted in second best detection difference, 

much closer to the results obtained in VH polarisation rather than the VV.  
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Table 9. Root mean square error (RMSE) result for detecting the start and end of rice 

season. The RMSE was performed for derived minima and maxima dates from the 

rice backscatter and the farmer reported rice season dates. Pangasinan n=44; Iloilo 

n=57. 

Province 
SAR 

channel 

RMSE – Rice season 

Start of season End of season 

RMSE 

(days) 

Sentinel-1A 

revisits 

RMSE 

(days) 

Sentinel-1A 

revisits 

Pangasinan 

VH 12.0* 1.0 22.9** 1.9 

VV 42.7* 3.6 45.6** 3.8 

VV/VH 22.4** 1.9 30.3* 2.5 

Iloilo 

VH 13.1* 1.1 20.2** 1.7 

VV 68.3* 5.7 73.1** 6.1 

VV/VH 16.4** 1.4 21.5* 1.8 

(RMSE based on reported SOS/EOS and derived date from backscatter: * local minima; and ** 

local maxima) 

 

 

 
a)       b) 

Figure 13. Boxplots of the temporal differences between the reported crop establishment 

date and the VH and VV local minima, and VV/VH ratio maxima in a) Pangasinan 

and b) Iloilo. RMSE is expressed in days. 
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a)      b) 

Figure 14. Boxplots of the temporal differences between the reported harvest date and 

the VH and VV local maxima, and VV/VH ratio minima in a) Pangasinan and b) 

Iloilo. RMSE is expressed in days. 

 

5.3.3 Between crops fallow detection  

Between crops, fallow detection was performed on data from 18 fields (nine in each location) 

where two successive rice crops were present. As detection of the rice season performed 

better than detection of fallow seasons, a backward approach was applied for this task, where 

crop establishment was used as the end of fallow and harvest as the start of fallow. The 

results are shown in Table 10 and plotted in Figure 15 and Figure 16.  

The results indicated that the detection of fallow periods (FS and FE) best performed in the VH 

polarisation (RMSE between 15.0 and 18.8 days in both locations). The accuracy was also 

good using the VV/VH ratio (RMSE between 11.3 and 22.3 days), however, resulted in low 

detection of the FS in Pangasinan (RMSE of 43.6). The VV polarisation performed the worst 

in detecting the FS in Iloilo and the FE in both locations (RMSE of a range from 74.2 to 79.8 

days. RMSE of 27.4 days was recorded only for the FS detection in Pangasinan.  
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Table 10. Root mean square error (RMSE) result for detecting the start and end of 

between crops fallow periods. The RMSE was performed for derived minima and 

maxima dates from the rice backscatter and farmer reported dates. Pangasinan n=9; 

Iloilo n=9. 

Province 
SAR 

channel 

RMSE - Fallow detected between crops 

Start of fallow End of fallow 

RMSE 

(days) 

Sentinel-1A 

revisits 
RMSE (days) 

Sentinel-1A 

revisits 

Pangasinan 

VH 18.8* 1.6 16.0** 1.3 

VV 27.4* 2.3 79.8** 6.6 

VV/VH 43.6** 3.6 11.3* 0.9 

Iloilo 

VH 15.0* 1.2 15.5** 1.3 

VV 77.6* 6.5 74.2** 6.2 

VV/VH 22.3** 1.9 18.8* 1.6 

(RMSE based on reported SOS/EOS and derived date from backscatter: * local minima; and ** 

local maxima) 

 

The boxplots indicated that the FS detection (Figure 15) was skewed towards 12 days before 

harvest, whereas dip of the SAR signal or its saturation in the band ratio (indicating the FE; 

Figure 16) was detected mostly 12 days after the crop establishment in VH and VV/VH ratio. 

In VV polarisation detection of local maxima was mostly occurring 84 days after the crop 

establishment.  

 

 
a)      b) 

Figure 15. Boxplots of the temporal differences between the reported harvest date (fallow 

start) and the detected VH and VV local maxima, and VV/VH ratio minima in a) 

Pangasinan and b) Iloilo. RMSE is expressed in days. 
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a)      b) 

Figure 16. Boxplots of the temporal differences between the reported crop establishment 

date (fallow end) and the detected VH and VV local minima, and VV/VH ratio 

maxima in a) Pangasinan and b) Iloilo. RMSE is expressed in days. 

 

5.4 Rainfall 

Rainfall data was used for observing if precipitation, or lack thereof, impacted fallow 

behaviour. Table 11 presents average rainfall received per field over the fallow periods in the 

study sites. Pangasinan received the least rainfall (45.2 mm) while Iloilo experienced 2.5 time 

more rainfall (116.6 mm) over the fallow periods.  

Table 11. Average amount of rainfall during the fallow periods received in the fallowed 

fields in Pangasinan and Iloilo. 

Province Average fallow rainfall per field (mm) 

Pangasinan 45.20 

Iloilo 116.56 

 

Figure 17 shows average dekadal distribution of rainfall over the fallow periods in Pangasinan 

and Iloilo extracted from CHIRPS data. Each column in the graph corresponds to the average 

amount of rainfall that was obtained from the start of fallow in each studied field and distributed 

depending on fallow duration. Pangasinan received an overall low amount of rainfall in each 

dekad, except an increase in average rainfall in the first fallow dekad; however, this peak was 

affected by substantial rainfall experienced on 27/10/2018, at which point fallow started in only 

three fields (110, 116 and 131). The remaining fields received a significantly lower amount of 

rainfall in the first dekad, not exceeding 27.6 mm. Therefore, the peaked value will not be 
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considered as significant in the overall analysis of rainfall at the start of fallow periods in the 

Pangasinan province. Rainfall distribution in Iloilo was more spread out throughout the year 

that has not exceeded 25mm in any of the dekads.  

 

 

 

Figure 17. Average rainfall per dekad covering the duration of the fallow periods in 

Pangasinan (upper) and Iloilo (lower). Dekad1 corresponds to the start of fallow in 

each field. Duration based on fallow occurrence with Dekad16 containing rainfall 

data only for the longest fallow periods.  
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6 Discussion  

This study looked at the temporal SAR backscatter characteristics of fallow within rice fields. 

Addressing a gap in the reviewed literature, this study described temporal characteristics of 

fallow periods and compared them to rice backscatter behaviour. In addition, fallow duration 

and ecosystem types – irrigated and rainfed fields – were compared to identify potential 

differences in fallow or land management based on interpretation of the backscatter values. 

Furthermore, the study aimed to establish whether fallow can be detected using Sentinel-1A 

data, and which polarisation best showed significant differences between fallow and rice. 

6.1 Fallow and rice SAR backscatter characteristics and fallow duration 

The results indicate that analysed rice fields have a well-defined temporal profile from the crop 

establishment until harvest. The profile is characterised by overall increasing trend from crop 

establishment until flowering or harvest in VH polarisation; increasing at the reproductive stage 

and decreasing at the ripening stage in VV polarisation; and decreasing in VV/VH polarisation 

ratio, which is in line with findings from other studies (Chen et al., 2007; Oh et al., 2009; Asilo 

et al., 2014; Nelson et al., 2014; Mansaray et al., 2017; Bazzi et al., 2019; Chang et al., 2020). 

The backscatter profile was lowest 12 days after the crop establishment in the VH polarisation, 

which was ascribed to increased flooding after the crops were well established (Nelson et al., 

2014) resulting in more spectral reflection. Saturation of the SAR signal was reached between 

flowering and harvest using VH polarisation in Pangasinan and Iloilo, and using the VV 

polarisation in Pangasinan. The saturation of the signal was attributed to the peak in plant 

height and canopy around flowering stage, which was followed by a slight decline near harvest 

when leaves began to wither and ground exposure increased (Li et al., 2018; Son et al., 2018). 

However, in the case of VV polarisation in Iloilo, after initial increases, the signal reached its 

peak at the mid-point of the vegetative phase and then carried on decreasing. This pattern may 

appear unexpected because, even though VV polarisation is more sensitive to small canopy 

reductions than VH polarisation (McNairn and Brisco, 2004; Oh et al., 2009; Nelson et al., 

2014), rice canopy increases at the vegetative stage, and this should be reflected by backscatter 

increases due to more double-bounce reflections (McNairn and Brisco, 2004). Mansaray et al. 

(2017), however, experienced similar results, which they attributed to increased attenuation by 

leaves and stems using the VV polarisation. Moreover, no such behaviour was observed using 

the VH polarisation in Iloilo, which resulted in a more sustained increase in backscatter that 

resembled rice-growth pattern observed in Pangasinan, nor was it observed using the VV 

polarisation in Pangasinan. However, this divergence between the VV and VH polarisations in 

Iloilo resulted in a more pronounced temporal profile of VV/VH ratio, than in Pangasinan, that 

showed better separability between the crop establishment and harvest.  

The statistical tests and boxplots (see Appendix C) indicated that, except for VV polarisation 

in Iloilo, the start and end of the rice season can be detected in Sentinel-1A imagery using local 

minima and maxima backscatter values in the remaining polarisations. As for fallow signal, 

the analysis indicated some temporal changes during fallow events, which differed slightly 

between Pangasinan and Iloilo provinces. These changes were not as well-defined as they were 

for rice, but an attempt was made to segregate them into three phases – the start of fallow (FS); 
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the mid fallow (FM) and the end of fallow (FE). The classification into three phases was made 

more difficult by the lack of information about specific fallow conditions in the farmer 

questionnaires. This limitation was overcome thanks to the application of findings from 

previous studies that analysed backscatter behaviour in exposed soils and vegetated areas. 

6.1.1 Fallow start 

Fallow periods began with higher backscatter coefficients, but with values normally lower than 

at the rice harvest, and in general they decreased over a few consecutive weeks in VH and VV 

polarisations in both provinces. This indicated that the soils were not fully exposed after harvest 

as the values were too high, which can be attributed to the crop residues, such as stubble and 

cut straw, remaining on the field after harvest and their decay over time. This was also 

supported by a gentler decline in backscatter coefficients in VV polarisation, than in VH 

polarisation in both provinces, because VV is more sensitive to remaining biomass (McNairn 

et al., 2002; Schlund and Erasmi, 2020), but is unaffected by residue structural characteristics 

(McNairn and Brisco, 2004). VH polarisation, on the other hand, is more sensitive to crop 

structure that results in multiple volume scattering of vegetation canopy and scattering from 

rough surfaces and thus, results in steeper decreases in the post-harvest conditions (McNairn 

and Brisco, 2004). These results are supported by questionnaire data, which suggested that the 

most prevailing harvest practice was leaving straws in the fields to decompose, as reported by 

majority of farmers in both provinces. In Pangasinan, the majority of harvests were done using 

machinery, whereas in Iloilo, manual harvest was the prevailing method, with the former 

typically leaving more standing crop residue and cut straws in the field (Bijay-Singh et al., 

2008). The data shows that in Pangasinan there was a bigger drop in backscatter values after 

harvest than in Iloilo. However, as the majority of crops in Pangasinan were mechanically 

harvested, it would be expected for the backscatter to decrease more slowly than in mainly 

manual harvested fields in Iloilo. Perhaps this difference could be attributed to weed presence 

during and after the rice season (Minh et al., 2019) in Iloilo that then was characterised by 

higher backscatter coefficients in VH polarisation until mid-fallow. Nevertheless, it is unclear 

if weed growth would have enough time to appear, especially in areas such as Iloilo, where up 

to three rice seasons can be grown in a year. Alternatively, Li et al. (2012) noted that the 

difference could be attributed to increased surface scattering from wet soils and rice residue 

after harvest which resulted in gentler temporal decrease, especially since Iloilo experienced 

higher rainfall during the dry season. However, this would require further investigation.  

Other stubble management methods presented differences in the fallow backscatter behaviour. 

In Pangasinan there was one field (120) where rice residues were burnt in the field. Fallow at 

that location (see Appendix G) was characterised by very low backscatter values from its start 

(-18.24 in VH and -12.83 in VV) and a gradual decrease over time due to dominance of bare 

soils directly after harvest (Bégué et al., 2018). Similar behaviour was observed in fallow where 

crop residues were removed after harvest (fields 118 and 151 in Pangasinan; and 654 in Iloilo), 

but backscatter in those locations resembles more the overall fallow behaviour, which was at 

first relatively high due to stubble scattering (Schlund and Erasmi, 2020), but on average lower 

than in the fields with residues left in the field, with a gradual reduction over time. Furthermore, 

none of the fields' backscatter coefficients increased with time, indicating that the conditions 

and duration were not favourable for significant vegetation development. However, certain 
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changes in backscatter behaviour were observed in fields with residue remaining in the fields, 

which are thought to be related to vegetation development mid-fallow, although these were 

linked to fallow duration rather than stubble management method. 

It should be noted that vegetation development is not solely linked to the presence of crop 

residue, but rather to the conditions, soil organic levels and water availability that the uncleared 

fields generate after harvest, which permit for faster regeneration of vegetation, such as weeds 

or crops, than in managed or burnt fields (Nielsen and Calderón, 2011). Additionally, higher 

backscatter values at the FS also indicate that soils were drained before the rice harvest (Bégué 

et al., 2018), which creates desirable conditions for decomposing of the crop residues. 

6.1.2 Mid-fallow 

In the longer fallow events (over 72 days or six Sentinel-1A revisits in Pangasinan and over 84 

days or seven Sentinel-1A revisits in Iloilo) mid fallow was observed. It was characterised by 

signal fluctuations following a descending trend since the FS, but this characteristic was not 

present in all fields with longer fallow. Additionally, no such behaviour was seen in fallow 

shorter than 84 days. It should be noted that the number of shorter and longer fallow durations 

was different in both provinces – short n=8 and long n=12 in Pangasinan, and short n=17 and 

long n=4 in Iloilo. 

Halfway through fallow in Pangasinan, on average between 60-72 days since harvest, some 

subtle changes in the backscatter values were observed, characterised by short increases of the 

upper boxplot quartiles lasting for 24-36 days followed by further decrease towards the end of 

fallow periods. Those were assumed to indicate wild vegetation development or cropping of 

drought tolerant non-rice crops, especially since such changes were more prominent in VV 

polarisation that is more sensitive to volume scattering of even small vegetation (McNairn et 

al., 2002; Brogioni et al., 2010). In Iloilo, the changes in fallow backscatter were observed at 

similar times but lasted between 24-48 days; however, the increase of median backscatter in 

both polarisations was more substantial than in Pangasinan (possibly due to lower number of 

samples available at that time in Iloilo), suggesting that vegetation growth was more prominent 

in Iloilo and lasted for approximately 48 days before starting to decline. This temporal break 

between harvest and the start of fluctuations in backscatter was more likely affected by 

unreported non-rice crops rather than weed development (Chang et al., 2020). This also 

correlates with rainfall data that was over twice as high and more spread-out in Iloilo than in 

Pangasinan, making conditions for growth more favourable in Iloilo.  

Moreover, mid-fallow in Iloilo, a significant jump in the backscatter median (Figure 8) was 

observed and occurred at a point where the number of fields with fallow over 84 days was 

declining (from n=15 to n=4). It was characterised by the largest magnitude using the VH and 

VV polarisations, out of all boxplots in the time-series, and is also clearly observable when the 

backscatter was separated by fallow length. This may have important implications for 

understanding management practices, which were typically not reported in the farmer data, 

except in a few cases where some ratooning during fallow was reported. It was therefore 

assumed that the fields were kept unmanaged. However, since the conditions for vegetation 

development were more favourable in Iloilo, it was expected that some development of wild 

vegetation might also take place in shorter fallows before they are disrupted by the land 
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preparation for planting of the next crop. The argument is also valid for Pangasinan, but the 

separation of backscatter between short and long fallow was less pronounced. Therefore, the 

observed changes suggest that in the study, a location’s fallow duration was linked to 

management practices, where shorter fallows were left unmanaged and longer fallows were 

managed and used for planting short-term crops, such as garlic and mung bean, which are 

characterised by short and gentle peaks of the SAR signal (Gumma et al., 2016; Chang et al., 

2020).  

Moreover, strong rain events can also affect interpretation of fallow backscatter (Bégué et al., 

2018) by changing the depolarisation of the wet soils defined by higher backscatter intensity 

using the VV and VH polarisations (Gherboudj et al., 2011; Khabbazan et al., 2019). Therefore, 

drying, and wetting conditions lead to temporal fluctuations of the SAR signal. However, 

rainfall data for the fallowed fields indicate that, except at the beginning of fallow, no 

substantial rainfalls were experienced in either of the study sites, particularly in the Pangasinan 

province, which was defined by largely low dekadal rainfall (<7mm per dekad). Iloilo received 

on average two and a half times more rain than Pangasinan, but the rainfall was typically low 

and spread-out throughout the fallow periods. Some level of wetting effect is, however, 

expected within intensely cultivated areas, such as Iloilo (Villano et al., 2019), where 

continuous irrigation can take place (Sander et al., 2018). However, harvest reduces sensitivity 

of VH and VV polarisation to soil moisture that prevails throughout cropping season 

(Khabbazan et al., 2019). Therefore, any changes in the signal mid-fallow were assumed to be 

linked to the vegetation coverage and crop residue post-harvest rather than soil moisture 

content.  

6.1.3 Fallow end 

The end of fallow (FE) was assigned to the last phase of fallow periods, which was represented 

by accelerated declining of signal in the VH and VV polarisations, and reached a minimal point 

near the last day of fallow occurrence. This stage was observed in all fallowed fields 

irrespective of fallow length, although the time-series showed a distinctive behaviour 

dependant on fallow length and location.  

In Iloilo shorter fallows (<84 days) were characterised by a faster decrease and lower 

backscatter coefficients at the FE, especially in the VV polarisation. Longer fallows (>84 days) 

decreased at a similar pace after mid-fallow fluctuations, but the last backscatter values were 

significantly higher than in short fallows. Whereas, in Pangasinan the distinction between 

fallow lengths was lower with coefficient at the FE in VH higher than at the end of longer 

fallows. Those differences can be attributed to Iloilo having lower number of fields with long 

fallow periods (Pangasinan n=12 and Iloilo n=4) and higher signal saturation from probably 

short-term crops during the mid-fallow phase, especially since more fields had access to 

irrigation in Iloilo than in Pangasinan, shortening fallow duration in favour of planting more 

rice crops. Moreover, varying declines in the FE backscatter values indicated varying level of 

surface scattering, especially using the VV polarisation (McNairn et al., 2002), characterised 

by quicker and greater soil exposure due to the land preparation for the next crop in the shorter 

fallows, and a gentler gradual exposure in the longer fallows, due to weed and crop residue 

decay and drying of the land (McNairn et al., 2002; Bégué et al., 2018). Additionally, several 
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fields in Pangasinan reported dips below -20dB of VH polarisation observed in the shortest (48 

days) and several longer (>84 days) fallows, which were not observed in Iloilo. The dips were 

lower than the lowest point during the rice growing season (crop establishment) and were 

connected to potentially standing water in preparation for the next planting of rice (Asilo et al., 

2014; Nelson et al., 2014; Minh et al., 2019).  

Furthermore, the very end (the last day of available SAR data) of some fallowed areas in both 

locations were characterised by rises in the VH and VV backscatter. Because the changes 

happened at the end of dry season, when the surface scattering of bare soil was most dominant 

(McNairn et al., 2002), those changes were linked to preparation/tillering of land for the next 

crop.  

6.2 Fallow duration 

Analysed data covered wet and dry seasons (March 2018 to March 2019), but fallow periods 

occurred only during dry season, between October 2018 and March 2019. All the farmer 

reported fallow periods took place after the last crop, when field surveys were collected 

(February-March 2019). This was also the case for the additional identified fallow periods in 

Iloilo and Pangasinan, when no cropping activity was reported for at least 48 days. Only 

Pangasinan had one additional fallow period that happened between crops (between rice and 

mung bean), but it also occurred at the beginning of the dry season. This indicates that in the 

studied locations unmanaged fallow of at least 48 days occurs during the dry season when water 

availability is lowest, even in the irrigated fields.  

Fallow duration in the studied locations varied among most of the fields, with the shortest 

periods lasting from 48 days in Pangasinan and 60 days in Iloilo, and up to 156 days and 168 

days in Pangasinan and Iloilo, respectively. It should be noted that the shortest fallow was 

limited to the fallow periods reported by the farmers and the study did not look at any 

other/shorter periods between crops that were fallowed.  

Additionally, the availability of SAR data, which was collected and processed up until the end 

of March 2019, could have influenced the end of some fallow periods. Therefore, it is possible 

that several fields were left fallow for longer. However, as this was at the end of the dry season, 

and some backscatter suggested field preparation activities, it is assumed that data availability 

had little impact on the analysed duration of the fallow periods. 

Moreover, the temporal series revealed that fallow behaviour differed depending on its 

duration, which was categorised into short (<72 days in Pangasinan and <84 days in Iloilo) and 

long fallow (>72 days in Pangasinan and >84 days in Iloilo). In Iloilo short fallow was most 

common (17 short and 4 long fallow periods), whilst in Pangasinan long fallow was 

predominant (8 short and 12 long fallow periods). This disparity was attributed to varying 

cropping intensities in both locations, out of which Iloilo is known as one of the most intensely 

cultivated monocropping areas in the Philippines, where up to three rice crops are grown within 

one year (Villano et al., 2019) resulting in shorter fallow durations.  
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6.3 Fallow differences based on ecosystem types 

Ecosystem type was thought to have impact on the overall fallow backscatter behaviour. As 

fallow occurred during the dry season (between the end of November 2018 to the end of March 

2019), an assumption was made that fallow occurring in fields with access to irrigation was 

going to experience more vegetation growth than the rainfed fields, as water availability could 

have been greater if the neighbouring fields were flooded with water. However, statistical 

analysis for Iloilo indicated that there was no difference between fallow ecosystem type in all 

polarisations. In contrast, in Pangasinan the Mann-Whitney test suggested that there was a 

difference between ecosystem types. Those findings are also supported by comparing the time-

series of fallow backscatter in irrigated and rainfed ecosystems (see Appendix D), which 

demonstrated differences in fallow behaviour in the two ecosystem types. In Pangasinan, 

backscatter decreased significantly at the FS in all polarisations, whereas such a steep change 

was not observed in Iloilo.  

Moreover, fallow in the irrigated fields in Pangasinan started later than in a rainfed ecosystem 

– mid January-February in irrigated and November-December in rainfed fields. Occurrence of 

fallow mid-term of the dry season was characterised by a dynamic decrease at the start of fallow 

in irrigated fields as exposure to barren land and drying of the crop residue accelerated at that 

time. In Iloilo, fallow in irrigated ecosystems also began between the end of December-

February, but three fields had ratoon crops growing in portions of the fields, which could 

explain why the FS had higher backscatter in VH polarisation and gentler decrease over the 

fallow periods in irrigated fields in Iloilo. Additionally, the temporal variation observed 

between both ecosystems was despite irrigated fields receiving lower rainfall during fallow 

than rainfed ones (see Appendix E). This suggests that cropping of rice and/or non-rice crops 

can be done for longer in irrigated ecosystems despite receiving lower rainfall than in rainfed 

ones. Therefore, in rainfed ecosystems the farmers were possibly forced to enter fallow earlier 

than in areas with access to irrigation.  

In summary, fallow behaviour mainly differed at the start of fallow between irrigated and 

rainfed ecosystems, but the overall difference between the ecosystems was statistically 

significant only in Pangasinan province. Pangasinan experienced steeper deterioration of the 

backscatter in all polarisations after harvest, with gradual increases towards the end of fallow 

in irrigated ecosystems. Additionally, fallow in irrigated fields occurred mid-dry season and 

had a shorter duration compared to rainfed locations. In Iloilo irrigated fallow was also shorter 

but had a more mixed response represented by higher backscatter coefficients in VH than 

during the rice season which can be linked to higher multiple scattering (Mansaray et al., 2017) 

from the secondary crop growth reported in parts of some fields. In VV and VV/VH ratio the 

variation between the ecosystems was not as noticeable, represented by lower σ0 from the FS, 

which can be linked to VV’s lower receptiveness to volume scattering (Xu et al., 2019). This 

was also reflected in VV/VH ratio. Apart from that, the signal variation remained consistent 

among all polarisations towards the FE in irrigated and half term of fallow duration in rainfed 

ecosystem, which may explain lack of statistical differences between all polarisations reported 

in Iloilo.  
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6.4 Fallow and rice detection using SAR time-series 

In the studied locations, fallow occurred during the dry season after last crop was harvested. 

There were no reported fallows between crops, which affected identifying fallow in continuous 

data that had rice crops before and after fallow periods. Additionally, analysis of the temporal 

SAR data showed that the high variability of fallow backscatter can make fallow detection 

problematic. However, the statistical tests indicated that the FS and the FE were significantly 

different among all polarisations. Similar results were observed in rice development points 

where significant differences were observed between the crop establishment and harvest. Those 

points could be used for detecting local maxima and minima as the start and end of fallow.  

Therefore, two approaches for detecting fallow were proposed. One was detecting fallow 

during actual fallow periods; another method was a backward approach where the start and end 

of the rice season would be used as the end and start of fallow. The former method was based 

on backscatter between rice reproductive stage and the fallow end, whereas the latter method 

used rice backscatter that contained backscatter before, during and after rice crops.  

The FS detection using fallow backscatter had a mixed results with best accuracy observed 

only in VV/VH ratio in Iloilo (RMSE of 22.4 days) followed by VH polarisation (RMSE 

between 33.3 - 36.9 days) in both provinces, and VV polarisation having the worst detection 

accuracy (RMSE between 52.6 - 58.8 days). The boxplots (Figure 11) indicated that higher 

RMSE at the FS resulted from detection of backscatter between the flowering stage and harvest 

where signal reached its peak, except in the VV polarisation where signal saturation occurred 

closer to the vegetative stages than harvest. Moreover, three fields in Pangasinan and three in 

Iloilo were ratooned before fallow commenced. Ratoon had lower backscatter than the rice 

harvest, which affected the FS detection accuracy by increasing the temporal break between 

backscatter peak near harvest and fallow. Alternative analysis was performed with ratoon fields 

removed. The accuracy (see Appendix F) increased slightly in Pangasinan to RMSE of 28.2 

and 31.7 days in VV/VH ratio and VH, respectively. In Iloilo accuracy had not changed except 

for VH, for which the RMSE increased to 2.6 days. Overall, the FS detection performed best 

in VH and VV/VH ratio, and was between 23.4 and 31.7 days, which is below two and a half 

Sentinel-1A revisit times. Detection of the end of the rice season (harvest – fallow 

commencement indicator) resulted in better accuracy than the FS detection – ranging between 

20.2-22.8 days in VH polarisation, followed by VV/VH ratio of accuracy between 21.5-30.3 

days. This was because the signal reached saturation between the rice flowering and harvesting 

in VH and VV/VH ratio, which was the same as in the case of FS detection. 

Detection of the FE performed particularly well using fallow backscatter with RMSE accuracy 

best between 9.4 and 11.4 days, which was less than 12 days or one Sentinel-1A revisit time, 

in both locations over the three polarisations. It also resulted in better accuracy than detection 

of rice establishment (the start of the rice season - alternative marker for the end of fallow), 

where detection accuracy was only slightly poorer and was near the temporal resolution of 

Sentinel-1A at 12-day revisit time in VH polarisation and less than two Sentinel-1A revisit 

times in VV/VH ratio. Better performance of fallow detection than the start of the rice season 

may have been affected by the fact that used datasets finished before the next crop was 

recorded. However, as the backscatter was at its lowest at the FE, which in many instances was 
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lower than at the crop establishment observed over preceding rice crops, it is unlikely that the 

detection would have been significantly different. This reasoning is supported the fact that the 

lowest backscatter values possible reflected flooding of the fields (Asilo et al., 2014; Clauss et 

al., 2018a; Minh et al., 2019) that were then followed by gentle backscatter increases observed 

in a number of fields at the end of the used data, which were connected to tillering practices 

taking place in preparation for the next crop. 

To summarise, the fallow and rice season detection was weakest using VV polarisation. This 

was related to VV sensitivity to canopy attenuation at a much earlier stage than when using 

VH polarisation (Oh et al., 2009; Nelson et al., 2014; Li et al., 2018; Son et al., 2018), which 

in the studied fields VV on average started to decrease 48 days since the crop establishment. 

Furthermore, VV experienced more backscatter values mixing between fallow and the start of 

the rice season than the other two polarisations. Therefore, VH and VV/VH ratio have much 

better potential for detecting fallow periods based on the start and end of rice seasons. Similar 

conclusions were also reported by (McNairn and Brisco, 2004; Onojeghuo et al., 2018).  

Additionally, the detection methods used in this study were not affected by missing image 

acquisition in either of the provinces. This was because the missing data occurred mid-rice and 

-fallow seasons. Furthermore, the Savitzky-Golay filter applied to the original data should have 

minimised the impact of missing values (Estel et al., 2015). However, should the missing date 

occur at the beginning or the end of the fallow or rice season, or if more acquisitions were 

missing, then the detection would have been affected. 

6.5 Fallow detection between rice crops 

Between crops fallow detection was performed using a “backward” approach to fields with two 

rice crops to identify fallow periods between harvest and rice establishment. The detection 

results showed that this method had similar accuracy to rice cropping season recognition and 

was most accurate using the VH polarisation (RMSE between 15,0 and 18,8 days at the FS and 

15,5 and 15,0 days at the FE). The FE had the best accuracy in VH and VV/VH ratio (RMSE 

between 15.5 and 16.0 days in VH and 11.3 and18.8 days in VV/VH ratio). The boxplots 

(Figure 13 and Figure 14) indicated that the FS were identified 12 days before the rice harvest 

in the three polarisations in Pangasinan and VH and VV/VH ratio in Iloilo. In Iloilo, VV 

polarisation had the worst recognition of the FS, which resulted in detection error of RMSE 

77.6 days. The results were due to the highest points in the backscatter occurring before 

flowering stages, and not near harvest, as was the case with VH. Similar skewedness of the 

detection was observed at the FE in both study locations, where lowest points were detected 

around the flowering stage. The low detection accuracy in VV was in line with rice backscatter 

behaviour observed in VV, especially in Iloilo, which was discussed in Section 6.1. 

Additionally, detection of fallow between crops resulted in longer fallow durations than 

reported by the farmers (see Table 12). The average overestimation ranged from 17.3 days in 

VH in Pangasinan, which is relatively low considering that Sentinel-1A revisit time is 12 days, 

to 133.3 days in VV in Iloilo, which further confirms the low accuracy of the VV polarisation 

also detected in the fallow and rice season recognition. 
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Table 12. Average fallow duration observed from the farmer questionnaires and detected 

between crops. Pangasinan n=9; Iloilo n=9. 

Province 

Average fallow duration (days) 

Observed 
Detected 

VH VV VV/VH 

Pangasinan 48.0 65.3 130.7 77.3 

Iloilo 26.7 52.0 160.0 62.7 

6.6 Discussion of the data used in the study 

In the stacks of images used in this study, there were a few Sentinel-1A images that were not 

available due to missing acquisitions. In Iloilo, the acquisition was missing on 14/02/2019 and 

this mostly impacted fallow periods and some rice crops near flowering stages. Due to this, 

calculations of fallow duration in Iloilo were adjusted to reflect true fallow lengths. Moreover, 

the missing acquisition could explain why the median at the flowering stage in Iloilo was lower 

than expected, compared to harvest. Whereas, in Pangasinan the missing acquisition on 

28/08/2018 had no bearing on fallow because it happened before the commencement of the 

earliest fallowing period. However, it occurred between the late vegetative and early rice 

ripening stages, affecting data primarily at the flowering stage, for which next available 

acquisition date was assigned. However, because the start of the rice season in Pangasinan was 

more varied, it is assumed that the missing date had a lesser impact on rice backscatter 

interpretation than in Iloilo. 

This study extracted backscatter data for fallow and selected rice-development phases to show 

a continuous trend profile during the rice season and fallow. However, the original SAR data 

contained temporal noise, which was characterised by variations in backscatter values, that 

according to previous studies (Nelson et al., 2014; Clauss et al., 2018b; Son et al., 2018; Chang 

et al., 2020) were not expected to appear as part of the gradual process of vegetation change. 

The Savitzky-Golay (SG) filter provided an effective smoothing method for reducing temporal 

noise in the original temporal time-series while maintaining the shape and height of the 

waveform peaks. Furthermore, rice development stages and activities were useful for 

establishing SG filter smoothing parameters that did not under or over fit the filtered data that 

otherwise could have impacted interpretation of the temporal trends (Chen et al., 2004).  

Additionally, the behaviour of known rice temporal characteristics and cropping dates were 

found to be misaligned for a number of rice seasons when the farmer reported dates were 

compared to temporal backscatter. Rice seasons deemed inaccurate were removed from the 

analysis. This demonstrates a difficulty that can arise from relying solely on the farmer reported 

dates and the need for some sort of verification. Regular field visits around the period of SAR 

image acquisition could be one solution, however, this procedure is inconvenient and costly. 

Nevertheless, the verification used in this study proved a viable option for alleviating such 

issue. 
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6.7 Limitations and recommendations  

The field data used in the research lacked information about the conditions during fallow 

periods. Due to this, interpretation of fallow behaviour was limited to the temporal changes 

observed in backscatter values and assumptions made about water availability and cropping 

practices reported for rice cropping seasons, such as ecosystem harvesting method and copping 

of non-rice crops, as well as dekadal rainfall data extracted from CHIRPS images. 

Consequently, the analysis was restricted to what was known from previous research about 

after rice harvest and stubble management, fallow conditions, soil and vegetation impacts on 

the C-band SAR sensors, flooding events, etc. Therefore, future studies could benefit from 

more information about the conditions over fallows, weed prevalence, planting of non-rice 

crops, water shortage or rainfall, and flooding/tillage activities during or after fallow, which 

could further elaborate on the findings of this study.  

The studied sites were located far from weather stations and an attempt was made to extract 

rainfall data from CHIRPS (Climate Hazards Group Infrared Precipitation with Stations) 

imagery which provides predicted rainfall amounts.  However, due to the coarseness of the 

images, this had limited application for comparing rainfall data with fallow changes. 

In the analysed data, fallow events were not always practiced after the rice harvest. Several 

fallows, occurred after the ratoon harvest or non-rice crops, which had different backscatter 

behaviour at their harvest or crop establishment than rice crop. This created problems for 

application/identification of fallows’ minima and maxima on a continuous time-series data. 

Therefore, further studies could benefit from analysing the application of the used detection 

method for more fields/sites with continuous rice-fallow-rice cropping pattern.  

Additionally, based on the backscatter variations observed during fallow periods, increasing 

the revisit time over the fallowed fields, by combining data from Sentinel-1A and the recently 

introduced Sentinel-1B satellites, would be beneficial to observe the changes in the fallow 

periods, especially for detecting any unreported short-term crops which experience faster 

temporal changes than rice crops.  

The accuracy of the applied fallow detection method (using local minima and maxima method) 

could be affected in areas where vegetation development was taking place mid-fallow. 

Depending on the vegetation type and their density present during fallow, it could result in 

significant backscatter value increases. In such cases, identification of the fallow start could be 

affected. However, in the studied areas vegetation/non-rice crops did not have a significant 

effect as many fields had no or limited vegetation/crops growth mid-fallow, and observed peaks 

were negligible. Additionally, detection of fallow based on the rice season recognition has 

limited application in non-rice crops, where backscatter behaviour is different to that of rice 

(Chang et al., 2020).  

In the analysed data there was one field where crop residue was burned after harvest and 

showed that this practice had different backscatter behaviour than other stubble management 

practices. This indicated that SAR data, such as Sentinel-1A and -1B could be used for 

detecting agricultural burning practices, which unlike wildland and forest fire detection, have 

been subject to little research to date. 
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7 Conclusion 

The analysis performed in this study aimed to answer four research questions, the conclusions 

of which are summarised in following points. 

 

1. What are the characteristics of SAR backscatter during fallow period? 

Differences in backscatter behaviour were observed, based on fallow duration – short and long 

fallow – and differed slightly between the study locations. In short fallows, two phases 

dominated (the fallow start and the fallow end). Whereas, in long fallow another phase – mid-

fallow – was observed approximately halfway through fallow duration.  

At the start of fallow, backscatter was characterised by higher values, which decreased with 

time. The decrease was steeper in shorter fallows, whereas longer fallows saw a more gradual 

decrease. Near the end of fallow, in both fallow durations, backscatter values reached lowest 

points. This temporal change was attributed to the crop residues left after harvest that decayed 

over time and provided more exposure from the soils, and in some fields, this was followed by 

flooding in preparation for next crop. Additionally, a number of fields, in both locations, after 

prolonged backscatter decrease, showed some increases at the very end of fallow periods. This 

change happened at the end of the dry season and was accredited to tillering practices for the 

next crop.  

Furthermore, in longer fallows, some variation of backscatter was observed after 60 days from 

the rice harvest, which saw subtle increases that lasted between 24 and 36 days in Pangasinan, 

and between 24 and 48 days in Iloilo. This variation was linked to vegetation development that 

resulted potentially from shot-term drought tolerant crops. This variation of backscatter was 

higher in Iloilo that also saw a gentler decrease of the backscatter after the mid-fallow variation.  

The decreasing backscatter coefficient during fallows indicated that exposed soils dominated 

towards the end of fallow periods, despite fallow length, which implied that any vegetation 

growth/presence ceased towards the end and/or that land was managed, e.g., in preparation for 

the next crop. Additionally, in Pangasinan, the end of fallow had a more stable decreasing 

backscatter, suggesting that fields were mostly kept unmanaged which can be related to waster 

scarcity as most fields in the area were reliant on rainfall for its water source.  

Additionally, fallow periods were characterised by declining trend with higher variation of the 

backscatter ranges than in rice. Most of fallow backscatter values mixed/overlayed with rice 

backscatter values making distinction between rice and fallow problematic. However, similarly 

to the rice season, fallow periods showed biggest difference between the start and the end of 

fallow, which could be used for detecting fallow duration.  

Moreover, rainfall data extracted from CHIRPS images showed that, on average, Iloilo 

received over twice as much rainfall as Pangasinan (116.56mm and 45.20mm, respectively) 

throughout the fallow seasons. This may explain why longer fallows in Iloilo had overall higher 

backscatter coefficient than Pangasinan, which were linked to more favourable conditions for 

cropping short-term crops. 
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2. Are fallow backscatter values different for irrigated and rainfed fields? 

The results indicated that there was no significant difference in fallow characteristics in the 

SAR backscatter values between ecosystem types in Iloilo across all polarisations. Pangasinan, 

on the other hand, was the only province with statistically significant variations in the three 

polarisations (VH, VV, and VV/VH ratio) represented by a higher decrease in backscatter after 

harvest, and slight increases observed near the end of fallow periods in irrigated ecosystems. 

Furthermore, long fallow only occurred in rainfed ecosystems in Pangasinan, and just one long 

fallow happened in an irrigated ecosystem in Iloilo. This suggests that water source affects the 

duration that land was kept fallowed. 

 

3. Can fallow be detected using SAR time-series? 

The study indicated that the fallow period in rice cropping systems can exhibit more temporal 

fluctuations than during the rice growing season. However, the start and the end of fallow were 

not affected by the variations and these stages were used to detect fallow by finding local 

minima and maxima. The FS detection accuracy was much lower than the FE detection, as 

peaks in the signal (indicating the FS) were reached before harvest. Additionally, the detection 

of the rice season provided another alternative for detecting fallow, where anything non-rice 

was classed as fallow. The results were overall better than using the same method over fallow 

periods but resulted in overestimation of the fallow duration in the three polarisations that was 

lowest using the VH polarisation (between 13.3 and 25.3 days in Pangasinan and Iloilo, 

respectively). Moreover, fallow detection methods used in this research may have somewhat 

limited application, as they may not work as well for non-rice crops, especially short maturing 

crops (Defourny, 2017) 

 

4. Which polarisation (VV, VH or VV/VH polarisation ratio) is better at detecting 

fallowing?  

The VH polarisation was best at detecting the start and the end of fallow and the rice season in 

both locations. Similarly, the VV/VH ratio produced acceptable results. The VV polarisation, 

in turn, resulted in the lowest overall accuracy in detecting the start and end of the rice season 

and fallow periods. 
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Appendix A. IRRI’s Field Survey Protocol for Pangasinan and 

Iloilo provinces 

The descriptions below were reproduced/amended from IRRI’s report that listed criteria for 

selecting survey sites.  

 

Survey area selection 

1. The selection of the survey sites (region and province) was primarily based on the top 

20 rice growing provinces. IRRI used the 5-year average (2013-2017) from Philippine 

Statistics Authority (PSA) report of harvested area, aggregated by semester (Jan-Jun 

and Jul-Dec) and by ecosystem (irrigated and rainfed). Aside from the PSA report, the 

available data collected from the Pest Risk Identification and Management (PRIME) 

monitoring fields, Philippine Rice Information System (PRISM) monitoring fields 

(2016-2018), and other sources (e.g., points collected as part of Villano’s thesis) were 

also considered in the selection. The provinces with larger area planted to rice in rainfed 

ecosystem and without or with lesser number of field observations from PRIME and 

PRISM were given high priority.  

2. Based on the above considerations, the following areas have been shortlisted: 

• Luzon: Pangasinan (Region I), Palawan (MIMAROPA), Cagayan (Region II), 

Camarines Sur (Region V) 

• Visayas: Capiz, Negros Occidental, and Antique (Region VI), Samar and Leyte, priority 

in rainfed areas (Region VIII), and Bohol (Region VII). 

• Mindanao: Maguindanao and Lanao del Sur (ARMM), Agusan del Sur (Caraga), and 

North Cotabato (SOCCSKSARGEN) 

• 3. Finally, in the interest of time, budget, and safety and security, IRRI have selected 

Pangasinan, Region I and Iloilo, Region VI, among three other provinces for which data 

was not utilised in this study. 

3. Within each of the selected provinces, IRRI identified the top rice growing 

municipalities (e.g., top 5 to 10 depending on the size of the areas) based on the local 

government unit (LGU) report. The reported statistics was aggregated by season (wet 

and dry) and by ecosystem (irrigated and rainfed). The PRIME and PRISM monitoring 

sites were again considered in the selection of the municipalities, such that areas without 

or with small number of sites were prioritized. Due to limited time and resources, 

accessibility, and proximity of the municipalities with each other were also considered 

in the selection criteria. The sample fields had to represent diversity in the rice-based 

cropping areas in terms of ecosystems (rainfed and irrigated) and the crop establishment 

practices/methods (transplanted, wet direct-seeded, and dry direct-seeded). 

4. Below is a list of selected provinces and municipalities and target number of survey 

fields. IRRI aimed to collect 80 survey fields per province. 
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Provinces (REGIONS) 

and municipalities 

Number of 

surveyed fields 
Dates of field visit 

Pangasinan (REGION 1) 72  

Agno 17 26 - 27 Feb 2019 

Alaminos City 18 20 - 21 Feb 2019 

Bani 20 22 - 23 Feb 2019 

Bolinao 17 28 Feb - 1 Mar 2019 

Iloilo (REGION VI) 75  

Cabatuan 16 4 - 5 Feb 2019 

Lambunao 19 12 - 13 Feb 2019 

Oton 20 6 - 7 Feb 2019 

Sta Barbara 20 8 and 11 Feb 2019 

 

Criteria for field selection 

To identify survey fields, the IRRI team coordinated with the corresponding DA-Regional 

Field Office (RFO) PRIME focal persons/team and LGUs. The selected field had to satisfy the 

following criteria: 

1. Should be rice-based (e.g., planted with rice at least once in 2018), and could be planted 

with rice or non-rice crop(s) or fallow in the current season; 

2. Should be at least 4,000 sq. m in size and regular in shape (4 sides, rectangular or 

square). In case the parcel is small, the field could consist of more than one parcel as 

long as the parcels are contiguous; 

3. Surrounded by at least 1 ha of rice fields of the same ecosystem, if currently planted 

with rice;  

4. Should be at least 60 m away from paved roads, built up areas (e.g., cluster of houses 

and buildings) and other structures (e.g., electric towers); 

5. Survey fields should at least be 500 m away from each other; and 

6. Survey fields should be accessible. 
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Appendix B. Brief list of Sentinel-1A pre-processing staps 

Below is a brief list of steps (adapted from Nelson et al., 2014) involved in the pre-processing 

stages:  

1. Strip mosaicking: Mosaicking of the images from the same accusation day and orbit to 

produce single image strips in slant range geometry.  

2. Co-registering: Co-registering of images in slant range geometry involved: 

a. Application of the orbit shift correction shift from orbit file (based on accurate 

satellite position and velocity); 

b. Identification of pixel shifts between referenced and co-registered images and 

elevation, and their correction based on cross-correlation; 

c. Calculation and geometric correction of azimuth and range direction shifts. 

3. Speckle filtering: Time-series speckle filtering of image stacks to improve 

discrepancies that may result from temporal dielectric and geometrical properties of the 

scatters.  

4. Terrain geocoding: In this step range-Doppler calculations were performed to transform 

two-dimensional coordinates of the slant range image into three-dimensional object 

coordinates in a specified cartographic reference system.  

5. Radiometric calibration and normalisation: Radiometric calibration was calculated 

using scattering area, antenna gain patterns and range spread loss. Then, the cosine law 

of the incidence angle was applied to the backscatter coefficient to compensate for 

range dependency. 

6. Anisotropic Non-Linear Diffusion (ANLD) filtering: The ANLD was applied to 

improve differences between linear structures by smoothing homogenous areas. 

7. Removal of atmospheric effects: C-band wavelengths can be affected by atmospheric 

vapour content, which after tropical storms can be characterised by weakened 

backscatter values soon after the event. Whereas the signal can increase during intense 

rainfall and a significant decrease in of the signal after the event. Removal of the 

atmospheric effects was achieved by interpolation of anomalous peaks and troughs. 

However, “this process relies strongly on a priori knowledge of the rice crop calendar 

and the weather conditions when the image was acquired” (Nelson et al., 2014, p. 

10788). 
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Appendix C. Boxplots showing differences of backscatter 

values between the fallow start and end 

The boxplots are for VH, VV and VV/VH ratio in a) Pangasinan and b) Iloilo provinces. 
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Appendix D. Boxplots of rice and fallow temporal 

backscatter separated by ecosystem type 

Boxplots show temporal backscatter for irrigated (left) and rainfed (right) fields in Pangasinan 

in a) VH, b) VV and c) VV/VH polarisation ratio, and Iloilo in d) VH, e) VV and F) VV/VH 

polarisation ratio. 

a) Pangasinan – VH polarisation
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b) Pangasinan – VV polarisation

 

c) Pangasinan – VV/VH polarisation ratio

 



75 

 

d) Iloilo – VH polarisation

 

e) Iloilo – VV polarisation
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f) Iloilo – VV/VH polarisation ratio

 

  



77 

 

Appendix E. Average dekad rainfall separated by ecosystem 

type  

The boxplots cover the duration of fallow periods in Pangasinan (upper) and Iloilo (lower). 

Dekad1 corresponds to the start of fallow in each field. Duration based on fallow occurrence 

with Dekad16 containing rainfall data only for the longest fallow periods. 
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Appendix F. Fallow detection with ratoon fields removed 

Table below shows root mean square error (RMSE) result for the start and end of fallow with 

ratoon fields removed. The RMSE was performed for derived minima and maxima dates from 

fallow backscatter and the farmer reported fallow periods.  

Province 
SAR 

channel 

RMSE - Fallow  

Start of fallow End of fallow 

RMSE (days) 
Sentinel-1A 

revisits 
RMSE (days) 

Sentinel-1A 

revisits 

Pangasinan 

VH 31.7** 2.6 8.7* 0.7 

VV 55.1** 4.6 10.1* 0.8 

VV/VH 28.2* 2.4 8.7** 0.7 

Iloilo 

VH 30.9** 2.6 9.1* 0.8 

VV 52.5** 4.4 10.7* 0.9 

VV/VH 23.4* 1.9 10.7** 0.9 

(RMSE based on reported FS/FE and derived date from backscatter: * local minima; and ** local 

maxima) 

 

Boxplots below show the of the temporal differences between the observed fallow start date 

(upper) and the fallow end date (lower) in a) Pangasinan and b) Iloilo. RMSE is expressed in 

days. 

  
a)       b) 
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a)       b) 
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Appendix G. Time-series for each field in Pangasinan and 

Iloilo. 

The time-series contain Savitzky-Golay filtered SAR data for fields with accepted rice 

cropping patterns. Accepted rice cropping stages and activities are marked with black text and 

lines, whereas rejected rice crops were marked by grey horizontal lines.  

Abbreviations of the cropping stages and activities used in the graphs are as follows: LP = Land 

preparation; CE = Crop Establishment; FLW = Flowering; H= harvest; and RH = Ratoon 

Harvest. The numbers next to the cropping phases indicate the crop number each stage and 

activity relates to. FallowN indicates additional fallow periods not previously reported by the 

farmers.  

To differentiate between both locations, the data for the fields in Pangasinan were plotted in 

green, whereas Iloilo data was plotted in orange. Also, the three-digit field numbers starting 

with 1 are for Pangasinan, whereas fields in Iloilo start with 6. 
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Time series for Pangasinan VV/VH polarisation ratio: 
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Time series for Iloilo VH and VV polarisations: 
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Time series for Iloilo VV/VH polarisation ratio: 
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Series from Lund University 

Department of Physical Geography and Ecosystem Science 

 

Master Thesis in Geographical Information Science 

 

1. Anthony Lawther: The application of GIS-based binary logistic regression for 

slope failure susceptibility mapping in the Western Grampian Mountains, 

Scotland (2008). 

2. Rickard Hansen: Daily mobility in Grenoble Metropolitan Region, France. 

Applied GIS methods in time geographical research (2008). 

3. Emil Bayramov: Environmental monitoring of bio-restoration activities using 

GIS and Remote Sensing (2009). 

4. Rafael Villarreal Pacheco: Applications of Geographic Information Systems as 

an analytical and visualization tool for mass real estate valuation: a case study 

of Fontibon District, Bogota, Columbia (2009). 

5. Siri Oestreich Waage: a case study of route solving for oversized transport: The 

use of GIS functionalities in transport of transformers, as part of maintaining a 

reliable power infrastructure (2010). 

6. Edgar Pimiento: Shallow landslide susceptibility – Modelling and validation 

(2010). 

7. Martina Schäfer: Near real-time mapping of floodwater mosquito breeding sites 

using aerial photographs (2010). 

8. August Pieter van Waarden-Nagel: Land use evaluation to assess the outcome 

of the programme of rehabilitation measures for the river Rhine in the 

Netherlands (2010). 

9. Samira Muhammad: Development and implementation of air quality data mart 

for Ontario, Canada: A case study of air quality in Ontario using OLAP tool. 

(2010). 

10. Fredros Oketch Okumu: Using remotely sensed data to explore spatial and 

temporal relationships between photosynthetic productivity of vegetation and 

malaria transmission intensities in selected parts of Africa (2011). 

11. Svajunas Plunge: Advanced decision support methods for solving diffuse water 

pollution problems (2011). 

12. Jonathan Higgins: Monitoring urban growth in greater Lagos: A case study 

using GIS to monitor the urban growth of Lagos 1990 - 2008 and produce future 

growth prospects for the city (2011). 
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13. Mårten Karlberg: Mobile Map Client API: Design and Implementation for 

Android (2011). 

14. Jeanette McBride: Mapping Chicago area urban tree canopy using color infrared 

imagery (2011). 

15. Andrew Farina: Exploring the relationship between land surface temperature 

and vegetation abundance for urban heat island mitigation in Seville, Spain 

(2011). 

16. David Kanyari: Nairobi City Journey Planner:  An online and a Mobile 

Application (2011). 

17. Laura V. Drews:  Multi-criteria GIS analysis for siting of small wind power 

plants - A case study from Berlin (2012). 

18. Qaisar Nadeem: Best living neighborhood in the city - A GIS based multi 

criteria evaluation of ArRiyadh City (2012). 

19. Ahmed Mohamed El Saeid Mustafa: Development of a photo voltaic building 

rooftop integration analysis tool for GIS for Dokki District, Cairo, Egypt (2012). 

20. Daniel Patrick Taylor: Eastern Oyster Aquaculture: Estuarine Remediation via 

Site Suitability and Spatially Explicit Carrying Capacity Modeling in Virginia’s 

Chesapeake Bay (2013). 

21. Angeleta Oveta Wilson: A Participatory GIS approach to unearthing 

Manchester’s Cultural Heritage ‘gold mine’ (2013). 

22. Ola Svensson: Visibility and Tholos Tombs in the Messenian Landscape: A 

Comparative Case Study of the Pylian Hinterlands and the Soulima Valley 

(2013). 

23. Monika Ogden: Land use impact on water quality in two river systems in South 

Africa (2013). 

24. Stefan Rova: A GIS based approach assessing phosphorus load impact on Lake 

Flaten in Salem, Sweden (2013). 

25. Yann Buhot: Analysis of the history of landscape changes over a period of 200 

years. How can we predict past landscape pattern scenario and the impact on 

habitat diversity? (2013). 

26. Christina Fotiou: Evaluating habitat suitability and spectral heterogeneity 

models to predict weed species presence (2014). 

27. Inese Linuza: Accuracy Assessment in Glacier Change Analysis (2014). 

28. Agnieszka Griffin: Domestic energy consumption and social living standards: a 

GIS analysis within the Greater London Authority area (2014). 
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29. Brynja Guðmundsdóttir: Detection of potential arable land with remote sensing 

and GIS - A Case Study for Kjósarhreppur (2014). 

30. Oleksandr Nekrasov: Processing of MODIS Vegetation Indices for analysis of 

agricultural droughts in the southern Ukraine between the years 2000-2012 

(2014). 

31. Sarah Tressel: Recommendations for a polar Earth science portal in the context 

of Arctic Spatial Data Infrastructure (2014). 

32. Caroline Gevaert: Combining Hyperspectral UAV and Multispectral Formosat-

2 Imagery for Precision Agriculture Applications (2014). 
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