
1

Implementation of a

component to manage

authorization for a web

application

Bachelor’s Thesis

by

Victor Paulsen

Department of Electrical and Information Technology

Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

2021

2

3

Abstract
This thesis was written in collaboration with Klarna in Giessen

with the purpose of developing a component to deal with

authentication in a web application. The component is intended to

interact with the authorization service from Okta with the correct type

of authorization flow to allow or disallow access to the web

application’s resources. At first, knowledge was gathered regarding the

web application, the underlying code and its current safety

measurements. Then, different types of authorization flows that Okta

was supporting at the time were evaluated. The component was built

with the programming language Java together with the framework

Spring and consisted of three classes:

- one REST API with an endpoint to which Okta sends the

required data in case of a successful login via Okta’s portal.

- one class that manages all the logic for authorization.

- one helper class that translates the response from Okta’s API

into usable Java objects.

Authorization code flow was implemented in this solution together

with logic for both access and refresh tokens (see 2.3).

Keywords
SSO, Auth, Spring Boot, Okta, Web Application, Security,

OAuth2.0, OIDC, Authorization code flow, API.

4

Sammanfattning
Examensarbetet utfördes i samarbete med Klarna i Giessen med

syftet att utveckla en komponent i en del av en webbapplikation som

hanterar autentisering. Komponenten skulle interagera med

auktoriseringstjänsten försedd från Okta tillsammans med korrekt

auktoriseringsflöde som en lösning för tillåten användning av

webbapplikationen. Arbetet inleddes med en undersökning av

webbapplikationen, bakomliggande kod och dåvarande

säkerhetsåtgärder. Därefter evaluerades olika typer av

auktoriseringsflöden som Okta stödde. Komponenten blev byggd i

programmeringsspråket Java tillsammans med ramverket Spring och

bestod av tre klasser:

- ett REST API med en kommunikationspunkt som Okta

överför essentiell information till efter en lyckad inloggning via

Oktas portal.

- en klass som hanterar all logik angående auktorisering.

- en klass som översatte all respons från Okta’s API till

användbara objekt.

Flödet “Authorization code flow” var det som slutligen användes i

komponenten tillsammans med logik för både access tokens och

refresh tokens (se 2.3).

Nyckelord
SSO, Auth, Spring Boot, Okta, Webbapplikation, Säkerhet,

OAuth2.0, OIDC, Authorization code flow, API.

5

Contents
Preface 8

1 Introduction 9

1.1 Background 9

1.2 Purpose 10

1.3 Goal formulation 10

1.4 Problem formulation 11

1.5 Motivation of thesis 11

1.6 Boundaries 12

2 Technical background 13

2.1 Spring Framework and Spring Boot 13

2.2 JSON web tokens 14

2.3 OAuth 2.0 15

2.4 OpenID Connect 16

2.5 Okta 16

2.6 Bitbucket 16

3 Method 17

3.1 Eliciting 17

3.2 Research phase 18

3.3 Implementation phase 18

3.4 Feedback phase 18

3.5 Validation phase 19

3.6 Communication 19

6

3.7 Changes during the project 19

3.8 Source criticism 19

4 Analysis 23

4.1 Elicitation results 23

4.2 Former authentication handling 25

4.3 Choice of authorization flow 26

4.4 Encountered problems and solutions 27

5 Results 29

5.1 Starting the authorization code flow 29

5.2 Acquiring tokens with the authorization code 30

5.3 Handling the authorization from the client 31

5.4 Logout 32

5.5 Design 33

6 Summary 35

6.1 How does the current solution for authentication and

authorization look for the web application? 35

6.2 What are the requirements in terms of security related to an

Okta single sign-on solution? 35

6.3 How is a user-friendly authentication solution implemented? 36

6.4 What is one way to implement single sign-on via Okta for a

web application? 36

6.5 Reflection on ethical aspects 37

6.6 Future development opportunities 37

7 Terminology 39

8 References 41

9 Appendices 43

7

Appendix A. Screenshots of the login flow 43

Appendix B. JWT 45

8

Preface

This Bachelor’s thesis would not exist without the support and

guidance of my supervisor Bertil Lindvall, my examiner Erik Larsson,

and my contact persons at Klarna - Marc Siewert among other

colleagues. You all have my deepest gratitude.

Victor Paulsen

9

1 Introduction

This chapter introduces the company for which the project was

performed, the purpose of the work, the goal as well as the

motivation behind it. Lastly, the boundaries set for this project are

discussed.

1.1 Background

Klarna is a Swedish company within the financial technology

sector. They provide online financial products and services for the

secure payment of physical and digital goods on the Internet. Klarna,

initially named Kreditor and changed to Klarna in 2009, was founded

in 2005 by Sebastian Siemiatkowski, Niklas Adalberth and Victor

Jacobsson. The company currently has more than 4,000 employees in

seventeen countries, most of them located in Europe. This current

project was carried out in the office at Gießen, Germany and officially

performed with Sofort GmbH, which was acquired by Klarna in 2014

and is responsible for engineering solutions.

Internally, a department team within Sofort Gmbh was using a

company-developed web application that allowed for categorizing

transactions. This application was only intended for the members of

the team. The application provided necessary data for another

application that gave customers an overview of what they spent their

money on and in that way tried to promote economically wise

decisions. The application was in an early developmental stage and had

room for improvements in different areas. One of the improvements of

interest was to integrate the application with Okta so that it would use

the employees’ central set of credentials and thus be more user

friendly, not having to remember several different credentials; a long-

term goal was to use the same authentication methods for most of the

company’s web applications. The planned users of the web application

were to be the internal members of a certain department team.

The application’s backend was built with the help of Spring

Framework, while the frontend was built with the framework React.

10

The component to be created would need to comply with these

techniques.

This report presents the implementation of gaining authorization

via Okta with their OIDC and OAuth2.0 API in a Spring Boot

application.

1.2 Purpose

The purpose of this project is to upgrade and document the web

application’s features regarding authentication and authorization to

more easily implement other web applications in the future. Klarna’s

requirements in terms of security, ease of use and flexibility are taken

into consideration.

The expected result is the ability to log in with a central set of

credentials that an employee at Klarna has, and once they are

authenticated, they are not disrupted or redirected for reauthorization

for a longer time.

1.3 Goal formulation

The goal of this thesis work is to enable single sign-on (SSO)

authorization via Okta for a web application that currently performs

authorization via stored credentials in the application’s backend. A

minimal viable product (MVP) is constructed as a component for the

web application; it handles the login based on the central set of

credentials currently stored for the employees.

The component’s functionality is meant to provide resource access

to a successfully authenticated user when the application is assigned to

them. Additionally, it is designed to deny resource access if the user is

either not authenticated or does not have the application assigned to

them. Furthermore, the component keeps an active user logged in

without having to redirect them to reauthorize or revalidate their issued

tokens.

11

1.4 Problem formulation

The following questions are answered:

1. What is the current solution for authentication and

authorization for the web application?

2. What are the requirements in terms of security related to a SSO

solution?

3. How is a user-friendly authentication solution implemented?

4. What is one way to implement SSO via Okta for a web

application based on Spring Boot?

1.5 Motivation of thesis

I chose this thesis topic because it is an interesting area to me as it

mostly regards security and web development. The thesis implements

a practical solution with underlying theoretical research. What also

motivates me is the fact that the results could provide a potential

guideline for developers who want to implement a similar solution.

Furthermore, it could encourage the general audience and the

information technology branch to make use of more secure and

practical ways of dealing with authentication and authorization.

The company’s goal is to have a standardized central login method

for most of their applications to increase the ease of monitoring and

useability, one that is less error prone due to not having to process

many login credentials. Furthermore, having a central set of credentials

would also facilitate their process of access reviews. Access reviews

carries out with inspecting access assignments for applications and

deactivating it for users who would not have a reason to be able to use

them anymore. For example, when an employee would leave a

company or moved to a different internal team. When employees of

Klarna log in via Okta, multi-factor authentication is used. It is a

company policy because it is safer from a security point of view and

this pushes for integrating all their web applications with Okta.

12

1.6 Boundaries

The solution is only to be tried out for a web application based on

Spring Boot. Spring’s Security framework was not acceptable as it

would create issues for the web application. This required the

implementation of the authorization flow to make use of Okta’s

OIDC and OAuth 2.0 API instead. The component’s functionality

only needed to be validated for the web browser Google Chrome,

because of Google Chrome being Klarna’s internal web browser

choice.

A more thorough validation to test the security of the component

were to be made on Klarna’s end, this thesis covers following

validation.

1. Assigned user can log in.

2. Unassigned user can’t log in.

3. Security flags of cookies are set.

4. Tokens are invalid and rotated after a set time.

13

2 Technical background
The technical background includes all techniques used in developing

the component for the targeted web application.

2.1 Spring Framework and Spring Boot

Spring Framework: Spring Framework is a tool for creating and

structuring Java applications by building a structure with common

patterns. Framework helps with various functionalities, two of them

being major points in the context of this thesis project:

Application context and dependency injection:

- Spring initializes and manages object instances and

connects them together.

- Spring injects references into objects and ensures that

every object has references to all the objects they

require. It only creates one instance of classes with

business logic methods, while it creates one or many

instances of objects that hold data, depending on the

need [2].

Spring MVC:

- This is used to create an API endpoint that Okta’s

servers can communicate with through HTTP GET

requests [3]. Picture 1 shows how the endpoint looks

in code, where the PostMapping annotation sets the

endpoint-URI to www.baseURI.com/form.

14

Picture 1. Example of creating an API endpoint with Spring’s MVC

Framework.

Source: Screenshot taken from [3]

Spring Boot: This provides features to create production-grade

Spring-based applications that are set up to run without needing much

configuration. Spring Boot can embed Tomcat, Jetty or Undertow

without needing to deploy WAR files [4]. It is used in the web

application’s backend, embedded with Tomcat.

2.2 JSON web tokens
A Java Script Object Notation (JSON) web token (JWT) is used

for sharing data between two points, including ways to ensure

confidentiality. These tokens can be signed and encoded with various

algorithms. A JWT contains three parts:

- Header: Information about the algorithm and type of token

being used.

- Payload: Contains data in the form of name-value pairs.

- Signature: Validates the token in a secure way.

An example of how a JWT looks is presented in Appendix B.

15

2.3 OAuth 2.0
OAuth 2.0 is an open-standard authorization protocol issued by

the Internet Engineering Task Force (IETF) that allows third-party

access to limited resources in one of two ways:

- On behalf of a resource owner by setting up an approval

interaction between the resource owner and the HTTP service.

- By allowing the third-party application to obtain access on its

own behalf.

In the early ages of client-server authorization models, it was

normal for the client to store credentials from a resource owner to

access resources from a server in their name. This can be illustrated

through the following scenario: “Give me the key to your house, and

I promise I will only go in and get your jacket.”; Where the person

asking is the client, the key is the resource owners’ credentials, and

the house is the resource server. This was a non-secure solution that

needed improvement, and that is what gave life to the OAuth2.0

protocol in which it does not store any resource owner credentials on

the clients’ side. Instead, it trades the following information:

- What access the client will have on behalf of the resource

owner.

- A time limit on how long the access will be available.

- Other access attributes such as name, issuer and similar

values.

The client uses this information, contained in what is called an access

token, to access the protected resources on the resource server. The

access token is issued by an authorization server when the resource

owner approves the access the client will receive. This type of

solution can be compared to a valet key for a car. When one gives a

valet key to a car park attendant, the attendant cannot access the

glove compartment or any other areas that might store valuables; they

16

are restricted to resources that enable them to do their job and nothing

more [6].

Okta acts as the authorization server in this thesis work, issuing and

validating all the tokens. Okta implements the OAuth2 protocol, and

the format of their tokens are of JWT.

2.4 OpenID Connect
Since the OAuth2.0 protocol does not handle authentication, it is

instead extended with the OIDC protocol, which enables applications

to verify the identity of a user as well as to obtain basic profile

information about the user [7].

2.5 Okta
Okta is an identity and access management company based in San

Francisco. They provide cloud-based software that can be integrated

with applications for the purpose of managing and authenticating

users [14]. Their most relevant product regarding this thesis is SSO,

which enables users to log in to a variety of applications with the

same set of credentials. Important to understand is that OpenID

providers need to have a certificate. Okta had a certificate during the

time of this thesis project and acted as an authorization server.

2.6 Bitbucket
Bitbucket is a web-based storage service for coding projects that

allows users to do basic Git operations while controlling read and

right access to the code.

17

3 Method
This chapter describes how this thesis work was planned and

executed. It is divided into several phases with a describing

subchapter for each of them. This was done so that phases could

overlap each other or continue during the entire project.

3.1 Eliciting
As with most projects, requirements had to be determined. The

eliciting phase was used to determine the identity platform with

which to integrate the component as well as other possible

requirements that could follow. It is important to understand that this

was an in-house project.

Firstly, requirements were elicited through brainstorming with the

team that created the application. The question addressed was “How

would you want your application’s authentication experience to be?”

Requirements obtained from this brainstorming session were mostly

regarding user experience, but there were also some implementation

requirements mentioned. Brainstorming is one of several eliciting

techniques advocated by Soren Lauesen [9].

Once the requirements were noted, a Jira [18] ticket was filled out

and sent to an internal team for access management. (Jira Service

Management is a software that was used as a virtual service desk).

The ticket contained the following information:

- Type of application.

- In what environment the SSO integration was to be created in,

with the options non-production or production.

- Whether OIDC or SAML would be used for authentication.

SAML is another open standard protocol that can be used to

deal with authentication and authorization. SAML uses

different technologies but can achieve similar results [19].

18

The response to this form included Okta attributes to use in setup as

well as some other requirements.

3.2 Research phase
Following the identification of requirements, a research phase was

initiated. Reading documentation and guides provided by Okta helped

to gain knowledge about the matter. Very basic applications with

various methods of implementation were created to gain knowledge

regarding how they turned out in practice. Furthermore, there were

important resources in the official documentation of OAuth2.0

provided by IETF [6].

3.3 Implementation phase
Once the research reached a stage where sufficient knowledge

and the necessary Okta credentials for the application were achieved,

an attempt to implement a solution was made. The first prototype was

only intended to confirm what kind of implementation type would

work for the application. After that, code review with feedback was

conducted.

The Java programming language was used in writing together

with the IDE IntelliJ IDEA Ultimate and the build automation tool

Gradle; which had some scripts with which to synchronize the React-

built frontend with the backend. The implementation and feedback

phases resulted in several iterations. A good design was made once

the required functionality was attained.

3.4 Feedback phase

Version control was achieved through Git with Bitbucket, and a

code review was conducted after every code commit. The feedback

was provided by the senior engineers in the team through comments

19

on the pull requests and by following up on open discussions in

Google Meet.

3.5 Validation phase
The validation was to be performed in three ways:

- Manually through demonstration, using the application while

analyzing with the web browser’s developer console.

- Code analysis by team members.

- Approval from customized Spring Boot test classes.

3.6 Communication
Communication with the company was carried out through Slack

and Google Meet due to restrictions caused by the COVID-19

pandemic. The web application team had an online office

environment in Google Meet where team members could check in

and communicate with one another while working. For requests or

communications with other teams within Klarna, Slack was used for

more casual conversations, while Jira was used to create requests in

the form of tickets. Every Friday, there was a retrospective held via

Google Meet to update the stakeholders.

3.7 Changes during the project
More thorough work was planned for security testing. However,

since the component had to be tailored with Okta’s OIDC and OAuth

2.0 API, the implementation was more time consuming than

expected. The security validation was therefore performed on

Klarna’s end.

3.8 Source criticism
Information about the references is presented in this section for the

interested reader regarding the trustworthiness of all the sources.

20

Spring

Spring was founded by the creators of the Spring Framework; all

their projects are free to use and open-source with an active

community. Spring’s products are widely used within Java Enterprise

applications.

Internet Engineering Task Force

“The goal of the IETF is to make the Internet work better” is

officially stated in the document Request for Comments (RFC) 3935

[17]. The IETF includes researchers and network developers, and it

reaches its goal by stating and documenting standards for the Internet’s

infrastructure. These published standards aim for improved usability

of the Internet, including the improvement of information exchange

between different devices.

OpenID Foundation

As is the IETF, the OpenID Foundation is an internationally

orientated group. Individuals as well as companies share ideas,

experiences and interests for optimizing OpenID technologies. They

are represented as a public trust organization.

Software Requirements: Styles and Techniques

The author of the book Software Requirements: Styles and

Techniques, Soren Lauesen, is a professor emeritus of computer

science at IT University of Copenhagen. The book is also used in the

required engineering course ETSF30 at Lunds Tekniska Högskola

(LTH).

21

UML Syntax

Lennart Andersson, the author of this document, was a professor

in the computer science department at LTH when he published it.

The Open Web Application Security Project

Declared as a nonprofit foundation whose mission is to improve

software security, the Open Web Application Security Project

(OWASP) has tens of thousands of members who develop open-

source software projects to help forward their mission. Several

corporations have supported the OWASP and their work for over two

decades.

Google Guava

Google Guava was Founded by Kevin Bourrillion, a senior

engineer and Jared Levy, a senior staff software engineer. It is a set of

common libraries for Java that carries the Apache License 2.0,

meaning it is open-source. It was and is developed mostly by

engineers from Google.

Okta

Okta, described in 2.5, provided practical information for the

OAuth2.0 framework and the OIDC protocol. The information was

validated against the IETF’s official document as their information

needs to be correct for the service to be safely implemented. The

information was correct, but a more in-depth knowledge was gained

from the IETF’s official document.

134 Cybersecurity Statistics and trends for 2021

134 Cybersecurity Statistics and trends for 2021 is a blog post

authored by Rob Sobers, a software engineer specializing in web

security. He provided valid sources for all statistics provided in the

22

post. The post was published by Varonis which is a company that

focuses on providing security software for organizations.

23

4 Analysis

4.1 Elicitation results
The results from the elicitations translate into the following

specifications:

1. Requirements for authorization and authentication

1.1. An authorization server provided by Okta will be

used.

1.2. Authorization code flow will be used.

1.3. The implementation of the flows will follow Okta’s

implementation guidelines and documentation.

Eventual exceptions will be communicated and

evaluated before proceeding.

2. Requirements for the component

2.1. Code for the component will be version controlled in

Bitbucket with follow-up to each feedback comment.

2.2. The component’s classes and methods will be

documented according to Javadoc standards.

2.3. The component will not disrupt the possibility of using

the older authorization components.

2.4. The component will classify the larger responsibilities

into separate classes.

24

2.5. The component will set all the tokens as cookies.

2.6. The component will be initialized in accordance with

Spring Framework’s dependency injection.

2.7. The component will wait five minutes until it

revalidates an access token.

2.8. The component will have an API endpoint that

handles user logouts.

3. Security requirements

3.1 The tokens will be secured as follows:

3.1.1. The tokens stored as cookies must have the

HttpOnly attribute.

3.1.2. The tokens stored as cookies must have the

Secure attribute.

3.1.3. The tokens stored as cookies must have the

SameSite attribute set to Strict where possible

and Lax where Strict is not possible.

3.2. The refresh token will be revoked and replaced each

time it issues a new access token.

3.3. The implementation of the OAuth2.0 flow will include

the recommended attribute “state” for the code

generation.

25

3.3.1. State will be generated by a cryptographically

strong random number generator and signed

with a message authentication code (MAC).

3.4. No secret credentials will be stored in the created

classes.

4. Project requirements

4.1. A retrospective update will be provided each Friday.

There was no need for a project board to follow the project’s

process because of the following:

- The work was performed alone, so there was no need to

distribute different tasks.

- A retrospective update was provided each Friday.

- There was the possibility to attend a virtual office

environment where communications could be carried out.

- The progress could be observed in Bitbucket.

These fulfilled the need for updating the stakeholders at Klarna.

4.2 Former authentication handling
The former authentication consisted of having a list of created

usernames and passwords for each user who needed access to the

web application; this list was stored in a credential file inside the

project. The web application was only reachable from Klarna’s

internal network but still needed an upgrade in terms of security and

useability. The previous login form can be seen in Picture 2.

26

Picture 2. What the authentication form to be replaced looked like

4.3 Choice of authorization flow
An initial attempt was made to implement the OAuth2.0

authorization code flow with PKCE by following Okta’s guide for

signing in a user to a single-page application [11]. After a

retrospective meeting, it was decided to instead implement

authorization code flow due to the application having a backend that

could securely handle credentials for Okta. The implemented flow is

illustrated in Picture 3.

27

Picture 3. An example of the authorization code flow

Okta’s OIDC and OAuth2.0 API were used instead of the

software development kit (SDK) that Okta provided for Spring Boot.

This was due to the web application not being compatible with

Spring Security, which was necessary in order to use the SDK.

4.4 Encountered problems and solutions
The frontend could not handle 302 redirect responses; it was

instead handled by responding with a 401 unauthorized response that

included the redirect location in its body. XML Http Requests (XHR)

did not support it, which was used for communicating between

frontend and backend in this application.

28

29

5 Results
The results presented in this chapter are intended to provide

insights for those who want to implement an authorization flow in

accordance with OAuth2.0 and OIDC using a more tailored approach

with API requests and responses. Okta acted as the authorization

server and the resource server in this project. Screenshots of the

authorization code flow are presented in Appendix A.

5.1 Starting the authorization code flow
The flow begins with a user not having a valid access token. The

web application (client) then redirects the user agent (web browser)

to Okta’s authorization endpoint while including the necessary

attributes as a query. The URI is constructed with the same attributes

as in the following example except that it has different values for

everything other than the scope and response_type:

https://{OrgOktaDomain}/oauth2/v1/authorize

 ?client_id=0oabucvyc38HLL1ef0h7

 &response_type=code

 &scope=openid%20offline_access

 &redirect_uri=http://localhost:8080/login/callback

 &state=state-296bc9a0-a2a2-4a57-be1a-d0e2fd9bb601

The Okta domain is an attribute configured for the organization; it is

retrievable from the administrator pages. The various query attributes

are as follows:

client_id: Public ID for Okta to identify the registered

application, retrievable in Okta’s administration pages.

response_type: Needs to have the value “code” so that Okta’s

authorization server knows that it is the authorization code that is to

be returned on a successful authentication.

30

scope: OIDC requests must have the “openid” value of the scope

attribute. The scope “offline_access” must be specified to retrieve a

refresh token while also having enabled it through Okta’s

administration page.

redirect_uri: This is where Okta sends the authorization code in

case of a successful authentication. The created component includes a

REST API with its communicational endpoint being the

redirect_uri’s value.

state: This should be generated as a cryptographically secure

random value, stored in the backend and sent to Okta’s endpoint to

later be validated against each other after a successful authentication.

The value could be stored as a cookie for the backend to use but

would then need to be validated with a signature, to make sure that

the backend generated the state value. This is all to prevent cross-site

request forgery, a way for an attacker to forge this query themselves

and tricking an authorized user into logging in via their query,

resulting in the attacker gaining the access token. [12].

5.2 Acquiring tokens with the authorization code
Given that the attribute values are the same as in 5.1, and the

authentication is successful, the following step uses the authorization

code in a new request to Okta’s token endpoint. Within the given

scope, this returns an access token, a refresh token and an ID token.

With pseudo code, acquiring the tokens is accomplished in four

steps:

1. Creating a HTTP POST object as a new request. The API’s

endpoint for requesting tokens is

https://{OrgOktaDomain}/oauth2/v1/token

2. Appending headers

31

2.1. client ID with client secret in a basic authorization

header, for validating the credibility with the request.

2.2. JSON in an accept header, making the response from

Okta in the format of JSON

2.3. application/x-www-form-urlencoded for the content-

type header, telling the browser how the data should

be encoded before sending it to Okta’s endpoint.

3. Setting the entity of the request as a StringEntity object

3.1. grant_type = authorization_code

3.2. redirect_uri = the redirect URI as used in 5.1

3.3. code = authorization code value acquired from Okta’s

response to a successful request as in 5.1

3.4. scope = openid%20offline_access

4. Executing the post and receiving a response in JSON format

An Objectmapper object is used to translate the JSON response

into a created class containing attributes of interest such as access

token, refresh token, id token and the associated username. The

tokens are set as secure cookies to be validated for continuous

authorized usage of the web application. At this point, the flow is

performed and can be started over if a user is unauthorized again.

5.3 Handling the authorization from the client
Once a user successfully passes the authorization code flow, their

validated access token can be used for requests during five minutes

before having to be revalidated. The five-minute leeway logic is

constructed with a LoadingCache object provided from a Google

Guava library [13]. Validation of a token is done against Okta’s

“introspect” endpoint, which is presented in the following pseudo

code:

1. Creating a HTTP POST object with the following URI:

https://{OrgOktaDomain}/oauth2/v1/introspect

32

2. Appending headers

2.1. client ID with client secret as an authorization header

2.2. application /JSON in an accept header

2.3. application/x-www-form-urlencoded for the content-

type header

3. Appending a list of name/value pairs to the created POST

object’s entity

3.1. token = value of token (extracted from a cookie)

3.2. token_type = access_token or refresh_token

4. Executing the post and receiving the response in JSON format

The response contains an attribute showing whether the token is

active. This is followed by one of three possible scenarios:

1. The access token is valid. The user agent gets access to the

requested resources.

2. The access token is invalid. If the refresh token is valid, issue

a new access token and rotate the refresh token.

3. Both the access token and the refresh token are invalid.

Return unauthorized access and redirect to restart the

authorization code flow.

5.4 Logout
An API endpoint is implemented in the component to sign the

user out. This is requested from the frontend when a logout button is

clicked. Revoking tokens requires communication with Okta’s revoke

API endpoint. Signing the user out is carried out in seven steps:

1. Creating a HTTP POST object with the following URI:

https://{OrgOktaDomain}/oauth2/v1/revoke

2. Appending headers

2.1. client ID with client secret as an authorization header

2.2. application/JSON as an accept header

33

2.3. application/x-www-form-urlencoded for the content-

type header

3. Appending the refresh token to the entity

4. Executing the POST, tokens revoked

5. Deleting all cookies

6. Redirecting to

https://{OrgOktaDomain}/oauth2/v1/logout?id_token_hint={

ID token}

7. Discarding all the entries in the LoadingCache

5.5 Design
The component is separated, as a package, from the authorization

filter. It is included in a switch case with the different authorization

methods. The switch variable is set during configuration, deciding

what method to be used. An UML class diagram is presented in

Picture 4 showing the relations to the classes they are coupled with

according to the UML syntax documentation from Lennart

Andersson [15]. Unfortunately, methods and attributes could not be

shown due to terms in an agreement with Klarna.

Picture 4. The design as a class diagram. The created component

34

includes the classes OktaResponse, OktaManager and

OktaController.

35

6 Summary
The summary includes answers to the questions presented in the

problem formulation, followed by a reflection on ethical aspects as

well as what possible development opportunities can be applied to the

component in the future.

6.1 How does the current solution for authentication

and authorization look for the web application?
Basic authorization. The web application’s authorization

procedure that was to be replaced is analyzed and presented in Chapter

4.2. Since the credentials are passed in an authorization header in every

HTTP request, it is less secure than any other method that does not

have that limitation. However, it is less vulnerable since the website of

use is protected with HTTPS, meaning that the requests and responses

are secured by transport layer security (TLS).

Having basic authorization has also resulted in negative user

experiences since the users need to remember credentials for several

different applications. (What happens when an employee leaves the

company?) Then, the stored credentials need to be removed manually

in every application. With Okta’s SSO solution, employees can easily

be centrally deactivated. Managing the access through Okta also

provides better options for monitoring all the authorization requests

and issued tokens.

6.2 What are the requirements in terms of security

related to an Okta single sign-on solution?
1. It is important to choose the correct authorization flow. In this

case, the web application stores a secret key used to

communicate to Okta’s endpoints. Communication should be

36

encrypted over TLS, which is included in the HTTPS protocol

used by most of today's websites.

2. A value should be sent with the initial request in the

authorization code flow, encrypted, signed and validated. This

is to avoid cross-site forgery requests; it basically ensures that

the request has come from a valid source.

3. Tokens need to be stored securely, in this case as cookies with

all the security flags enabled. Rotation of refresh tokens is an

effective feature to mitigate guessing the token’s value.

6.3 How is a user-friendly authentication solution

implemented?
The user-friendly authentication solution in this work achieves

the following:

- Presents users with a familiar login-form.

- Allows users to authenticate themselves with their central set

of credentials.

- Keeps users logged in if they are active without having to

reauthenticate by performing the validation in the

background.

6.4 What is one way to implement single sign-on

via Okta for a web application?
There are several ways to implement SSO via Okta. The solution

used in this work was through Okta’s OIDC and OAuth2.0 API. It

worked well and should be flexible enough to be applied in

applications that uses different frameworks or programming language

due to the communicational logic being HTTP requests.

37

6.5 Reflection on ethical aspects
As most of today’s applications are available over various

networks, it is highly important to ensure security, not only at the

network level but also within applications. Sharing knowledge that can

help implement a secure way of authorization is therefore important.

In a blog article authored by Rob Sobers [16], he states that cloud

breaches will increase due to the large increase of remote work, and

according to a report published by IBM [17], the average cost for a

data breach in 2020 was $3.86 million USD, with an average of 280

days required to identify and contain the breach. Therefore, necessary

security measures would be of great social benefit. This thesis also has

the intention of sharing important knowledge to implement secure

solutions.

6.6 Future development opportunities
The results from this project can help create more tools for secure

authorization implementations, including more thorough research into

how to test a component designed to authorize users. If someone were

to implement their own identity platform with SSO functionality like

Okta’s, the results presented in this thesis could be used as a helping

tool. Development opportunities for the implemented component

could include well-constructed Java tests.

38

39

7 Terminology
Authentication – a process of proving that someone is who they say

they are.

Authorization – giving permission to someone who is authenticated

to do something. For example, allowing a certain authenticated user

to make a server request.

API – abbreviation for Application Interface Protocol, acts as an

intermediary layer between an application and the web server. An API

processes data transfer between systems.

Central set of credentials – a username/password pair that is to be

used for several different authentication processes.

Component – A component in this context is a package of the

resulting Java classes that the web application uses.

Endpoint – one end of a communication channel. For example, a URI:

https://domain.com/endpoint.

40

41

8 References
[1] Spring, Spring Framework, [Online]. Retrieved: Aug 2021.

Available at: https://spring.io/projects/spring-framework

[2] Spring, Spring Framework documentation, Jul 2021. [Online].

Retrieved: Aug 2021. Available at:

https://docs.spring.io/spring-

framework/docs/current/reference/html/web.html

[3] Spring, Spring Boot, [Online]. Retrieved: Aug 2021. Available at:

https://spring.io/projects/spring-boot

[4] Jones, M., Bradley, J., and N. Sakimura, JSON Web Token (JWT),

May 2015, [Online]. Retrieved: Aug 2021. Available at:

https://datatracker.ietf.org/doc/html/rfc7519

[5] Hardt, D., Ed., The OAuth 2.0 Authorization Framework, Oct 2012.

[Online]. Retrieved: Aug 2021. Available at: https://www.rfc-

editor.org/rfc/rfc6749

[6] Hardt, D., Ed., The OAuth 2.0 Authorization Framework, Oct 2012.

[Online]. Retrieved: Aug 2021. Available at: https://www.rfc-

editor.org/rfc/rfc6749

[7] N. Sakimura, et al. OpenID Connect Core 1.0 specification, Nov

2014. [Online]. Retrieved: Aug 2021. Available at:

https://openid.net/specs/openid-connect-core-1_0.html

[8] S. Lauesen, Software Requirements: Styles and Techniques,

Addison Wesley, 2002, p. 342-343.

[9] Eastlake, D., Hansen, T, US Secure Hash Algorithms, May 2011.

[Online]. Retrieved: Aug 2021. Available at:

https://datatracker.ietf.org/doc/html/rfc6234

https://spring.io/projects/spring-framework
https://docs.spring.io/spring-framework/docs/current/reference/html/web.html
https://docs.spring.io/spring-framework/docs/current/reference/html/web.html
https://spring.io/projects/spring-boot
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/html/rfc6234

42

[10] Okta Developer, Sign users into your single-page application,

[Online]. Retrieved: Jul 2021. Available at:

https://developer.okta.com/docs/guides/sign-into-spa/react/before-

you-begin/

[11] The OWASP Foundation, Cross Site Request Forgery (CSRF),

[Online]. Retrieved: Aug 2021. Available at: https://owasp.org/www-

community/attacks/csrf

[12] Google Guava, Guava: Google Core Libraries for Java, [Online].

Retrieved: Jul 2021. Available at: https://github.com/google/guava

[13] OpenID, OpenID Certifications, [Online]. Retrieved: Aug 2021.

Available at: https://openid.net/certification/

[14] Lennart Andersson, UML-syntax, Jan 2013. [Online]. Retrieved:

Aug 2021. Available at:

https://fileadmin.cs.lth.se/cs/Education/EDAA20/pdf/umlsyntax.pdf

[15] Rob Sobers, 134 Cybersecurity Statistics and trends for 2021, Mar

2021. [Online]. Retrieved: Aug 2021. Available at:

https://www.varonis.com/blog/cybersecurity-statistics/

[16] IBM, Cost of a Data Breach: Report, July 2020. [Online]. Retrieved:

Aug 2021. Available at:

https://www.capita.com/sites/g/files/nginej291/files/2020-08/Ponemon-

Global-Cost-of-Data-Breach-Study-2020.pdf

[17] IETF, A mission statement for the IETF, Okt 2004. [Online]. Retrieved:

Aug 2021. Available at: https://datatracker.ietf.org/doc/html/rfc3935

[18] Atlassian, Jira Software. [Online]. Retrieved Nov 2021. Available at:

https://www.atlassian.com/software/jira

[19] Okta, Beginner's Guide to SAML, Sep 2021. [Online]. Retrieved Nov

2021. Available at: https://support.okta.com/help/s/article/Beginner-s-

Guide-to-SAML?language=en_US

https://developer.okta.com/docs/guides/sign-into-spa/react/before-you-begin/
https://developer.okta.com/docs/guides/sign-into-spa/react/before-you-begin/
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf
https://github.com/google/guava
https://openid.net/certification/
https://fileadmin.cs.lth.se/cs/Education/EDAA20/pdf/umlsyntax.pdf
https://www.varonis.com/blog/cybersecurity-statistics/
https://www.capita.com/sites/g/files/nginej291/files/2020-08/Ponemon-Global-Cost-of-Data-Breach-Study-2020.pdf
https://www.capita.com/sites/g/files/nginej291/files/2020-08/Ponemon-Global-Cost-of-Data-Breach-Study-2020.pdf
https://datatracker.ietf.org/doc/html/rfc3935
https://www.atlassian.com/software/jira
https://support.okta.com/help/s/article/Beginner-s-Guide-to-SAML?language=en_US%20
https://support.okta.com/help/s/article/Beginner-s-Guide-to-SAML?language=en_US%20

43

9 Appendices

Appendix A. Screenshots of the login flow
The web application starts the authorization code flow by

redirecting the user agent. A login form hosted by Okta is then

presented. This is shown in Picture 6.

Picture 6. Screenshot of a login form together with the network

requests viewed through Chrome's developer console.

44

When the user enters their correct credentials, MFA is triggered

as shown in Picture 7.

Picture 7. MFA required to proceed with the authentication

After providing the MFA, the user is allowed access to the web

application’s resources. The HTTP requests and the set cookies are

shown in Picture 8.

45

Picture 8. The callback query response from Okta’s authorization

server includes the code with which to initially request tokens with.

After a call to the token endpoint, following cookies were set.

Appendix B. JWT
The anatomy of a JWT can be seen in Picture 9.

46

Picture 9. The anatomy of an encoded and decoded JWT, signed

using the secure hash algorithm HMAC-SHA256 [10].

Source: Screenshot taken from https://jwt.io/

